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Abstract

The mechanisms of information storage and retrieval in brain circuits are still the subject of 

debate. It is widely believed that information is stored at least in part through changes in synaptic 

connectivity in networks that encode this information, and that these changes lead in turn to 

modifications of network dynamics, such that the stored information can be retrieved at a later 

time. Here, we review recent progress in deriving synaptic plasticity rules from experimental data, 

and in understanding how plasticity rules affect the dynamics of recurrent networks. We show 

that the dynamics generated by such networks exhibit a large degree of diversity, depending on 

parameters, similar to experimental observations in vivo during delayed response tasks.

1 Introduction

Brain networks have a remarkable ability to store information in memory, on time 

scales ranging from seconds to years. Over the last decades, a theoretical scenario has 

progressively emerged that describes qualitatively the process of information storage and 

retrieval. In this scenario, sensory stimuli to be memorized drive specific patterns of 

neuronal activity in relevant neural circuits. These patterns of neuronal activity lead in turn 

to changes in synaptic connectivity, thanks to synaptic or structural plasticity mechanisms. 

These changes in synaptic connectivity allow the network to stabilize a specific pattern 

of activity associated with the sensory stimulus, and they can also allow the network to 

retrieve this specific pattern, based on partial or noisy cues. This scenario has led to two 

complementary trends of research, on both the experimental and theoretical sides: The first 

has focused on rules and mechanisms of synaptic plasticity; The second has focused on how 

activity-dependent synaptic modifications lead to changes in network dynamics.
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Theoretical models have played a major role in bridging the gap between synaptic and 

network levels. These models have been constrained by two types of data. Data at the 

synaptic level constrain plasticity rules that can be implemented in network models. This 

data typically come from in vitro studies, but recent work, discussed in this review, has 

also sought to constrain synaptic plasticity models using in vivo data. Data at the network 

level yield information about the types of dynamics that can be generated by networks 

that maintain information about past sensory stimuli, and/or future actions to be executed. 

Experiments in vivo in animals performing delayed response tasks have shown two types 

of dynamics in the delay periods of such tasks (see e.g. [1]): (i) Persistent activity, where 

neuronal firing rates are approximately constant during the delay period, consistent with 

attractor dynamics; (ii) Dynamic patterns of activity, where neuronal firing rates have 

significant temporal modulations during the delay period. Theoretical models that have 

sought to reproduce such dynamics have followed two different paths. The first has been 

to use networks whose connectivity matrix is built using biophysically plausible learning 

rules. The second has been to ignore experimental data on synaptic plasticity, and rather use 

supervised learning approaches that teach the network to perform a given task, a set of tasks, 

or neuronal recordings.

In this review, we will first describe recent progress in deriving synaptic plasticity rules from 

experimental data. In particular, we review recent approaches to infer plasticity rules in vivo. 

We will then describe recent theoretical work that has explored the dynamics of networks 

with connectivity matrices built using biophysically realistic plasticity rules. We will also 

discuss the storage capacity of such networks.

2 Synaptic plasticity rules

Studies of synaptic plasticity in vitro (reviewed in [11, 12, 13]) have shown that synaptic 

modifications (Δw) depend on spike-patterns of pre- and postsynaptic neurons through 

relative timing, firing rates, the location of the synapse along the dendritic tree, and on the 

extracellular conditions of the preparation. Diverse types of STDP (Spike Timing Dependent 

Plasticity) curves have been characterized, in different preparations, or sometimes in the 

same preparation but different experimental conditions (Fig. 1A). Furthermore, synaptic 

modifications are often weight-dependent. For example, plasticity can be multiplicative 
(i.e.,Δw ∝ w), and some plasticity experiments are consistent with discrete synapses [14] 

(i.e., synapses that are stable only in one of a discrete number of efficacy levels). Such 

complex dependencies are typically simplified in mathematical models to reduce the number 

of parameters fit to data, and facilitate analytical treatment of plasticity at the network 

level. Models can be divided into classes which differ in the identity of the intermediate 

biophysical quantities which trigger plasticity: Firing-rate-based rules, which assume that 

changes to synaptic efficacy depend on the spike-trains only through their temporal average 

[9] (Fig. 1B,C); Spike-timing-based models [15, 16]; Spike and voltage-based rules [17]; 

Calcium-based models [18, 8, 4•]; And finally, more detailed models based on biochemical 

networks involved in synaptic plasticity [19].

While some of these models have had success in reproducing multiple in vitro synaptic 

plasticity protocols [18, 16, 17, 8], it remains unclear whether plasticity rules fit to in 
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vitro experiments apply to in vivo conditions. Indeed, recent work shows that setting 

the extracellular calcium concentration to physiological levels, instead of the higher 

concentrations typically used in in vitro studies, leads to profoundly altered plasticity rules 

[4•]: No significant plasticity was reported for pairs of single pre- and postsynaptic spikes, 

independent of timing, at physiological low calcium concentrations. Significant plasticity 

could be recovered using either high-frequency stimulation, or bursts of spikes. A calcium-

based rule was found to describe this data well quantitatively, provided interactions between 

calcium transients triggered by pre- and postsynaptic spikes are sufficiently non-linear [4•].

An alternative approach to bridge plasticity rules and changes to network structure as an 

animal learns, is to infer rules of synaptic plasticity directly from in vivo data (Fig. 1D). 

A difficulty in obtaining information about synaptic plasticity in vivo is that it is not yet 

possible to simultaneously measure synaptic efficacy together with pre- and postsynaptic 

activity. However, Lim et al. [10•] noticed that changes in neuronal responses to repeated 

presentations of sensory stimuli can provide information on the putative plasticity rule that 

is responsible for these changes. In particular, they used distributions of visual responses of 

neurons in the inferior temporal cortex (ITC) to two different sets of stimuli (one novel, the 

other familiar). Assuming the plasticity rule depends on firing rates of pre- and postsynaptic 

neurons as Δw = f(rpost)g(rpre), one can use these distributions to infer f, i.e., the dependence 

of the plasticity rule on postsynaptic firing rate (Fig. 1B,D). The function g cannot be 

fully determined, but can be shown to be positively correlated with presynaptic firing rate. 

Interestingly, the inferred function f exhibits depression at low rates and potentiation at high 

rates, consistent with multiple plasticity rules inferred from in vitro data. In a subsequent 

study, Lim found that the analysis of changes in temporal patterns of activity with familiarity 

makes it possible to disentangle recurrent and feedforward synaptic plasticity [20]. More 

recently, machine-learning approaches have been developed to infer plasticity rules from 

data, by training a neural network to classify the presumed plasticity rule into one of a 

number of categories [21, 22]. So far, these approaches have been applied to synthetic data 

with known ground-truth, but not to real data.

Another major recent advance in our understanding of synaptic plasticity in vivo is the 

demonstration that plasticity can be induced by pairing presynaptic spikes with postsynaptic 

‘plateau potentials’ [23•]. Crucially, this form of plasticity is far less sensitive to the 

relative timing of events than classical STDP (~ 1s relative to ~ 20–50ms), thus providing 

a new mechanism connecting synaptic modifications and behavior. Voltage- and calcium-

based plasticity rules mentioned above could potentially be modified to account for this 

mechanism through the introduction of a long time-scale. In the future, experiments that 

combine whole-cell patch clamp of postsynaptic neurons or imaging of dendritic spines, 

together with (sensory and/or optogenetic) manipulations of activity, are likely to provide 

essential information on synaptic plasticity in vivo (e.g., [24, 25, 26]). Another approach 

that will become more powerful with tool development is to track the strength of synaptic 

connections based on inference from large scale longitudinal electrophysiological recordings 

using silicon probes or fast voltage indicators [27].
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3 Network dynamics

What type of dynamics emerge in networks endowed with the biologically plausible learning 

rules described above? Are such dynamics consistent with neural recordings? Theoretical 

studies tackling these questions can be divided into two learning scenarios. In the first 

scenario, learning and retrieval occur in two distinct phases. In the learning phase, input 

patterns to the network are imprinted in the connectivity by synaptic plasticity rules. After 

learning, the network connectivity is held fixed during retrieval of memory items. This 

scenario implicitly assumes a separation of time scales between learning and retrieval, or 

alternatively, that learning is gated by a third factor, such as neuromodulators. In the second 

scenario, the synaptic connectivity is dynamic, and synaptic plasticity is always ongoing, 

during both the learning of new memories and their successive retrieval. In this section, we 

describe recent progress in addressing the above questions in these two scenarios.

Networks with fixed learned connectivity.

In classic attractor network models, memories are represented as fixed-point attractors of the 

network dynamics [30, 31] (see Fig. 3A). In attractor states, subsets of neurons maintain an 

elevated persistent activity after the presentation of an item that is stored in memory, while 

other neurons remain at low activity levels (Fig. 3B). Such dynamics can be generated when 

synaptic connectivity is structured using a temporally symmetric plasticity rule (associating 

pre- and postsynaptic activity occuring at the same time t) in order to learn new memories 

(Fig. 2A). Attractor network models reproduce qualitatively the phenomenon of persistent 

activity that has been widely observed in delayed response tasks. However, learning rules 

used in these models have until recently been unconstrained by data. Furthermore, neuronal 

activity observed during delay periods in the prefrontal cortex is often characterized by a 

strong temporal variability, that seems hard to reconcile with fixed-point attractor retrieval 

states [32•, 33]. Recently, a network endowed with a temporally symmetric learning rule and 

transfer functions inferred from in vivo recordings in ITC (see Fig. 1D,[10•]) was shown to 

exhibit attractor dynamics (Fig. 3A–C) [28•]. Firing rate distributions in retrieval states are 

close to log-normal and qualitatively match experimental data [34, 35]. When the strength 

of the recurrent connections increases, the network undergoes a transition in which retrieval 

states become chaotic [28•, 36] (Fig. 3D). In this state, firing rates strongly fluctuate in 

time while the overlap remains constant (Fig. 3E–F). This activity strongly resembles neural 

activity in the prefrontal cortex during delayed response tasks, where dynamics are confined 

to a stable subspace despite large temporal fluctuations among individual neurons [32•].

When the learning rule is temporally asymmetric, network connectivity storing sequences 

of input patterns is strongly asymmetric (Fig. 2B) [37, 38, 29•].The network dynamics no 

longer converges to fixed points, but rather exhibits sequential activity, in which neurons 

are active at particular points in time that are reproducible across multiple trials (Fig. 

3H–I). The dynamics of these networks display several features that are consistent with 

experimentally observed activity [29•]. These include non-uniform temporal statistics, such 

as an overrepresentation of activity at the beginning of a sequence, and a broadening of ‘time 

fields’ with elapsed time, similar to observations in time cells during delay period activity 

[39, 40]. Other studies have explored how the interplay between symmetric and asymmetric 
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connectivity shapes network dynamics, leading to ‘Hebbian assemblies’ for predominantly 

symmetric connectivity while sequential activity is generated for predominantly asymmetric 

connectivity [41].

Networks with dynamic connectivity.

Multiple theoretical studies have explored scenarios of online learning, in which learning 

is continuously active [42, 43, 44, 45, 46, 47, 48, 49, 50]. These networks typically 

begin with random, unstructured connectivity, and organize through time as a function of 

network activity. One of the main challenges in this learning scenario is the stability of 

information encoded in the weights and of network activity. In particular, Hebbian synaptic 

plasticity is well known to produce instabilities, due to the positive feedback loop between 

neuronal activity and synaptic strength inherent in this form of plasticity. Thus, additional 

stabilization mechanisms must be added, such as homeostatic plasticity [51], constraints on 

total incoming [52] and/or outgoing [42] synaptic weights, metaplasticity [9] and inhibitory 

plasticity [12].

To generate persistent activity from structured inputs, specific assemblies can be repeatedly 

activated through targeted external inputs. Spike-based plasticity among excitatory neurons, 

in combination with homeostatic and inhibitory plasticity, selectively strengthens the 

(symmetric) recurrent connections necessary to sustain activity within a given active 

assembly [53, 43, 44, 49]. To generate sequential activity from structured inputs, assemblies 

can be activated with a repeated temporal order to drive the formation of asymmetric 

feedforward connectivity [54, 46, 49]. It has also been shown that oscillatory external input 

can interact with Hebbian plasticity to favor the emergence of a connectivity structure 

supporting sequential activity [55]. Both assemblies and feedforward structure can also 

self-organize from spatially unstructured Poisson input. In this scenario, constraints on the 

total incoming/outgoing synaptic weights are critical to both the initial development of this 

structure and its long-term stability [42, 56].

In general, whether feedforward or assembly connectivity structure in these models develops 

over the course of learning depends on specific features of the plasticity rule that favor 

different local network motifs [57, 45, 47], as well as the timing of stimuli presentations in 

the case of structured input [49].

4 Storage capacity

A long-standing theoretical question about information storage in recurrent networks is the 

question of storage capacity: How many memories can be stored in a network with a given 

architecture? Theorists have used two types of approaches to address this question. The first 

consists in computing the storage capacity of networks with specific learning rules - the 

paradigmatic example being the computation of the storage capacity of the fully connected 

Hopfield model [58]. Storage capacity, defined as the number of retrievable memory items 

divided by number of plastic input connections per neuron, was subsequently shown to 

increase when connectivity is sparse [59], and with sparse coding of memories [60]. The 

second approach consists in computing the optimal storage capacity, in the space of all 

possible connectivity matrices [61]. This last approach therefore gives an upper bound, 
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referred to as the Gardner bound, on what can be achieved by any plasticity rule (but see 

below). However, though this optimal capacity can be achieved using a supervised learning 

rule such as the perceptron learning rule or its variants, it is unclear whether biologically 

plausible unsupervised learning rules can reach this bound, and if not, how close to capacity 

they can get.

Recent studies have revisited the issue of storage capacity using models constrained by data. 

A sparsely connected network with a learning rule constrained by ITC data was shown to 

have a remarkably large capacity, similar to the capacity of sparsely connected networks of 

binary neurons [28•]. Furthermore, it was shown that learning rules fitted to data are close to 

the optimal capacity, in the space of unsupervised Hebbian plasticity rules, parameterized by 

a sigmoidal dependence on pre- and postsynaptic rates. The optimal capacity in this space is 

given by a learning rule that stores a covariance of binarized input patterns [60]. The storage 

capacity of networks storing sequences have also been computed recently in a special case 

of a learning rule storing the time-delayed covariance of Gaussian input patterns [29•], but 

the optimal capacity in the space of unsupervised rules remains an open question in this 

case.

While capacity has traditionally been studied exclusively in networks with unconstrained 

weights, or in networks with plasticity restricted to excitatory-to-excitatory weights, 

Mongillo et al [62•] have recently studied the impact of inhibitory plasticity on capacity. 

They used a network of excitatory and inhibitory neurons and constrained connectivity 

parameters to ensure average firing rates and spiking variability were at physiologically 

observed values. These constraints lead in their model to a variance of inhibitory inputs that 

is much larger than the variance of excitatory inputs. They then studied the storage capacity 

of the network, using Hebbian/anti-Hebbian plasticity in excitatory/inhibitory connections, 

and showed plasticity in inhibitory connections can provide a very large boost to capacity, 

increasing it several fold.

A longstanding open question is how close are networks with unsupervised Hebbian rules 

to theoretical bounds. Work from the 1980s had shown that in the sparse coding limit, 

the storage capacity of networks with a covariance rule gets asymptotically close to the 

Gardner bound [60, 61]. Recently, Schonberg et al [63•] showed that networks of neurons 

with threshold-linear units that store memories through a Hebbian rule can have a storage 

capacity that reaches and even exceeds the Gardner bound, for sparse enough memories. 

This apparent discrepancy can be understood by the fact that the Gardner bound is computed 

assuming attractors are exactly identical to stored memories. In networks with Hebbian 

rules, attractors are in general correlated, but distinct from the patterns that are stored in 

the connectivity matrix. In the network studied in [63•], attractors turn out to be sparser 

than the stored patterns, which leads to a higher capacity than the Gardner capacity, 

computed for the sparseness level of the stored patterns. Intriguingly, theoretical work 

on the properties of synaptic connectivity in networks optimizing information storage has 

shown that many non-trivial experimentally observed properties of synaptic connectivity in 

cortex can be reproduced by such optimal networks, including low connection probability 

and over-representation of bidirectionnally connected pairs of excitatory neurons [64•], high 
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connection probability of inhibitory connections [65] and balance between excitation and 

inhibition [66].

5 Discussion

We have reviewed here recent progress on the characterization of Hebbian synaptic plasticity 

rules in in vivo conditions, on the dynamics of recurrent networks endowed with Hebbian 

synaptic plasticity rules, and on the storage capacity of such networks. On the synaptic 

plasticity front, the emerging picture is that isolated pairs of pre- and postsynaptic spikes 

are insufficient to elicit significant plasticity in physiological conditions. Rather, more 

prominent activity patterns, involving bursts of spikes, plateau potentials and/or sufficiently 

high firing rates, seem to be necessary to induce lasting changes in synaptic connectivity. 

Calcium-based models have been shown to fit well a broad range of data, and are a good 

starting point for extensions and generalizations, including bridging plasticity to behavioral 

timescales, studying plasticity in spatially extended neurons, and disentangling effects 

of plasticity induced by pre- and postsynaptic activity from additional factors such as 

neuromodulators.

On the network dynamics front, recent studies have shown that simple Hebbian plasticity 

rules can lead to a wide diversity of retrieval dynamics, from convergence to a fixed point 

(leading to persistent activity), to chaos (leading to highly irregular persistent activity), or 

sequential dynamics, depending on coupling strength and the degree of asymmetry in the 

synaptic plasticity rule. An important question is whether a given network, with a given 

learning rule is able to produce diverse types of dynamics, depending on the statistics of 

inputs received during learning and/or the delay period. The study of ref. [49] provides a 

proof of principle that a network with a temporally asymmetric Hebbian rule can generate 

both persistent activity and sequential activity, depending on the input temporal statistics 

during learning.

The diversity of the types of dynamics that are observed in networks with simple 

unsupervised Hebbian plasticity rules is reminiscent of the diversity of experimentally 

observed dynamics in delay periods in delayed response tasks in mammalian cortices. 

The phenomenon of persistent activity, which has been widely observed in multiple types 

of delayed response tasks [67], has long been thought to be a manifestation of recurrent 

dynamics in cortical circuits [68]. Perturbation studies have shown that the dynamics in 

the ellipsoid body of flies [69] and area ALM of mice [70•], are consistent with attractor 

dynamics. However, a number of challenges to the persistent activity/attractor dynamics 

hypothesis have been identified (see e.g. [33]): (1) even when persistent activity is seen 

after trial averaging, the dynamics in single trials shows a high degree of irregularity, with 

activity often occurring in sparse, transient bursts; (2) the trial-averaged activity is often 

dynamic, with ramping or sequential activity patterns. While ramping activity could be 

reconciled with a fixed point attractor scenario in the presence of time-dependent input 

encoding elapsed time [70•], sequential activity requires a different conceptual framework 

than attractor dynamics. As described in Section 3, the diversity of dynamics observed in 

networks with Hebbian plasticity can recapitulate the experimentally observed diversity: 

Classic persistent activity could correspond to the fixed point attractor scenario (Fig.3A–C), 
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while persistent activity with highly irregular/bursty single trial activity could correspond to 

the chaotic attractor scenario (Fig.3D–F), both of which can be generated using temporally 

symmetric synaptic plasticity. Finally, sequential activity can be generated using temporally 

asymmetric synaptic plasticity, as shown in Fig.3G–I.

The networks discussed in Section 3 also reproduce a number of non-trivial features 

of experimentally observed activity. For instance, when parameters of neuronal transfer 

functions and learning rule are inferred from data, the distributions of firing rates in the 

delay period do not exhibit a strong bimodality, similar to what is seen in delay match to 

sample tasks [34, 35, 28•]. In the case of sequences, the temporal characteristics of retrieved 

sequences display a number of striking similarities with data, such as the broadening of 

time fields with elapsed time, and the non-uniformity of the distribution of time field centers 

[29•].

In the theoretical framework we have described here, memories stored in the network 

correspond to fixed network states (or sets of network states in the case of sequences). 

Recent longitudinal recordings of population activity on the time scale of weeks have shown 

that, far from being fixed, these network states constantly reorganize on these long time 

scales (a phenomenon that has been termed representational drift) [71]. In a recent paper, we 

have shown that this phenomenon is compatible with the storage of fixed memories, in the 

presence of slow synaptic dynamics, either due to random fluctuations, or to storage of new 

memories [29•].

The approach we have outlined in this review (i.e., using unsupervised, biophysically 

motivated synaptic plasticity rules) can be contrasted with recent studies that have used 

supervised learning approaches, either to reproduce a given task or set of tasks [72, 73, 74, 

75], or to reproduce the observed sequential activity [76]. This approach has had success 

in reproducing some of the diversity of observed dynamics, but has the drawback that the 

plasticity rules do not satisfy locality constraints and are therefore not biologically plausible. 

Several steps have been taken towards making these rules more biologically realistic, either 

by imposing by hand a locality constraint [77], or by using a three-factor plasticity rule 

that include a delayed reward information [78]. Integrating unsupervised and reward-based 

learning remain an important subject for future work.

Much work remains to extend of the results described in this review to more biophysically 

realistic learning settings, in which recurrent synaptic inputs interact with external inputs 

in non-trivial ways. In addition, the storage capacity of online plasticity rules remain an 

open question. On the experimental side, an outstanding open question is demonstrating 

that the types of dynamics seen during delayed response tasks depend on Hebbian synaptic 

plasticity. The ongoing parallel progress in experimental and computational techniques 

makes us hopeful that answers to these questions might become available in the next few 

years.
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Figure 1: Synaptic plasticity.
A. STDP (spike timing dependent plasticity) curves (i.e., dependence of synaptic plasticity 

on the timing difference between pre- and postsynaptic spikes Δt) observed experimentally. 

A number of qualitatively distinct STDP curve shapes have been reported experimentally: 

The classical curve (dark blue, seen e.g., in hippocampal cultures [2] and cortical slices 

[3]) exhibits a depression window (D) followed by a potentiation window (P); A curve 

with a second depression window (DPD, magenta, seen in CA3 to CA1 connections at 

high calcium concentration[4•]); A curve with only potentiation (P, purple, seen in area 

CA3 [5], in hippocampal cultures in the presence of dopamine[6]); and finally a curve with 

only depression (D, light blue, in CA3 to CA1 connections at low extra-cellular calcium 

concentrations[7, 4•]).A calcium based model can account for all curve shapes with different 

choices of parameters [8], and for the transition between different curves as a function of 

the extracellular calcium concentration [4•]. B. Models from each of the classes discussed 

in the text are typically fit to in vitro data based on plasticity protocols where the same 

pre-post pattern of activity is repeated. These models all give qualitatively similar firing rate 

dependence, which is similar to the BCM rule [9]. The specific shape of the non-linearity, 

and in particular the threshold separating LTD and LTP, depends on the model and its 

parameters, and on whether pre/postsynaptic (or both) firing-rate(s) are varied. A learning 

rule inferred from in vivo data [10•] gives a similar dependence on firing rate. C. Models can 
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also be used to predict synaptic plasticity for independent pre- and postsynaptic firing-rates. 

Shown here qualitatively is the magnitude of LTD (red) and LTP (blue), in a scenario 

where synaptic modifications are well approximated by the form Δw = g(rpre)f(rpost) [10•]. 

The dependence of plasticity on both pre- and postsynaptic firing rate, varying as two 

independent variables, has not yet been characterized experimentally. D. Inferring plasticity 

rules from in vivo data. The firing-rate distribution of a single neuron in response to sensory 

stimuli exhibits significant differences between novel and familiar stimuli. These differences 

can be used to reverse-engineer a learning rule that causes such differences. This learning 

rule has a dependence on the postsynaptic firing rate that is qualitatively similar to the curve 

in panel B. Such a learning rule sparsens the representation of sensory stimuli, decreasing 

the response of most neurons (those that respond with a firing rate that is smaller than the 

threshold between LTD and LTP), but leading to an increased response for a small subset of 

neurons that have initially the strongest response [10•].
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Figure 2: 
Network connectivity after learning with temporally symmetric (A) and asymmetric (B) 

plasticity rules. A. An external input leads to increased activity of the set of orange neurons. 

With a temporally symmetric plasticity rule, this activity leads in turn to strengthening of 

synapses connecting these neurons in a bidirectional fashion, leading to strongly symmetric 

synaptic connectivity. B. Temporally varying external inputs lead to successive activation of 

the orange, green and purple sets of neurons. With a temporally asymmetric plasticity rule, 

connectivity is strengthened in a unidirectional fashion, leading to an asymmetric, effectivety 

feedforward connectivity between these sets of neurons.
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Figure 3: 
Network dynamics following learning. A. Schematic of fixed point attractor retrieval 

states occupying discrete subspaces. The space of network states is divided into basins 

of attraction, within which network activity will converge to a fixed point (black 

circle), representing a learned item. B. Single unit firing rates during background (0–1s), 

presentation of a pattern stored in memory (between dashed lines, 1–1.5s), and ‘delay’ 

period following stimulus presentation (1.5–2.5s), in a network in which distributions of 

stored patterns and learning rule have been inferred from data [28•]. In the background state, 

single neurons fire with a wide (~ log-normal) distribution of rates. During the stimulus 

presentation, a small fraction of neurons are driven to high rates, while most neurons are 

suppressed. After the stimulus is removed, the network converges to a selective attractor 

states, in which a small fraction of neurons exhibits persistent activity. C. Overlap between 

network state and the presented pattern (blue) increases during stimulus presentation, and 

remains high following removal of external input, while overlaps between network state and 

other stored patterns (green) remains small. D. Schematic of chaotic attractor retrieval states. 
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Network activity is confined to a subspace, but does not converge to a stable fixed point. 

E–F. Similar as in panel B–C, except the network has stronger recurrent connections and 

stimulus presentation is between 2 and 2.5s [28•]. The network is in a chaotic state before 

stimulus presentation, with all single neuron firing rates fluctuating widely. After stimulus 

presentation, the network switches to a different chaotic state that is strongly correlated 

with the stored pattern (see blue overlap in F). G. Schematic of sequential pattern retrieval 

for two separate stored sequences (red and blue). Activity transitions from one subspace 

to the next. H–I. Similar as in panels B–C, except the network stores sequences, and is 

initialized close to the first stored pattern in a sequence of 24 patterns at 0.35s [29•]. Single 

neurons are transiently activated at different times, and the network successively visits 

the neighborhoods of the different patterns composing the sequence as shown by transient 

overlap activations in I.
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