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Abstract
We introduce an analytical solution to one of the most familiar problems
from the elementary quantum mechanics textbooks. The following discussion
provides simple illustrations to a number of general concepts of quantum
chaology, along with some recent developments in the field and a historical
perspective on the subject.

1. Introduction

Many aspects of the behaviour of quantum systems can be understood and interpreted in
terms of the dynamical characteristics of their classical counterparts. It is often possible to
obtain quantitatively such important attributes of a quantum system as its spectra and even its
wavefunction in terms of the appropriate classical quantities [1, 2]. Although the main objects
of the classical dynamics, the dynamical trajectories, are not something that can be rigorously
used in the context of quantum mechanics, they can often facilitate our understanding of the
quantum realm, by providing means for semiclassical interpretation.

As an illustration of this point, let us first look at the infinite square well problem. Let us
consider a particle confined in the infinite square well potential,

V (x) =
{

0, if 0 < x < b,

∞, if x � 0 or x � L.
(1)

Classically, the dynamics of such a particle is as simple as it can possibly be—the particle
simply bounces periodically between the two walls. Geometrically its trajectory is a closed
loop, which the particle traverses over and over again. The total length of the loop is twice the
width of the well, L = 2L, and the period of motion is T = 2L/v, where v is the speed of the
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particle. As a result of the wall reflections, the momentum p of the particle changes its sign,
but its magnitude never changes.

Quantum mechanically, this system is nearly as simple to describe. The wavefunction
ψ(x) in this case is a combination of two plane waves,

ψ(x) = A eikx + B e−ikx, (2)

where k = p/h̄ is the ‘wave vector’, which must satisfy the boundary conditions ψ(0) =
ψ(L) = 0. This leads to the quantization condition

sin(kL) = 0, (3)

and hence the quantum spectrum kn of this problem is given by

Lkn = πn. (4)

Note, that the left-hand side of this equation coincides up to a factor h̄ with the classical action
integral,

S =
∫

γ

p dx = Lp, (5)

taken along the trajectory γ that connects the two turning points, and hence the quantization
condition (4) implies that the action takes only discrete values, Sn = πh̄n. Expressing the
de Broglie wavelength λ in terms of the wave vector, λ = 2π/k, relationship (4) can be cast
into the form L/λn = n, which has a simple geometrical meaning. Apparently wave (2) must
fit geometrically n times onto the (only) classical periodic orbit that has the length L. As
the energy of the particle increases, its wavelength becomes smaller and smaller, however the
geometrical condition L/λn = n always holds.

Such a simple combination of physical and geometrical ideas was used by Bohr and his
school in around 1914 to provide the first explanations to one of the most striking features
of the quantum mechanical systems—the discrete nature of their energy spectra. According
to their views, the discreteness of the quantum spectra is essentially a consequence of the
geometrical consistency of wave mechanics.

This ‘wave-geometrical’ approach proved very successful in early attempts to explain the
experimentally observed emission–absorption spectrum of the hydrogen atom. In fact, the
results obtained in this way were exact, and that gave reasons to believe that these ideas were
adequate to describe the quantum physics of the subatomic world. However, the later attempts
of Bohr, Sommerfeld, van Vleck, Born and others [3–5] to continue on with more complicated
atoms, failed completely. It was apparently impossible to explain even approximately the
experimentally observed spectrum of the helium atom—the next simplest atom after hydrogen
in the periodic table of elements and hence the next best candidate for a successful treatment
by means of such wave-geometrical quantization. Van Vleck wrote in 1922 [4]:

‘The conventional quantum theory of atomic structure does not appear able to account
for the properties of even such a simple element as helium, and to escape from this
dilemma some radical modification in the ordinary conceptions of quantum theory
or of the electron may be necessary.’

What was the nature of the difficulties that required such ‘radical’ and ‘conceptual’
modifications? In 1925 Max Born wrote [5]:

‘ . . . the systematic application of the principles of the quantum theory . . . gives
results in agreement with experiment only in those cases where the motion of a single
electron is considered; it fails even in the treatment of the motion of the two electrons
in the helium atom.
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This is not surprising, for the principles used are not really consistent . . . . A
complete systematic transformation of the classical mechanics into a discontinuous
mechanics is the goal towards which the quantum theory strives.’

Seemingly one makes a very simple and natural move by trying to go from the exactly
solved hydrogen atom to helium, by adding just one more particle to the two-body nucleus–
electron system of hydrogen. However, from the point of view of contemporary classical
mechanics, this modest generalization turns an integrable two-body system into a non-
integrable three-body system (a short explanation of the concept of integrability is given
in section 5 or for more details see [1]). Hence, in order to impose ‘geometrical consistency’
on the quantum waves in the helium atom, one would have to deal with the overwhelming
geometrical complexity of its classical phase space. It means that all the familiar properties
of the generic chaotic systems, such as the exponential proliferation of the periodic orbits
associated with extreme complexity of their shapes, would have to be taken into account—
something that could hardly had been done in Bohr’s time. Indeed, at the beginning of the last
century chaos theory was just being developed in the works of Poincaré, Lyapunov, Hadamard,
Birkhoff and a few others (see, e.g., [1, 2]). Although the importance of the classical dynamical
behaviour for successful quantization was realized by certain researchers [6], it took about
60 years before the first semiclassical quantization procedure for nonintegrable systems was
outlined. As for the helium atom, a semiclassical quantization scheme for it was proposed in
1992 [7] using some recent developments of quantum chaos theory [2].

2. Back to 1D potential wells

Surprisingly, the difficulties of the semiclassical quantization of the classically nonintegrable
helium atom system can be illustrated by means of elementary quantum mechanics. Below
we shall consider a simple modification of system (1) that leads to a transition from classical
integrability to non-integrability and clarifies the corresponding outburst of complexity on the
quantum level.

Let us add a small step at the bottom of potential (1) and consider a point particle moving
in the potential

V (x) =




0, if 0 � x � b,

V, if b � x � L,

∞, if x � 0 or x � L,

(6)

shown in figure 1. Seemingly the classical picture does not change much. It appears that if
the energy of the particle is higher than V , the particle will oscillate between the points x = 0
and x = L just as before, and if its energy is below the potential step height, it will oscillate
between x = 0 and x = b. However, the reality turns out to be much more complicated than
that.

Let us first give the quantum mechanical description of the problem. Suppose that the
energy E of the particle is above the potential height V . To simplify the notation, we will
assume below that h̄ = 1 and m = 1/2. Then the momentum of the particle in the region
0 � x � b is k = √

E, and in the region b � x � 1 it is κ = √
E − V , and its ψ function

consists of two parts,

ψ(x) =
{

sin(kx), if 0 � x � b,

A sin[κ(L − x)], if b � x � L,
(7)
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Figure 1. A simple modification of the infinite square well model—a square well with a potential
step, along with the two apparent classical trajectories γ1 and γ1.
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Figure 2. A quantum particle in a square well with a step.

which match continuously at x = b, as shown in figure 2. From this continuity requirement
one can determine the spectral equation for the spectrum of the problem,

sin(L1k + L2κ) = r sin[(L1k − L2κ)], E > V, (8)

where L1 = b and L2 = L − b are correspondingly the lengths of the left and the right sides
of the well (6) and r is the reflection coefficient

r = k − κ

k + κ
. (9)

The E < V case can be treated similarly and basically amounts to substituting κ → i�,
� = √

V − E, in expressions (8) and (9). After extracting the complex phase, the spectral
equation becomes

sin(L1k) = (−1)n+1k(1 − e−2L2�)√
V (1 + e−4L2�) + 2(�2 − k2) e−2L2�

, E < V, (10)

where n = 1, 2 . . . , is the root index.
There is an important analogy between (8), (10) and (3)—the arguments of the sine

functions in the left-hand sides of these equations are the action lengths S(E) of the classically
available regions in the well (6) for E > V and E < V correspondingly,

S(k) =
∫

γ

k dx =
{

kL1 + κL2, if E > V ,

kL1, if E < V ,
(11)

which is a continuous and monotonically increasing function of the energy.
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On the other hand, it is interesting that unlike (3), equations (8) for E > V and (10) for
E < V are transcendental equations—that is substantially more difficult to solve. In fact, in
the absence of any analytical ways of solving equations (8) and (10) explicitly, all the standard
textbooks, e.g. [8, 9], use graphical or numerical methods for approximating its roots, kn.
Notably, there are also no simple ‘semiclassical’ interpretations similar to (4) for the results of
such approximations, which also does not appear important for the purpose of obtaining the
numerical values for the roots of the spectral equations (8) and (10).

This is very similar to what happened to the helium atom quantization problem—the ‘old
quantum theory’ treatment became unnecessary once the formalism of the ‘new’ quantum
mechanics of Schrödinger and Heisenberg was established and could be used. The problem
of obtaining the energy spectrum of the helium (or in principle any other atom) was reduced
to a technical problem of diagonalizing the Hamiltonian matrix Hnm by means of all sorts of
numerical techniques and approximations.

Even without making any historical references, one can note the obvious contrast in the
level of complexity between the spectral equations (8), (10) and (3). What is the physical
reason for it? Below we shall argue that the complexity of the spectral equations (8), (10)
has a deep physical meaning and can be understood from analysing the classical motion of a
particle in the potential well (6).

3. The classical limit

To start the discussion of the classical dynamics of a point particle in potential (6), let us note
that the reflection coefficient (9) in (8) (E > V ) does not depend on the Planck constant h̄,

r = 1 − √
1 − V/E

1 +
√

1 − V/E
. (12)

Due to this circumstance this quantity (although obtained by purely quantum mechanical
means [9]) is in fact quite classical, because one does not need to refer to any quantum
mechanical concepts to evaluate r.

This curious fact can be easily interpreted and understood from general principles. Just
as any other wave, the probability amplitude (2) gets reflected or diffracted when it encounters
inhomogeneities on its way. It is important that the scale of these inhomogeneities should
not be too big compared to the wavelength of the wave, otherwise the wave will ‘adjust’ to
the smooth changes of the properties of the media. It is fair to say that in order to induce
reflections, the obstacle should appear somewhat ‘abruptly’ in front of the wave, at a scale
d smaller than the characteristic wavelength, d � λ. In our case, since the potential step
(6) is defined to be absolutely sharp, changing discontinuously at x = b from 0 to V , the
quantum-mechanical wave will always be reflecting from its boundary at x = b with the
reflection probability r2, no matter how small its wavelength is, even at the classical limit
λ = 0. In other words, although intuitively one would expect the particle moving with the
energy E > V only to change its speed after passing over the point x = b, there actually
exists a possibility of classical (so-called non-Newtonian) backward reflections from the sharp
potential barrier edge.

This curious fact emphasizes an interesting aspect of the connection between classical
and quantum mechanics, known as the ‘correspondence principle’, which was first invoked
by Niels Bohr in around 1923. This fundamental principle states that classical mechanics can
be understood as a limiting case of quantum mechanics in the so-called ‘classical limit’, i.e.
in the case when the motions are characterized by actions much larger than the value of the
Planck constant h. In Bohr’s time, the fulfillment of such quantum–classical correspondence
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0                b                                L

Figure 3. A storm in a coffee cup—non-Newtonian chaos in a one-dimensional step potential.
The lines represent examples of non-Newtonian orbits in potential (6). For illustration purposes
different trajectories are shown at different energies, as well as different sections of the same
trajectories being shifted slightly up and down the energy axis, so that their parts are visible.

was viewed as a natural way to validate meaningfulness and physical consistency of the
quantized analogues of familiar classical systems, such as atoms. Hence the correspondence
principle is often understood as a naive requirement for the quantum system to reproduce
the expected classical behaviour in the limit h → 0, whereas in fact, there is no such
requirement. The appearance of non-Newtonian scattering events is a curious example of a
situation when quantum mechanics elucidates a certain implicit aspect of the corresponding
classical dynamics, bringing up details that could have been easily overlooked.

Similar considerations can prove that non-Newtonian scattering phenomena can happen
for every potential with sharp edges, as some kind of a reminder of the quantum-mechanical
legacy of classical mechanics. The fact that we never observe such events in every day
life implies that in reality there are no potential changes, sharp on the scale of the quantum
wavelengths of the macroscopic objects.

4. Non-Newtonian chaos

Because of the possibility of such classical non-Newtonian reflections, the classical dynamics
of a particle in potential (6) is far from trivial. Every time the particle approaches the boundary
x = b between the two regions in (6), it can be reflected from it with the probability r2 and
transmitted through it with the probability t2 = 1 − r2. As a result, instead of a couple of
back and forth oscillations which one would naively expect from a particle in potential (6),
the actual trajectories of such particle are far more complex. The particle can start, say, in the
left side L of the well, move to the boundary x = b, reflect back from it, reflect back from
the rigid wall at x = 0, do this several times, then transmit eventually to the right side R of
the well, where it can also perform a number of oscillations before returning to the left side
of the well, etc. Any thinkable sequence of oscillations in the right and in the left sides of the
potential well (6) represents a possible trajectory of the particle (figure 3). It should also be
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Figure 4. A couple of examples of non-Newtonian orbits in potential (6) marked by their R–L
binary codes. Every left swing of the orbit contributes an ‘L’ to its code and every right one
contributes an ‘R’. This L–R code representation of the orbits is a simple example of symbolic
dynamics over a partition of the phase space [2].

emphasized, that at every reflection or transmission (scattering) event, the particle completely
loses its memory about the previous stage of its motion. Given the current position and the
momentum of the particle, neither its previous evolution nor its state of motion after the next
collision can be reconstructed. Hence, instead of the deterministic evolution we generated a
fairly complicated stochastic dynamical process by considering a seemingly simple potential
(6). It will be argued below that the stochasticity is brought into the classical regime by the
semiclassical reflection probabilities, and its ability to generate an infinity of classical orbits
makes the system nonintegrable.

Obviously, there can be classical orbits of arbitrary length, and the bigger is the allowed
length (or the period) of the trajectory, the larger are the numbers of nontrivial orbits that come
into the picture. Is there a way to enumerate all this variety of orbits?

It turns out that the description of the general behaviour of the orbits in this system
can be conveniently formalized. Indeed, every orbit can be described by a two-letter code,
which would simply tell us in what sequence the orbit swings through the left (L) or the
right (R) sides of the well, as shown in (figure 4). Periodic orbits are obviously represented
by periodic sequences of symbols. Conversely, any periodic sequence of the symbols (for
example, RLRLRLRLRL . . . or just (RL) for short), unambiguously describes a certain
periodic orbit (note however, that two sequences which can be obtained from one another by
a cyclical permutation of symbols, correspond to the same periodic orbit). If the orbit swings
n1 times in the left side of the well and n2 in the right side, its action length is equal

Sorb = 2n1S1 + 2n2S2, (13)

where S1 = L1k and S2 = L2κ .
The number of periodic orbits increases indefinitely. Their shapes (and correspondingly

their L–R binary codes) become more and more complicated, so the classical mechanics in
the potential turns out to be surprisingly rich. In fact, the number of geometrically different
orbit shapes (or the number of prime periodic orbits, those that never retrace themselves) that
include up to m scattering events grows exponentially as

N ≈ e0.7m

m
. (14)
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Figure 5. Exponential proliferation of the orbits in the potential (6). The orbits that undergo 1, 2,
3 and 4 scatterings marked by their R–L binary codes.

Such behaviour closely resembles the periodic orbit proliferation scenario that takes place in
classically nonintegrable chaotic systems. Hence a particle in potential (6) can be viewed as
a simple model of a classically chaotic system (figure 5).

The difference between this and the simple back and forth motion in the square well
potential is overwhelming, and provides a simple illustration to the difference between the
dynamical behaviour of the integrable and the nonintegrable systems, such as e.g. hydrogen
and helium.

Of course the more complex the orbit shape, the smaller is the probability that this
particular orbit will be realized. This ‘complexity selection’ can be easily understood from
the point of view of quantum mechanics, where the propagation of the particle is described
by the normalized wave (2). It is clear that every reflection or transmission reduces its initial
amplitude by the amount of the reflection or transmission coefficient. Hence, it is clear that
if a certain prime periodic orbit p (i.e. one that cannot be considered a repetition of a shorter
orbit) reflects σ(p) times from the either side of the potential barrier at x = b, and transmits
τ(p) times through it, its initial amplitude will decrease

Ap = (−1)χ(p)rσ(p)(1 − r2)τ(p)/2 (15)

times [11, 12]. Here the factor (−1)χ(p) keeps track of the sign changes due to the wall
reflections and the right reflections from the boundary. If the orbit p is traced over itself ν

times, then the corresponding amplitude will be Aν
p. So the quantity (15) is a certain quantum

(and, since r does not depend on h̄, also classical) ‘weight’ of the orbit.

5. Classical dynamics and quantum spectrum

In the case of a particle moving in the infinite potential well (1), the oscillation between the
two walls completely exhausts all the classical dynamical possibilities. At the same time,
the magnitude of the momentum |p|, is conserved. This illustrates the general situation in the
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so-called integrable systems, i.e. those that have as many dynamically conserved quantities
(e.g. momentum, angular momentum, etc) as degrees of freedom [6, 10]. These conserved
quantities (the action integrals) Ii, i = 1, . . . , d, are quantized according to

Ii = h(ni + µi), (16)

where ni are natural numbers, ni = 1, 2, . . . , and µi is a certain geometrical constant [1].
The energy of these systems is a certain function of the Ii , E = E(I1, . . . , IN), and so the
quantization rules (16) immediately produce the semiclassical energy spectrum. For example,
for system (1) the action, I = 2|p|L, is quantized via |p| = h̄πn/L, and yields the quantum
energy eigenvalues E = (h̄πn)2/2mL2. According to this scheme, the ‘quantum numbers’ ni

are naturally related to the classical integrals of motion Ii .
On the other hand, the classical behaviour of the particle in potential (6) is of manifestly

nonintegrable type. The variety of possible dynamical orbits in the potential (6) is much richer
than in (1). What information is hidden in this variety of the orbits?

As pointed out above, in the integrable systems there exists a convenient handle—the
action integrals, which can be ascribed certain discrete values via the EBK semiclassical
quantization procedure. What if the integrals do not exist? What is there in a nonintegrable
system that can be used in order to quantize the system semiclassically?

The first answer to this question came in early 1970s, when Gutzwiller [1] showed that
a ‘handle’ for semiclassical quantization of the systems without the sufficient number of the
integrals of motion is provided by the so-called density of states—a functional that corresponds
a δ-peak to every energy level En of the quantum spectrum,

ρ(E) ≡
∞∑

n=1

δ(E − En). (17)

Gutzwiller provided a semiclassical expansion for ρ(E) (the so-called Gutzwiller trace
formula) in terms of the classical quantities related to the periodic orbits,

ρ(E) ≈ ρ̄(E) +
1

π
Re

∑
p

Tp

∞∑
ν=1

Bν
p eiνSp(E). (18)

Here Tp, Sp and Bp are correspondingly the period, the action and a certain weight factor (see
below) of the prime periodic orbit p (all classical quantities), and ν is the number of times the
orbit p repeats itself. The first term ρ̄(E) represents the non-oscillating part of the density of
states.

The gist of the Gutzwiller trace formula is an (almost miraculous) interference effect,
produced by the infinity of oscillating terms, one per each periodic orbit, in the sum (18). The
statement is that if the energy E in (18) happens to coincide with a quantum energy level En,
then all the terms in the sum (18) will interfere constructively and produce a peak, whereas if
there is no En there, they will interfere destructively and yield 0.

This is a truly remarkable connection between the classical and the quantum properties
of a system. After all, from a formal mathematical perspective, classical characteristics of a
system should a priori describe only its h̄ = 0 limit, whereas according to the trace formula
one can use the classical properties of the system to extract the information about its quantum
properties for h̄ �= 0.

Gutzwiller’s formula can also be applied to the 1D system of a particle in the step potential
(6). Moreover, it can be shown [11, 12] that for the system (6) the expansion (18) is exact.
Another important characteristic of the spectrum is the ‘spectral staircase’ N(E),

N(E) ≡
∫ E

0
ρ(E′) dE′ =

∑
n

(E − En), (19)
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where (x) is Heaviside’s theta function,

(x) =
{

1, if x > 0,

0, if x < 0,
(20)

which gives the number of energy levels in the interval between 0 and E. N(E) can also be
expanded into a periodic orbit series,

N(E) = N̄(E) +
1

π
Im

∑
p

∞∑
ν=1

Aν
p

ν
eiνSp(E). (21)

What makes expansion (21) particularly convenient for our use, is that the weight factors Ap

in it are explicitly given by (15). The first term of N(E) (its non-oscillating part, also known
as Weyl’s average) is given by

N̄(E) = 1

π
S(E) − γ0, (22)

where S(E) is the action length (11) of the classically available region of the well, and γ0 is a
small correction term.

The complexity of our task of describing the spectrum in (6) can already be appreciated
from expansions (18) and (21): every non-Newtonian orbit that exists in (6) explicitly
contributes to these expansions.

In addition to the huge number of periodic orbits, there are many other subtle dynamical
effects that contribute to the complexity of expansions (18) and (21). For instance, it was
mentioned above that as the energy of the particle passes from above to below V , the particle
becomes classically unable to penetrate into the right section of the well, b < x < L. However,
there remains the possibility of quantum tunnelling into the region R, described semiclassically
as motion with imaginary momentum, κ → i�. With this change, the formal structure of the
Gutzwiller formula remains the same, so expansions (18) and (21) can be used, with due care,
both for E > V and for E < V . For example, actions (13) of the orbits that ‘tunnel’ under
the step are imaginary, Sorb = 2S1n1 + i2n2S2 (such orbits are called ‘ghost orbits’ [2]). This
point will be discussed in more detail below. This illustrates the point that as the energy of
the particle changes, the physical characteristics of the orbits (and therefore of the expansion
terms in (18)) may change.

6. Obtaining the spectrum

Since the right-hand side of expansion (18) can be obtained from considering the classical
motion of the particle, expansion (18) provides a clear connection between the dynamical
characteristics of the system and its spectrum in the quantum regime. The energy levels of
the quantum system are obtained according to (18) as the poles (delta spikes) produced by the
periodic orbit sum [1]. It is important however, that by using this approach, one cannot tell
when these poles will appear prior to performing the summation of the periodic orbit series
(18). Without having any extra information about the system, the only a priori strategy for
obtaining En is to scan the energy axis by summing the series (18) for every value of E to find
out whether or not the sum produces a δ-peak.

This illustrates the fact that ρ(E) is a global characteristic of the spectrum. Both ρ(E)

and its expansion (18) describe the whole spectrum at once, rather than the specific individual
energy levels, in contrast to the case of the integrable systems, where every action integral Ii

is quantized directly (16) and separately from the rest of the degrees of freedom.
Actually, it is possible to extract the information about the individual energy levels En

out of ρ(k) without such tedious ‘energy axis scanning’—if only one knows where to look.
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Figure 6. The energy separators Ên (their values on the energy scale are shown by solid lines)
define the upper and the lower bounds for the quantum energy levels En, shown by the dashed
lines.

Indeed, if for instance we would happen to know that some energy level En is the only level
that lies between two points Ê+

n and Ê−
n (and hence ρ(E) has only one δ-peak between these

points), then the integral

En =
∫ Ê+

n

Ê−
n

Eρ(E) dE, (23)

would produce the En. Since we know the expansion of ρ(E) in terms of the periodic orbits
this integration can be performed.

Hence, solving the spectral problem is equivalent to finding two ‘separators’, Ê+
n and Ê−

n ,
for every energy level En. Apparently, for the purpose of separating one level from another,
it is enough to assume that Ê+

n−1 = Ê−
n , so basically we are looking for a sequence of points

Ên that interweaves the sequence of the energy levels and separates one energy level from
another [11, 12]. In other words, we need to establish a partition of the E-axis into the intervals
[Ên−1, Ên], each one of which contains exactly one energy level (figure 6).

Note however, that even if that could be achieved, one would still have just an algorithmic
recipe for evaluating En rather than a formula of the type En = . . . . In order to get such
a formula, we would need to find a global function Ê(n) that depends explicitly on n and
produces all the separating points in their natural sequence as a function of their index,

Ên = Ê(n). (24)

Once such a functional dependence of the separators on their index is established, integral (23)
would turn the index n into a quantum number and give us a complete solution to the spectral
problem in the form En = . . . .

Although generally finding a sequence (24) is not an easy task, it can be obtained for the
particle in potential (6).

7. Spectral equation

In order to get this information, let us examine closely the spectral equations (8) and (10).
Since the quantity that we are after, the classical action S(E) defined by (11) is in the arguments
of the sines in the left-hand sides of the equations (8) and (10), we can formally invert them to
obtain

S(E) = π

(
n − 1

2

)
−

{
(−1)n

(
arcsin

(
r sin(S1 − S2) + π

2

))
, if E > V,

arctan(�(1 + e−2S2)/k(1 − e−2S2)), if E < V,
(25)

where n = 1, 2, . . . .
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It is important to note that the two terms in (25) behave quite differently. While the first
term, π

(
n − 1

2

)
, increases regularly with n, it is much harder to follow the behaviour of the

second term of this equation. On the other hand, since the inverse trigonometric functions
are bounded, −π

2 � arcsin(x), arctan(x) � π
2 , the second term always contributes less to the

solution than the first term. Indeed, when the index n in equation (25) changes by 1 as we
go from the level n to n + 1, the first term increases by π , which is generically (that is almost
always) more than what the arcsine or arctangent can provide.

This fact allows one to obtain the set of separating points discussed in the previous section.
Indeed, since the irregular terms in (25) are different from 0, the values Ŝn = π(n − 1/2)

themselves are never the solutions to (25). Hence, since the difference between the two
consecutive points Ŝn is always bigger than the second term in (25), so the roots Sn of (25)
will be locked inside the intervals

π
(
n − 1

2

)
< Sn < π

(
n + 1

2

)
. (26)

Thus, the first discrete quantum action value will be locked between π/2 and 3π/2, the second
one between 3π/2 and 5π/2, and so on. So we run immediately into the separating points for
the quantum values of action,

Ŝn = π(n − 1/2), n = 1, 2, . . . , (27)

or the action separators. One can now either extract the energy separators Ên from
S(Ên) = π(n − 1/2), and obtain the energy spectrum via (23), or alternatively, one can
first obtain the actual quantum levels of action and then extract the quantum energy levels
from them. In the latter case one needs to introduce a ‘density of the action states’, ρ(S),
defined as ρ(S) dS = ρ(E) dE,

ρ(S) ≡
∞∑

n=1

δ (S − Sn)
dE

dS
, (28)

and use the same approach that was outlined in the previous section for ρ(E).
It is possible then to obtain the discrete quantum action values Sn via

Sn =
∫ π(n+1/2)

π(n−1/2)

Sρ(S) dS = SN(S)

∣∣∣∣
π(n+1/2)

π(n−1/2)

−
∫ π(n+1/2)

π(n−1/2)

N(S) dS, (29)

where we used the identity

ρ(S) = dN(S)

dS
. (30)

Using the relationship N(Ŝn) = n (there are exactly n roots sn below the nth separator) and
the expansion (21), we get

Sn = 2πn − π

2
−

∫ π(n+1/2)

π(n−1/2)

N̄(S) dS − 1

π
Im

∑
p,ν

∫ π(n+1/2)

π(n−1/2)

Aν
p

ν
eiνSp dS, (31)

where the weight factors Ap are given by (15).
Note, that (4) gives exactly the first term of expansion (31). Hence the oscillatory terms

in (31), with their amplitudes proportional to the non-Newtonian reflection amplitudes, are
indeed due to the ‘nonintegrability’ of (6).

Since all of quantities on the right-hand side of (31) are known, this formula provides an
explicit representation of the discrete quantum values of the action functional in terms of the
geometric and dynamical characteristics of potential (6). Formula (31) allows the computation
of the action corresponding to every quantum level individually, explicitly and exactly in terms
of the classical parameters, indexed by its ‘quantum number’ n.
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It should be mentioned however, that the quantum number n in (4) and in (31) has rather
different origins. Formula (31) does not have such a direct geometrical interpretation as (4).
While in (4) the number n is the number of waves that fit the trajectory, in the case of
the step potential (6) n is the index of the cell (26) that contains the corresponding action
value Sn.

So once again, we arrive at defining the quantum energy spectrum via a discrete set of
allowed values of the action functional, Sn = S(En). This relationship (which is yet to be
presented explicitly) can be viewed as a direct generalization of (4).

Of course, for using the periodic orbit expansions in practice, one needs to know how to
truncate the series (18) or (31) to obtain finite order approximations to Sn. Since usually the
periodic orbit series are not absolutely convergent, the order in which the expansion terms are
incorporated into the sum (31) is important. It turns out [11, 12], that the correct way to obtain
the mth approximation to the exact value of Sn is to include into sum (31) all the trajectories
that reach the point x = b m times or less.

8. Overview and an example

Let us summarize the steps for obtaining the mth correction to Sn using the semiclassical
periodic orbit expansion technique.

1. Write down all the m-letter sequences (words) wm. For example, there are two words,
(L) and (R), for m = 1, four words (LL), (LR), (RL) and (RR) for m = 2, eight words
(LLL), (LLR), (LRL), (RLL), (RLR), (RRL), (LRR) and (RRR) for m = 3 and so
on. (To do the same thing geometrically—draw all possible periodic orbits similar to the
ones shown in figure 4 that include exactly m transmissions and reflections.)

2. Find which w are cyclic permutations of one another—all these sequences represent the
same orbit, so pick one and discard its replicas. From the above examples, both m = 1
orbits will remain, for m = 2 we may keep (LL), (LR) and (RR), for m = 3 we keep
(LLL), (LLR), (RLR) and (RRR). (Geometrically: find out which loops represent the
same sequence of left and right swings. Pick one and discard its replicas.)

3. Count the number nL of L and nR of R in w and find the action Sw of the orbit w according
to

Sw = 2nRS1 + 2nLS2. (32)

Remember that if E < V then S2 = i
√

V − EL2.
4. Assuming that the first symbol in w cyclically follows the last one, find out which of the

remaining sequences w are prime sequences and which ones are repetitions of a shorter
code. Find the repetition number νw for each orbit (use νw = 1 if the orbit is prime). For
example, for m = 2 the orbit νLR = 1, νRR = νLL = 2, and for m = 3 νLLL = νRRR = 3,
νLLR = νRLR = 1. (Geometrically, find out how many times each orbit traverses over
itself.)

5. Scan each word wm (again, the first symbol of w follows the last one) and write down the
weight Aw according to the substitutions

LR → t, RL → t, LL → r, RR → −r, (33)

plus each wall reflection contributes a sign change. For example, for m = 1, AL = −r,

AR = r , for m = 2 ALR = t2, ARR = ALL = r2, and for m = 3 we have ALLL = −r3,

ARRR = r3, ALLR = −rt2, ARLR = rt2. (Geometrically: assign a factor t to every
transmission, a factor −1 to every wall reflection, a factor r to every left side reflection
and a factor −r to every right side reflection.)
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L            R

LL LLL

LLR

RRR

RR

L            RL            R

LR

LL

RR LRR

Figure 7. The orbits required for evaluating the first three periodic orbit expansion approximations
to the Sn. Since the evaluation of the low levels which correspond to the energy E < V will
require ghost orbits, a few ghost orbits are also illustrated. The tunnelling parts of the ghost orbits
are shown with dashed lines.

6. For every orbit, find the corresponding term in expansion (31),∫ π(n+1/2)

π(n−1/2)

Aw

νw

eiSw(S) dS, (34)

and integrate.

If all the words up to length m are considered, the result will produce the mth approximation
to the exact discrete sequence of actions.

All the non-Newtonian orbits described in the previous sections contribute to the expansion
of each eigenvalue Sn. One can now appreciate the complexity of solving analytically
equations (8) and (10) compared to solving the simple equation (3), by comparing the
complexities of the corresponding classical dynamics.

8.1. An example

As an example, let us compute the first three approximations to a few momentum eigenvalues,
using the orbits that include up to three scattering events, outlined in the summary and shown
in figure 7. We have according to (31) that the first three corrections will be:

Sn = 2πn − π

2
−

∫ π(n+1/2)

π(n−1/2)

N̄(S) dS − Im
∫ π(n+1/2)

π(n−1/2)

(
r ei2S1k − ei2S2kr

)
dS

− Im
∫ π(n+1/2)

π(n−1/2)

(
1

2
r2 e4iS1 + t2 ei2S1+i2S2 +

1

2
e4iS2r2

)
dS

− Im
∫ π(n+1/2)

π(n−1/2)

(
1

3
r3 e6iS1 + t2r ei(2S2+4S1) − t2r ei(2S1+4S2) − 1

3
r3 e6iS2

)
dS.

(35)

In order to use formula (35), one needs to specify the parameters of the potential well (6). In
particular, it is a specific value of V that determines at what energy the periodic orbits will
acquire tunnelling parts. For simplicity, let us consider the case of a symmetrical well, when
L1 = L2 = 1. Then the action S defined by (11) will be

S(E) =
{

k + κ, if E > V,

k, if E < V,
(36)
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Table 1. The results of the periodic orbit expansion approximations to the exact values of sn. The
first m = 0 column gives the Weyl s

(m=0)
n estimate for the roots of the spectral equation, and the

following columns show the corrections to it due to the m = 1, m = 2 and m = 3 code length
orbits. Note that the third periodic orbit expansion approximation to s2 comes out higher than the
critical value, s

(m=3)
2 > scrit = 5, whereas the actual root s2 is smaller than scrit. Hence more

periodic orbit expansion terms are needed to capture the correct qualitative behaviour of s2.

Root m = 0 m = 1 m = 2 m = 3 Exact

s1 2.4354 2.6198 2.6173 2.605 2.595 878 720 129 5728
s2 6.1601 5.5789 5.2366 5.1434 4.945 531 691 438 1690
s17 53.4071 53.405 53.404 53.406 53.403 119 615 030 526

in terms of which{
r = V

S2 , t2 = (
1 − V 2

S4

)
, γ0 = 1

2 , if E > V,

r = e2iπγ0 , γ0 = 1
π

arctan
√

V −S2

S
, t2 = (1 − e2iπγ0), if E < V.

(37)

Note γ0 also appears in the Weyl average (22).
Next, let us pick a certain value for the potential step height, say V = 25. This will set the

Ecrit = 25 and kcrit = 5 to be the ‘critical values’ of energy and the momentum—that is if we
are looking for an energy level below E = V = 25, then the tunnelling effects have to be taken
into account. Correspondingly, the critical value for the action will be Scrit = kcritL1 = 5, and
so one should use different parts of formulae (36) to extract the En or kn out of Sn, depending
on whether a particular sn is smaller or greater than 5.

After the height of the potential step has been chosen, certain general statements about
the behaviour of the quantum Sn levels can be made. For the specific case V = 25, the first
and the second separators, Ŝ1 = π

2 and Ŝ2 = 3π
2 , will be smaller than Scrit, and so the level

contained between them will correspond to the energy E1 < V . The third action separator is
bigger than kcrit, Ŝ3 = 5π/2 > 5, so we will be in a better position to judge the location of
the second level Ŝ2 < S2 < Ŝ3 after computing corrections (35). All the other levels Sn, for
n > 2, have energies higher than V .

So let us find the discrete quantum action values S1, S2 and (for example) S17, and the
corresponding quantum momentum eigenvalues, k1, k2 and k17. Using expressions (35), (36),
(37) and integrating from π/2 to 3π/2, from 3π/2 to 5π/2 and from 33π/2 to 35π/2 (using
some numerical integration software is highly recommended) we find the values shown in
table 1.

Note that in the second case the integration in (35) should be split into two parts,∫ 5π/2

3π/2
N(S) dS =

∫ 5

3π/2
N(E<S)(S) dS +

∫ 5π/2

5
N(E>V )(S) dS, (38)

in order to follow the changes in the structure of the expansion terms described by (36) and (37).
Note also that the column to column changes are more significant for the second root—this
indicates that the ‘spectral fluctuations’ for this root are high due to the orbit metamorphosis
that takes place at E = V , inside the integration interval Ê2 < E2 < Ê3. This also indicates
that more periodic orbit expansion terms are needed to get a more precise position of s2 with
respect to V .

After the allowed values Sn for the action are found, the quantum levels of the momentum
can be obtained by inverting the relationship (36),

k =
{

s2−V
2s

, if sn > V,

s, if sn < V.
(39)
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Figure 8. The familiar schematic picture of the helium atom (a), which was also used as the
physical model in 1920s, is analogous to using only Newtonian trajectories in the potential (6),
shown in (b). This scheme completely ignores the actual classical dynamical complexity. Compare
(b) to figures 3 and 5.

According to (1) one has from (39):

k1 = 2.605, k2 = 5.0020, k17 = 26.4689. (40)

This demonstrates how the periodic orbit expansion quantization rule (31) gives the explicit
solution to our spectral problem.

9. Discussion

We have studied an elementary example of a classically nonintegrable (quantum stochastic)
system in potential (6). Despite the simplicity of the setup, the classical dynamics of the particle
in the potential (6) turns out to be quite complicated, and this complexity is manifested in
its spectral properties in the quantum regime. Surprisingly, in studying this most elementary
example, one runs into essentially all the dynamical and physical effects (integrability versus
nonintegrability, the exponential proliferation of the periodic orbits in the nonintegrable case,
periodic orbit expansions, the use of symbolic dynamics, orbit metamorphosis, tunnelling, ray
splitting, etc) that appear in semiclassical analysis of more realistic physical systems. Usually
these phenomena are investigated via a rather involved mathematical apparatus, whereas in
our example they can be analysed by elementary means. Due to its illustrative simplicity, this
and similar [11, 12] systems can be thought of as the ‘harmonic oscillators’ of quantum chaos.

On the other hand, this problem is rich enough to illustrate the essence of the difficulties
associated with the semiclassical quantization of chaotic dynamical systems, such as the
helium atom. As mentioned above, the early attempts to quantize the helium atom failed
because the qualitative difference in the dynamical complexity between hydrogen and helium
was overlooked. The attempts to quantize a chaotic system within the framework of Bohr–
Sommerfeld or EBK quantization theory using only a few integrable-like trajectories can be
compared to considering just the two ‘naive’ (Newtonian) classical trajectories in potential
(6), (L) for E < V and (LR) for E > V (figure 8). From the structure of the exact result (31)
it is clear that such a consideration would produce only very approximate results, far from the
real complexity of the problem.

Formula (31) represents an example of the ‘modification’ of the EBK quantization
condition (4) mentioned in the Van Vleck citation above, for the simple case of the potential
(6), in an explicit and self-contained form. Certainly, obtaining the semiclassical spectrum in
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the form En = . . . for more complicated systems such as the helium atom is a much more
difficult task. However, this result creates an interesting precedent that may indicate new
directions in semiclassical quantization theory and related fields.
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