
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
SuperLU Users' guide

Permalink
https://escholarship.org/uc/item/29m2j7k9

Author
Demmel, J.W.

Publication Date
1999-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/29m2j7k9
https://escholarship.org
http://www.cdlib.org/

LBNL-44289

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

SuperLU Users' Guide

James w. Demmei, John R. Gilbert,
and Xiaoye S. Li

National Energy Research
Scientific Computing Division

September 1999

DISCLAIMER

This document was prepared as an account of work sponsored by the
llnited States Government. While this document is believed to contain
correct information. neither the United States Government nor any
a~ency thereof, nor The Regents of the University of California, nor any
of their employees, makes any warranty, express or implied, or assumes
allY legal responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof, or
The Regents of the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
l:nited States Government or any agency thereof, or The Regents of the
\;Iliversity of California.

Ernest Orlando Lawrence Berkeley National Laboratory
is an equal opportunity employer.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

SuperLU Users' Guide

James W. Demmel,1 John R. Gilbert,2 and Xiaoye S. Li3

'Computer Science Division
University of California

Berkeley, California 94720

2Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304

3National Energy Research Scientific Computing Center
Ernest Orlando Lawrence Berkeley National Laboratory

University of California
Berkeley, California 94720

September 1999

LBNL-44289

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research, Mathematical, Information, and Computational Sciences Division, DOE Grants DE-FG03-
94ER25219 and DE-FG03-94ER25206, of the U.S. Department of Energy under Contract No. DE-AC03-
76SFOOO98, and by National Science Foundation Grant ASC-9313958, Infrastructure Grants CDA-8722788 and
CDA-9401156, DARPA Contract No. DABT63-95-C0087 and ARPA Contract No. DAAL03-91-C0047.

Contents

1 Introduction 1
1.1 PurposeofSuperLU ... 1
1.2 Overall Algorithm ... 1
1.3 What the three libraries have in common ... 3

1.3.1 Input and Output Data Formats .. 3
1.3.2 Tuning Parameters for BLAS ... 3
1.3.3 Performance Statistics .. 4
1.3.4 Error Handling ... 4
1.3.5 Ordering the Columns of A for Sparse Factors .. 5
1.3.6 Iterative Refinement. ... 6
1.3.7 Error BOl.lllds ... 6
1.3.8 Solving a Sequence of Related Linear Systems ... 6
1.3.9 Interfacing to other languages .. ; 7

1.4 How the three libraries differ .. 7
1.4.1 Input and Output Data Formats .. 7
1.4.2 Parallelism ... 7
1.4.3 Pivoting Strategies for Stability .. 8
1.4.4 Memory Management ... 8
1.4.5 Interfacing to other languages ... 9

1.5 Performance ... 9
1.6 Software Status and Availability .. 9
1.7 Document organization .. : 10
1.8 Acknowledgement .. 10

2 Sequential SuperLU 11
2.1 AboutSuperLU ~ ... 11
2.2 How to call a SuperLU routine .. 11
2.3 Matrix Data Structures ... 15
2.4 Permutations .. 18

2.4.1 Ordering for sparsity .. 18
2.4.2 Partial pivoting with threshold .. 18

2.5 Memory management for L and U ... 19

2.6 User-callable routines .. 20
2.6.1 Driver routines ... 20
2.6.2 Computational routines .. 20

--- ---------------------------------,-

2.7 Matlab interface : ... 21
2.8 Installation .. 23

2.8.1 File structure .. 23
2.8.2 Testing ... 24
2.8.3 Performance-tuning parameters .. 25

2.9 Example programs .. 26
2.9.1 Repeated factorizations ... 26
2.9.2 Calling from Fortran .. 28

3 Multithreaded SuperLU 30
3.1 About SuperLU_MT .. 30
3.2 Storage types for L and U .. 30

3.3 User-callable routines .. 31
3.3.1 Driver routines ... 32
3.3.2 Computational routines .. 32

3.4 Installation .. 33
3.4.1 File structure .. 33
3.4.2 Performance issues .. 33

3.5 Example programs .. 36
3.6 Porting to other platforms ... 36

3.6.1 Creating multiple threads .. 36
3.6.2 Use of mutexes .. 37

4 Distributed SuperLU with MPI 38

4.1 About SuperLU_DIST ... 38
4.2 Basic steps to solve a linear system ... 38
4.3 Process grid and MPI communicator .. 43

4.3.1 SuperLU 2-D grid ... 43
4.3.2 Arbitrary grounding of processes ... 44

4.4 Matrix distribution and distributed data structures for L and U 44
4.5 Algorithmic background ... 45
4.6 User-callable routines .. 46

4.6.1 Driver routines ... 46
4.6.2 Computational routines _ ... 48

4.7 Installation .. 49
4.7.1 File structure .. 49
4.7.2 Performance-tuning parameters .. 40

4.8 Example programs ... 50

Bibliography 51

A Specifications of routines in sequential SuperLU 53
A.l dgsequ .. 53
A.2 dgscon ... 54
A.3 dgsrfs ... 55
A.4 dgssv .. 57

ii

A.S dgssvx .. 60
A.6 dgstrf ... 67
A.7 dgstrs ... 70
A.8 dlaqgs .. 71

B Specifications of routines in multithreaded SuperLU_MT 73
B.1 pdgssv .. 73
B.2 pdgssvx .. 75
B.3 pdgstrf ... 83

C Specifications of routines in MPI-based SuperLU_DIST 87
C.1 pdgssvx_ABglobal ... 87
C.2 pdgstrf ... 96
C.3 pdgstrs_Bglobal ... 98
C.4 pdgsrfs_ABXglobal. ... 99

iii

Chapter 1

Introd uction

1.1 Purpose of SuperLU

This document describes a collection of three related ANSI C subroutine libraries for solving sparse
linear systems of equations AX = B; Here A is a square, nonsingular, n X n sparse matrix,
and X and B are dense n X nrhs matrices, where nrhs is the number of right-hand sides and
solution vectors. Matrix A need not be symmetric or definite; indeed, SuperLU is particularly
appropriate for matrices with very unsymmetric structure. All three libraries use variations of
Gaussian elimination optimized to take advantage both of sparsity and the computer architecture,
in particular memory hierarchies (caches) and parallelism.

In this introduction we refer to all three libraries collectively as Super L U. The three libraries
within SuperLU are as follows. Detailed references are also given (see also [19]).

• Sequential SuperLU is designed for sequential processors with one or more layers of memory
hierarchy (caches) I5].

• Multithreaded SuperLU (SuperLU_MT) is designed for shared memory multiprocessors
(SMPs), and can effectively use up to 16 or 32 parallel processors on sufficiently large matrices
in order to speed up the computation [6].

• Distributed SuperLU (SuperLU_DIST) is designed for distributed memory parallel pro­
cessors, using MPI [26] for interprocess communication. It can effectively use hundreds of
parallel processors on sufficiently large matrices in order to speed up the computation [20].

The rest of the Introduction is organized as follows. Section 1.2 describes the high-level algo­
rithm used by all three libraries, pointing out some common features and differences. Section 1.3
describes the detailed algorithms, data structures, and interface issues common to all three routines.
Section 1.4 describes how the three routines differ, emphasizing the differences that most affect the
user. Section 1.6 describes the software status, including planned developments, bug reporting, and
licensing. Section 1.7 describes the organization of the rest of the document.

1.2 Overall Algorithm

A simple description of sparse Gaussian elimination is as follows:

1. Compute a triangular factorization PrAPe = LU. Here Pr and Pc are permutation matrices.
Premultiplying by Pr reorders the rows of A, and postmultiplying by Pe reorders the columns

of A. Pr and Pe are chosen to enhance sparsity, numerical stability, and parallelism. L is a,
lower triangular matrix and U is an upper triangular matrix. Typically L is a unit triangular
matrix, i.e. Lii = 1.

2. Solve AX = B by evaluating X = A-I B = (Pe-
1 LU pr-

1)-1 B = Pe(U- 1(L-l(PrB))). This
is done efficiently by multiplying from right to left in the last expression: Multiplying PrB
means permuting the rows of B. Multiplying L-1(PrB) means solving nrhs triangular sys­
tems of equations with matrix L by substitution. Similarly, multiplying U-l(L-l(PrB)) '
means solving triangular systems with U. Finally, multiplying Pe(U- 1(L- 1(Pr B))) is again
permutation.

The simplest implementation, used by the "simple driver routines" within SuperLU and Su­
per L U _MT, is as follows:

Simple Driver Algorithm

1. Choose Pe to order the columns of A to increase the sparsity of the computed Land U factors,
and hopefully increase parallelism (for SuperLU_MT).

2. Compute the LU factorization of APe. SuperLU and SuperLU_MT can perform dynamic
pivoting of the rows during factorization for numerical stability, computing Pn Land U at
the, same time.

3. Solve the system using Pr, Pc, Land U as described above.

The simple driver subroutines for double precision real data are called dgssv and pdgssv for'
SuperLU and SuperLU_MT, respectively. The letter d in the subroutine names means double
precision real; other options are s for single precision real, c for single precision complex, and z for
double precision complex. The subroutine naming scheme is analogous to the one used in LAPACK
[1].

SuperL U _DIST does not include this simple driver.
There is also an "expert driver subroutine" that can provide more accurate solutions, compute

error bounds, and solve a sequence of related linear systems more economically. It is available in
all three libraries.

Expert Driver Algorithm

1. Equilibrate the matrix A, i.e. compute diagonal matrices Dr and De so that A = DrADe is
"better conditioned" than A, i.e. A -1 is less sensitive to perturbations in A than A-I is to
perturbations in A.

2. Preorder the rows of A (SuperLU_DIST only), i.e. replace A by PrA where Pr is a permutation
matrix. We call this step "static pivoting", and it is only done in the distributed memory
algorithm.

3. Order the columns of A to increase the sparsity of the computed Land U factors, and
hopefully increase parallelism (for SuperLU_MT and SuperLU_DIST). In other words, replace
A by AP; in SuperLU and SuperLU_MT, or replace A by PeAP; in SuperLU_DIST, where
Pe is a permutation matrix.

4. Compute the LU factorization of A. SuperLU and SuperLU_MT can perform dynamic pivot­
ing of the rows during factorization for numerical stability. In contrast, SuperLU _DIST uses

2

the order computed by the preordering step but replaces tiny pivots by larger numbers for
stability.

5. Solve the system using the computed triangular faCtors.

6. Iteratively refine the solution, again using the computed triangular factors. This is equivalent
to Newton's method.

7. Compute error bounds. Both forward and backward error bounds are computed, as described
below.

The expert driver subroutines for double precision real data are called dgssvx, pdgssvx and
pdgssvx...ABglobal for SuperLU, SuperLU_MT and SuperLU_DIST, respectively. Sequential Su­
perLU also provides single precision real (s), single precision complex (c), and double precision
complex (z) versions. SuperLU_MT only provides double precision real (d). SuperLU_DIST pro­
vides both double precision real (d) and complex (z).

The driver routines are composed of several lower level computational routines for computing
permutations, computing L U factorization, solving triangular systems, and so on. The L U factor­
ization routine for all three libraries also handles nons quare matrices. For large matrices, the LU
factorization steps takes most of the time, although choosing Pc to order the columns can also be
time-consuming.

1.3 What the three libraries have in common

1.3.1 Input and Output Data Formats

All three libraries accept A and B as double precision real. (Sequential SuperLU additionally
accepts single precision real and both single and double precision complex. SuperLU _DIST also
accepts double precision complex.)

A is stored in a sparse data structure according to the struct Super Matrix, which is described in
section 3.2. In particular, A may be supplied in either column-compressed format ("Harwell-Boeing
format"), or row-compressed format (Le. AT stored in column-compressed, format). B, which is
overwritten by the solution X, is stored as a dense matrix in column-major order. (In the current
version of SuperLU_DIST, A and B are replicated across all processors; in a future version they
will be distributed.)

(The storage of Land U differs among the three libraries, as discussed in section 1.4.)

1.3.2 Tuning Parameters for BLAS

All three libraries depend on having high performance BLAS (Basic Linear Algebra Subroutine)
libraries [18, 7, 8] in order to get high performance. In particular, they depend on matrix-vector
multiplication or matrix-matrix multiplication of relatively small dense matrices. The sizes of these
small dense matrices can be tuned to match the "sweet spot" of the BLAS by setting certain
tuning parameters described in section 2.8.3 for SuperLU, in section 3.4.2 for SuperLU_MT, and
in section 4.7.2 for SuperLU_DIST.

(In addition, SuperLU_MT and SuperLU_DIST let one control the number of parallel proces.ses
to be used, as described in section 1.4.)

3

---~

1.3.3 Performance Statistics

The expert driver in all three libraries returns a struct with certain kinds of performance data,
namely the time and number of floating point operations in each phase of the computation, and·
data about the sizes of the matrices Land U. These statistics are collected in the course of the
computation. A variable SuperLUStat is declared with the following type:

typedef struet {
·int *panel_histo; 1* histogram of panel size distribution *1
double *utime; 1* time spent in various phases *1
float *ops; 1* floating-point operation count in various phases *1

} SuperLUStat_t;

For both SuperLU and SuperLU_MT, there is only one copy of these statistics variable. But
for SuperLU_DIST, each process keeps a local copy ofthis variable, and records its local statistics.
We need to use MPI reduction routines to find any global information, such as the sum of the
floating-point operation count on all processes.

Before the computation, routine Statlni t should be called to malloc storage and perform
initialization for the fields panel...histo, utime, and ops. The phases are defined by the enumeration
type PhaseType in SRC/util. h. In the end, routine StatFree should be called to free storage of the
above statistics fields. After deallocation, the statistics are no longer accessible. Therefore, users
should extract the information they need before calling StatFree, which can be accomplished by
calling StatPrint.

An inquiry function dQuerySpace is provided to compute memory usage statistics. This routine
should be called after the LU factorization. It calculates the storage requirement based on the size
of the Land U data structures and working arrays.

1.3.4 Error Handling

Invalid Arguments and XERBLA

Similar to LAPACK, for all the SuperLU routines, we check the validity of the input arguments
to each routine .. 1£ an illegal value is supplied to one of the input arguments, the error handler
XERBLA is called, and a message is written to the standard output, indicating which argument
has an illegal value. The program returns immediately from the routine, with a negative value of
INFO.

Computational failures with INFO> 0

A positive value of INFO on return from a routine indicates a failure in the course of the computa­
tion, such as a matrix being singular, or the amount of memory (in bytes) already allocated when
malloc fails.

ABORT on unrecoverable errors

A macro ABORT is defined in SRC/util.h to handle unrecoverable errors that occur in the middle
of the computation, such as malloe failure. The default action of ABORT is to call

superlu_abort_and_exitCchar *msg)
which prints an error message, the line number and the file name at which the error occurs, and
calls the exit function to terminate the program.

4

If this type of termination is not appropriate in some environment, users can alter the behavior
of the abort function. When compiling the SuperLU library, users may choose the C preprocessor
definition

-DUSER-ABORT = my_abort
At the same time, users would supply the following my _abort function

my_abort(char *msg)
which overrides the behavior of superlu_abort_and_exit.

1.3.5 Ordering the Columns of A for Sparse Factors

There is a choice of orderings for the columns of A either in the simple or expert driver, in section 1.2:

• Natural ordering,

• Multiple Minimum Degree (MMD) [22] applied to the structure of AT A,

• Multiple Minimum Degree (MMD) [22] applied to the structure of AT + A,

• Column Approximate Minimum Degree (COLAMD) [4], and

• Use a Pc supplied by the user as input.

COLAMD is designed particularly for un symmetric matrices, and does not require explicit
formation of AT A. It usually gives comparable orderings as MMD on AT A, and is faster.

The orderings based on graph partitioning heuristics are also popular, as exemplified in the
METIS package [17]. The user can simply input this ordering in the permutation vector for Pc.
Note that many graph partitioning algorithms are designed for symmetric matrices. The user may
still apply them to the structures of AT A or A + AT. Our routines getata and a_pIus_at in the
file get_perm_c. c can be used to form AT A or A + AT.

1.3.6 Iterative Refinement

Step 6 of the expert driver algorithm, iterative refinement, serves to increase accuracy of the
computed solution. Given the initial approximate solution x from step 5, the algorithm for step 6
is as follows (where x and b are single columns of X and B, respectively):

Compute residual r = Ax - b
While residual too large

Solve Ad = r for correction d
Update solution x = x - d
Update residual r = Ax - b

end while

If r and then d were computed exactly, the updated solution x - d would be the exact solution.
Roundoff prevents immediate convergence.

The criterion "residual too large" in the iterative refinement algorithm above is essentially that

BERR == m~x Irill Si (1.1)
!

5

exceeds the machine roundoff level, or is continuing to decrease quickly enough. Here Si is the scale
factor

Si = (IAI'lxl + Ibl)i = L IAijl 'Ixjl + Ibil
j

In this expression IAI is the n-by-n matrix with entries IAlij = IAijl, Ihl and Ixl are similarly
column vectors of absolute entries of b and x, respectively, and IAI . Ixl is conventional matrix­
vector multiplication.

The purpose of this stopping criterion is explained in the next section.

1.3.7 Error Bounds

Step 7 of the expert driver algorithm computes error bounds.
It is shown in [2, 23] that BERR defined in Equation 1.1 measures the componentwise relative

backward error of the computed solution. This means that the computed x satisfies a slightly
perturbed linear system of equations (A + E)x = b + j, where IEijl ~ BERR· IAijl and llil ~
BERR· Ibil for all i and j. It is shown in [2, 25] that one step of iterative refinement usually
reduces BERR to near machine epsilon. For example, if BERR is 4 times machine epsilon, then
the computed solution x is identical to the solution one would get by changing each nonzero entry
of A and b by at most 4 units in their last places, and then solving this perturbed system exactly.
If the nonzero entries of A and b are uncertain in their bottom 2 bits, then one should generally not
expect a more accurate solution. Thus BERR is a measure of backward error specifically suited
to solving sparse linear systems of equations. Despite roundoff, BERR itself is always computed
to within about ±n times machine epsilon (and usually much more accurately) and so BERR is
quite accurate.

In addition to backward error, the expert driver computes a forward error bound

Here IIxlioo == maxi IXil. Thus, if F ERR = 10-6 then each component of x has an error bounded
by about 10-6 times the largest component of x. The algorithm used to compute FERR is an
approximation; see [2, 16] for a discussion. Generally F ERR is accurate to within a factor of 10
or better, which is adequate to say how many digits of the large entries of x are correct.

(SuperLU_DIST's algorithm for FERR is slightly less reliable [20].)

1.3.8 Solving a Sequence of Related Linear Systems

It is very common to solve a sequence ofrelated linear systems A(l)X(l) = B(l), A(2)X(2) = B(2), ...

rather than just one. When A(l) and A(2) are similar enough in sparsity pattern and/or numerical
entries, it is possible to save some of the work done when solving with A (1) to solve with A (2).

This can.result in significant savings. Here are the options, in increasing order of "reuse of prior
information" :

1. Factor from scratch. No previous information is used. If one were solving just one linear
system, or a sequence of unrelated linear systems, this is the option to use.

2. Reuse PC) the column permutation. The user may save the column permutation and reuse
it. This is most useful when A(2) has the same sparsity structure as A(l), but not necessarily
the same (or similar) numerical entries. Reusing Pc saves the sometimes quite expensive
operation of computing it.

6

3. Reuse PC! Pr and data structures allocated for Land U. If Pr and Pc do not change, then the
work of building the data structures associated with Land U (including the elimination tree
[13]) can be avoided. This is most useful when A (2) has the same sparsity structure and similar
numerical entries as A (1). When the numerical entries are not similar, one can still use this
option, but at a higher risk of numerical instability (BERR will always report whether or not
the solution was computed stably, so one cannot get an unstable answer without warning).

4. Reuse PC! Pr! Land U. In other words, we reuse essentially everything. This is most
commonly used when A(2) = A(l), but B(2) f= B(l), i.e. when only the right-hand sides differ.
It could also be used when A(2) and A(l) differed just slightly in numerical values, in the
hopes that iterative refinement converges (using A (2) to compute residuals but the triangular
factorization of A (1) to solve).

Because of the different ways Land U are computed and stored in the three libraries, these 4
options are specified slightly differently; see Chapters 2 through 4 for details.

1.3.9 Interfacing to other languages

All three drivers, and their computational routines, may be called by C or Fortran.

1.4 How the three libraries differ

1.4.1 Input and Output Data Formats

All Sequential SuperLU routines are available in single and double precision (real or complex), but
SuperLU_MT routines are only available in double precision real, and SuperLU~IST routines are
available in double precision (real or complex).

L and U are stored in different formats in the three libraries:

• Land U in Sequential SuperL U. L is a "column-supernodal" matrix, in storage type SCformat.
This means it is stored sparsely, with supernodes (consecutive columns with identical struc­
tures) stored as dense blocks. U is stored in column-compressed format NCformat. See
section 2.3 for details.

• Land U in SuperLU~T. Because of parallelism, the columns of Land U may not be
computed in consecutive order, so they may be allocated and stored out of order. This means
we use the "column-supernodal-permuted" format SCPformat for L and "column-permuted"
format NCPformat for U. See section 3.2 for details.

• Land U in SuperLU_DIST. Now Land U are distributed across multiple processors. As
described in detail in section 4.3, we use a 2-D block-cyclic format, which has been used
for dense matrices in libraries like ScaLAPACK [3]. But for sparse matrices, the blocks are
no longer identical in size, and vary depending on the sparsity structure of Land U. The
detailed storage format is discussed in section 4.4 and illustrated in Figure 4.1.

1.4.2 Parallelism

Sequential SuperL U has no explicit parallelism. Some parallelism may still be exploited on an
SMP by using a multithreaded BLAS library if available. But it is likely to be more effective to
use SuperLU_MT on an SMP, described next.

7

SuperLU_MT lets the user choose the number of parallel threads to use. The mechanism varies
from platform to platform and is described in section 3.6.

Super.LU.J)IST not only lets the user specify the number of processors, but how they are
arranged into a 2-D grid. Furthermore, MPI permits any subset of the processors allocated to the
user may be used for SuperLU_DIST, not just consecutively numbered processors (say 0 through
P-1). See section 4.3 for details.

1.4.3 Pivoting Strategies for Stability

Sequential SuperLU and SuperLU_MT use the same pivoting strategy, called threshold pivoting, to
determine the row permutation Pro Suppose we have factored the first i-I columns of A, and are
seeking the pivot for column i. Let ami be a largest entry in magnitude on or below the diagonal
of the partially factored A: /ami/ = maXj;::i /aji/' Depending on a threshold 0 < u ::; 1 input by the
user, the code will use the diagonal entry aii as the pivot in column i as long as laid 2: u ·!ami!, and
otherwise use ami. So if the user sets u = 1, ami (or an equally large entry) will be selected as the
pivot; this corresponds to the classical partial pivoting strategy. If the user has ordered the matrix
so that choosing diagonal pivots is particularly good for sparsity or parallelism, then smaller values
of u will tend to choose those diagonal pivots, at the risk of less numerical stability. Using u = 0
guarantees that the pivots on the diagonal will be chosen, unless they are zero. The error bound
BERR measure how much stability is actually lost.

Threshold pivoting turns out to be hard to parallelize on distributed memory machines, because
of the fine-grain communication and dynamic data structures required. So SuperL U _DIST uses a
new scheme called static pivoting instead. In static pivoting the pivot order (Pr) is chosen before
numerical factorization, using a weighted perfect matching algorithm (9], and kept fixed during
factorization. Since both row and column orders (Pr and Pc) are fixed before numerical factoriza­
tion, we can extensively optimize the data layout, load balance, and communication schedule. The
price is a higher risk of numeric instability, which is mitigated by diagonal scaling, setting very
tiny pivots to larger values, and iterative refinement [20]. Again, error bound BERR measure how
much stability is actually lost.

1.4.4 Memory Management

Because offill-in of entries during Gaussian elimination, Land U typically have many more nonzero
entries than A. If Pr and Pc are not already known, we cannot determine the number and locations
of these nonzeros before performing the numerical factorization. This means that some kind of
dynamic memory allocation is needed.

Sequential SuperL U lets the user either supply a preallocated space work [J of length lwork, or
depend on malloc/free. The variable FILL can be used to help the code predict the amount of fill,
which can reduce both fragmentation and the number of calls to malloc/free. If the initial estimate
of the size of Land U from FILL is too small, the routine allocates more space and copies the
current Land U factors to the new space and frees the old space. If the routine cannot allocate
enough space, it calls a user-specifiable routine ABORT. See sections 1.3.4 for details.

SuperLU_MT is similar, except that the current alpha version cannot reallocate more space for
Land U if the initial size estimate from FILL is too small. Instead, the program calls ABORT and
the user must start over with a larger value of FILL. See section 3.4.2.

SuperLU_DIST actually has a simpler memory management chore, because once Pr and Pc are
determined, the structures of Land U can be determined efficiently and just the right amount of

8

· memory allocated using malloc and later free. So it will call ABORT only if there is really not
enough memory available to solve the problem.

1.4.5 Interfacing to other languages

Sequential SuperLU has a Matlab interface to the driver via a MEX file. See section 2.7 for details.

1.5 Performance

SuperLU library incorporates a number of novel algorithmic ideas developed recently. These al­
gorithms also exploit the features of modern computer architectures, in particular, the multi:level
cache organization and parallelism. We have conducted extensive experiments on various plat­
forms, with a large collection of test matrices. The Sequential SuperLU achieved up to 40% of the
theoretical floating-point rate on a number of processors, see [5, 19]. The megaflop rate usually
increases with increasing ratio of floating-point operations count over the number of nonzeros in the
Land U factors. The parallel LU factorization in SuperLU_MT demonstrated 5-10 fold speedups
on a range of commercially popular SMPs, and up to 2.5 Gigaflops factorization rate, see [6, 19].
The parallel LU factorization in SuperLU _DIST achieved up to 100 fold speedup on a 512-processor
Cray T3E, and 10.2 Gigaflops factorization rate, see [20,21].

1.6 Software Status and Availability

All three libraries are freely available for all uses, commercial or noncommercial, subject to the
following caveats. No warranty is expressed or implied by the authors, although we will gladly
answer questions and try to :fix all reported bugs. We ask that proper credit be given to the
authors and that a notice be included if any modifications are made.

1. Some subroutines carry the following notice:

Copyright (c) 1994 by Xerox Corporation. All rights reserved.
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program for any purpose, provided
the above notices are retained on all copies. Permission to modify the code and to
distribute modified code is granted, provided the above notices are retained, and a
notice that the code was modified is included with the above copyright notice.

2. The MC64 package carries the following notice:

COPYRIGHT (c) 1999 Council for the Central Laboratory of the Research Coun­
cils. All rights reserved. PACKAGE MC64A/ AD AUTHORS lain Duff (i.duff@rl.ac.uk)
and Jacko Koster (jak@iLuib.no) LAST UPDATE 20/09/99

*** Conditions on external use ***
The user shall acknowledge the contribution of this package in any publication of
material dependent upon the use of the package. The user shall use reasonable
endeavours to notify the authors of the package of this publication.

The user can modify this code but, at no time shall the right or title to all or any
part of this package pass to the user. The user shall make available free of charge

9

to the authors for any purpose all information relating to any alteration or addition
made to this package for the purposes of extending the capabilities or enhancing
the performance of this package.

The user shall not pass this code directly to a third party without the express prior
consent of the authors. Users wanting to licence their own copy of these routines
should send email to hsl@aeat.co.uk

None of the comments from the Copyright notice up to and including this one shall
be removed or altered in any way.

All three libraries can be obtained from Netlib through the URL address:

http://~~~.netlib.org/scalapack/prototype/

They are also available on the FTP server at UC Berkeley:

ftp ftp.cs.berkeley.edu
login: anonymous
ftp> cd /pub/src/lapack/SuperLU
ftp> binary
ftp> get superlu_2.0.tar.gz

In the future, we will add more functionality in the software, such as sequential and parallel in­
complete L U factorizations, as well as parallel symbolic and ordering algorithms for SuperL U _DIST;
these latter routines would replace MC64 and have no restrictions on external use.

All bugs reports and other queries should be e-mailed to xiaoye@nersc.gov and
demmel@cs.berkeley.edu.

1.7 Document organization

The rest of this document is organized as follows. Chapter 2 describes Sequential SuperLU. Chap­
ter 3 describes SuperLU_MT. Chapter 4 describes SuperLU_DIST. Finally, the calling sequence and
the leading comment of the user-callable routines for all three libraries are listed in the appentices.

1.8 Acknowledgement

With great gratitude, we acknowledge Stan Eisenstat and Joesph Liu for their significant contri­
butions to the development of Sequential SuperLU.

We would like to thank Jinqchong Teo for helping generate the code in Sequential SuperLU
to work with four floating-point data types. We thank Tim Davis for his contribution of some
subroutines related to column ordering and suggestions on improving the routines' interfaces. We
thank Ed Rothberg of Silicon Graphics for discussions and providing us access to the SGI Power
Challenge.

We acknowledge the following organizations that provided the computer resources during our
code development: NERSC at Lawrence Berkeley National Laboratory, Livermore Computing at
Lawrence Livermore National Laboratory, NCSA at University of Illinois at Urbana-Champaign,
Silicon Graphics, and Xerox Palo Alto Research Center. We thank UC Berkeley and NSF Infras­
tructure grant CDA-9401156 for providing Berkeley NOW.

10

Chapter 2

Sequential SuperLU

2.1 About SuperLU

In this chapter, SuperLU will always mean Sequential SuperLU. The SuperLU package contains a
set of subroutines to solve sparse linear systems AX = B. Here A is a square, nonsingular, n x n
sparse matrix, and X and B are dense n x nrhs matrices, where nrhs is the number of right­
hand sides and solution vectors. Matrix A need not be symmetric or definite; indeed, SuperLU is
particularly appropriate for matrices with very unsymmetric structure.

The package uses L U decomposition with partial (or threshold) pivoting, and forward/back
substitutions. The columns of A may be preordered before factorization (either by the user or by
SuperLU); this preordering for sparsity is completely separate from the factorization. To improve
backward stability, we provide working precision iterative refinement subroutines [2]. Routines
are also available to equilibrate the system, estimate the condition number, calculate the relative
backward error, and estimate error bounds for the refined solutions. We also include a Matlab
MEX-file interface, so that our factor and solve routines can be called as alternatives to those built
into Matlab. The LU factorization routines can handle non-square matrices, but the triangular
solves are performed only for square matrices.

The factorization algorithm uses a graph reduction technique to reduce graph traversal time in
the symbolic analysis. We exploit dense submatrices in the numerical kernel, and organize compu­
tationalloops in a way that reduces data movement between levels of the memory hierarchy. The
resulting algorithm is highly efficient on modern architectures. The performance gains are particu­
larly evident for large problems. There are "tuning parameters" to optimize the peak performance
as a function of cache size. For a detailed description of the algorithm, see reference [5].

SuperLU is implemented in ANSI C, and must be compiled with a standard ANSI C compiler.
It includes versions for both real and complex matrices, in both single and double precision. The
file names for the single-precision real version start with letter "s" (such as sgstrf .c); the file
names for the double-precision real version start with letter "d" (such as dgstrf . c); the file names
for the single-precision complex version start with letter "c" (such as cgstrf . c); the file names for
the double-precision complex version start with letter "z" (such as zgstrf .c).

2.2 How to call a SuperL U routine

As a simple example, let us consider how to solve a 5 x 5 sparse linear system AX = B, by calling
a driver routine dgssv. Figure 2.1 shows matrix A, and its Land U factors. This sample program

11

s u u
l u

I p
e u

r

Original matrix A
s = 19, U = 21, P = 16, e = 5, r = 18, l = 12

19.00 21.00 21.00
0.63 21.00 -13.26 -13.26

0.57 23.58 7.58
5.00 21.00

0.63 0.57 -0.24 -0.77 34.20

Factors F = L + U - I

Figure 2.1: A 5 X 5 matrix and its Land U factors.

is located in SuperLU/EXAMPLE/superlu. c.
The program first initializes the three arrays, a[], asub [] and xa[], which store the nonzero

coefficients of matrix A, their row indices, and the indices indicating the beginning of each column in
the coefficient and row index arrays. This storage format is called compressed column format, also.
known as Harwell-Boeing format [10]. Next, the two utility routines dCreate_CompCoLMatrix and
dCreateJ)ense.-Matrix are called to set up matrices A and B, respectively, in the data structures
internally used by SuperLU. The routine get_perm_c is called to generate a column permutation
vector, stored in perm_c []. A good column permutation should make the Land U factors as sparse
as possible. The user can supply perm_c [] instead of using the one provided by SuperL U. After
calling the Super L U routine dgssv, the B matrix is overwritten by the solution matrix X. In
the end, all the dynamically allocated data structures are de-allocated by calling various utility
routines.

SuperLU can perform more general tasks, which will be explained later.

#include "dsp_defs.h"
#include "util.h"

main(int argc, char *argv[])
{

SuperMatrix A, L, U, B;
double *a, *rhs;

s, u, p, e, r, 1;

*asub, *xa;
double
int
int
int

perm_r; / row permutations from partial pivoting */
perm_c; / column permutation vector */

int nrhs, info, i, m, n, nnz, permc_spec;

/* Initialize matrix A. */
ill = n = 5;
nnz = 12;
if (! (a = doubleMalloc(nnz))) ABORT("Malloc fails for a[]. II);
if (! (asub = intMalloc(nnz))) ABORT("Malloc fails for asub [] . ") ;
if (! (xa = intMalloc(n+1))) ABORT("Malloc fails for xa[] . II);
S = 19.0; u = 21.0; P = 16.0; e = 5.0; r = 18.0; 1 = 12.0;
a[O] = s; a[1] = 1; a[2] = 1; a[3] = u; a[4] = 1; a[5] = 1;

12

}

a[6] = u; a[7] = p; a[8] = u; a[9] = e; a[10]= u; a[ll]= r;
asub[O] = 0; asub[l] = 1; asub[2] = 4; asub[3] = 1;
asub[4] = 2; asub[5] = 4; asub[6] = 0; asub[7] = 2;
asub[8] = 0; asub[9] = 3; asub[10]= 3; asub[ll]= 4;
xa[O] = 0; xa[l] = 3; xa[2] = 6; xa[3] = 8; xa[4] = 10; xa[5] = 12;

1* Create matrix A in the format expected by SuperLU. *1
dCreate_CompCol_Matrix(&A, m,n, nnz, a, asub, xa, NC, _D, GE);

1* Create right-hand side matrix B. *1
nrhs = 1;
if (! (rhs = doubleMalIoc (m * nrhs))) ABORT (II Malloc fails for rhs [] . ") ;
for (i = 0; i < m; ++i) rhs[i] = 1.0;
dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, DN, _D, GE);

if (! (perm_r = intMalIoc(m))) ABORT("MalIoc fails for perm_d] . ");
if (!Cperm_c = intMalIoc(n») ABORT("MalIoc fails for perm_c[].II);

1*
* Get column permutation vector perm_c[], according to permc_spec:
* perme_spec = 0: use the natural ordering
* permc_spec = 1: use minimum degree ordering on structure of A'*A
* permc_spec = 2: use minimum degree ordering on structure of A'+A
*1

permc_spec = 0;
get_perm_cCpermc_spec, &A, perm_c);

dgssv(&A, perm_c, perm_r, &L, &U, &B, &info);

dPrint_CompCol_Matrix(IA", &A);
dPrint_CompCoLMatrix(IU", &U);
dPrint_SuperNode_Matrix("L", &L);
Printlntl0C"\nperm_rtl, m, perm_r);

1* De-allocate storage *1
SUPERLU_FREE (rhs);
SUPERLU_FREE (perm_r);
SUPERLU_FREE (perm_c);
Destroy_CompCol_Matrix(&A);
Destroy_SuperMatrix_Store(&B);
Destroy_SuperNode_Matrix(&L);
Destroy_CompCol_Matrix(&U);

13

typedef struct {
Stype_ t Stype:

}

Dtype_t Dtype:
Mtype_t Mtype:
int nrow;
int ncol;
void *Store;

SuperMatrix;

typedef enum {

NC, . 1*
NR, 1*
SC, 1*
SR, 1*
NCP, 1*

DN 1*
} Stype~t;

typedef enum {

_S, 1*
_D, 1*
_C, 1*
_Z 1*

} Dtype~t;

typedef enum {

GE, 1*
TRLU, 1*
TRUU, 1*
TRL, 1*
TRU, 1*
SYL; 1*
SYU, 1*
HEL, 1*
HEU 1*

} Mtype_t;

1* Storage type: indicates the storage format of *Store. *1
1* Data type. *1
1* Mathematical type *1
1* number of rows *1
1* number of columns ~I
1* pointer to the actual storage of the matrix *1

column-wise, not supernodal *1
row-wise, not supernodal *1
column-wise. supernodal *1
row-wise, supernodal *1
column-wise, not supernodal, permuted by columns
(After column permutation. the consecutive columns of
nonzeros may not be stored contiguously. *1

Fortran style column-wise storage for dense matrix *1

single *1
double *1
single-complex *1
double-complex *1

general *1
lower triangular, unit diagonal *1
upper triangular, unit diagonal *1
lower triangular *1
upper triangular *1
symmetric, store lower half *1
symmetric, store upper half *1
Hermitian, ~store lower half *1
Hermitian, store upper half *1

Figure 2.2: SuperMatrix data structure.

14

2.3 Matrix data structures

SuperLU uses a principal data structure SuperMatrix (defined in SRC/supermatrix.h) to repre­
sent a general matrix, sparse or dense. Figure 2.2 presents the specification of the SuperMatrix
structure. The SuperMatrix structure contains two levels of fields. The first level defines all the
properties of a matrix which are independent of how it is stored in memory. In particular, it speci­
fies the following three orthogonal properties: storage type (Stype) indicates the type of the storage
scheme in *Store; data type (Otype) encodes the four precisions; mathematical type (Mtype) spec­
ifies some mathematical properties. The second level (*Store) points to the actual storage used
to store the matrix. We associate with each Stype xx a storage format called XXformat, such as
NCformat, SCformat, etc.

The SuperMatrix type so defined can accommodate various types of matrix structures and
appropriate operations to be applied on them, although currently SuperLU implements only a
subset of this collection. Specifically, matrices A, L, U, B, and X can have the following types:

A L U B X
Stype NC or NR SC NC ON ON
Otype1 any any any any any
Mtype GE TRLU TRU GE GE

In what follows, we illustrate the storage schemes defined by Stype. Following C's co.nvention,
all array indices and locations below are zero-based .

• A may have storage type NC or NR. The NC format is the same as the Harwell-Boeing sparse
matrix format [10], that is, the compressed column storage.

typedef struct {
int nnz;
void *nzval;
int *rowind;
int *colptr;

} NCformat;

/*
/*
/*
/*

number of nonzeros in the matrix */
array of nonzero values packed by column */ .
array of row indices of the nonzeros */
colptr[j] stores the location in nzval[] and rowind[]
which starts column j. It has ncol+l entries.
and colptr[ncol] = nnz. */

The NR format is the compressed row storage defined below.

typedef struct {
int nnz;
void *nzval;
int *colind;
int *rowptr;

} NRformat;

1* number of nonzeros in the matrix *1
/* array of nonzero values packed by row */
/* array of column indices of the nonzeros */
/* rowptr[j] stores the location in nzval[] and colind[]

which starts row j. It has nrow+l entries.
and rowptr[nrow] = nnz. */

IDtype can be one of _8, -Il, _C or _Z.

15

The factorization and solve routines in SuperLU are designed to handle column-wise storage
only. If the input matrix A is in row-oriented storage, i.e., in NR format, then the driver
routines (dgssv and dgssvx) actually perform the LU decomposition on AT, which is column­
wise, and solve the system using the LT and UT factors. The data structures holding Land U .
on output are different (swapped) from the data structures you get from column-wise input.
For more detailed descriptions about this process, please refer to the leading comments of
routines dgssv and dgssvx in Appendix A.

Alternatively, the users may call a utility routine dCompRmLto_CompCol to convert the input
matrix in NR format to another matrix in NC format, before calling SuperLU. The definition
of this routine is

void sCompRow_to_CompCol(int m, int n, int nnz,
float *a, int *colind, int *rowptr,
float **at, int **rowind, int **colptr);

This conversion takes time proportional to the number of nonzeros in A. However, it requires
storage for a separate copy of matrix A .

• L is a supernodal matrix with the storage type SC. Due to the supernodal structure, L is in
fact stored as a sparse block lower triangular matrix [5].

typedef struct {
int nnz;
int nsuper;
void *nzval;
int *nzval_colptr;

/* number of nonzeros in the matrix */
/* index of the last supernode */
1* array of nonzero values packed by column */
1* nzval_colptr[j] stores the location in

nzval[] which starts column j *1
int *rowind; /* array of compressed row indices of

rectangular supernodes *1
int *rowind_colptr;l* rowind_colptr[j] stores the location in

rowind[] which starts column j *1
int *col_to_sup; 1* col_to_sup[j] is the supernode number to

which column j belongs */
int *sup_to_col; /* sup_to_col[s] points to the starting column

of the s-th supernode *1
} SCformat;

• Both B and X are stored as conventional two-dimensional arrays in column-major order, with
the storage type DN.

typedef struct {
int Ida; /* leading dimension */
void *nzval; /* array of size lda-by-ncol to represent

a dense matrix */
} DNformat;

Figure 2.3 shows the data structures for the example matrices in Figure 2.1.
For a description of NCPformat, see section 2.4.1.

16

• A = { Stype = NC; Dtype = _D; Mtype = GE; nrow = 5; ncol = 5;
*Store = { nnz = 12;

}

}

nzval = [19.00, 12.00, 12.00, 21.00, 12.00, 12.00, 21.00,
16.00, 21.00,5.00, 21.00, 18.00];

rowind = [0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3,4];
colptr = [0,3,6,8, 10, 12];

• U = { Stype = NC; Dtype = _D; Mtype = TRU; nrow = 5; ncol = 5;

}

*Store = { nnz = 11;

}

nzval = [21.00, -13.26, 7.58, 21.00];
rowind = [0, 1,2, 0];
colptr = [0,0, 0, 1,4,4];

• L = { Stype = SC; Dtype = _D; Mtype = TRLU; nrow = 5; ncol = 5;
*Store = { nnz = 11;

}

}

nsuper = 2;
nzval = [19.00, 0.63, 0.63, 21.00, 0.57, 0.57, -13.26,

23.58, -6.24, 5.00, -0.77, 21.00, 34.20];
nzval_colptr = [° 3, 6, 9, 11, 13];
rowind = [0, 1, 4, 1, 2, 4, 3, 4] ;
rowind_colptr = [0, 3, 6, 6, 8, 8] ;
col_to_sup = [0, 1, 1,2,2];
sup_to_col = [0, 1,3,5];

Figure 2.3: The data structures for a 5 X 5 matrix and its LU factors, as represented III the
SuperMatrix data structure. Zero-based indexing is used.

17

2.4 Permutations

Two permutation matrices are involved in the solution process. In fact, the actual factorization we
perform is PrAP,! = LU, where Pr is determined from partial pivoting (with a threshold pivoting
option), and Pc is a column permutation chosen either by the user or SuperLU, usually to make the
Land U factors as sparse as possible. Pr and Pc are represented by two integer vectors perm...r [] .
and perm_c[], which are the permutations of the integers (0: m - 1) and (0 : n - 1), respectively.

2.4.1 Ordering for sparsity

Column reordering for sparsity is completely separate from the LU factorization. The column
permutation Pc should be applied before calling the factorization routine dgstrf. In principle, any
ordering heuristic used for symmetric matrices can be applied to AT A (or A + AT if the matrix is
nearly structurally symmetric) to obtain Pc. Currently, we provide the following ordering options
through subroutine get_perm_c.

void get_perm_c(int ispec, SuperMatrix *A, int *perm_c);

Ispec specifies the ordering to be returned in *perm_c, the integer vector representing the
permutation matrix Pc:

ispec = 0: natural ordering (i.e., Pc = 1)
= 1: MMD applied to the structure of AT A
= 2: MMD applied to the structure of A + AT
= 3: COLAMD, approximate minimum degree column ordering

Alternatively, the users can provide their own column permutation vector. For example, it
may be an ordering suitable for the underlying physical problem. Both driver routines dgssv and
dgssvx take perm_c [] as an input argument.

After permutation Pc is applied to A, we use NCP format to represent the permuted matrix API,
in which the consecutive columns of non zeros may not be stored contiguously in memory. Therefore,
we need two separate arrays of pointers, colbeg [] and col end [], to indicate the beginning and
end of each column in nzval [] and rowind [] .

typedef struct {
int nnz;
void *nzval;
int *rowind;
int *colbeg;

int *colend;

} NCPformat;

1*
1*
1*
1*

/*

number of nonzeros in the matrix *1
array of nonzero values, packed by column */
array of row indices of the nonzeros *1
colbeg[j] points to the location in nzval[] and rowind[]
which starts column j *1
colend[j] points to one past the location in nzval[]
and rowind[] which ends column j */

2.4.2 Partial pivoting with threshold

We have included a threshold pivoting parameter u E [0,1] to control numerical stability. The
user can choose to use a row permutation obtained from a previous factorization. (The argument
*ref act = 'Y' should be passed to the factorization routine dgstrf.) The pivoting subroutine
dpivotL checks whether this choice of pivot satisfies the threshold; if not, it will try the diagonal

18

element. If neither of the above satisfies the threshold, the maximum magnitude element in the
column will be used as the pivot. The pseudo-code of the pivoting policy for column j is given
below.

(2) if user specifies pivot row k and \akj\ 2:: thresh and akj =I 0 then
pivot row = k;

else if lajjl 2:: thresh and ajj =I 0 then
pivot row = j;

else
pivot row = m;

endif;

Two special values of u result in the following two strategies:

• u = 0.0: either use user-specified pivot order if available, or else use diagonal pivot;

• u = 1.0: classical partial pivoting.

2.5 Memory management for Land U

In the sparse LU algorithm, the amount of space needed to hold the data structures of Land U
cannot be accurately predicted prior to the factorization. The dynamically growing arrays include
those for the nonzero values (nzval) and the compressed row indices (ro'!lind) of L, and for the
nonzero values (nzval) and the row indices (ro'!lind) of U.

Two alternative memory models are presented to the user:

• system-level - based on e's dynamic allocation capability (malloe/free);

• user-level - based on a user-supplied '!lork [] array of size l'!lork (in bytes). This is similar
to Fortran-style handling of work space. Work [] is organized as a two-ended stack, one end
holding the Land U data structures, the other end holding the auxiliary arrays of known
size.

Except for the different ways to allocate! deallocate space, the logical view of the memory
organization is the same for both schemes. Now we describe the policies in the memory module.

At the outset of the factorization, we guess there will be FILL*nnz (A) fills in the factors and
allocate corresponding storage for the above four arrays, where nnz (A) is the number of nonzeros
in original matrix A, and FILL is an integer, say 20. (The value of FILL can be set in an inquiry
function sp_ienvO, see section 2.8.3.) If this initial request exceeds the physical memory constraint,
the FILL factor is repeatedly reduced, and attempts are made to allocate smaller arrays, until the
initial allocation succeeds.

During the factorization, if any array size exceeds the allocated bound, we expand it as follows.
We first allocate a chunk of new memory of size EXPAND times the old size, then copy the existing
data into the new memory, and then free the old storage. The extra copying is necessary, because the
factorization algorithm requires that each of the aforementioned four data structures be contiguous
in memory. The values of FILL and EXPAND are normally set to 20 and 1.5, respectively. See
xmemory . e for details.

19

After factorization, we do not garbage-collect the extra space that may have been allocated.
Thus, there will be external fragmentation in the Land U data structures. The settings of FILL and
EXPAND should take into account the trade-off between the number of expansions and the amount
of fragmentation.

Arrays of known size, such as various column pointers and working arrays, are allocated just
once. All dynamically-allocated working arrays are freed after factorization.

2.6 User-callable routines

The naming conventions, calling sequences and functionality of these routines mimic the corre­
sponding LAPACK software [1]. In the routine names, such as dgstrf, we use the two letters GS to
denote general sparse matrices. The leading letterx stands for S, D, C, or Z, specifying the data
type. Appendix A contains, for each individual routine, the leading comments and the complete
specification of the calling sequence and arguments.

2.6.1 Driver routines

We provide two types of driver routines for solving systems of linear equations. The driver routines
can handle both column- and row-oriented storage schemes.

• A SImple driver dgssv, which solves the system AX = B by factorizing A and overwriting B
with the solution X.

• An expert driver dgssvx, which, in addition to the above, also performs the following functions
(some of them optionally):

- solve ATX = B;

- equilibrate the system (scale A's rows and columns to have unit norm) if A is poorly
scaled;

- estimate the condition number of A, check for near-singularity, and check for pivot
growth;

- refine the solution and compute forward and backward error bounds.

These driver routines cover all the functionality of the computational routines. We expect that
most users can simply use these driver routines to fulfill their tasks with no need to bother with
the computational routines.

2.6.2 Computational routines

The users can invoke the following computational routines, instead ofthe driver routines, to directly
control the behavior of SuperLU. The computational routines can only handle column-oriented
storage.

• dgstrf: Factorize.

This implements the first-time factorization, or later re-factorization with the same nonzero
pattern. In re-factorizations, the code has the ability to use the same column permutation
Pc and row permutation Pr obtained from a previous factorization. Several scalar arguments
control how the LU decomposition and the numerical pivoting should be performed. dgstrf
can handle non-square matrices.

20

• dgstrs: Triangular solve.

This takes the Land U triangular factors, the row and column permutation vectors, and the
right-hand side to compute a solution matrix X of AX = B or AT X = B.

• dgscon: Estimate condition number.

Given the matrix A and its factors Land U, this estimates the condition number in the
one-norm or infinity-norm. The algorithm is due to Hager and Higham [15], and is the same
as CONDEST in sparse Matlab.

• dgsequ/xlaqgs: Equilibrate.

dgsequ first computes the row and column seatings Dr and Dc which would make each row
and each column of the scaled matrix DrADc have eqmil norm. dlaqgs then applies them to
the original matrix A if it is indeed badly scaled. The equilibrated A overwrites the original
A.

• dgsrfs: Refine solution.

Given A, its factors Land U, and an initial solution X, this does iterative refinement, using'
the same precision as the input data. It also computes forward and backward error bounds
for the refined solution.

2.7 Matlab interface

In the SuperLU/MATLAB subdirectory, we have developed a set of MEX-files interface to Matlab.
Typing make in this directory produces executables to be invoked in Matlab. The current Makefile
is set up so that the MEX-files are compatible with Matlab Version 5. The user should edit Makefile
for Matlab Version 4 compatibility. Right now, only the factor routine dgstrf and the simple driver
routine dgssv are callable by invoking superlu and lusolve in Matlab, respectively. Superlu and
lusolve correspond to the two Matlab built-in functions lu and \ . In ¥atlab, when you type

help superlu
you will find the following description about superlu's functionality and how to use it.

SUPERLU : Supernodal LU factorization

Executive summary:

[L,U,pJ = superlu(A)
[L,U,prow,pcolJ = superlu(A)

Details and options:

is like [L,U,PJ = lu(A) , but faster.
preorders the columns of A by min degree,

yielding A(prow,pcol) = L*U.

With one input and two or three outputs',SUPERLU has the same effect as LU.
except that the pivoting permutation is returned as a vector, not a matrix:

[L,U,pJ = superlu(A) returns unit lower triangular L, upper triangular U,
and permutation vector p with A(p,:) = L*U.

[L,U] = superlu(A) returns permuted triangular L and upper triangular U

21

with A = L*U.

With a second input, the columns of A are permuted before factoring:

[L,U,prow] = superlu(A,psparse) returns triangular L and U and permutation
prow with A(prow,psparse) = L*U.

[L,U] = superlu(A,psparse) returns permuted triangular L and triangular U
with A(:,psparse) = L*U.

Here psparse will normally be a user-supplied permutation matrix or vector
to be applied to the columns of A for sparsity. COLMMD is one way to get
such a permutation; see below to make SUPERLU compute it automatically.
(If psparse is a permutation matrix, the matrix factored is A*psparse'.)

With a fourth output, a column permutation is computed and applied:

[L,U,prow,peol] = superlu(A,psparse) returns triangUlar L and U and
permutations prow and pcol with A(prow,pcol) = L*U.
Here psparse is a user-supplied column permutation for sparsity,
and the matrix factored is A(:,psparse) (or A*psparse' if the
input is a permutation matrix). Output pcol is a permutation
that first performs psparse, then postorders the etree of the
column intersection graph of A. The postorder does not affect
sparsity, but makes supernodes in L consecutive.

[L,U,prow,peol] = superlu(A,O) is the same as ... = superlu(A,I); it does
not permute for sparsity but it does postorder the etree.

[L,U,prow,pcol] = superlu(A) is the same as ... = superlu(A,colmmd(A));
it uses column minimum degree to permute columns for sparsity,
then postorders the etree and factors.

For a description about lusolve's functionality and how to use it, you can type
help lusolve

LUSOLVE : Solve linear systems by supernodal LU factorization.

x = lusolve(A, b) returns the solution to the linear system A*x = b,
using a supernodal LU factorization that is faster than Matlab's
builtin LU. This m-file just calls a mex routine to do the work.

By default, A is preordered by column minimum degree before factorization.
Optionally, the user can supply a desired column ordering:

x = lusolve(A, b, pcol) uses pcol as a column permutation.
It still returns x = A\b, but it factors A(:,pcol) (if pcol is a
permutation vector) or A*Pcol (if Pcol is a permutation matrix).

x = lusolve(A, b, 0) suppresses the default minimum degree ordering;
that is, it forces the identity permutation on columns.

22

Two M-files trysuperlu.m and trylusolve.m are written to test the correctness of superlu
and lusolve. In addition to testing the residual norms, they also test the function invocations
with various number of input/output arguments.

2.8 Installation

2.8.1 File structure

The top level SuperLU / directory is structured as follows:

SuperLU/README
SuperLU/CBLAS/
SuperLU/EXAMPLE/
SuperLU/INSTALL/
SuperLU/MATLAB/
SuperLU/SRC/
SuperLU!TESTING/
SuperLU/Makefile
SuperLU/make.inc

instructions on installation
needed BLAS routines in C, not necessarily fast
example programs
test machine dependent parameters; this Users' Guide
Matlab mex-file interface
C source code, to be compiled into the superlu.a library
driver routines to test correctness
top level Makefile that does installation and testing
compiler, compile flags, library definitions and C
preprocessor definitions, included in all Makefiles.

Before installing the package, you may need to edit SuperLU/make. inc for your system. This
make include file is referenced inside each of the Makefiles in the various subdirectories. As a
result, there is no need to edit the Makefiles in the subdirectories. All information that is machine
specific has been defined in make. inc.

Sample machine-specific make. inc are provided in the top-level SuperLU/ directory for several
systems, including IBM RS/6000, DEC Alpha, SunOS 4.x, SunOS 5.x (Solaris), HP-PA and SGI
Iris 4.x. When you have selected the machine on which you wish to install SuperLU, you may copy
the appropriate sample include file (if one is present) into make. inc. For example, if you wish to
run SuperLU on an IBM RS/6000, you can do:

cp make.rs6k make. inc
For systems other than those listed above, slight modifications to the make. inc file will need

to be made. In particular, the following three items should be examined:

1. The BLAS library.
If there is a BLAS library available on your machine, you may define the following in make. inc:

BLASDEF = -DUSE_VENDORJBLAS
BLASLIB = <BLAS library you wish to link with>

The CBLAS/ subdirectory contains the part of the C BLAS needed by the SuperLU package.
However, these codes are intended for use only if there is no faster implementation of the
BLAS already aVailable on your machine. In this case, you should do the following:

1) In make. inc, undefine (comment out) BLASDEF, define:

BLASLIB = .. /blas$(PLAT).a

2) In the SuperLU / directory, type:

make blaslib

to make the BLAS library from the routines In the CBLAS/ subdirectory.

23

2. C preprocessor definition CDEFS. .
In the header file SRC/Cnames .h, we use macros to determine how C routines should be named
so that they are callable by Fortran.2 The possible options for CDEFS are:

• -DAdd_: Fortran expects a C routine to have an underscore postfixed to the name;

• -DNoChange: Fortran expects a C routine name to be identical to that compiled by C;

• -DUpCase: Fortran expects a C routine name to be all uppercase.

3. The Matlab MEX-file interface.
The MATLAB/ subdirectory includes Matlab C MEX-files, so that our factor and solve routines
can be called as alternatives to those built into Matlab. In the file SuperLU/make. inc, define
MATLAB to be the directory in which Matlab is installed on your system, for example:

MATLAB = /usr/local/matlab

At the SuperLU / directory, type:

make matlabmex

to build the MEX-file interface. After you have built the interface, you may go to the MATLAB/
subdirectory to test the correctness by typing (in Matlab):

trysuperlu

trylusolve

A Makefile is provided in each subdirectory. The installation can be done completely auto­
matically by simply typing make at the top level.

2.8.2 Testing

The test programs in SuperLU/INSTALL subdirectory test two routines:

• slamch/dlamch determines properties ofthe floating-point arithmetic at run-time (both single
and double precision), such as the machine epsilon, underflow threshold, overflow threshold,
and related parameters;

• SuperLU_timeLO returns the time in seconds used by the process. This function may need
to be modified to run on your machine.

The test programs in the SuperLU/TESTING subdirectory are designed to test all the functions of
the driver routines, especially the expert drivers. The Unix shell script files xtest. csh are used to
invoke tests with varying parameter settings. The input matrices include an actual sparse matrix
SuperLU/EXAMPLE/g10 of dimension 100 x 100,3 and numerous matrices with special properties
from the LAPACK test suite. Table 2.1 describes the properties of the test matrices.

For each command line option specified in dtest. csh, the test program ddri ve reads in or
generates an appropriate matrix, calls the driver routines, and computes a number of test ratios
to verify that each operation has performed correctly. If the test ratio is smaller than a preset
threshold, the operation is considered to be correct. Each test matrix is subject to the tests listed
in Table 2.2.

2Some vendor-supplied BLAS libraries do not have C interfaces. So the re-naming is needed in order for the
SuperLU BLAS calls (in C) to interface with the fortran-style BLAS.

3Matrix g10 is first generated with the structure of the lO-by-lO five-point grid, and random numerical values.
The columns are then permuted by COLMMD ordering from Matlab.

24

Matrix type Description
0 sparse matrix g10
1 diagonal
2 upper triangular
3 lower triangular
4 random, K. = 2
5 first column zero
6 last column zero
7 last n/2 columns zero
8 random, K. = JO.1/e
9 random, K. = 0.1/e:
10 scaled near underflow
11 scaled near overflow

Table 2.1: Properties of the test matrices. e is
the machine epsilon and K. is the condition num­
ber of matrix A. Matrix types with one or more
columns set to zero are used to test the error
return codes.

Test Type Test ratio Routines

0 /lLU - AIi/(nIiAlle) dgstrf
1 /lb - Axll/CIIA/I IIxl/e) dgssv,dgssvx
2 /Ix - x*/I/CI/x*llK.e) dgssvx
3 /Ix - x*II/C/lx*1I FERR) . dgssvx
4 BERR/e dgssvx

Table 2.2: Types of tests. x* is the true solution,
FERR is the error bound, and BERR is the
backward error.

Let r be the residual r = b - Ax, and let mi be the number of nonzeros in row i of A. Then
the componentwise backward error BERR and forward error F ERR [1] are calculated by:

Irli
BERR = mtx (IAllxl + Ibl)i

FERR = IIIA-11 f 1100 .
/Ix /100

Here, f js a nonnegative vector whose components are computed as Ii = Irli + mi e (IAllxl +.Ibl)i'
and the norm in the numerator is estimated using the same subroutine used for estimating the
condition number. BERR measures the smallest relative perturbation one can make to each entry
of A and of b so that the computed solution is an exact solution of the perturbed problem. F ERR
is an estimated bound on the error IIx* - xlloo/llxlloo, where x* is the true solution. For further
details on error analysis and error bounds estimation, see [1, Chapter 4] and [2].

2.8.3 Performance-tuning parameters

SuperLU chooses such machine-dependent parameters as block size by calling an inquiry function
sp_ienvO, which may be set to return different values on different machines. The declaration of
this function is

int sp_ienv(int ispec);

Ispec specifies the parameter to be returned, (See reference [5] for their definitions.)

ispec = 1: the panel size (w)
= 2: the relaxation parameter to control supernode amalgamation (relax)
= 3: the maximum allowable size for a supernode (maxsup)

25

On-chip External
Machine Cache Cache w maxsup rowblk colblk

RSj6000-590 256 KB - 8 100 200 40
MIPS R8000 16 KB 4MB 20 100 800 100
Alpha 21064 8 KB 512 KB 8 100 400 40
Alpha 21164 8 KB-L1 4 MB 16 50 100 40

96 KB-L2
Spare 20 16 KB 1 MB 8 100 400 50
UltraSpare-I 16 KB 512 KB 8 100 400 40
Cray J90 - - 1 100 1000 100

Table 2.3: Typical blocking parameter values for several machines.

= 4: the minimum row dimension for 2-D blocking to be used (rowblk)
= 5: the minimum column dimension for 2-D blocking to be used (colblk)
= 6: the estimated fills factor for Land U, compared with A

Users are encouraged to modify this subroutine to set the tuning parameters for their own local
environment. The optimal values depend mainly on the cache size and the BLAS speed. If your
system has a very small cache, or if you want to efficiently utilize the closest cache in a multilevel
cache organization, you should pay special attention to these parameter settings. In our technical
paper [5], we described a detailed methodology for setting these parameters for high performance.

The relax parameter is usually set between 4 and 8. The other parameter values which give
good performance on several machines are listed in Table 2.3. In a supernode-panel update, if the
updating supernode is too large to fit in cache, then a 2-D block partitioning of the supernode is
used, in which rowblk and colblk determine that a block of size rowblk x colblk is used to update
current panel.

If colblk is set greater than maxsup, then the program will never use 2-D blocking. For example,
for the Cray J90 (which does not have cache), w = 1 and I-D blocking give good performance;
more levels of blocking only increase overhead.

2.9 Example programs

In the SuperLU/EXAMPLE/ subdirectory, we present a few sample programs, such as xLINSOL and
xLINSOLX, to illustrate the complete calling sequences used to solve systems of equations. These
include how to set up the matrix structures, how to obtain a fill-reducing ordering, and how to call
driver routines. A Makefile is provided to generate the executables. A README file in this directory
shows how to run these examples.

Based on these sample programs, we now illustrate how we may use SuperLU in some other
ways.

2.9.1 Repeated factorizations

In many iterative processes, matrices with the same sparsity pattern but different numerical values
must be factored repeatedly. Thus, computing a fill-reducing ordering and performing column
permutation are needed only once. In addition, the memory for Land U can be allocated only
once, and reused in the subsequent factorizations. If there is not enough space for Land U from the

26

- ---------

mainO
{

}

1* Declare variables *1
SuperMatrix A; 1* original matrix *1
SuperMatrix AC; 1* A postmultiplied by a permutation matrix Q *1
char refact [lJ ;
...... 1* declarations of other variables *1

1* Initialization *1
{

StatIni t (paneLsize, relax);

}

1* First-time factorization *1
*refact = 'N';

1* Obtain and apply column permutation *1
get_perm_e(l, &A, perm_c);
sp_preorder(refaet, &A, perm_c, etree, &AC);

1* Factorization *1
dgstrf(refact, &AC, 1.0, 0.0, relax, panel_size,

etree, NULL, 0, perm_r, &L, &U, &info);
...... 1* solve first system *1

1* Subsequent factorizations *1
*refaet = 'Y';

for (i = 1; i <= niter; ++i) {

}

dgstrf(refact, &AC, 1.0, 0.0, relax, panel_size,
etree, NULL, 0, perm_r, &L, &U, &info);

1* Numerical values of matrix AC may change across iterations.
The factors L and U are overwritten in each iteration. *1

{

...... 1* solve later system *1
}

StatFreeO;

Figure 2.4: Code segment to perform repeated factorizations.

27

previous factorization (due to different pivoting), the factor routines xGSTRF automatically expand
memory as needed. Figure 2.4 shows the code segment for this purpose.

2.9.2 Calling from Fortran

General rules for mixing Fortran and C programs are as follows .

• Arguments in C ate passed by value, while in Fortran are passed by reference. So we always
pass the address (as a pointer) in the C calling routine. (You cannot make a call with numbers
directly in the parameters.)

• Fortran uses I-based array addressing, while C uses O-based. Therefore, the row indices
(rowind) and integer pointers to arrays (colptr) should be adjusted before they are passed
into a C routine.

Because of the above language differences, in order to embed SuperLU in a Fortran environment,
users are required to supply "bridge" routines (in C) for all the SuperLU subroutines that will be
called from Fortran programs. Figure 2.5 is an example showing how a bridge program should be
written. See the files f77 ...main. f and c_bridge_dgssv. c for complete descriptions.

In the future, we may provide complete Fortran interfaces to the user-callable routines in
SuperLU~

28

Fortran program (f77_main.f)

program f77_main
integer maxn, maxnz
parameter (maxn = 10000, maxnz = 100000)
integer rowind(maxnz), colptr(maxn)
real*8 values (maxnz), b(maxn)

call c_bridge_dgssv(n, nnz, nrhs, values, rowind, colptr, b, Idb, info)

stop
end

The bridge program in C (c_bridge_dgssv.c)
~----------------------

int c_bridge_dgssv(int *n, int *nnz, int *nrhs, double *values, int *rowind,
int *colptr, double *b, int *ldb, int *info)

{

}

SuperMatrix A, B, L, U;
int *perm_c, *perm_r;

1* Adjust to O-based indexing *1
for (i = 0; i < *nnz; ++i) --rowind[i];
for (i = 0; i <= *n; ++i) --colptr[i];

1* Construct Matrix structures A and B *1
dCreate_CompCol_Matrix(&:A; *n, *n, *nnz, values, rowind, colptr,

Ne, _0, GE);
dCreate_Oense_Matrix(&B, *n, *nrhs, b, *ldb, DN, _D, GE);

1* B is overwritten by the solution vector *1
dgssv(&A, perm_C, perm_r, &L, &U, &B, info);

Figure 2.5: Interface with Fortran

29

Chapter 3

Multithreaded SuperLU

3.1 About SuperLU_MT

Among the various steps of the solution process in the sequential SuperL U, the LU factorization
dominates the computation; it usually takes more than 95% of the sequential runtime for large
sparse linear systems. We have designed and implemented an algorithm to perform the factorization
in parallel on machines with a shared address space and multithreading. The parallel algorithm
is based on the efficient sequential algorithm implemented in SuperLU. Although we attempted
to minim1ze the amount of changes to the sequential code, there are still a number of non-trivial
modifications to the serial SuperLU, mostly related to the matrix data structures and memory
organization. All these changes are summarized in Table 3.1 and their impacts on performance are
studied thoroughly in [6, 19]. In this part of the Users' Guide, we describe only the changes that
the user should be aware of. Other than these differences, most of the material in chapter 2 is still
applicable.

Construct Parallel algorithm
panel restricted so it does not contain branchings in the elimination tree
supernode restricted to be a fundamental supernode in the elimination tree
supernode storage use either static or dynamic upper bound (section 3.4.2)
pruning & DFS use both G(LT) and pruned G(LT) to avoid locking

Table 3.1: The differences between the parallel and the sequential algorithms.

3.2 Storage types for Land U

As in the sequential code, the type for the factored matrices Land U is SuperMatrix (Figure 2.2),
however, their storage formats (stored in *Store) are changed. In the parallel algorithm, the
adjacent panels of the columns may be assigned to different processes, and they may be finished
and put in global memory out of order. That is, the consecutive columns or supernodes may not be
stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column
or supernode, we need pointers to the end of the column or supernode. In particular, the storage
type for L is SCP (Supernode, Column-wise and Permuted), defined as:

typedef struct {

30

int nnz; 1* number of nonzeros in the matrix *1
int nsuper; 1* number of supernodes *1
void *nzval; 1* pointer to array of nonzero values,

packed by column *1
int *nzval_colbeg; 1* nzval_colbeg[j] points to beginning of column

in nzval[] *1
int *nzval_colend; 1* nzvaLcolend[j] points to one past the last

element of column j in nzval[] *1
int *rowind; 1* pointer to array of compressed row indices of

the supernodes *1
int *rowind_colbeg;l* rowind_colbeg[j] points to beginning of column

in rowind[] *1
int *rowind_colend;l* rowind_colend[j] points to one past the last

element of column j in rowind[] *1
int *coLto_sup; 1* col_to_sup[j] is the supernode number to which

column j belongs *1
int *sup_to_colbeg;/* sup_to_colbeg[s] points to the first column

of the s-th supernode /
int *sup_to_colend;l* sup_to_colend[s] points toone past the last

column of the s-th supernode *1
} SCPformat;

The storage type for U is NCP, defined as:

typedef struct {
int nnz; 1* number of nonzeros in the matrix *1

j

j

void *nzval; /* pointer to array of nonzero values, packed by column *1
int *rowind; 1* pointer to array of row indices of the nonzeros */
int *colbeg; /* colbeg[j] points to the location in nzval[] and rowind[]

which starts column j */
int *colend; /* colend[j] points to one past the location in nzval[]

and rowind[] which ends column j */
} NCPformat;

The table below summarizes the data and storage types of all the matrices involved in the
parallel routines:

A L U B X
Stype NC or NR SCP NCP DN DN
Dtype --D --D --D --D --D

Mtype GE TRLU TRU GE GE

3.3 User-callable routines

As in the sequential SuperLU, we provide both computational routines and driver routines. To
name those routines that involve parallelization in the call-graph, we prep end a letter- p to the
names of their sequential counterparts, for example pdgstrf. For the purely sequential routines,
we use the same names as before. Appendix B contains, for each individual routine, the leading

31

comments and the complete specification of the calling sequence and arguments. Here, we only list
the routines that are different from the sequential ones.

3.3.1 Driver routines

We provide two types of driver routines for solving systems of linear equations. The driver routines
can handle both column- and row-oriented storage schemes.

• A simple driver pdgssv, which solves the system AX = B by factorizing A and overwriting
B with the solution X.

• An expert driver pdgssvx, which, in addition to the above, also performs the following func­
tions (some of them optionally):

- solve ATX = B;

- equilibrate the system (scale A's rows and columns to have unit norm) if A is poorly
. scaled;

- estimate the condition number of A, check for near-singularity, and check for pivot
growth;

- refine the solution and compute forward and backward error bounds.

3.3.2 Computational routines

The user can invoke the following computational routines to directly control the behavior of Su­
perL U. The computational routines can only handle column-oriented storage. Except for the par­
allel factorization routine pdgstrf, all the other routines are identical to those appeared in the
sequential superlu.

• pdgstrf: Factorize (in parallel).

This implements the first-time factorization, or later re-factorization with the same nonzero
pattern. In re-factorizations, the code has the ability to use the same column permutation
Pc and row permutation Pr obtained from a previous factorization. Several scalar arguments
control how the LU decomposition and the numerical pivoting should be performed. pdgstrf
can handle non-square matrices.

• dgstrs: Triangular solve.

This takes the Land U triangular factors, the row and column permutation vectors, and the
right-hand side to compute a solution matrix X of AX = B or AT X = B.

• dgscon: Estimate condition number.

Given the matrix A and its factors Land U, this estimates the condition number in the
one-norm or infinity-norm. The algorithm is due to Hager and Higham [15], and is the same
as condest in sparse Matlab.

• dgsequl dlaqgs: Equilibrate.

dgsequ first computes the row and column scalings Dr and Dc which would make each row
and each column of the scaled matrix DrADc have equal norm. dlaqgs then applies them to
the original matrix A if it is indeed badly scaled. The equilibrated A overwrites the original
A.

32

• dgsrfs: Refine solution.

Given A, its factors Land U, and an initial solution X, this does iterative refinement, using
the same precision as the input data. It also computes forward and backward error bounds
for the refined solution.

3.4 Installation

3.4.1 File structure

The top level Super L U _MT I directory is structured as follows:

SuperLU_MT/README
SuperLU_MT/CBLAS/
SuperLU_MT/EXAMPLE/
SuperLU_MT/INSTALL/
SuperLU_MT/SRC/
SuperLU_MT/TESTING/
SuperLU_MT/Makefile
SuperLU_MT/make.inc

instructions on installation
needed BLAS routines in C, not necessarily fast
example programs
test machine dependent parameters; the Users' Guide
C source code, to be compiled into superlu_mt.a library
driver routines to test correctness
top level Makefile that does installation and testing
compiler, compile flags, library definitions and C
preprocessor definitions, included in all Makefiles.

We have ported the parallel programs to a number of platforms, which are reflected in the make
include files provided in the top level directory, for example, make. sun, make. sgi, make. cray
and make. pthreads. If you are using one of these machines, such as a Sun, you can simply copy
make. sun into make. inc before compiling. If you are not using any of the machines to which we
have ported, you will need to read section 3.6 about the porting instructions.

The rest of the installation and testing procedure is similar to that described in section 2.8 for
the serial SuperLU. Then, you can type make at the top level directory to finish installation. In
the SuperLU...MT /TESTING subdirectory, you can type pdt est . csh to perform testings.

3.4.2 Performance issues

Memory management for Land U

In the sequential SuperLU, four data arrays associated with the Land U factors can be expanded
dynamically, as described in section 2.5. In the parallel code, the expansion is hard and costly to
implement, because when a process detects that an array bound is exceeded, it has to send a signal
to and suspend the execution of the other processes. Then the detecting process can proceed with
the array expansion. After the expansion, this process must wake up all the suspended processes.

In this release of the parallel code, we have not yet implemented the above expansion mechanism.
For now, the user must pre-determine an estimated size for each of the four arrays through the
inquiry function sp_ienvO. There are two interpretations for each integer value FILL returned
by calling this function with ispec = 6, 7, or 8. A negative number is interpreted as the fills
growth factor, that is, the program will allocate (-FILL)*nnz(A) elements for the corresponding
array. A positive number is interpreted as the true amount the user wants to allocate, that is, the
program will allocate FILL elements for the corresponding array. In both cases, if the initial request
exceeds the physical memory constraint, the sizes of the arrays are repeatedly reduced until the
initial allocation succeeds.

33

int sp_ienv(int ispec);

Ispec specifies the parameter to be returned:

ispec = ...

= 6: size of the array to store the values of the L supernodes (nzval)
= 7: size of the array to store the columns in U (nzval/rowind)
= 8: size of the array to store the subscripts of the L supernodes (rowind);

If the actual fill exceeds any array size, the program will abort with a message showing the
current column when failure occurs, and indicating how many elements are needed up to the
current column. The user may reset a larger fill parameter for this array and then restart the
program.

To make the storage allocation more efficient for the supernodes in L, we devised a special
storage scheme. The need for this special treatment and how we implement it are fully explained
and studied in [6, 19]. Here, we only sketch the main idea. Recall that the parallel algorithm assigns
one panel of columns to one process. Two consecutive panels may be assigned to two different
processes, even though they may belong to the same supernode discovered later. Moreover, a third
panel may be finished by a third process and put in memory between these two panels, resulting
in the columns of a supernode being noncontiguous in memory. This is undesirable, because then
we cannot directly call BLAS routines using this supernode unless we pay the cost of copying the
columns into contiguous memory first. To overcome this problem, we exploited the observation that
the nonzero structure for L is contained in that of the Householder matrix H from the Householder
sparse QR transformation [11, 12]. Furthermore, it can be shown that a fundamental supernode of
L is always contained in a fundamental supernode of H. This containment property is true for for
any row permutation Pr in PrA = LU. Therefore, we can pre-allocate storage for the L supernodes
based on the size of H supernodes. Fortunately, there exists a fast algorithm (almost linear in the
number of nonzeros of A) to compute the size of H and the supernodes partition in H [14].

In practice, the above static prediction is fairly tight for most problems. However, for some
others, the number of non zeros in H greatly exceeds the number of nonzeros in L . . To handle
this situation, we implemented an algorithm that still uses the supernodes partition in H, but
dynamically searches the supernodal graph of L to obtain a much tighter bound for the storage.
Table 6 in [6] demonstrates the storage efficiency achieved by both static and dynamic approach.

In summary, our program tries to use the static prediction first for the L supernodes. In this
case, we ignore the integer value given in the function sp_ienv(6), and simply use the nonzero
count of H. If the user finds that the size of H is too large, he can invoke the dynamic algorithm
at runtime by setting the following UNIX shell environment variable:

setenv SuperLUJDYNAMICJ)NODEJ)TORE 1

The dynamic algorithm incurs runtime overhead. For example, this overhead is usually between
2% and 15% on a single processor RS/6000-590 for a range of test matrices.

Symmetric structure pruning

In both serial and parallel algorithms, we have implemented Eisenstat and Liu's symmetric pruning
idea of representing the graph G(LT) by a reduced graph G', and thereby reducing the DFS traversal
time. A subtle difficulty arises in the parallel implementation. .

When the owning process of a panel starts DFS (depth-first search) on G' built so far, it
only sees the partial graph, because the part of G' corresponding to the busy panels down the

34

elimination tree is not yet complete. So the structural prediction at this stage can miss some
nonzeros. After performing the updates from the finished supernodes, the process will wait for
all the busy descendant panels to finish and perform mQre updates from them. Now, we make
a conservative assumption that all these busy panels will update the current panel so that their
nonzero structures are included in the current panel.

This approximate scheme works fine for most problems. However, we found that this conser­
vatism may sometimes cause a large number of structural zeros (they are related to the supernode
amalgamation performed at the bottom of the elimination tree) to be included and they in turn
are propagated through the rest of the factorization.

We have implemented an exact structural prediction scheme to overcome this problem. In this
scheme, when each numerical nonzero is scattered into the sparse accumulator array, we set the
occupied flag as well. Later when we accumulate the updates from the busy descendant panels, we
check the occupied flags to determine the exact nonzero structure. This scheme avoids unnecessary
zero propagation at the expense of runtime overhead, because setting the occupied flags must be
done in the inner loop of the numeric updates.

We recommend that the user use the approximate scheme (by default) first. If the user finds
that the amount of fill from the parallel factorization is substantially greater than that from the
sequential factorization, he can then use the accurate scheme. To invoke the second scheme, the
user should recompile the code by defining the macro:

-D SCATTER-FOUND

for the C preprocessor.

The inquiry function sp_ienvO

For some user controllable constants, such as the blocking parameters and the size of the global
storage for Land U, SuperLU_MT calls the inquiry function sp_ienvO to retrieve their values.
The declaration of this function is

int sp_ienv(int ispec).

The full meanings of the returned values are as follows:

ispec = 1: the panel size w
= 2: the relaxation parameter to control supernode amalgamation (relax)
= 3: the maximum allowable size for a supernode (maxsup)
= 4: the minimum row dimension for 2-D blocking to be used (rowblk)
= 5: the minimum column dimension for 2-D blocking to be used (colblk)
= 6: size of the array to store the values of the L supernodes (nzval)
= 7: size of the array to store the columns in U (nzval / rowind)
= 8: size of the array to store the subscripts of the L supernodes (rowind)

We should take into account the trade-off between cache reuse and amount of parallelism in order
to set the appropriate wand maxsup. Since the parallel algorithm assigns one panel factorization to
one process, large values may constrain concurrency, even though they may be good for uniprocessor
performance. We recommend that wand max sup be set a bit smaller than the best values used in
the sequential code.

The settings for parameters 2, 4 and 5 are the same as those described in section 2.8.3. The
settings for parameters 6, 7 and 8 are discussed in section 3.4.2.

In the file SRC/sp_ienv. c, we provide sample settings of these parameters for several machines.

35

Programming Environment
make.inc Platforms Model Variable
make. pthreads Machines with POSIX threads pthreads
make.sun Sun Ultra Enterprise Solaris threads
make.alpha DEC Alpha Servers DECthreads
make.sgi SGI Power Challenge parallel C MPC....NUM_THREADS
make.origin SGI/Cray Origin2000 parallel C MPJSET....NUMTHREADS
make.cray Cray C90/J90 microtasking NCPUS

Table 3.2: Platforms on which SuperLU_MT was tested.

3.5 Example programs

In the SuperLUjiT /EXAMPLE/ subdirectory, we present a few sample programs to illustrate the
complete calling sequences to use the simple and expert drivers to solve systems of equations. Ex­
amples are also given to illustrate how to perform a sequence of factorizations for the matrices with
the same sparsity pattern, and how SuperLU_MT can be integrated into the other multithreaded
application such that threads are created only once. A Makefile is provided to generate the exe­
cutables. A README file in this directory shows how to run these examples. The leading comment
in each routine describes the functionality of the example.

3.6 Porting to other platforms

We have provided the parallel interfaces for a number of shared memory machines. Table 3.2 lists
the platforms on which we have tested the library, and the respective make. inc files. The most
portable interface for shared memory programming is POSIX threads [24], since nowadays many
commercial UNIX operating systems have support for it. We call our POSIX threads interface the
Pthreads interface. To use this interface, you can copy make. pthreads into make. inc and then
compile the library. In the last column of Table 3.2, we list the runtime environment variable to
be set in order to use multiple CPU s. For example, to use 4 CPU s on the Origin2000, you need to
set the following before running the program:

setenv MPJSET....NUMTHREADS 4

In the source code, all the platform specific constructs are enclosed in the C #ifdef preprocessor
statement. If your platform is different from anyone listed in Table 3.2, you need to go to these
places and create the parallel constructs suitable for your machine. The two constructs, concurrency
and synchronization, are explained in the following two subsections, respectively.

3.6.1 Creating multiple threads

Right now, only the factorization routine pdgstrf is parallelized, since this is the most time­
consuming part in the whole solution process. There is one single thread of control on entering and
exiting pdgstrf. Inside this routine, more than one thread may be created. All the newly created
threads begin by calling the thread function pdgstrLthread and they are concurrently executed
on multiple processors. The thread function pdgstrLthread expects a single argument of type
void*, which is a pointer to the structure containing all the shared data objects.

36

Mutex Critical region
ULOCK allocate storage for a column ,of matrix U
LLOCK allocate storage for row subscripts of matrix L
LULOCK allocate storage for the values of the supernodes
NSUPER...LOCK increment supernode number nsuper
SCHED...LOCK invoke SchedulerO which may update global task queue

Table 3.3: Five mutex variables.

3.6.2 Use of mutexes

Although the threads pdgstrLthread execute independently of each other, they share the same
address space and can communicate efficiently through shared variables. Problems may arise if
two threads try to access (at least one is to modify) the shared data at the same time. Therefore,
we must ensure that all memory accesses to the same data are mutually exclusive. There are five
critical regions in the program that must be protected by mutual exclusion. Since we want to allow
different processors to enter different critical regions simultaneously, we use five mutex variables as
listed in Table 3.3. The user should properly initialize them in routine ParallelInit, and destroy
them in routine ParallelFinalize. Both these routines are in file pxgstrf ...synch. c.

37

Chapter 4

Distributed SuperLU with MPI

4.1 About SuperLU_DIST

In this part, we describe the SuperLU _DIST library designed for distributed memory parallel com­
puters. The parallel programming model is SPMD. The library is implemented in ANSI C, using
MPI [26] for communication, and so is highly portable. We have tested the code on a number
of platforms, including Cray T3E, IBM SP, and Berkeley NOW. The library includes routines to
handle both real and complex matrices in double precision. The parallel routine names for the
double-pFecision real version start with letters "pd" (such as pdgstrf); the parallel routine names
for double-precision complex version start with letters "pz" (such as pzgstrf).

4.2 Basic steps to solve a linear system

In this section, we use a complete sample program to illustrate the basic steps required to use
the MPI version of the SuperLU library. This program is listed below, and is also available as
EXAMPLE!pddri ve. c in the source code distribution. All the routines must include the header file
superlu_ddefs.h (or superlu...zdefs. h, the complex counterpart) which contains the definitions
of the data types, the macros and the function prototypes.

#include <math.h>
#include "superlu_ddef;:;.h"

main(int argc, char *argv[])
1*
* Purpose

* =======
* * The driver program PDDRIVE.

* * This example illustrates how to use pdgssvx_ABglobal with the full
* (default) options to solve a linear system.

* * Five basic steps are required:
* 1. Initialize the MPI environment and the SuperLU process grid
* 2. Set up the input matrix and the right-hand side

38

{

* 3. Set the options argument
* 4. Call pdgssvx_ABglobal
* 5. Release the process grid and terminate the MPI environment

*
* On the Cray T3E, the program may be run by typing
* mpprun -n <procs> pddrive -r <proc rows> -c <proc columns> <input_file>

*
*1

superlu_options_t options;
SuperLUStat_t stat;
SuperMatrix A;
ScalePermstruct_t ScalePermstruct;
LUstruct_t LUstruct;
gridinfo_t grid;
double *berr;
double
int_t
int_t
int_t
int
char

*a, *b, *xtrue;
*asub, *xa;
i, m, n, nnz;
nprow, npcol;
iam, info, ldb, ldx, nrhs;
trans [1] ;

char **cpp, c;
FILE *fp, *fopen();

nprow = 1;
npcol = 1;
nrhs = 1;

1* Default process rows. *1
1* Default process columns. *1
1* Number of right-hand side. *1

1* Parse command line argv[]. *1
for (cpp = argv+1; *cpp; ++cpp) {

if (**cpp == ,-,) {
c = *(*cpp+1);
++cpp;
switch (c) {

case 'h':
printf("Options:\n");
printf("\t-r <int>: process rows (default y'd)\n", nprow);
printf("\t-c <int>: process columns (default 1,d)\n", npcol);
exit(O);
break;

}

case ;r': nprow = atoi(*cpp);
break;

case 'c': npcol = atoi(*cpp);
break;

39

}

} else { /* Last arg is considered a filename */
if (! (fp = fopen(*cpp, "rll))) {

-}

}

fprintf(stderr, IIFile does not exist. II);
exit(-1) ;

break;

/* --
INITIALIZE MPI ENVIRONMENT.
--*/

MPI_Init(&argc, &argv);

/* --
INITIALIZE THE SUPERLU PROCESS GRID.
--*/

superlu_gridinit(MPI_COMM_WORLD, nprow, npcol, &grid);

/* Bailout if I do not belong in the grid. */
iam = grid. iam;
if (iam >= nprow * npcol) goto out;

/* --
PROCESS ° READS THE MATRIX A, AND THEN BROADCASTS IT TO ALL
THE OTHER PROCESSES.
--*/

if (! iam) {

}

/* Read the matrix stored on disk in Harwell-Boeing format. */
dreadhb(iam, fp, &m, &n, &nnz, &a, &asub, &xa);

printf(lI\tDimension\ty'dxy'd\t # nonzeros Y.d\nll , m, n, nnz);
printf(lI\tProcess grid\tY.d X %d\nll , grid.nprow, grid.npcol);

/* Broadcast matrix A to the other PEs. */
MPI_Bcast(&m, 1, mpLint_t, 0, grid.comm);
MPLBcast(&n, 1, mpLint_t, 0, grid.comm);
MPLBcast(&nnz, 1, mpLint_t, 0, grid. comm);
MPLBcast(a, nnz, MPLDOUBLE, 0, grid.comm);
MPI_Bcast(asub, nnz, mpLint_t, 0, grid.comm);
MPLBcast(xa, n+1, mpLint_t, 0, grid.comm) ;

else {
/* Receive matrix A from PE 0. */
MPI_Bcast(&m, 1, mpi_int_t, 0, grid.comm);
MPI_Bcast(&n, 1, mpi_int_t, 0, grid.comm);
MPI_Bcast(&nnz, 1, mpi_int_t, 0, grid.comm);

40

/* Allocate storage for compressed column representation. */
dallocateA(n, nnz, &a, &asub, &xa);

MPI_Bcast(a, nnz, MPI_DOUBLE, 0, grid.comm) ;

MPLBcast(asub, nnz, mpLint_t, 0, grid.comm) ;

MPI_Bcast(xa, n+l, mpLint_t, 0, grid.comm) ;
}

/* Create compressed column matrix for A. */
dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, NC, _D, GE);

/* Generate the exact solution and compute the right-hand side. */
if (! (b = doubleMalloc(m * nrhs))) ABORT("Malloc fails for b[] II);
if (!(xtrue = doubleMalloc(n * nrhs))) ABORT("Malloc fails for xtrue[JII);
*trans = 'N';
ldx = n;
ldb = m;
dGenXtrue(n, nrhs, xtrue, ldx);
dFiIIRHS(trans, nrhs, xtrue, ldx, &A, b, ldb);

if (! (berr = doubleMalloc(nrhs))) ABORT("Malloc fails for berr[] . ");

/* --
NOW WE SOLVE THE LINEAR SYSTEM.
--*/

/* Set the default input options. */
set_default_options(&options);

/* Initialize ScalePermstruct and LUstruct. */
ScalePermstructlnit(m, n, &ScalePermstruct);
LUstructInit(m, n, &LUstruct);

/* Initialize the statistics variables. */
PStatInit(&stat);

/* Call the linear equation solver. */
pdgssvx_ABglobaIC&options, &A, &ScalePermstruct, b, ldb, nrhs, &grid,

&LUstruct, berr, &stat, &info);

/* Check the accuracy of the solution. */
if (!iam) dinf_norm_error(n, nrhs, b, ldb, xtrue, ldx);

/* Print the statistics. */
PStatPrint(&stat, &grid);

/* --

41

DEALLOCATE STORAGE.

~---*1
PStatFree(&stat);
Destroy_CompCol_Matrix(&A);
Destroy_LU(n, &grid, &LUstruct);
ScalePermstructFree(&ScalePermstruct);
LUstructFree(&LUstruct);
SUPERLU_FREE(b);
SUPERLU_FREE(xtrue);
SUPERLU_FREE(berr);

1* --
RELEASE THE SUPERLU PROCESS GRID.

--*1
out:

superlu_gridexit(&grid);

}

1* --~---------
TERMINATES THE MPI EXECUTION ENVIRONMENT.

--*1
MPLFinalize () ;

Five basic steps are required to call a SuperLU routine:

1. Initialize the MPI environment and the SuperLU process grid.
This is achieved by the calls to the MPI routine MPLInit and the SuperLU routine
superlu....gridinit. In this example, the communication domain for SuperLU is built upon
the MPI default communicator MPLCOMM_WORLD. In general, it can be built upon any MPI
communicator. Section 4.3 contains the details about this step.

2. Set up the input matrix and the right-hand side.
In t.his example, process 0 reads the input matrix stored on disk in Harwell-Boeing format [10],
and broadcasts it to all the other processes. The right-hand side matrix is generated so that
the exact solution matrix consists of all ones. Currently the library requires the input matrix
and the right-hand side are available on every process. In the future, we will allow these two
matrices being distributed on input.

3. Initialize the input arguments: options, Astruct, LUstruct, stat.
The input argument options controls how the linear system would be solved-use equilibra­
tioJ:!. or not, how to order the rows and the columns of the matrix, use iterative refinement
or not. The subroutine set_default_options sets the options argument so that the solver
performs all the functionality. You can also set it up according to your own needs, see sec­
tion 4.6.1 for the fields of this structure. Astruct is the data structure in which matrix A
of the linear system and several vectors describing the transformations done to A are stored.
LUstruct is the data structure in which the distributed Land U factors are stored. Stat is
a structure collecting the statistics about runtime and flop count.

4. Call the SuperLU routine pdgssvx...ABglobal.

42

5. Release the process grid and terminate the MPI environment.
After the computation on a process grid has been completed, the process grid should be
released by a call to the SuperLU routine superlu...gridexit. When all computations have
been completed, the MPI routine MPLFinalize should be called.

4.3 Process grid and MPI communicator

All MPI applications begin with a default communication domain that includes all processes, say
N p , of this parallel job. The default communicator MPLCOMM_WORLD represents this communication
domain. The Np processes are identified as a linear array of process IDs in the range 0 ... Np - 1.

4.3.1 SuperLU 2-D grid

For SuperLU library, we create a new process group derived from an existing group using N g

processes. There is a good reason to use a new group rather than MPLCOMM_WORLD, that is, the
message passing calls of the SuperLU library will be isolated from those in other libraries or in the
user's code. For better scalability of the LV factorization, we map the I-D array of Ng processes
into a logical 2-D process grid. This grid will have nprow process rows and npcol process columns,
such that nprow * npcol = Ng • A process can be referenced either by its rank in the new group or
by its coordinates within the grid. The routine superlu...gridinit maps already-existing processes
to a 2-D process grid.

superlu_gridinit(MPI_Comm Bcomm, int nprow, int npcol, gridinfo_t *grid);

This process grid will use the first nprow * npcol processes from the base MPI communicator
Bcomm, and assign them to the grid in a row-major ordering. The input argument Bcomm is an MPI
communicator representing the existing base group upon which the new group will be formed. For
example, it can be MPLCOMM_WORLD. The output argument grid represents the derived group to be
used in the routines of SuperLU library. Grid is a structure containing the following fields:

struct {
MPI_Comm corom; /* MPI communicator for this group */
int iam; /* my process rank in this group */
int nprow; /* number of process rows */
int npcol; /* number of process columns >1:/
superlu_scope_t rscp; /* process row scope */
superlu_scope_t cscp; /* process column scope */

} grid;

In the LU factorization, some communications occur only among the processes in a row (col­
umn), not among all processes. For this purpose, we introduce two process subgroups, namely rscp
(row scope) and cscp (column scope). For rscp (cscp) subgroup, all processes in a row (column)
participate in the communication.

The macros MYROW(iam, grid) and MYCOLCiam, grid) give the row and column coordinates
in the 2-D grid of the process who has rank iam.

NOTE: All processes in the base group, including those not in the new group, must call this grid
creation routine. This is required by the MPI routine MPLComm_create to create a new communi­
cator.

43

4.3.2 Arbitrary grouping of processes

It is sometimes desirable to divide up the processes into. several subgroups, each of which performs
independent work of a single application. So we cannot simply use the first nprotHnpcol processes
to define the grid. A more sophisticated process-to-grid mapping routine superlu-.gridmap is
designed to create a grid with processes of arbitrary ranks.

superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol,
int usermap[], int Idumap, gridinfo_t *grid)j

The array usermap [] contains the processes to be used in the newly created grid. usermap [] is
indexed like a Fortran-style 2-D array with Idumap as the leading dimension. So usermap [i + j *ldumapJ
(i.e., usermap(i, j) in Fortran notation) holds the process rank to be placed in {i, j} position
of the 2-D process grid. After grid creation, this subset of processes is logically numbered in
a consistent manner with the initial set of processes; that is, they have t4e ranks in the range
o ... nprow * npcol - 1 in the new grid. For example, if we want to map 6 processes with ranks
11 ... 16 into a 2 x 3 grid, we define usermap = {11, 14, 12, 15, 13, 16} and Idumap = 2. Such a
mapping -is shown below

o 1 2

NOTE: All processes in the base group, including those not in the new group, must call this
routine.

Superlu-.gridini t simply calls superlu.-gridmap with usermap [] holding the first nprow *
npcol process ranks.

4.4 Matrix distribution and distributed data structures for Land
U

We distribute both Land U matrices in a two-dimensional block-cyclic fashion. We first identify
the supernode boundary based on the nonzero structure of L. This supernode partition is then
used as the block partition in both row and column dimensions for both Land U. The size of each
block is matrix dependent. It should be clear that all the diagonal blocks are square and full (we
store zeros from U in the upper triangle ofthe diagonal block), whereas the off-diagonal blocks may
be rectangular and may not be full.paragraph The matrix in Figure 4.1 illustrates such a partition.
By block-cyclic mapping we mean block (1, J) (0 ~ 1, J ~ N - 1) is mapped into the process at
coordinate {I mod nprow, J mod npeol} of the nprow x npeol process grid. Using this mapping, a
block L(I, J) in the factorization is only needed by the row of processes that own blocks in row I.
Similarly, a block U(I, J) is only needed by the column of processes that own blocks in column J.

In this 2-D mapping, each block column of L resides on more than one process, namely, a column
of processes. For example in Figure 4.1, the k-th block column of L resides on the column processes
{O, 3}. Process 3 only owns two nonzero blocks, which are not contiguous in the global matrix.
The schema on the right of Figure 4.1 depicts the data structure to store the nonzero blocks on
a process. Besides the numerical values stored in a Fortran-style array nzval [] in column major
order, we need the information to interpret the location and row subscript of each nonzero. This
is stored in an integer array index [] , which includes the information for the whole block column

44

Global Matrix

Oil 2
----r---- ---- Process Mesh
3:4 5

I

Storage of block column of L

index
of blocks

LDAinnzval

block #
#of full rows

row subscripts

il
i2

block #
#of full rows

row subscripts

it
i2

/\.f"'\

,

,

,
, , ,

, ,

, , , ,

" ,,;/
" ,

nzval

Figure 4.1: The 2-D block-cyclic layout and the data structure to store a local block column of L.

and for each individual block in it. Note that many off-diagonal blocks are zero and hence not
stored. Neither do we store the zeros in a nonzero block. Both lower and upper triangles of the
diagonal block are stored in the L data structure. A process owns rN/npcoll block columns of L,
so it needs rN/nprowl pairs of index/nzval array-so

For U, we use a row oriented storage for the block rows owned by a process, although for the
numerical values within each block we still use column major order. Similarly to L, we also use
a pair of index/nzval arrays to store a block row of U. Due to asymmetry, each nonzero block
in U has the skyline structure as shown in Figure 4.1 (see [5] for details. on the skyline structure).
Therefore, the organization of the index [] array is different from that for L, which we omit showing
in the figure.

Since currently some steps of the algorithm (steps (1) to (3) in Figure 4.2) are not yet parallel,
we start with a copy of the entire matrix A on each process. The routine symbfact determines the
nonzero patterns of L and U as well as the block partition. The routine ddistribute uses this
information to sets up the Land U data structures and load the initial values of A into Land U.

4.5 Algorithmic background

Although partial pivoting is used in both sequential and shared-memory parallel factorization al­
gorithms, it is not used in the distributed-memory parallel algorithm, because it requires dynamic
adaptation of data structure and load balancing, and so is hard to parallelize. We use alternative
techniques to stabilize the algorithm, suas as statically pivot large elements to the diagonal, half­
precision diagonal adjustment to avoid small pivots, and iterative refinement. Figure 4.2 sketches
our GESP algorithm (Gaussian elimination with static pivoting). Numerical experiments show that
for a wide range of problems, GESP is as stable as GEPP [20].

We have parallelized the two most time-consuming steps in this algorithm, which are Step (4)
and Step (5). Currently, process 0 in the logical process grid computes Dr and Dc and broadcasts
them to all the other processes, which in turn just apply them to A. Step (2) is accomplished by

45

(1) Row/column equilibration: A t- Dr' A· Dc
Dr and Dc are diagonal matrices chosen so that the largest entry of each row and
column is ±1.

(2) Row permutation: A t- Pr • A
Pr is a row permutation chosen to make the diagonal large compared to the off-diagonal.

(3) Find a column permutation Pc to preserve sparsity: A t- Pc' A· P,!
(4) Factorize A = L· U with control of diagonal magnitude

if (laiil < ..fi. IIAII) then

set aii to ..fi . "A"
endif

(5) Solve A . x = b using the Land U factors, with the following iterative refinement
iterate:

r = b - A· x ... sparse matrix-vector multiply
Solve A . dx = r ... triangular solution

berr = maxi (lAd:I~lbl)i ... componentwise backward error
if (berr > c: and berr :::; ! . lastberr) then

x = x + dx
lastberr = berr
goto iterate

endif

Figure 4.2: The outline of the GESP algorithm.

a weighted bipartite matching algorithm due to Duff and Koster [9]. Again, process 0 computes
Pr and then broadcasts it to all the other processes. For Step (3), we provide several ordering
options, such as multiple minimum degree ordering [22] on the graphs of A + AT or AT A, and the
approximate minimum degree column ordering [4]. The user can use any other ordering in place of
these, such as an ordering based on graph partitioning. (Note, since we will pivot on the diagonal
in Step (4), an ordering based on the structure of A + AT tends to yield sparser factors than that
based on the structure of AT A. This is different from SuperLU and SuperLU-11T, where we can
pivot off-diagonal.) In this step, every process runs the same algorithm independently. After the
above sequential setup, we perform parallel factorization, parallel triangular solutions and parallel
iterative refinement.

4.6 User-callable routines

Appendix C contains the complete specifications of the routines in SuperLUJHST.

4.6.1 Driver routine

There is one driver routine to solve systems of linear equations, which is named pdgssvx-ABglobal.
We recommend that the general users, especially the beginners, use this driver routine rather
than the computational routines, because correctly using this routine does not require thorough
understanding of the underlying data structures. Although the interface of this routine is simple,
we expect its rich functionality can meet the requirements of most applications. Pdgssvx-ABglobal
performs the following functions:

46

• Equilibrate the system (scale A's rows and columns to have unit norm) if A is poorly scaled;

• Find a row permutation that makes diagonal of A large relative to the off-diagonal;

• Find a column permutation that preserves the sparsity of the Land U factors;

• Solve the system AX = B for X by factoring A followed by forward and back substitutions;

• Refine the solution X.

Options argument

One important input argument to pdgssvx-ABglobal is options, which controls how the linear
system will be solved. Although the algorithm presented in Figure 4.2 consists of five steps, for
some matrices not all five steps are needed to get accurate solution. For example, for diagonally
dominant matrices, choosing the diagonal pivots ensures the stability; there is no need for row
pivoting in Step (2). In another situation where a sequence of matrices with the same sparsity
pattern need be factorized, the column permutation Pc (and also the row permutation Pr, if the
numerical values are similar) need be computed only once, and reused thereafter. CPr and Pc are
implemented as permutation vectors perm...r and perm_c.) For the above examples, performing all
five steps does more work than necessary. Options is used to accommodate the various requirements
of applications; it contains the following fields:

• Fact
This option specifies whether or not the factored form of the matrix A is supplied on entry,
and if not, how the matrix A will be factored base on some assumptions of the previous
history. fact can be one of:

- DOF ACT: the matrix A will be factorized from scratch.

- SamePattern: the matrix A will be factorized assuming that a factorization of a ma-
trix with the same sparsity pattern was performed prior to this one. Therefore, this
factorization will reuse column permutation vector perm_c.

- SampPattern...5ameRowPerm: the matrix A will be factorized assuming that a factoriza­
tion of a matrix with the same sparsity pattern and similar numerical values was per­
formed prior to this one. Therefore, this factorization will reuse both row and column
permutation vectors perm...r and perm_c, both row and column scaling factors Dr and
Dc, and the distributed data structure set up from the previous symbolic factorization.

FACTORED: the factored form of A is input.

• Equil
This option specifies whether to equilibrate the system.

• RowPerm
This option specifies how to permute rows of the original.matrix.

- NATURAL: use the natural ordering.

- LargeDiag: use a weighted bipartite matching algorithm to permute the rows to make
the diagonal large relative to the off-diagonal.

MY...PERMR: use the ordering given in perm...r input by the user.

47

• ColPerm
This option specifies the column ordering method for fill reduction.

- NATURAL: natural ordering.

~ MMD...AT...PLUS...A: minimum degree ordering on the structure of AT + A.

- MMD...ATA: minimum degree ordering on the structure of AT A.

- COLAMD: approximate minimum degree column ordering.

- MY...PERMC: use the ordering given in perm_c input by the user.

• ReplaceTinyPivot
This option specifies whether to replace the tiny diagonals by yfi·IIAII during LU factorization.

• IterRefine
This option specifies how to perform iterative refinement.

- NO: no iterative refinement.

- DOUBLE: accumulate residual in double precision.

- EXTRA: accumulate residual in extra precision. (not yet implemented.)

There is a routine named set_default_options that sets the default values of these options,
which are:

fact = DO FACT
equil = YES
rowperm = LargeDiag
colperm = MMD_AT_PLUS_A
ReplaceTinyPivot = YES
IterRefine = DOUBLE

4.6.2 Computational routines

The experienced users can invoke the following computational routines to directly control the
behavior of SuperLU in order to meet their requirements.

• pdgstrf: Factorize in parallel.
This routine factorizes the input matrix A (or the scaled and permuted A). It assumes that
the distributed data structures for Land U factors are already set up, and the initial values
of A are loaded into the data structures. If not, the routine symbfact should be called to
determine the nonzero patterns of the factors, and the routine ddistribute should be called
to distribute the matrix. Pdgstrf can factor non~square matrices.

Currently, A must be globally available on all processes.

• pdgstrs...Bglobal: Triangular solve in parallel.
This routine solves the system by forward and back substitutions using the the Land U
factors computed by pdgstrf.

Currently, B must be globally available on all processes.

48

• pdgsrfs...ABXglobal: Refine solution in parallel.
Given A, its factors Land U, and an initial solution X, this routine performs iterative
refinement.

Currently, A, B, and X must be globally available on all processes.

4.7 Installation

4.7.1 File structure

The top level SuperLU _DIST / directory is structured as follows:

SuperLU_DIST/README
SuperLU_DIST/CBLAS/
SuperLU_DIST/EXAMPLE/
SuperLU_DIST/INSTALL/
SuperLU_DIST/SRC/
SuperLU_DIST/Makefile
SuperLU_DIST/make.inc

instructions on installation
needed BLAS routines in C, not necessarily fast
example programs
test machine dependent parameters; the Users' Guide.
C source code, to be compiled into a library
top level Makefile that does installation and testing
compiler, compile flags, library definitions and C
preprocessor definitions, included in all Makefiles.
(You may need to edit it to be suitable for your
system before compiling the whole package.)

Before installing the package, you may need to edit SuperLU...DIST/make. inc for your system.
This make include file is referenced inside each of the Makefiles in the various subdirectories. As a
result, there is no need to edit the Makefiles in the subdirectories. All information that is machine
specific has been defined in this include file.

Sample machine-specific make. inc are provided in the top-level SuperLU...DIST directory for
several systems, such as Cray T3E and IBM SP. When you have selected the machine to which you
wish to install SuperLU_DIST, you may copy the appropriate sample include file (if one is present)
into make. inc. For example, if you wish to run on a Cray T3E, you can do:

cp make. t3e make. inc
For the systems other than those listed above, slight modifications to the make. inc file will

need to be made. In particular, the following items should be examined:

1. The BLAS library.
If there is a BLAS library available on your machine, you may define the following in make. inc:

BLASDEF = -DUSE_VENDORJ3LAS
BLASLIB = <BLAS library you wish to link with>

The CBLAS/ subdirectory contains the part of the BLAS (in C) needed by SuperLU...DIST
package. However, these routines are intended for use only if there is no faster implementation
of the BLAS already available on your machine. In this case, you should do the following:

1) In make.inc, undefine (comment out) BLASDEF, define:

BLASLIB = .. /blas$(PLAT).a

2) At the top level SuperLU_DIST directory, type:

make blaslib

to create the BLAS library from the routines in CBLAS/ subdirectory.

49

2. C preprocessor definition CDEFS.
In the header file SRC/Cnames .h, we use macros to determine how C routines should be named
so that they are callable by Fortran.1 The possible options for CDEFS are:

• -DAdd_: Fortran expects a C routine to have an underscore postfixed to the name;

• -DNoChange: Fortran expects a C routine name to be identical to that compiled by Cj

• -DUpCase: Fortran expects a C routine name to be all uppercase.

A Makefile is provided in each subdirectory. The installation can be done completely auto­
matically by simply typing make at the top level.

4.7.2 Performance-tuning parameters

Similar to sequential SuperLU, several performance related parameters are set in the inquiry func­
tion sp_ienv (). The declaration of this function is

int sp_ienv(int ispec);

Ispec specifies the parameter to be returned2 :

ispec = 2: the relaxation parameter to control supernode amalgamation
= 3: the maximum allowable size for a block
= 6: the estimated fills factor for the adjacency structures of Land U

The values to be returned may be set differently on different machines. The setting of maximum
block size (parameter 3) should take into account the local Level 3 BLAS speed, the load balance and
the degree of parallelism. Small block size may result in better load balance and more parallelism,
but poor individual node performance, and vice versa for large block size.

4.8 Example programs

In the SuperLU..DIST/EXAMPLE/ subdirectory, we present a few sample programs, such as pddrive,
to illustrate the complete calling sequences to use the expert driver to solve systems of equations.
These include how to set up the process grid and the the input matrix, how to obtain a fill-reducing
ordering. A Makefile is provided to generate the executables. A README file in this directory shows
how to run these examples. The leading comment in each routine describes the functionality of the
example.

ISome vendor-supplied BLAS libraries do not have C interfaces. So the re-naming is needed in order for the
SuperL U BLAS calls (in C) to interface with the Fortran-style BLAS.

2The numbering of 2,3 and 6 is consistent with that used in SuperLU and SuperLU_MT.

50

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham­
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide, Release 2.0.
SIAM, Philadelphia, 1995. 324 pages.

[2] M. Arioli, J. W. Demmel, and 1. S. Duff. Solving sparse linear systems with sparse backward
error. SIAM J. Matrix Anal. Appl., 10(2):165-190, Apri11989.

[3] L. S. Blackford, J. Choi, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users' Guide.
SIAM, Philadelphia, 1997. 325 pages.

[4] Timothy A. Davis, John R. Gilbert, Stefan 1. Larimore, and Esmond Ng. A column approxi­
mate minimum degree ordering algorithm. manuscript, in preparation.

[5] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W.H.
Liu. A supernodal approach to sparse partial pivoting. Technical Report UCBj jCSD-95-883,
Computer Science Division, U .C. Berkeley, 1995. To appear in SIAM J. Matrix Anal. Appl.

[6] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel supernodal
algorithm for sparse gaussian elimination. Technical Report UCB/ jCSD-97-943, Computer
Science Division, U.C. Berkeley, 1997. To appear in SIAM J. Matrix Anal. Appl.

[7] J. Dongarra, J. Du Croz, 8. Hammarling, and Richard J. Hanson. An Extended Set of FOR­
TRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 14(1):1-17, March 1988.

[8] J. Dongarra, J. Du Croz, Duff 1. S., and S. Hammarling. A Set of Level 3 Basic Linear Algebra
Subprograms. A eM Trans. Math. Soft., 16:1-17, 1990.

[9] lain S. Duff and Jacko Koster. The design and use of algorithms for permuting large entries
to the diagonal of sparse matrices. SIAM J. Matrix Analysis and Applications, 20(4):889-901,
1999.

[10] 1.8. Duff, R.G. Grimes, and J.G. Lewis. Users' guide for the Harwell-Boeing sparse matrix col­
lection (release 1). Technical Report RAL-92-086, Rutherford Appleton Laboratory, December
1992.

[l1J Alan George, Joseph Liu, and Esmond Ng. A data structure for sparse QR and LU factoriza­
tions. SIAM J. Sci. Stat. Comput., 9:100-121, 1988.

[12] Alan George and Esmond Ng. Symbolic factorization for sparse Gaussian elimination with
partial pivoting. SIAM J. Sci. Stat. Comput., 8(6):877-898,1987.

51

[13] J. R: Gilbert and E. G. Ng. Predicting structure in nonsymmetric sparse matrix factorizations.
In Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and Sparse
Matrix Computation, pages 107-139. Springer-Verlag, 1993.

[14] John R. Gilbert, Xiaoye S. Li, Esmond G. Ng, and Barry W. Peyton. Computing row and
column counts for sparse QR factorization. manuscript, in preparation.

[15] N. J. Higham. Algorithm 674: FORTRAN codes for estimating the one-norm of a real or
complex matrix, with applications to condition estimation. ACM Trans. Math. Soft., 14:381-
396, 1988.

[16] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 1996.

[17] George Karypis and Vipin Kumar. Serial and parallel software packages for partitioning un­
structured graphs and for computing fill-reducing orderings of sparse matrices. AHPCRC,
University of Minnesota. http://www.arc.umn.edu/software/.

[18] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for
Fortran usage. ACM Trans. Math. Soft., 5:308-323, 1979.

[19J Xiaoye S. Li. Sparse Gaussian elimination on high performance computers. Technical Re­
port UCB/ /CSD-96-919, Computer Science Division, U.C. Berkeley, September 1996. Ph.D
dissertation.

[20J Xiaoye S. Li and James W. Demmel. Making sparse Gaussian elimination scalable by static
pivoting. In Proceedings of SC98, Orlando, Florida, November 1998.

[21] Xiaoye S. Li and James W. Demmel. A scalable sparse direct solver using static pivoting. In
Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing,
San Antonio, Texas, March 22-24 1999.

[22J Joseph W.H. Liu. Modification of the minimum degree algorithm by multiple elimination.
ACM Trans. Math. Software, 11:141-153,1985.

[23J W. Oettli and W. Prager. Compatibility of approximate solution of linear equations with given
error bounds for coefficients and right hand sides. Num. Math., 6:405-409, 1964.

[24] POSIX System Application Arogram Interface: Threads extension [C Language], POSIX
1003.1c draft 4. IEEE Standards Department.

[25J R.D. Skeel. Iterative refinement implies numerical stability for Gaussian elimination. Mathe­
matics of Computation, 35(151):817-832,1980.

[26J Message Passing Interface (MPI) forum. http://www.mpi-forum.orgj.

52

Appendix A

Specifications of routines in sequential
SuperLU

A.I dgsequ

void
dgsequCSuperMatrix *A, double *r, double *c, double *rowcnd,

double *colcnd, double *amax, int *info)

Purpose

DGSEQU computes row and column scalings intended to equilibrate an
M-by-N sparse matrix A and reduce its condition number. R returns the row
scale factors and C the column scale factors, chosen to try to make
the largest element in each row and column of the matrix B with
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

R(i) and CCj) are restricted to be between SMLNUM = smallest safe
number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but
works well in practice.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

A (input) SuperMatrix*
The matrix of dimension (A->nrow, A->ncol) whose equilibration
factors are to be computed. The type of A can be:
Stype = NC; Dtype = _D; Mtype = GE.

R (output) double*, size A->nrow
If INFO = 0 or INFO> M, R contains the row scale factors

53

for A.

C (output) double*, size A->ncol
If INFO = 0, C contains the column scale factors for A.

row end (output) double*
If INFO = ° or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
AMAX is neither too large nor too small, it is not worth
scaling by R.

colcnd (output) double*
If INFO = 0, COLCND contains the ratio of the smallest
C(i) to the largest C(i). If COLCND >= 0.1, it is not
worth scaling by C.

amax (output) double*
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.

info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, and i is

<= A->nrow: the i-th row of A is exactly zero
> A->ncol: the (i-M)-th column of A is exactly zero

A.2 dgscon

void
dgscon(char *norm, SuperMatrix *L, SuperMatrix *U,

double anorm, double *rcond, int *info)

Purpose

DGSCON estimates the reciprocal of the condition number of a general
real matrix A, in either the i-norm or the infinity-norm, using
the LU factorization computed by DGETRF.

An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as

RCOND = 1 / (norm(A) * norm(inv(A))).

See supermatrix.h for the definition of 'SuperMatrix' structure.

54

Arguments
=========

norm (input) char*
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or '0': 1-norm;
= 'I': Infinity-norm.

L (input) SuperMatrix*
The factor L from the factorization Pr*A*Pc=L*U as computed by
dgstrf(). Use compressed row subscripts storage for supernodes,
i.e., L has types: Stype = SC, Dtype = _D, Mtype = TRLU.

U (input) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U as computed by
dgstrf(). Use column-wise storage scheme, i.e., U has types:
Stype = NC, Dtype = _D, Mtype = TRU.

anorm (input) double
If NORM = '1' or '0', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.

rcond (output) double*
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).

info (output) int*
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

A.3 dgsrfs

void
dgsrfs(char *trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U,

int *perm_r, int *perm_c, char *equed, double *R, double *C,
SuperMatrix *B, SuperMatrix *X,
double *ferr, double *berr, int *info)

Purpose

DGSRFS improves the computed solution to a system of linear
equations and provides error bounds and backward error estimates for
the solution.

55

If equilibration was performed, the system becomes:
(diag(R)*A_original*diag(C» * X = 'diag(R)*B_original.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

trans (input) char*
Specifies the form of the system of equations:
= 'N' : A * X = B (No transpose)
= 'T' : A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)

A (input) SuperMatrix*
The original matrix A in the system, or the scaled A if
equilibration was done. The type of A can be:
Stype = NC, Dtype = _D, Mtype = GE.

L (input) SuperMatrix*
The factor L from the factorization Pr*A*Pc=L*U. Use
compressed row subscripts storage for supernodes,
i.e., L has types: Stype = SC, Dtype = _D, Mtype = TRLU.

U (input) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U as computed by
dgstrf(). Use column-wise storage scheme,
i.e., U has types: Stype = NC, Dtype = _D, Mtype = TRU.

perm_r (input) int*, dimension (A->nrow)
Row permutation vector, which defines the permutation matrix Pr;
perm_rEi] = j means row i of A is in position j in Pr*A.

perm_c (input) int*, dimension (A->ncol)

equed

Column permutation vector, which defines the
permutation matrix Pc; perm_c[i] = j means column i of A is
in position j in A*Pc.

(input) Specifies the form of equilibration that was done.
= 'N': No equilibration.
= 'R': Row equilibration, i.e., A was premultiplied by diag(R).
= 'C': Column equilibration, i.e., A was postmultiplied by

diag(C).
= 'B': Both row and column equilibration, i.e., A was replaced

by diag(R)*A*diag(C).

56

R

C

B

x

FERR

(input) double*, dimension (A->nrow)
The row scale factors for A.
If equed = 'R' or 'B' , A is premultiplied by diag(R).
If equed = 'N' or 'C', R is not accessed.

(input) double*, dimension (A->ncol)
The column scale factors for A.
If equed = 'C' or 'B' , A is postmultiplied by diag(C).
If equed = 'N' or 'R', C is not accessed.

(input) SuperMatrix*
B has types: Stype = DN, Dtype = _D, Mtype = GE.
The right hand side matrix B.
if equed = 'R' or 'B', B is premultiplied by diag(R).

(input/output) SuperMatrix*
X has types: Stype = DN, Dtype = _D, Mtype = GE.
On entry, the solution matrix X, as computed by dgstrs().
On exit, the improved solution matrix X.
if *equed = 'C' or 'B', X should be premultiplied by diagCC)

in order to obtain the solution to the original system.

(output) double*, dimension (B->ncol)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in XCj). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.

BERR (output) double*, dimension (B->ncol)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

info (output) int*
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

A.4 dgssv

void
dgssv(SuperMatrix *A, int *perm_c, int *perm_r. SuperMatrix *L,

SuperMatrix *U, SuperMatrix *B, int *info)

57

Purpose

DGSSV solves the system of linear equations A*X=B, using the
LU factorization from DGSTRF. It performs the following steps:

1. If A is stored column-wise (A->Stype = NC):

1.1. Permute the columns of A, forming A*Pc, where Pc
is a permutation matrix. For more details of this step,
see sp_preorder.c.

1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
by Gaussian elimination with partial pivoting.
L is unit lower triangular with offdiagonal entries
bounded by 1 in magnitude, and U is upper triangular.

1.3. Solve the system of equations A*X=B using the factored
form of A.

2. If A is stored row-wise (A->Stype = NR), apply the
above algorithm to the transpose of A:

2.1. Permute columns of transpose(A) (rows of A),
forming transpose(A)*Pc, where Pc is a permutation matrix.
For more details of this step, see sp_preorder.c.

2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
determined by Gaussian elimination with partial pivoting.
L is unit lower triangular with offdiagonal entries
bounded by 1 in magnitude, and U is upper triangular.

2.3. Solve the system of equations A*X=B using the factored
form of A.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

A (input) SuperMatrix*
Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
of linear equations is A->nrow. Currently, the type of A can be:
Stype = NC or NR; Dtype = _D; Mtype = GE. In the future, more
general A will be handled.

58

perm_c (input/output) int*
If A->Stype = NC, column permutation vector of size A->ncol
which defines the permutation matrix,Pc; perm_c[i] = j means
column i of A is in position j in A*Pc.
On exit, perm_c may be overwritten by the product of the input
perm_c and a permutation that postorders the elimination tree
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
is already in postorder.

If A->Stype = NR, column permutation vector of size A->nrow
which describes permutation of columns of transpose(A)
(rows of A) as described above.

perm_r (output) int*
If A->Stype = NC, row permutation vector of size A->nrow,
which defines the permutation matrix Pr, and is determined
by partial pivoting. perm_rei] = j means row i of A is in
position j in Pr*A.

If A->Stype = NR, permutation vector of size A->ncol, which
determines permutation of rows of transpose(A)
(columns of A) as described above.

L (output) SuperMatrix*
The factor L from the factorization

Pr*A*Pc=L*U (if A->Stype = NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype = NR).

Uses compressed row subscripts storage for supernodes, i.e.,
L has types: Stype = SC, Dtype = _D, Mtype = TRLU.

U (output) SuperMatrix*
The factor U from the factorization

Pr*A*Pc=L*U (if A->Stype = NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype = NR).

Uses column-wise storage scheme, i.e., U has types:
Stype = NC, Dtype = _D, Mtype = TRU.

B (input/output) SuperMatrix*
B has types: Stype = DN, Dtype = _D, Mtype = GE.
On entry, the right hand side matrix.
On exit, the solution matrix if info = 0;

info (output) int*
= 0: successful exit
> 0: if info = i, and 1 1S

<= A->ncol: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly singular,

59

so the solution could not be computed.
> A->ncol: number of bytes allocated when memory allocation

failure occurred, plus A->ncol.

A.5 dgssvx

void
dgssvx(char *fact, char *trans, char *refact,

SuperMatrix *A, factor_param_t *factor_params, int *perm_c,
int *perm_r, int *etree, char *equed, double *R, double *C,
SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth,
double *rcond, double *ferr, double *berr,
mem_usage_t *mem_usage, int *info)

Purpose

DGSSVX solves the system of linear equations A*X=B or A'*X=B, using
the.LU factorization from dgstrf(). Error bounds on the solution and
a condition estimate are also provided. It performs the following steps:

1. If A is stored column-wise (A->Stype = NC):

1.1. If fact
system:

trans
trans
trans

=

=
=
=

'E', scaling factors are computed to equilibrate the

'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B

Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if trans='N')
or diag(C)*B (if trans = 'T' or 'C').

1.2. Permute columns of A, forming A*Pc, where Pc is a permutation
matrix that usually preserves sparsity.
For more details of this step, see sp_preorder.c.

1.3. If fact = 'N' or 'E', the LU decomposition is used to factor the
matrix A (after equilibration if fact = 'E') as Pr*A*Pc = L*U,
with Pr determined by partial pivoting.

1.4. Compute the reciprocal pivot growth factor.

1.5. If some U(i,i) = 0, so that U is exactly singular, then the
routine returns with info = i. Otherwise, the factored form of

60

A is used to estimate the condition number of the matrix A. If
the reciprocal of the condition number is less than machine
precision, info = A->ncol+1 is returned as a warning, but the
routine still goes on to solve for X and computes error bounds
as described below.

1.6. The system of ,equations is solved for X using the factored form
of A.

1.7. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.

1.S. If equilibration was used, the matrix X is premultiplied by
diag(C) (if trans = 'N') or diag(R) (if trans = 'T' or 'C') so
that it solves the original system before equilibration.

2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
to the transpose of A:

2.1. If fact = 'E'. scaling factors are computed to equilibrate the
system:

trans
trans
trans

Whether

= 'N' :
= 'T' :
= 'c' :
or not

diag(R)*A'*diag(C) *inv(diag(C»*X = diag(R)*B
(diag(R)*A'*diag(C»**T *inv(diag(R»*X = diag(C)*B
(diag(R)*A'*diag(C»**H *inv(diag(R»*X = diag(C)*B
the system will be equilibrated depends on the

scaling of the matrix A, but if equilibration is used, A' is·
overwritten by diag(R)*A'*diag(C) and B by diag(R)*B
(if trans='N') or diag(C)*B (if trans = 'T' or 'C').

2.2. Permute columns of transpose(A) (rows of A),
forming transpose(A)*Pc, where Pc is a permutation matrix that
usually preserves sparsity.
For more details of this step, see sp_preorder.c.

2.3. If fact = 'N' or 'E', the LU decomposition is used to factor the
transpose(A) (after equilibration if fact = 'E') as
Pr*transpose(A)*Pc = L*U with the permutation Pr determined by
partial pivoting.

2.4. Compute the reciprocal pivot growth factor.

2.5. If some U(i,i) = 0, so that U is exactly singular, then the
routine returns with info = i. Otherwise, the factored form
of transpose(A) is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number
is less than machine precision, info = A->nrow+l is returned as

61

a warning, but the routine still goes on to solve for X and
computes error bounds as described below.

2.6. The system of equations is solved for X using the factored form
of transpose(A).

2.7. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it .

. 2.8. If equilibration was used, the matrix X is premultiplied by
diag(e) (if trans = 'N') or diag(R) (if trans = 'T' or 'e') so
that it solves the original system before equilibration.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

fact (input) char*

trans

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrix A should
be equilibrated before it is factored.
= 'F': On entry, L, U, perm_r and perm_c contain the factored

form of A. If equed is not 'N', the matrix A has been
equilibrated with scaling factors R and e.
A, L, U, perm_r are not modified.

= 'N': The matrix A will be factored, and the factors will be
stored in L and U.

= 'E': The matrix A will be equilibrated if necessary, then
factored into L and Uo

(input) char*
Specifies the form of
= 'N': A *X = B
= 'T': A**T * X = B
= 'e': A**H * X = B

the system of equations:
(No transpose)
(Transpose)
(Transpose)

ref act (input) char*
Specifies whether we want to re-factor the matrix.
= 'N': Factor the matrix A.
= 'Y': Matrix A was factored before, now we want to re-factor

matrix A with perm_r and etree as inputs. Use
the same storage for the L\U factors previously allocated,
expand it if necessary. User should insure to use the same
memory model.

If fact = 'F', then ref act is not accessed.

62

A (input/output) SuperMatrix*
Matrix A inA*X=B, of dimension (A-~nrow, A->ncol). The number
of the linear equations is A->nrow. Currently, the type of A can be:
Stype = NC or NR, Dtype = _D, Mtype = GE. In the future,
more general A can be handled.

On entry, If fact = 'F' and equed is not 'N', then A must have
been equilibrated by the scaling factors in Rand/or C.
A is not modified if fact = 'F' or 'N', or if fact = 'E' and
equed = 'N' on exit.

On exit, if fact = 'E' and equed is not 'N', A is scaled as follows:
If A->Stype = NC:

equed = 'R': A:= diag(R) * A
equed = 'C': A:= A * diag(C)
equed = 'B': A:= diag(R) * A * diag(C).

If A->Stype = NR:
equed = 'R': transpose(A) := diag(R) * transpose(A)
equed = 'C': transpose (A) := transpose(A) * diag(C)
equed = 'B': transpose (A) := diag(R) * transpose(A) * diag(C).

factor_params (input) factor_param_t*
The structure defines the input scalar parameters, consisting of
the following fields. If factor_params = NULL, the default
values are used for all the fields; otherwise, the values
are given by the user.
- panel_size (int): Panel size. A panel consists of at most

panel_size consecutive columns. If panel_size = -1, use
default value 8.

- relax (int): To control degree of relaxing supernodes. If the
number of nodes (columns) in a subtree of the elimination
tree is less than relax, this subtree is considered as one
supernode, regardless of the row structures of those columns.
If relax = -1, use default value 8.

- diag_pivot_thresh (double): Diagonal pivoting threshold.
At step j of the Gaussian elimination, if

abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),
then use A_jj as pivot. ° <= diag_pivot_thresh <= 1.
If diag_pivot_thresh = -1, use default value 1.0,
which corresponds to standard partial pivoting.

- drop_tol (double): Drop tolerance threshold. (NOT IMPLEMENTED)
At step j of the Gaussian elimination, if

abs(A_ij)/(max_i abs(A_ij)) < drop_tol,
then drop entry A_ij. ° <= drop_tol <= 1.
If drop_tol = -1, use default value 0.0, which corresponds to
standard Gaussian elimination.

63

perm_c (input/output) int*
If A->Stype = NC, Column permutation vector of size A->ncol,
vhich defines the permutation matrix Pc; perm_c[i] = j means
column i of A is in position j in A*Pc.
On exit, perm_c may be overvritten by the product of the input
perm_c and a permutation that postorders the elimination tree
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
is already in postorder.

If A->Stype = NR, column permutation vector of size A->nrov,
vhich describes permutation of columns of transpose(A)
(rovs of A) as described above.

perm_r (input/output) int*

etree

equed

If A->Stype = NC, rov permutation vector of size A->nrov,
vhich defines the permutation matrix Pr, and is determined
by partial pivoting. perm_rei] = j means rov i of A is in
position j in Pr*A.

If A->Stype = NR, permutation vector of size A->ncol, vhich
determines permutation of rovs of transpose(A)
(columns o·f A) as described above.

If ref act is not 'Y', perm_r is output argument;
If ref act = 'Y', the pivoting routine viII try to use the input
perm_r, unless a certain threshold criterion is violated.
In that case, perm_r is overvritten by a nev permutation
determined by partial pivoting or diagonal threshold pivoting.

(input/output) int*, dimension (A->ncol)
Elimination tree of Pc'*A'*A*Pc.
If fact is not 'F' and refact = 'Y', etree is an input argument,
othervise it is an output argument.
Note: etree is a vector of parent pointers for a forest vhose
vertices are the integers 0 to A->ncol-l; etree[root]==A->ncol.

(input/output) char*
Specifies the form of equilibration that vas done.
= 'N'
= 'R'
= 'C'
= 'B'

:

:
:

:

No equilibration.
Rov equilibration, i.e., A vas premultiplied by diag(R).
Column equilibration, i.e., A vas postmultiplied by diag(C).
Both rov and column equilibration, i.e., A vas replaced
by diag(R)*A*diag(C).

If fact = 'F', equed is an input argument, othervise it is
an output argument.

64

R (input/output) double*. dimension (A->nrow)
The row scale factors for A or transpose(A).
If equed = 'R' or 'B'. A (if A->Stype = Ne) or transpose(A) (if

A->Stype = NR) is multiplied on the left by diag(R).
If equed = 'N' or 'e'. R is not accessed.
If fact = 'F'. R is an input argument; otherwise. R is output.
If fact = 'F' and equed = 'R' or 'B', each element of R must

be positive.

e (input/output) double*, dimension (A->ncol)
The column scale factors for A or transpose(A).
If equed = 'C' or 'B', A (if A->Stype = NC) or transpose(A) (if

A->Stype = NR) is multiplied on the right by diag(e).
If equed = 'N' or 'R'. e is not accessed.
If fact = 'F', e is an input argument; otherwise, e is output.
If fact = 'F' and equed = 'e' or 'B'. each element of e must

be positive.

L (output) SuperMatrix*
The factor L from the factorization

Pr*A*Pc=L*U (if A->Stype = Ne) or
Pr*transpose(A)*Pc=L*U (if A->Stype = NR).

Uses compressed row subscripts storage for supernodes, i.e.,
L has types: Stype = se, Dtype = _D, Mtype = TRLU.

U (output) SuperMatrix*
The factor U from the factorization

Pr*A*Pc=L*U (if A->Stype = Ne) or
Pr*transpose (A) *Pc=L*U (if A->Stype = NR).

Uses column-wise storage scheme, i.e., U has types:
Stype = He, Dtype = _D, Mtype = TRU.

work (workspace/output) void*, size (lwork) (in bytes)
User supplied workspace, should be large enough
to hold data structures for factors L and U.

lwork

On exit, if fact is not 'F'. L and U point to this array.

(input) int
Specifies the size of work array in bytes.
= 0: allocate space internally by system malloc;
> 0: use user-supplied work array of length lwork in bytes,

returns error if space runs out.
= -1: the routine guesses the amount of space needed without

performing the factorization, and returns it in
mem_usage->total_needed; no other side effects.

See argument 'mem_usage' for memory usage statistics.

65

B (input/output) SuperMatrix*
B has types: Stype = ON. Otype = _0. Mtype = GE.
On entry. the right hand side matrix.
On exit.

if equed = 'N'. B is not modified; otherwise
if A->Stype = NC:

if trans = 'N' and equed = 'R' or 'B'. B is overwritten by
diag(R)*Bi

if

if trans = 'T' or 'e' and equed = 'e' of 'B' • B is
overwritten by diag(e)*Bi

A->Stype = NR:
if trans = 'N' and equed = 'e' or 'B' • B is overwritten by

diag(e)*Bi
if trans = 'T' or 'e' and equed = 'R' of 'B'. B is

overwritten by diag(R)*B.

x (output) SuperMatrix*
X has types: Stype = DN. Dtype = _D. Mtype = GE.
If info = 0 or info = A->nco1+1. X contains the solution matrix
to the original system of equations. Note that A and B are modified
on exit if equed is not 'N'. and the solution to the equilibrated
system is inv(diag(e»*X if trans = 'N' and equed = 'e' or 'B'.
or inv(diag(R))*X if trans = 'T' or 'C' and equed = 'R' or 'B'.

recip_pivot_growth (output) double*

rcond

The reciprocal pivot growth factor max_j(norm(A_j)/norm(U_j)).
The infinity norm is used. If recip_pivot_growth is much less
than 1, the stability of the LU factorization could be poor.

(output) doub1e*
The estimate of the reciprocal condition number of the matrix A
after equilibration (if done). If rcond is less than the machine
precision (in particular. if rcond = 0). the matrix is singular
to working precision. This condition is indicated by a return
code of info> O.

FERR (output) doub1e*. dimension (B->nco1)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j). FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for ReOND, and is almost always a slight
overestimate of the true error.

66

BERR (output) double*, dimension (B->ncol)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest rel~tive change in
any element of A or B that makes X(j) an exact solution).

mem_usage (output) mem_usage_t*
Record the memory usage statistics, consisting of following fields:
- for_lu (float)

The amount of space used in bytes for L\U data structures.
- total_needed (float)

The amount of space needed in bytes to perform factorization.
- expansions (int)

The number of memory expansions during the LU factorization.

info (output) int*
= 0: successful exit
< 0: if info = -i. the i-th argument had an illegal value
> 0: if info = i, and i is

<= A->ncol: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly
singular. so the solution and error bounds
could not be computed.

= A->ncol+l: U is nonsingular, but RCONOis less than machine
precision, meaning that the matrix is singular to
working precision. Nevertheless. the solution and
error bounds are computed because there are a number
of situations where the computed solution can be more
accurate than the value of RCONO would suggest.

> A->ncol+l: number of bytes allocated when memory allocation
failure occurred. plus A->ncol.

A.6 dgstrf

void
dgstrf(char *refact, SuperMatrix *A. double diag_pivot_thresh,

double drop_tol, int relax, int panel_size, int *etree,
void *work, int lwork, int *perm_r, int *perm_c,
SuperMatrix *L, SuperMatrix *U, int *info)

Purpose

OGSTRF computes an LU factorization of a general sparse m-by-n
matrix A using partial pivoting with row interchanges.
The factorization has the form

Pr * A = L * U

67

where Pr is a row permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper
triangular (upper trapezoidal if A->nrow <A->ncol).

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments
=========

ref act (input) char*
Specifies whether we want to use perm_r from a previous factor.
= 'Y': re-use perm_r; perm_r is input, unchanged on exit.
= 'N': perm_r is determined by partial pivoting, and output.

A (input) SuperMatrix*
Original matrix A, permuted by columns, of dimension
(A->nrow, A->ncol). The type of A can be:
Stype = Nep; Dtype = D; Mtype = GE.

diag_pivot_thresh (input) double
Diagonal pivoting threshold. At step j of the Gaussian elimination,
if abs(A_jj) >= thresh * (max_(i>=j) abs(A_ij)), use A_jj as pivot.
o <= thresh <= 1. The default value of thresh is 1, corresponding
to partial pivoting.

drop_tol (input) double (NOT IMPLEMENTED)

relax

Drop tolerance parameter. At step j of the Gaussian elimination,
if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
o <= drop_tol <= 1. The default value of drop_tol is O.

(input) int
To control degree of relaxing supernodes. If the number
of nodes (columns) in a subtree of the elimination tree is less
than relax, this subtree is considered as one supernode,
regardless of the row structures of those columns.

panel_size (input) int

etree

A panel consists of at most panel_size consecutive columns.

(input) int*, dimension (A->ncol)
Elimination tree of A'*A.
Note: etree is a vector of parent pointers for a forest whose
vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
On input, the columns of A should be permuted so that the
etree is in a certain postorder.

work (input/output) void*, size (lwork) (in bytes)

68

lwork

User-supplied work space and space for the output data structures.
Not referenced if lwork = 0;

(input) int
Specifies the size of work array in bytes.
= 0: allocate space internally by system malloc;
> 0: use user-supplied work array of length lwork in bytes,

returns error if space runs out.
= -1: the routine guesses the amount of space needed without

performing the factorization, and returns it in
*info; no other side effects.

perm_r (input/output) inU, dimension (A->nrow)
Row permutation vector which defines the permutation matrix Pr,
perm_rEi] = j means row i of A is in position j in Pr*A.
If refact is not 'Y', perm_r is output argument;
If refact = 'Y'. the pivoting routine will try to use the input
perm_r. unless a certain threshold criterion is violated.
In that case, perm_r is overwritten by a new permutation
determined by partial pivoting or diagonal threshold pivoting.

(input) int*. dimension (A->ncol)
Column permutation vector, which defines the
permutation matrix Pc; perm_c[i] = j means column i of A is
in position j in A*Pc.
When searching for diagonal. perm_c[*J is applied to the
row subscripts of A. so that diagonal threshold pivoting
can find the diagonal of A, rather than that of A*Pc.

L (output) SuperMatrix*
The factor L from the factorization Pr*A=L*U; use compressed row
subscripts storage for supernodes. i.e., L has type:
Stype = SC, Dtype = _D, Mtype = TRLU.

U (output) SuperMatrix*

info

The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
storage scheme, i.e., U has types: Stype = NC,
Dtype = _D, Mtype = TRU.

(output) int*
= 0:
< 0:
> 0:

<=

successful
if info =
if info =

exit
-i, the
i, and

i-th argument had an illegal value
i is

A->ncol: U(i,i) is exactly zero. The factorization has
been completed. but the factor U is exactly singular.
and division by zero will occur if it is used to solve a
system of equations.

69

> A->ncol: number of bytes allocated when memory allocation
failure occurred, plus A->ncol. If lwork = -1, it is
the estimated amount of space needed, plus A->ncol.

A.7 dgstrs

void
dgstrs(char *trans, SuperMatrix *L, SuperMatrix *U,

int *perm_r, int *perm_c, SuperMatrix *B, int *info)

Purpose
=======

DGSTRS solves a system of linear equations A*X=B or A'*X=B
with A sparse and B dense, using the LU factorization computed by
DGS'J;'RF.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

trans (input) char*
Specifies the form
= 'N': A * X = B
= 'T': A'* X = B
= 'C': A**H * X =

of the system of equations:
(No transpose)
(Transpose)
B (Conjugate transpose)

L (input) SuperMatrix*
The factor L from the factorization Pr*A*Pc=L*U as computed by
dgstrf(). Use compressed row subscripts storage for supernodes,
i.e., L has types: Stype = SC, Dtype = _D, Mtype = TRLU.

U (input) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U as computed by
dgstrf(). Use column-wise storage scheme, i.e., U has types:
Stype = NC, Dtype = _D, Mtype = TRU.

perm_r (input) int*, dimension (L->nrow)
Row permutation vector, which defines the permutation matrix Pr;
perm_rei] = j means row i of A is in position j in Pr*A.

perm_c (input) int*, dimension (L->ncol)
Column permutation vector, which defines the
permutation matrix Pc; perm_c[i] = j means column i of A is
in position j in A*Pc.

70

B (input/output) SuperMatrix*
B has types: Stype = ON, Otype = _0. Mtype = GE.
On entry, the right hand side matrix.
On exit, the solution matrix if info = 0;

info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

A.S dlaqgs

void
dlaqgs(SuperMatrix *A, double *r, double *c,

double rowcnd, double colcnd, double amax, char *equed)

Purpose

OLAQGS equilibrates a general sparse M by N matrix A using the row and
scaling factors in the vectors R and C.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

A (input/output) SuperMatrix*
On exit, the equilibrated matrix. See EQUED for the form of
the equilibrated matrix. The type of A can be:
Stype = NC; Dtype = _D; Mtype = GE.

R (input) double*, dimension (A->nrow)
The row scale factors for A.

C (input) double*, dimension (A->ncol)
The column scale factors for A.

rowcnd (input) double
Ratio of the smallest R(i) to the largest R(i).

colcnd (input) double
Ratio of the smallest C(i) to the largest C(i).

amax (input) double
Absolute value of largest matrix entry.

71

aquad (output) char*
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, i.e., A has been premultiplied by

diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied

by diag(C).
= 'B': Both row and column equilibration, i.e., A has been

replaced by diag(R) * A * diag(C).

72

Appendix B

Specifications of routines in
multithreaded SuperLU_MT

B.1 pdgssv

void
pdgssv(int nprocs, SuperMatrix *A, int *perm_c, int *perm_r,

SuperMatrix *L, SuperMatrix *U, SuperMatrix *B, int *info)

Purpose
=======

pdgssv() solves the system of linear equations A*X=B. using the parallel
LU factorization routine pdgstrf(). It performs the following steps:

1. If A is stored column-wise (A->Stype = NC):

1.1. Permute the columns of A, forming A*Pc, where Pc is a
permutation matrix.
For more details of this step, see sp_preorder.c.

1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
by Gaussian elimination with partial pivoting.
L is unit lower triangular with offdiagonal entries
bounded by 1 in magnitude, and U is upper triangular.

1.3. Solve the system of equations A*X=B using the factored
form of A.

2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
to the transpose of A:

2.1. Permute columns of transpose(A) (rows of A),
forming transpose(A)*Pc. where Pc is a permutation matrix.

73

For more details of this step, see sp_preorder.c.

2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
determined by Gaussian elimination with partial pivoting.
L is unit lower triangular with offdiagonal entries
bounded by 1 in magnitude, and U is upper tr"iangular.

2.3. Solve the system of equations A*X=B using the factored

See supermatrix.h for the definition of ISuperMatrix" structure.

Arguments

nprocs (input) int
Number of processes (or threads) to be spawned and used to perform
the LU factorization by pdgstrf(). There is a single thread of
control to call pdgstrf(), and all threads spawned by pdgstrf()
are terminated before returning from pdgstrf().

A (input) SuperMatrix*
Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where
A->nrow = A->ncol. Currently, the type of A can be:
Stype = NC or NR; Dtype = _D; Mtype = GE. In the future,
more general A will be handled.

perm_c (input/output) int*
If A->Stype=NC, column permutation vector of size A->ncol,
which defines the permutation matrix Pc; perm_c[iJ = j means
column i of A is in position j in A*Pc.
On exit, perm_c may be overwritten by the product of the input
perm_c and a permutation that postorders the elimination tree
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
is already in postorder.

If A->Stype=NR, column permutation vector of size A->nrow
which describes permutation of columns of transpose(A)
(rows of A) as described above.

perm_r (output) int*,
If A->Stype=NR, row permutation vector of size A->nrow,
which defines the permutation matrix Pr, and is determined
by partial pivoting. perm_rei] = j means row i of A is in
position j in Pr*A.

If A->Stype=NR, permutation vector of size A->ncol, which

74

determines permutation of rows of transpose(A)
(columns of A) as described above.

L (output) SuperMatrix*
The factor L from the factorization

Pr*A*Pc=L*U (if A->Stype=NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype=NR).

Uses compressed row subscripts storage for supernodes, i.e.,
L has types: Stype = SCP. Dtype = _D. Mtype = TRLU.

U (output) SuperMatrix*
The factor U from the factorization

Pr*A*Pc=L*U (if A->Stype=NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype=NR).

Use column-wise storage scheme. i.e .• U has types:
Stype = NCP. Dtype = _D. Mtype = TRU.

B (input/output) SuperMatrix*
B has types: Stype = DN. Dtype = _D. Mtype = GE.
On entry, the right hand side matrix.
On exit. the solution matrix if info = 0;

info (output) int*
= 0: successful exit
> 0: if info = i. and i is

<= A->ncol: U(i,i) is exactly zero. The factorization has
been completed. but the factor U is exactly singular.
so the solution could not be computed.

> A->ncol: number of bytes allocated when memory allocation
failure occurred. plus A->ncol.

B.2 pdgssvx

void
pdgssvx(int nprocs. pdgstrf_options_t *pdgstrf_options. SuperMatrix *A.

int *perm_c, int *perm_r, equed_t *equed, double *R. double *C,
SuperMatrix *L. SuperMatrix *U.
SuperMatrix *B. SuperMatrix *X. double *recip_pivot_growth.
double *rcond, double *ferr, double *berr.
superlu_memusage_t *superlu_memusage, int *info)

Purpose
=======

PDGSSVX solves the system of linear equations A*X=B or A'*X=B, using
the LU factorization from dgstrf(). Error bounds on the solution and

75

a condition estimate are also provided. It performs the following steps:

1. If A is stored column-wise (A->Stype = NC):

1.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
the system:

trans = NOTRANS: diag(R)*A*diag(C)*inv(diag(C))*X = diag(R)*B
trans = TRANS: (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
trans = CONJ: (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B

Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B
(if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).

1.2. Permute columns of A, forming A*Pc, where Pc is a permutation matrix
that usually preserves sparsity.
For more details of this step, see sp_colorder.c.

1.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to
factor the matrix A (after equilibration if fact = EQUILIBRATE) as
Pr*A*Pc = L*U, with Pr determined by partial pivoting.

1.4. Compute the reciprocal pivot growth factor.

1.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
returns with info = i. Otherwise, the factored form of A is used to
estimate the condition number of the matrix A. If the reciproca~ of
the condition number is less than machine precision,
info = A->ncol+1 is returned as a warning, but the routine still
goes on to solve for X and computes error bounds as described below.

1.6. The system of equations is solved for X using the factored form
of A.

1.7. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.

1.8. If equilibration was used, the matrix X is premultiplied by
diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
so that it solves the original system before equilibration.

2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
to the transpose of A:

2.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
the system:

76

trans = NOTRANS:diag(R)*A'*diag(C)*inv(diag(C»*X = diag(R)*B
trans = TRANS: (diag(R)*A'*diag(C»**T *inv(diag(R»*X = diag(C)*B
trans = CONJ: (diag(R)*A'*diag(C»**H *inv(diag(R»*X = diag(C)*B

Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A' is
overwritten by diag(R)*A'*diag(C) and B by diag(R)*B
(if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).

2.2. Permute columns of transpose(A) (rows of A),
forming transpose(A)*Pc, where Pc is a permutation matrix that
usually preserves sparsity.
For more details of this step, see sp_colorder.c.

2.~3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to
factor the matrix A (after equilibration if fact = EQUILIBRATE) as
Pr*transpose(A)*Pc = L*U, with the permutation Pr determined by
partial pivoting.

2A. Compute the reciprocal pivot growth factor.

2.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
returns with info = i. Otherwise, the factored form of transpose(A)
is used to estimate the condition number of the matrix A.
If the reciprocal of the condition number is less than machine
precision, info = A->nrow+1 is returned as a warning, but the
routine still goes on to solve for X and computes error bounds
as described below.

2.1). The system of equations is solved for X using the factored form
of transpose(A).

2.7. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.

2.8. If equilibration was used, the matrix X is premultiplied by
diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
so that it solves the original system before equilibration.

See supermatrix.h for the definition of 'SuperMatrix' structure.

Arguments

procs (input) int
Number of processes (or threads) to be spawned and used to perform
the LU factorization by pdgstrf(). There is a single thread of

77

control to call pdgstrf(), and all threads spawned by pdgstrf()
are terminated before returning from pdgstrf().

pdgstrf_options (input) pdgstrf_options_t*
The structure defines the input parameters and data structure
to control how the LU factorization will be performed.
The following fields should be defined for this structure:

o fact (fact_t)
Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrix A should
be equilibrated before it is factored.
= FACTORED: On entry, L, U, perm_r and perm_c contain the

factored form of A. If equed is not NOEQUIL, the matrix A has
been equilibrated with scaling factors R and C.
A, L, U, perm_r are not modified.

= DOFACT: The matrix A will be factored, and the factors will be
stored in L and U.

- EQUILIBRATE: The matrix A will be equilibrated if necessary,
then factored into L and U.

Specifies the form of the system of equations:
= NOTRANS: A * X = B (No transpose)
= TRANS: A**T * X = B (Transpose)
= CONJ: A**H * X = B (Transpose)

o refact (yes_no_t)
Specifies whether this is first time or SUbsequent factorization.
= NO: this factorization is treated as the first one;
= YES: it means that a factorization was performed prior to this

one. Therefore, this factorization will reuse some
existing data structures, such as L and U storage, column
elimination tree, and the symbolic information of the
Householder matrix.

o panel_size (int)
A panel consists of at most panel_size consecutive columns.

o relax (int)
To control degree of relaxing supernodes. If the number
of nodes (columns) in a subtree of the elimination tree is less
than relax, this subtree is considered as one supernode,
regardless of the row structures of those columns.

o diag_pivot_thresh (double)
Diagonal pivoting threshold. At step j of the Gaussian

78

-------------- --------- --

elimination, if
abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),

use A_jj as pivot, else use A_ij with maximum magnitude.
o <= diag_pivot_thresh <= 1. The default value is 1,
corresponding to partial pivoting.

o usepr (yes_no_t)
Whether the pivoting will use perm_r specified by the user.
= YES: use perm_rj perm_r is input, unchanged on exit.
= NO: perm_r is determined by partial pivoting, and is output.

o drop_tol (double) (NOT IMPLEMENTED)
Drop tolerance parameter. At step j of the Gaussian elimination,
if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
o <= drop_tol <= 1. The default value of drop_tol is 0,
corresponding to not dropping any entry.

o work (void*) of size lwork
User-supplied work space and space for the output data structures.
Not referenced if lwork = 0;

o lwork (int)
Specifies the length of work array.
= 0: allocate space internally by system malloc;
> 0: use user-supplied work array of length lwork in bytes,

returns error if space runs out.
= -1: the routine guesses the amount of space needed without

performing the factorization, and returns it in
superlu_memusage->total_needed; no other side effects.

A (input/output) SuperMatrix*
Matrix A in A*X=B, of dimension (A->nrow. A->ncol). where
A->nrow = A->ncol. Currently, the type of A can be:
Stype = NC or NR, Dtype = _D, Mtype = GE. In the future,
more general A will be handled.

On entry, If pdgstrf_options->fact = FACTORED and equed is not
NOEQUIL, then A must have been equilibrated by the scaling factors
in Rand/or C. On exit, A is not modified
if pdgstrf_options->fact = FACTORED or DOFACT, or
if pdgstrf_options->fact = EQUILIBRATE and equed = NOEQUIL.

On exit, if pdgstrf_options->fact = EQUILIBRATE and equed is not
NOEQUIL, A is scaled as follows:
If A->Stype = NC:

equed = ROW: A.- diag(R) * A
equed = COL: A.- A * diag(C)

79

equed = BOTH: A := diag(R) * A * diag(C).
If A->Stype = NR:

equed = ROW: transpose(A) := diag(R) * transpose(A)
equed = COL: transpose(A) := transpose(A) * diag(C)
equed = BOTH: transpose(A) := diag(R) * transpose(A) * diag(C).

perm_c (input/output) int*
If A->Stype = NC, Column permutation vector of size A->ncol,
which defines the permutation matrix Pc; perm_c[i] = j means
column i of A is in position j in A*Pc.
On exit, perm_c may be overwritten by the product of the input
perm_c and a permutation that postorders the elimination tree
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
is already in postorder.

If A->Stype = NR, column permutation vector of size A->nrow,
which describes permutation of columns of transpose(A)
(rows of A) as described above.

perm_r (input/output) int*

equed

If A->Stype = NC, row permutation vector of size A->nrow,
which defines the permutation matrix Pr, and is determined
by partial pivoting. perm_rEi] = j means row i of A is in
position j in Pr*A.

If A->Stype = NR, permutation vector of size A->ncol, which
determines permutation of rows of transpose(A)
(columns of A) as described above.

If pdgstrf_options->usepr = NO, perm_r is output argument;
If pdgstrf_options->usepr = YES, the pivoting routine will try

to use the input perm_r, unless a certain threshold criterion
is violated. In that case, perm_r is overwritten by a new
permutation determined by partial pivoting or diagonal
threshold pivoting.

(input/output) equed_t*
Specifies the form of equilibration that was done.
= NOEQUIL: No equilibration.
= ROW: Row equilibration, i.e., A was premultiplied by diag(R).
= COL: Column equilibration, i.e., A was postmultiplied by diag(C).
= BOTH: Both row and column equilibration, i.e., A was replaced

by diag(R)*A*diag(C).
If pdgstrf_options->fact = FACTORED, equed is an input argument,
otherwise it is an output argument.

R (input/output) double*, dimension (A->nrow)

80

The row scale factors for A or transpose(A).
If equed = ROW or BOTH, A (if A->Stype = NC) or transpose(A)

(if A->Stype = NR) is multiplied on the left by diag(R).
If equed = NOEQUIL or COL, R is not accessed.
If fact = FACTORED, R is an input argument; otherwise, R is output.
If fact = FACTORED and equed = ROW or BOTH, each element of R must

be positive.

C (input/output) double*, dimension (A->ncol)
The column scale factors for A or transpose(A).
If equed = COL or BOTH, A (if A->Stype = NC) or transpose(A)

(if A->Stype = NR) is multiplied on the right by diag(C).
If equed = NOEQUIL or ROW, C is not accessed.
If fact = FACTORED, C is an input argument; otherwise, C is output.
If fact = FACTORED and equed = COL or BOTH, each element of C must

be positive.

L (output) SuperMatrix*
The factor L from the factorization

Pr*A*Pc=L*U (if A->Stype = NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype = NR).

Uses compressed row subscripts storage for supernodes, i.e.,
L has types: Stype = SCP. Dtype = _D. Mtype = TRLU.

U (output) SuperMatrix*
The factor U from the factorization

Pr*A*Pc=L*U (if A->Stype = NC) or
Pr*transpose(A)*Pc=L*U (if A->Stype = NR).

Uses column-wise storage scheme, i.e., U has types:
Stype = NCP, Dtype = _D, Mtype = TRU.

B (input/output) SuperMatrix*
B has types: Stype = DN, Dtype = _D, Mtype = GE.
On entry, the right hand side matrix.
On exit,

if equed = NOEQUIL, B is not modified; otherwise
if A->Stype = NC:

if trans = NOTRANS and equed = ROW or BOTH, B is overwritten
by diag(R)*B;

if trans = TRANS or CONJ and equed = COL of BOTH, B is
overwritten by diag(C)*B;

if A->Stype = NR:
if trans = NOTRANS and equed = COL or BOTH, B is overwritten

by diag(C)*B;
if trans = TRANS or CONJ and equed = ROW of BOTH, B is

overwritten by diag(R)*B.

81

x (output) SuperMatrix*
X has types: Stype = DN, Dtype = _D, Mtype = GE.
If info = 0 or info = A->ncol+1, X contains the solution matrix
to the original system of equations. Note that A and B are modified
on exit if equed is not NOEQUIL, and the solution to the
equilibrated system is inv(diag(C))*X if trans = NOTRANS and
equed = COL or BOTH, or inv(diag(R))*X if trans = TRANS or CONJ
and equed = ROW or BOTH.

recip_pivot_gro~th (output) double*

rcond

The reciprocal pivot gro~th factor computed as
max_j (max_i(abs(A_ij)) I max_i(abs(U_ij))).

If recip_pivot_gro~th is much less than 1, the stability of the
LU factorization could be poor.

(output) double*
The estimate of the reciprocal condition number of the matrix A
after equilibration (if done). If rcond is less than the machine
precision (in particular, if rcond = 0), the matrix is singular
to ~orking precision. This condition is indicated by a return
code of info> O.

ferr (output) double*, dimension (B->ncol)
The estimated for~ard error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost al~ays a slight
overestimate of the true error.

berr (output) double*, dimension (B->ncol)
The component~ise relative back~ard error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

superlu_memusage (output) superlu_memusage_t*
Record the memory usage statistics, consisting of follo~ing fields:
- for_lu (float)

The amount of space used in bytes for L\U data structures.
- total_needed (float)

The amount of space needed in bytes to perform factorization.
- expansions (int)

The number of memory expansions during the LU factorization.

info (output) int*

82

= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, and i is

<= A->ricol: U(i,i) is exactly zero. The factorization has­
been completed, but the factor U is exactly
singular, so the solution and error bounds
could not be computed.

= A->ncol+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular to
working precision. Nevertheless, the solution and
error bounds are computed because there are a number
of situations where the computed solution can be more
accurate than the value of RCOND would suggest.

> A->ncol+1: number of bytes allocated when memory allocation
failure occurred, plus A->ncol.

B.3 pdgstrf

void
pdgstrf(pdgstrf_options_t *pdgstrf_options, SuperMatrix *A, int *perm_r,

SuperMatrix *L, SuperMatrix *U, Gstat_t *Gstat, int *info)

Purpose
=======

PDGSTRF computes an LU factorization of a general sparse nrow-by-ncol
matrix A using partial pivoting with row interchanges. The factorization
has the form

Pr * A = L * U
where Pr is a row permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is
upper triangUlar (upper trapezoidal if A->nrow < A->ncol).

Arguments

pdgstrf_options (input) pdgstrf_options_t*
The structure defines the parameters to control how the sparse
LU factorization is performed. The following fields must be set
by the user:

o nprocs (int)
Number of processes to be spawned and used for factorization.

o refact (yes_no_t)
Specifies whether this is first time or subsequent factorization.

83

= NO: this factorization is treated as the first one;
= YES: it means that a factorization ~as performed prior to this

one. Therefore, this factorization ~ill reuse some
existing data structures, such as L and U storage, column
elimination tree, and the symbolic information of the
Householder matrix.

o panel_size (int)
A panel consists of at most panel_size consecutive columns.

o relax (int)
Degree of relaxing supernodes. If the number of nodes (columns)
in a subtree of the elimination tree is less than relax, this
subtree is considered as one supernode, regardless of the ro~
structures of those columns.

o diag_pivot_thresh (double)
Diagonal pivoting threshold. At step j of Gaussian elimination,
if abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij»,
use A_jj as pivot. ° <= diag_pivot_thresh <= 1. The default
value is 1.0, corresponding to partial pivoting.

o usepr (yes_no_t)
Whether the pivoting ~ill use perm_r specified by the user.
= YES: use perm_r; perm_r is input, unchanged on exit.
= NO: perm_r is determined by partial pivoting, and is output.

o drop_tol (double) (NOT IMPLEMENTED)
Drop tolerance parameter. At step j of the Gaussian elimination,
if abs(A_ij)/(max_i abs(A_ij» < drop_tol, drop entry A_ij.
° <= drop_tol <= 1. The default value of drop_tol is 0,
corresponding to not dropping any entry.

o perm_c (inU)
Column permutation vector of size A->ncol, ~hich defines the
permutation matrix Pc; perm_c[i] = j means column i of A is
in position j in A*Pc.

o perm_r (int*)
Column permutation vector of size A->nro~.
If pdgstrf_options->usepr = NO, this is an output argument.

o ~ork (void*) of size l~ork
User-supplied ~ork space and space for the output data structures.
Not referenced if l~ork = 0;

o l~ork (int)

84

Specifies the length of work array.
= 0: allocate space internally by system mallocj
> 0: use user-supplied work array of length lwork in bytes,

returns error if space runs out.
= -1: the routine guesses the amount of space needed without

performing the factorization, and returns it in
superlu_memusage->total_neededj no other side effects.

A (input) SuperMatrix*
Original matrix A, permuted by columns, of dimension
(A->nrow, A->ncol). The type of A can be:
Stype = NCPj Dtype = _Dj Mtype = GE.

perm~r (input/output) int*. dimension A->nrow
Row permutation vector which defines the permutation matrix Pr,
perm_r[i] = j means row i of A is in position j in Pr*A.
If pdgstrf_options->usepr = NO, perm_r is output argument;
If pdgstrf_options->usepr = YES, the pivoting routine will try

to use the input perm_r, unless a certain threshold criterion
is violated. In that ~ase, perm_r is overwritten by a new
permutation determined by partial pivoting or diagonal
threshold pivoting.

L (output) SuperMatrix*
The factor L from the factorization Pr*A=L*Uj use compressed row
SUbscripts storage for supernodes, i.e., L has type:
Stype = SCP, Dtype = _D, Mtype = TRLU.

U (output) SuperMatrix*
The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
storage scheme, i.e., U has types: Stype = NCP, Dtype = _D,
Mtype = TRU.

Gstat (output) Gstat_t*
Record all the statistics about the factorization:
See Gstat_t structure defined in util.h.

info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, and i is

<= A->ncol: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly singular,
and division by zero will occur if it is used to solve a
system of equations.

> A->ncol: number of bytes allocated when memory allocation
failure occurred, pius A->ncol.

85

86

Appendix C

Specifications of routines in
MPI-based SuperLU_DIST

C.l pdgssvx~Bglobal

void
pdgssvx_ABglobaICsuperlu_options_t *options. SuperMatrix *A.

Purpose

ScalePermstruct_t *ScalePermstruct.
double B[], int ldb. int nrhs. gridinfo_t *grid,
LUstruct_t *LUstruct, double *berr,
SuperLUStat_t *stat, int *info)

pdgssvx_ABglobal solves a system of linear equations A*X=B.
by using Gaussian elimination with II static pivotingll to
compute the LU factorization of A.

Static pivoting is a teChnique that combines the numerical stability
of partial pivoting with the scalability of Cholesky Cno pivoting),
to run accurately and efficiently on large numbers of processors.

See our paper.at http://www.nersc.gov/-xiaoye/SuperLU/ for a detailed
description of the parallel algorithms.

Here are the options for using this code:

1. Independent of all the other options specified below, the
user must supply

- B, the matrix of right hand sides. and its dimensions Idb and nrhs
grid, a structure describing the 2D processor mesh
options->IterRefine, which determines whether or not to

improve the accuracy of the computed solution using

87

iterative refinement

On output, B is overwritten with the s61ution X.

2. Depending on options->Fact, the user has several options
for solving A*X=B. The standard option is for factoring
A IIfrom scratch ll

•. (The other options, described below,
are used when A is sufficiently similar to a previously
solved problem to save time by reusing part or all of
the previous factorization.)

options->Fact = DOFACT: A is factored IIfrom scratch ll

In this case the user must also supply

A, the input matrix

as well as the following options, which are described in more
detail below:

options->Equil , to specify how to scale the rows and columns
of A to "equilibrate" it (to try to reduce its
condition number and so improve the
accuracy of the computed solution)

options->RowPerm, to specify how to permute the rows of A
(typically to control numerical stability)

options->ColPerm, to specify how to permute the columns of A
(typically to control fill-in and enhance
parallelism during factorization)

options->ReplaceTinyPivot, to specify how to deal with tiny
pivots encountered during factorization
(to control numerical stability)

The outputs returned include

ScalePermstruct, modified to describe how the input matrix A
was equilibrated and permuted:

ScalePermstruct->DiagScale, indicates whether the rows and/or
columns of A were scaled

ScalePermstruct->R, array of row scale factors
ScalePermstruct->C, array of column scale factors
ScalePermstruct->perm_r, row permutation vector
ScalePermstruct->perm_c, column permutation vector

88

-----------------_. -_._--

(part of ScalePermstruct may also need to be supplied on input,
depending on options->RowPerm and options->ColPerm as described
later) .

A, the input matrix A overwritten by the scaled and permuted matrix
Pc*Pr*diag(R)*A*diag(C)

where
Pr and Pc are row and columns permutation matrices determined

by ScalePermstruct->perm_r and ScalePermstruct->perm_c,
respectively, and

diag(R) and diag(C) are diagonal scaling matrices determined
by ScalePermstruct->DiagScale, ScalePermstruct->R and
ScalePermstruct->C

LUstruct, which contains the L and U factorization of Ai where

(Note that Ai = Aout * Pc-T, where Aout is the matrix stored
in A on output.)

3. The second value of options->Fact assumes that a matrix with the same
sparsity pattern as A has already been factored:

options->Fact = SamePattern: A is factored, assuming that it has
the same nonzero pattern as a previously factored matrix. In this
case the algorithm saves time by reusing the previously computed
column permutation vector stored in ScalePermstruct->perm_c
and the lI elimination tree" of A stored in LUstruct->etree

In this case the user must still specify the f?llowing options
as before:

options->Equil
options->RowPerm
options->ReplaceTinyPivot

but not options->ColPerm, whose value is ignored. This is because the
previous column permutation from ScalePermstruct->perm_c is used as
input. The user must also supply

A, the input matrix
ScalePermstruct->perm_c, the column permutation
LUstruct->etree, the elimination tree

The outputs returned include

89

A, the input matrix A overwritten by the scaled and permuted matrix
as described above

ScalePermstruct, modified to describe how the input matrix A was
equilibrated and row permuted

LUstruct, modified to contain the new L and U factors

4 .. The third value of options->Fact assumes that a matrix B with the same
sparsity pattern as A has already been factored, and where the
row permutation of B can be reused for A. This is useful when A and B
have similar numerical values, so that the same row permutation
will make both factorizations numerically stable. This lets us reuse
all of the previously computed structure of L and U.

options->Fact = SamePattern_SameRowPerm: A is factored,
assuming not only the same nonzero pattern as the previously
factored matrix B, but reusing B's row permutation.

In this case the user must still specify the following options
as before:

options->Equil
options->ReplaceTinyPivot

but not options->RowPerm or options->CoIPerm, whose values are ignored.
This is because the permutations from ScalePermstruct->perm_r and
ScalePermstruct->perm_c are used as input.

The user must also supply

A, the input matrix
ScalePermstruct->DiagScale, how the previous matrix was rowand/or

column scaled
ScalePermstruct->R, the row scalings of the previous matrix, if any
ScalePermstruct->C, the columns scalings of the previous matrix,

if any
ScalePermstruct->perm_r, the row permutation of the previous matrix
ScalePermstruct->perm_c, the column permutation of the previous

matrix
all of LUstruct, the previously computed information about L and U

(the actual numerical values of L and U stored in
LUstruct->Llu are ignored)

The outputs returned include

A, the input matrix A overwritten by the scaled and permuted matrix
as described above

ScalePermstruct, modified to describe how the input matrix A was

90

equilibrated
(thus ScalePermstruct->DiagScale, R and C may be modified)

LUstruct, modified to contain the new,L and U factors

5. The fourth and last value of options->Fact assumes that A is
identical to a matrix that has already been factored on a previous·
call, and reuses its entire LU factorization

options->Fact = Factored: A is identical to a previously
factorized matrix, so the entire previous factorization
can be reused.

In this case all the other options mentioned above are ignored
(options->Equil, options->RowPerm, options->ColPerm,
options->ReplaceTinyPivot)

The user must also supply

A, the unfactored matrix, only in the case that iterative refinment
is to be done (specifically A must be the output A from
the previous call, so that it has been scaled and permuted) .

all of ScalePermstruct
all of LUstruct, including the actual numerical values of L and U

all of which are unmodified on output.

Arguments

options (input) superlu_options_t*
The structure defines the input parameters to control
how the LU decomposition will be performed.
The following fields should be defined for this structure:

o Fact (fact_t)
Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, how the matrix A should
be factorized based" on the previous history.

= DOFACT: The matrix A will be factorized from scratch.
Inputs: A

options->Equil, RowPerm, ColPerm, ReplaceTinyPivot
Outputs: modified A

(possibly rowand/or column scaled and/or
permuted)

all of ScalePermstruct

91

all of LUstruct

= SamePattern: the matrix A will be factorized assuming
that a factorization of a matrix with the same sparsity
pattern was performed prior to this one. Therefore. this
factorization will reuse column permutation vector
ScalePermstruct->perm_c and the elimination tree
LUstruct->etree

Inputs: A
options->Equil. RowPerm. ReplaceTinyPivot
ScalePermstruct->perm_c
LUstruct->etree

Outputs: modified A
(possibly rowand/or column scaled and/or
permuted)

rest of ScalePermstruct (DiagScale. R, C, perm_r)
rest of LUstruct (GLU_persist, Llu)

= SamePattern_SameRowPerm: the matrix A will be factorized
assuming that a factorization of a matrix with the same
sparsity pattern and similar numerical values was performed
prior to this one. Therefore. this factorization will reuse
both row and column scaling factors R and C, and the
both row and column permutation vectors perm_r and perm_c,
distributed data structure set up from the previous symbolic
factorization.

Inputs: A
options->Equil, ReplaceTinyPivot
all of ScalePermstruct
all of LUstruct

Outputs: modified A
(possibly rowand/or column scaled and/or
permuted)

modified LUstruct->Llu
= FACTORED: the matrix A is already factored.

Inputs: all of ScalePermstruct
all of LUstruct

o Equil (yes_no_t)
Specifies whether to equilibrate the system.
= NO: no equilibration.
= YES: scaling factors are computed to equilibrate the system:

diag(R)*A*diag(C)*inv(diag(C»)*X = diag(R)*B.
Whether or not the system will be equilibrated depends
on the scaling of the matrix A, but if equilibration is
used, A is overwritten by diag(R)*A*diag(C) and B by
diag(R)*B.

92

o RowPerm (rowperm_t)
Specifies how to permute rows of th~ matrix A.
= NATURAL: use the natural ordering.
= LargeDiag: use the Duff/Koster algorithm to permute rows of

the original matrix to make the diagonal large
relative to the off-diagonal.

= MY_PERMR: use the ordering given in ScalePermstruct->perm_r
input by the user.

o ColPerm (colperm_t)
Sp~cifies what type of column permutation to use to reduce fill.
= NATURAL: use the natural ordering.
= COLAMD: use approximate minimum degree column ordering.
= MMD_ATA: use minimum degree ordering on structure of A'*A.
= MMD_AT_PLUS_A: use minimum degree ordering on structure of A'+A.
= MY_PERMC: use the ordering given in ScalePermstruct->perm_c.

o ReplaceTinyPivot (yes_no_t)
= NO: do not modify pivots
= YES: replace tiny pivots by sqrt(epsilon)*norm(A) during

LU factorization.

o IterRefine (IterRefine_t)
Specifies how to perform iterative refinement.
= NO: no iterative refinement.
= DOUBLE: accumulate residual in double precision.
= EXTRA: accumulate residual in extra precision.

NOTE: all options must be indentical on all processes when
calling this routine.

A (input/output) SuperMatrix*
On entry, matrix A in A*X=B, of dimension (A->nrow, A->ncol).
The number of linear equations is A->nrow. The type of A must be:
Stype = Ne; 'Dtype = _D; Mtype = GE. That is, A is stored in
compressed column format (also known as Harwell-Boeing format).
See supermatrix.h for the definition of 'SuperMatrix'.
This routine only handles square A, however, the LU factorization
routine pdgstrf_Aglobal can factorize rectangular matrices.
On exit, A may be overwritten by Pc*Pr*diag(R)*A*diag(C),
depending on ScalePermstruct->DiagScale, options->RowPerm and
options->colpem:

if ScalePermstruct->DiagScale != NOEQUIL, A is overwritten by
diag(R)*A*diag(C).

if options->RowPerm != NATURAL, A is further overwritten by
Pr*diag(R)*A*diag(C).

93

if options->CoIPerm != NATURAL, A is further overwritten by
Pc*Pr*diag(R)*A*diag(C).

If all the above condition are true; the LU decomposition is
performed on the matrix Pc*Pr*diag(R)*A*diag(C)*PcAT.

NOTE: Currently, A must reside in all processes when calling
this routine.

ScalePermstruct (input/output) ScalePermstruct_t*
The data structure to store the scaling and permutation vectors
describing the transformations performed to the matrix A.
It contains the following fields:

o DiagScale (DiagScale_t)
Specifies the form of equilibration that was done.
= NOEQUIL: no equilibration.
= ROW: row equilibration, i.e., A was premultiplied by

diag(R).
= COL:

= BOTH:

Column equilibration, i.e., A was postmultiplied
by diag(C).
both row and column equilibration, i.e., A was
replaced by diag(R)*A*diag(C).

If options->Fact = FACTORED or SamePattern_SameRowPerm,
DiagScale is an input argument; otherwise it is an output
argument.

o perm_r (int*)
Row permutation vector, which defines the permutation matrix Prj
perm_rei] = j means row i of A is in position j in Pr*A.
If options->RowPerm = MY_PERMR, or
options->Fact = SamePattern_SameRowPerm, perm_r is an
input argument; otherwise it is an output argument.

o perm_c (int*)
Column permutation vector, which defines the
permutation matrix Pc; perm_c[i] = j means column i of A is
in position j in A*Pc.
If options->CoIPerm = MY_PERMC or options->Fact = SamePattern
or options->Fact = SamePattern_SameRowPerm, perm_c is an
input argument; otherwise, it is an output argument.
On exit, perm_c may be overwritten by the product of the input
perm_c and a permutation that postorders the elimination tree
of Pc*A'*A*Pc'j perm_c is not changed if the elimination tree
is already in postorder.

o R (double*) dimension (A->nrow)
The row scale factors for A.

94

If DiagScale = ROW or BOTH, A is multiplied on the left by
diag(R).

If DiagScale = NOEQUIL or COL, R is not defined.
If options->Fact = FACTORED or SamePattern_SameRowPerm, R is
an input argument; otherwise, R is an output argument.

o C (double*) dimension (A->ncol)
The column scale factors for A.
If DiagScale = COL or BOTH, A is multiplied on the right by

diag(C).
If DiagScale = NoEQUIL or ROW, C is not defined.
If options->Fact = FACTORED or SamePattern_SameRowPerm, C is
an input argument; otherwise, C is an output argument.

B (input/output) double*
On entry, the right-hand side matrix of dimension (A->nrow, nrhs).
On exit, the solution matrix if info = 0;

NOTE: Currently, B must reside in all processes when calling
this routine.

ldb (input) int (global)
The leading dimension of matrix B.

nrhs (input) int (global)

grid

The number of right-hand sides.
If nrhs = 0, only LU decomposition is performed, the forward
and back substitution are skipped.

(input) gridinfo_t*
The 2D process mesh. It contains the MPI communicator, the number
of process rows (NPRoW), the number of process columns (NPCOL),
and my process rank. It is an input argument to all the
parallel routines.
Grid can be initialized by subroutine SUPERLU_GRIDINIT.
See superlu_ddefs.h for the definition of 'gridinfo_t'.

LUstruct (input/output) LUstruct_t*
The data structures to store the distributed L and U factors.
It contains the following fields:

o etree (int*) dimension (A->ncol)
Elimination tree of A'*A, dimension A->ncol.
It is computed in sp_colorder() during the first factorization,
and is reused in the subsequent factorizations of the matrices
with the same nonzero pattern.
On exit of sp_colorder(), the columns of A are permuted so that

95

the etree is in a certain postorder. This postorder is reflected
in ScalePermstruct->perm_c.

NOTE: Etree is a vector of parent pointers for a forest whose
vertices are the integers 0 to A->ncol-1;
etree[root] = A->ncol.

o Glu_persist (Glu_persist_t*)
Global data structure (xsup, supno) replicated on all processes,
describing the supernode partition in the factored matrices
L and U:

xsup[s] is the leading column of the s-th supernode,
supno[i] is the supernode number to which column i belongs.

o Llu (LocaILU_t*)
The distributed data structures to store L and U factors.
See superlu_ddefs.h for the definition of 'LocaILU_t'.

berr (output) double*, dimension (nrhs)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

stat (output) SuperLUStat_t*
Record the statistics on runtime and floating-point operation count.
See util.h for the definition of 'SuperLUStat_t'.

info (output) int*
= 0: successful exit
> 0: if info = i, and ~ ~s

<= A->ncol: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly singular,
so the solution could not be computed.

> A->ncol: number of bytes allocated when memory allocation
failure occurred, plus A->ncol.

C.2 pdgstrf

void
pdgstrf(superlu_options_t *options, int m, int n, double anorm,

LUstruct_t *LUstruct, gridinfo_t *grid, SuperLUStat_t *stat, int *info)

Purpose
=======

pdgstrf performs the LU factorization in parallel.

96

Arguments

options (input) superlu_options_t*
The structure defines the input parameters to control
how the LU decomposition will be performed.
The following field should be defined:
o ReplaceTinyPivot (yes_no_t)

Specifies whether to replace the tiny diagonals by
sqrt(epsilon)*norm(A) during LU factorization.

m (input) int
Number of rows in the matrix.

n (input) int
Number of columns in the matrix.

anorm (input) double
The norm of the original matrix A, or the scaled A if
equilibration was done.

LUstruct (input/output) LUstruct_t*
The data structures to store the distributed L and U factors.
The following fields should be defined:

o Glu_persist (input) Glu_persist_t*
Global data structure (xsup, supno) replicated on all processes,
describing the supernode partition in the factored matrices
L and U:

xsup[s] is the leading column of the s-th supernode,
supno[i] is the supernode number to which column i belongs.

o Llu (input/output) LocaILU_t*
The distributed data structures to store L and U factors.
See superlu_ddefs.h for the definition of 'LocaILU_t'.

grid (input) gri~info_t*
The 2D process mesh. It contains the MPI communicator, the number
of process rows (NPROW), the number of process columns (NPCOL),
and my process rank. It is an input argument to all the
parallel routines.
Grid can be initialized by subroutine SUPERLU_GRIDINIT.
See superlu_ddefs.h for the definition of 'gridinfo_t'.

stat (output) SuperLUStat_t*
Record the statistics on runtime and floating-point operation counto

97

See util.h for the definition of 'SuperLUStat_t'.

info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, U(i,i) is exactly zero. The factorization has

been completed, but the factor Uis exactly singular,
and division by zero will occur if it is used to solve a
system of equations.

C.3 pdgstrs-Bglobal

void
pdgstrs_Bglobal(int n, LUstruct_t *LUstruct, gridinfo_t *grid, double *B,
int ldb, int nrhs, SuperLUStat_t *stat, int *info)

Purpose

pdgstrs_Bglobal solves a system of distributed linear equations
A*X = B with a general N-by-N matrix A using the LU factorization
computed by pdgstrf.

Arguments
=========

n (input) int (global)
The order of the system of linear equations.

LUstruct (input) LUstruct_t*
The distributed data structures storing L and U factors.
The L and U factors are obtained from pdgstrf for
the possibly scaled and permuted matrix A.
See superlu_ddefs.h for the definition of 'LUstruct_t'.

grid (input) gridinfo_t*
The 2D process mesh. It contains the MPI communicator, the number
of process rows (NPROW), the number of process columns (NPCOL),
and my process rank. It is an input argument to all the
parallel routines.
Grid can be initialized by subroutine SUPERLU_GRIDINIT.
See superlu_ddefs.h for the definition of 'gridinfo_t'.

B (input/output) double*
On entry, the right-hand side matrix of the possibly equilibrated
and row permuted system.

98

On exit, the solution matrix of the possibly equilibrated
and row permuted system if info = 0;

NOTE: Currently, the N-by-NRHS matrix B must reside on all
processes when calling this routine.

ldb (input) int (global)
Leading dimension of matrix B.

nrhs (input) int (global)
Number of right-hand sides.

stat (output) SuperLUStat_t*
Record the statistics about the triangular solves.
See util.h for the definition of 'SuperLUStat_t'.

info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

C.4 pdgsrfs-ABXglobal

void
pdgsrfs_ABXglobal(int n, SuperMatrix *A, double anorm, LUstruct_t *LUstruct,

gridinfo_t *grid. double *B. int ldb. double *X, int ldx,
int nrhs, double *berr, SuperLUStat_t *stat, int *info)

Purpose

pdgsrfs_ABXglobal improves the computed solution to a system of linear
equations and provides error bounds and backward error estimates
for the solution.

Arguments

n (input) int (global)
The order of the system of linear equations.

A (input) SuperMatrix*
The original matrix A, or the scaled A if equilibration was done.
A is also permuted into the form Pc*Pr*A*Pc', where Pr and Pc
are permutation matrices. The type of A can be:
Stype = NCP; Dtype = _D; Mtype = GE.

99

NOTE: Currently, A must reside in all processes when calling
this routine.

anorm (input) double
The norm of the original matrix A, or the scaled A if
equilibration was done.

LUstruct (input) LUstruct_t*
The distributed data structures storing L and U factors.
The L and U factors are obtained from pdgstrf for
the possibly scaled and permuted matrix A.
See superlu_ddefs.h for the definition of 'LUstruct_t'.

grid (input) gridinfo_t*
The 2D process mesh. It contains the MPI communicator, the number
of process rows (NPROW), the number of process columns (NPCOL),
and my process rank. It is an input argument to all the
parallel routines.
Grid can be initialized by subroutine SUPERLU_GRIDINIT.
See superlu_ddefs.h for the definition of 'gridinfo_t'.

B (input) double* (global)
The N-by-NRHS right-hand side matrix of the possibly equilibrated
and row permuted system.

NOTE: Currently, B must reside on all processes when calling
this routine.

ldb (input) int (global)
Leading dimension of matrix B.

X (input/output) double* (global)
On entry, the solution matrix X, as computed by PDGSTRS.
On exit, the improved solution matrix X.
If DiagScale = COL or BOTH, X should be premultiplied by diag(C)
in order to obtain the solution to the original system.

NOTE: Currently, X must reside on all processes when calling
this routine.

ldx (input) int (global)
Leading dimension of matrix X.

nrhs (input) int
Number of right-hand sides.

berr (output) double*, dimension (nrhs)

100

The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) ,an exact solution).

stat (output) SuperLUStat_t*
Record the statistics about the refinement steps.
See util.h for the definition of SuperLUStat_t.

info (output) int*
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

101

