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Abstract 

Foraging is a search process common to all mobile organisms. 
Spatial memory can improve foraging efficiency and efficacy, 
and evidence indicates that many species—including 
humans—actively utilize spatial memory to aid in their 
foraging, yet most current models of foraging do not include 
spatial memory. In this study, a simple online foraging game 
was used to attempt to replicate and extend findings from a 
recent study (Kerster, Rhodes, & Kello, 2016) to further 
investigate the role of spatial memory in foraging. The game 
involved searching a simple 2d space by clicking the mouse 
to try and find as many resources as possible in 300 clicks. 
Spatial information was displayed that provided complete 
information about search history in order test how “perfect” 
spatial memory improves search performance. Over 1000 
participants were recruited to participate in the task using 
Amazon’s Mechanical Turk, which allowed this test to be 
performed across a wide parameter space of different resource 
distributions. Results replicated many of the findings of 
earlier studies, and demonstrated that spatial memory can 
have a dramatic effect on search performance. 

Keywords: Foraging; spatial memory; Lévy walks; area 
restricted search; crowdsourcing  

Introduction 

Foraging is ubiquitous amongst living organisms, as it is a 

key task required for survival and procreation. Foraging is 

the process of searching an environment for resources, such 

as food or mates. While, foraging generally refers to a 

physical search process across a landscape, the principles 

involved are shared across many types of search processes, 

including memory search, visual search, and problem 

solving (Cain, Vul, Clark, & Mitroff, 2012; Rhodes, Kello, 

& Kerster, 2014; Rhodes & Turvey, 2007).  

Some researchers have theorized that animal foraging 

behaviors are memory-less processes known as Lévy walks. 

Lévy walks are a random walk model where movement 

lengths are drawn from a Lévy distribution. It is unlikely 

that animal searches are literally random walks (Pyke, 

2015), but the model captures an important aspect of 

foraging behavior. The distribution of path lengths, which 

are the lengths of straight movements made before stopping 

or switching directions, have been observed to follow a 

power law distribution. This indicates a clustered pattern of 

movement where a large number of smaller movements are 

interspersed with occasional larger movements across 

different scales. Lévy distributions have been observed in 

the foraging movements of a variety of different animals 

including albatrosses (Viswanathan et al., 1996), a variety 

of different fish species (Sims et al., 2008), and have been 

identified in memory search (Rhodes & Turvey, 2007) and 

visual search (Rhodes et al., 2014).. 

Marginal value theory is an alternative approach to 

modeling foraging animal movements. This approach treats 

resources as a series of patches of varying sizes, and 

abstracts away the direct physical movement aspect of 

foraging while concentrating on optimizing the time a 

forager spends in a patch before moving on to another one. 

Marginal value theorem states that foraging can by 

optimized by comparing the rate of resource gain per unit 

time to the average rate. When the rate dips below the 

average, the forager should seek a new patch (Charnov, 

1976). 

One of the current leading models of animal foraging 

expands on marginal value theory by removing the spatial 

abstractions and implementing a model that attempts to 

optimize how an organism moves through the environment 

by relating turning rates to time since the last resource was 

found (Hills, 2006). Shortly after resources are found, the 

model turns more frequently keeping it within the resource 

patch. As resources become sparser, the model will turn 

less, propelling it on until it finds another resource and 

presumably another patch. This approach, known as area-

restricted search, has recently been successful at modeling 

real world animal foraging data, and has been shown to 

generate movement patterns very similar to those generated 

by Lévy flight models (Hills, Kalff, & Wiener, 2013; 

Kareiva & Odell, 1987). 

A number of studies have demonstrated that while there 

are some fundamental differences between animal foraging 

and cognitive search tasks, there are also enough similarities 

that findings related to foraging can be applicable to more 

abstract cognitive tasks. For example, Rhodes & Turvey 

(2007) demonstrated that times between word utterances in 

a category recall task follow a power law distribution as 

would be predicted by a Lévy walk model. Similar work has 

also been done from an optimal foraging perspective (Hills, 

Jones, & Todd, 2012). Visual search also provides a task 

whose constraints are similar to a foraging task, and 

unsurprisingly strong similarities in behavior between the 

tasks has been observed (Wolfe, 2013). 

The successes of Lévy walks, marginal value theorem, 

and area-restricted search notwithstanding, spatial memory 

does not play a role in guiding search movements in any of 

these theories, i.e. there is no memory for past search 

locations. The exclusion of spatial memory stands in 
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contrast with studies of animal foraging—a number of 

animals have been observed to utilize spatial memory for 

such tasks including monkeys, primates, and octopi (Garber, 

1989; Mather, 1991). The lack of spatial memory in leading 

models of foraging helps them to be simple and tractable to 

analyze, but it appears that organisms with well-developed 

spatial memories bring those faculties to bear when 

engaging in a task as inherently spatial as foraging. 

Additionally, if spatial memory proves important to human 

foraging it may be informative for theories of visual search 

as well.  

 Recent work has shown evidence that humans utilize 

spatial memory in their search strategies. Kerster, Rhodes, 

& Kello (2016) demonstrated a significant effect of 

landmarks in a virtual foraging task. In that task, 

participants were presented with either a blank screen or a 

Hubble space image and were asked to click anywhere on 

the screen to search for hidden resources. Resources were 

non-renewing and were not correlated to the background 

images. Analyses of performance showed that participants 

were able to find significantly more resources when the 

Hubble images were present. The authors concluded that the 

images served as landmarks for searchers, aiding their 

spatial memory. Kerster et al. (2016) formulated a foraging 

model that utilizes spatial memory as one of its key features. 

The model produced search patterns similar to those 

generated by human participants, in terms of the effects of 

resource density and clustering on performance and search 

trajectories. One important difference between human 

participants and the model was that, even though the relative 

patterns of performance were similar, the model was able to 

find many more resources on average. The authors 

conjectured that this difference may be due to the model 

utilizing perfect spatial memory.  

In the present study, we expand on Kerster et al. (2016) 

by testing human foraging performance under experimental 

conditions that mimic perfect spatial memory, akin to the 

foraging model that they formulated. We test whether 

providing a complete history of a player’s past search 

locations and resources found will improve performance to 

level of the model, and how search trajectories might 

change with perfect spatial memory.  

Methods 

The experimental design used here is based on the foraging 

game described in Kerster et al. (2016). 1034 participants 

played a browser-based game written in Adobe Flash. 

Participants were recruited using Amazon’s Mechanical 

Turk and were paid $0.25 for their time and participation. 

All data was collected during a single 24 hour period.   

Participants were shown a 1280 x 1024 pixel black screen 

with a score counter in the top left corner which displayed 

the number of resources found, and a “fuel” display in the 

top right which displayed how many clicks they had 

remaining in text and with a depleting meter. 

Participants were instructed to find as many resources as 

they could in 300 clicks, and they were able to click freely 

anywhere on the screen and were given visual and audio 

cues when they selected a location with a resource. 

Resources were hidden from view until found and were non-

renewing. See Figure 1 for an example of what the game 

looks like during play. 

Each participant was presented a single trial from one of 9 

different resource conditions. Resources conditions were 

manipulated in a 3x3 design between resource density and 

clustering. Resource density corresponded with the total 

amount of resources, and was set to 100, 600, or 1100 

resources. Clustering of resources was controlled using a 

recursive algorithm that produces power law distributions of 

resource clusters with varying degrees of clustering from 

very clustered to uniform random. The parameter 

controlling degree of clustering was set to three distinct 

levels—highly clustered (0.1), less clustered (0.3), and 

random i.e. not clustered (0.5).  

Prior to beginning of the foraging game, each participant 

was presented with a short text briefing that provided 

instructions and framed the experiment as “space 

exploration.” This was followed by a display showing an 

example distribution of resources. The example was drawn 

from the same condition as what they would encounter in 

the game, but the particular distribution shown was different 

than the one used during the game. Participants were also 

informed that, if they received a high score, they would 

have an opportunity to add their initials to the high score 

list. A high score list was used to increase participant 

engagement in the game. Participants then had a short 

practice trial (15 foraging clicks) before the game began. 

The whole experiment generally took less than five minutes 

to complete.  

 

 
 

Figure 1: An example of the game’s appearance during play. 

Squares indicate where the player has foraged thus far. 

White squares indicate nothing was found at that location, 

and red squares indicate that resources were found, with 

brighter shades indicating higher values. The number of 

resources found is shown in the upper left, and the number 
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of foraging clicks remaining is shown in the upper right (in 

numerical and bar form). 

 

 

The foraging game in this experiment differed from the 

one used in Kerster et al. (2016) in two important ways. 

First, the search area was divided into an invisible grid of 15 

x 15 pixel squares. Each square was searched by clicking 

over it, and each square could be searched only once. This 

restriction ensured that that there was no search area overlap 

among clicks, and therefore no wasted clicks searching in 

previously searched locations. By contrast, the game used 

by Kerster et al. (2016) allowed participants to click on 

locations that were partially or entirely searched already.  

 
 

Figure 2: Pseudocode for the recursive algorithm used to 

generate clustered resources. The probs_split parameter 

corresponds to a number between 0 and 0.5 and determines 

the degree of clustering, where 0 would create a single 

cluster, and 0.5 creates a uniform random distribution. 

(Kerster et al, 2016) 

 

The other difference between Kerster et al. (2016) and the 

present study was the display of participant’s previous 

searches. In the present study, a square was placed after 

each click on the corresponding location on the grid, and 

color coding was used to indicate the number of resources 

found, or no resources found. In particular, the range of 

brightness/hue levels was normalized by setting the 

brightest color to the maximum number of resources 

available in any given square, and setting white to mean that 

no resources were found. The restriction against overlapping 

clicks, plus the displayed information about previous 

locations foraged, effectively created a perfect external 

spatial memory for participants.  

The game was otherwise the same as in Kerster et al. 

(2016), so we compare the results of the two experiments 

directly. 

Results 

Path length measures were computed using the same 

method described in Kerster, et al. (2016). Euclidean 

distances were calculated between each successive pair of 

clicks, and distances were summed into single path lengths 

for consecutive segments that had less than 10˚ of change 

between them. The angle threshold was used so that 

consecutive clicks in a relatively straight line were treated as 

a single path length. Each play yielded 203 path lengths on 

average, out of 300 clicks in total. By contrast, the average 

number of path lengths was 165 in Kerster et al. (2016). The 

increase in numbers of path lengths is likely the result of 

changes in foraging strategies between the two experiments 

(see below), as well as the transition to a fixed grid.  

Path length distributions were analyzed to investigate 

whether they demonstrated heavy tailed properties. A 

number of studies have shown that the path length 

distributions of various foraging animals can be quantified 

in terms of the functional forms of their tails. Exponential, 

lognormal, and power law functions are commonly used, 

where the latter two functions feature heavier tails than 

exponential. Specifically, maximum likelihood methods 

suggested that foraging animals are sometimes best fit by 

power laws or truncated power laws (Humphries et al., 

2010; Humphries, Weimerskirch, Queiroz, Southall, & 

Sims, 2012), and other times by lognormal or stretched 

exponential functions (Breed, Severns, & Edwards, 2015; 

Edwards, Freeman, Breed, & Jonsen, 2012). Additionally 

lognormal distributions have been fit to human foraging 

movements as well (Kerster, Kello, Rhodes, & Bien-Aime, 

2013; Kerster et al., 2016). These heavy tailed distributions 

are indicative of spatial clustering in the search movements. 

Additionally, it has been argued that power law functions 

with exponents near two indicate Lévy walks, which are 

optimal under a certain set of assumptions (Viswanathan et 

al., 1999),  although Lévy walks have been criticized as 

being overly simplified models of foraging by others (Pyke, 

2015).  

Aikaike’s Information Criterion (Akaike, 1974) was 

applied to the path length distributions provided by each 

subject using the same methods described in Kerster et al. 

(2016) to determine which function best fit each 

distribution. Like in Kerster et al. (2016) the vast majority 

of distributions were best fit by the lognormal (92%). The 

estimated exponents also replicated, and were near the 

theoretically optimal exponent of 2 for Lévy walks. These 

findings indicate that people produced search trajectories 

that were inherently clustered.  

 

Table 1: Comparison of resources found and estimated 

exponents across conditions between the two experiments. 

Standard errors are in parentheses. 
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This experiment replicates many of the key findings of 

the earlier foraging game, which then raises the question: 

What effect did changes in the experiment have? The model 

described in Kerster et al. (2016) also replicated many of 

these findings, but demonstrated much higher search 

efficiency as measured by their normalized score, i.e. 

proportion of available resources found. Kerster et al. 

proposed that the difference in score between human 

participants and the model was due to the model having a 

perfect spatial memory, and non-overlapping foraging 

locations. The present experiment conferred the same 

benefits upon human participants, so we expected a large 

increase in score between this experiment and Kerster et al. 

(2016).  

As predicted, participants demonstrate much higher 

scores in the current experiment (M=16%, SD=19%) 

compared to the previous experiment (M=7%, SD=8%) as 

confirmed by a Welch’s t-test (t(7142)=15.5, p < 0.0001). A 

qualitative look shows that scores in all conditions except 

the uniform random distribution of resources were 

substantially higher (see Table 1). Score is normalized by 

dividing the total number of resources found by the number 

of available resources in the condition, so that scores may be 

directly compared across distributions. The small difference 

observed for the random condition is because knowledge of 

prior resource locations provides no information about 

where to find other resources, thus spatial memory should 

only be useful in preventing repeated search of the same 

 

% found Est exponent 

Density 

Current 

Experiment 

Kerster 

et al., 

2016 

Current 

Experiment 

Kerster 

et al. 

2016 

Sparse 
22.8% 

(0.87) 

9.9% 

(0.81) 

1.93  

(0.11) 

1.84 

(0.16) 

Medium 
28.2% 

(0.80) 

11.3% 

(0.90) 

1.97  

(0.12) 

1.95 

(0.19) 

Dense 
32.6% 

(0.75) 

13.2% 

(0.88) 

2.06  

(0.15) 

2.00 

(0.16) 

Clustering 

    
Most 

55.6% 

(0.20) 

21.7% 

(0.57) 

1.95  

(0.10) 

1.97 

(0.16) 

Less 
15.9% 

(0.28) 

7.4% 

(0.23) 

2.04  

(0.14) 

2.00 

(0.17) 

Random 
7.0% 

(0.14) 

5.5% 

(0.17) 

1.98  

(0.14) 

1.81 

(0.18) 

Figure 3: Path length distributions for each trial. A histogram with 10 logarithmically spaced bins was created for each 

trial. All trials are plotted together for each condition, separated by density and clustering. Axis labels are only displayed 

once, but each plot has the same axes.  
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location. 

As mentioned earlier, two key changes were made 

between this experiment and the one reported in Kerster et 

al, 2016. Without further controls it is difficult to precisely 

determine how much of the increases in score were due to 

improvements in spatial memory, and how much were due 

to increased search efficiency because search locations 

could no longer overlap. Nevertheless, we developed a 

simple method to control for search efficiency by scaling 

normalized score by the number of unique pixels visited. 

This allows for the relative comparison of scores accounting 

for inefficiency due to repeatedly searching the same area. 

This analysis revealed that, for each condition except the 

random conditions, the majority of observed performance 

increases (about 70-80%) were due to improvements in 

spatial memory (see Table 2).  

The observed increases in performance raise the question 

of how search trajectories changed in the present experiment 

due to perfect externalized spatial memory. To address this 

question, we used spatial Allan Factor analysis to test 

whether trajectories were more or less clustered in the 

present study compared with Kerster et al. (2016). Allan 

Factor analysis is designed to measure nested clustering in 

point processes (Allan, 1966), and was used to measure 

clustering in previous search tasks (Kerster et al., 2016; 

Rhodes, Kello, & Kerster, 2014). 

 

Table 2: Relative increases in scores accounted for by 

search efficiency (lack of overlap) and perfect spatial 

memory 

Density 

% increase 

due to search 

efficiency 

% increase 

due to perfect 

memory 

Sparse 23.2% 76.8% 

Medium 24.5% 75.5% 

Dense 26.5% 73.5% 

Clustering     

Most 20.3% 79.7% 

Less 30.7% 69.3% 

Random 77.9% 22.1% 

 

Allan Factor analysis works by tiling the space with 

squares of side length L, and counting the number of points 

N (in this case foraged locations) within each square i. The 

differences between adjacent squares are averaged together, 

and then normalized by twice the mean. 

The Allan factor statistic A(L) provides a measure of 

spatial variance across a number of given scales L. If 

foraged locations are randomly distributed then A(L) ~ 1 for 

all L. If locations are clustered across scales then A(L) > 1 

and increases with L. If the clusters are hierarchically nested 

across scales then A(L) ~ Lɑ where ɑ > 0. This can be 

expressed as a linear relationship in log-log coordinates.  

Allan Factor values A(L) were regressed across scales (L) 

on each distribution in log-log coordinates to produce a 

slope value. These values were then compared between the 

two experiments. Slope values are significantly higher 

(Welch’s two-sided T(7142)=10.7, p < 0.0001), in the 

current experiment (M=1.12, SD=0.74) than in the 

distributions produced in Kerster et al. (2016) (M=0.86, 

SD=0.50) (see figure 4). This indicates that perfect spatial 

memory led to an increase in the clustering of their searches 

across scales.  

Discussion 

The current study is a direct extension of recent work 

using an online foraging game to explore human foraging 

behavior while controlling for variables that would be very 

difficult to control using other methods. The previous study 

by Kerster et al. (2016) provided evidence that spatial 

memory is a key feature of human foraging, and the current 

study confirms and extends those findings. The model used 

in that study uses perfect memory as a simplification as 

opposed to trying to implement a particular more realistic 

type of memory. The manner in which we give perfect to 

participants is also not meant to mimic any particular theory 

of spatial memory, but to instead explore how performance 

is constrained by limitations in memory. Our results 

demonstrated the magnitude by which foraging performance 

can be increased when spatial memory is improved. As long 

as available resources are not randomly located in the 

environment, search performance can be effectively doubled 

by providing perfect spatial memory.  

 

 
Figure 4: Comparison of Allan Factor slopes across 

conditions between the two experiments. Both experiments 

demonstrate similar patterns across condition, but the 

current study has higher values in all conditions, indicating 

more nested clustering in foraging movements. 

 

The current study also replicated a number of important 

findings in the foraging literature. Notably participants 

generated clustered path length distributions that resemble 

Lévy walks. This is consistent with observations of foraging 

animals (Sims et al., 2008), as well as cognitive foraging 

tasks (Rhodes et al., 2014; Rhodes & Turvey, 2007).  
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In fact, Allan Factor analyses revealed that participants 

with perfect spatial memory showed significantly greater 

clustering across scales in their movements. Improved 

spatial memory allowed searchers to exploit information 

about the environment better as they uncovered it through 

searching. The increased clustering we observed in their 

movements is likely a result of improved exploitation of the 

clustering in the environment. 

 Interestingly, the increases in clustering occurred both as 

the resource environment became clustered, and as the 

density increased. The interaction effect observed here is 

somewhat different from that observed in Kerster, et al. 

(2016) and may be the result of some factors specific to the 

task. Further work is necessary to understand exactly how 

resource density, clustering, and movement constraints 

interact. 

The simple foraging task used here is designed to have 

constraints in common with a variety of foraging and search 

tasks, and the findings presented here could be applied to 

many of these tasks. Some of the more interesting 

ramifications lie in cognitive tasks, such as visual and 

memory searches. Both the natural world and our memories 

are non-randomly distributed, which implies that knowledge 

of previously searched locations could be a crucial factor in 

efficient cognitive search. 
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