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Chapter 1 

Introd uction 

1.1 Purpose of SuperLU 

This document describes a collection of three related ANSI C subroutine libraries for solving sparse 
linear systems of equations AX = B; Here A is a square, nonsingular, n X n sparse matrix, 
and X and B are dense n X nrhs matrices, where nrhs is the number of right-hand sides and 
solution vectors. Matrix A need not be symmetric or definite; indeed, SuperLU is particularly 
appropriate for matrices with very unsymmetric structure. All three libraries use variations of 
Gaussian elimination optimized to take advantage both of sparsity and the computer architecture, 
in particular memory hierarchies (caches) and parallelism. 

In this introduction we refer to all three libraries collectively as Super L U. The three libraries 
within SuperLU are as follows. Detailed references are also given (see also [19]). 

• Sequential SuperLU is designed for sequential processors with one or more layers of memory 
hierarchy (caches) I5]. 

• Multithreaded SuperLU (SuperLU_MT) is designed for shared memory multiprocessors 
(SMPs), and can effectively use up to 16 or 32 parallel processors on sufficiently large matrices 
in order to speed up the computation [6]. 

• Distributed SuperLU (SuperLU_DIST) is designed for distributed memory parallel pro­
cessors, using MPI [26] for interprocess communication. It can effectively use hundreds of 
parallel processors on sufficiently large matrices in order to speed up the computation [20]. 

The rest of the Introduction is organized as follows. Section 1.2 describes the high-level algo­
rithm used by all three libraries, pointing out some common features and differences. Section 1.3 
describes the detailed algorithms, data structures, and interface issues common to all three routines. 
Section 1.4 describes how the three routines differ, emphasizing the differences that most affect the 
user. Section 1.6 describes the software status, including planned developments, bug reporting, and 
licensing. Section 1.7 describes the organization of the rest of the document. 

1.2 Overall Algorithm 

A simple description of sparse Gaussian elimination is as follows: 

1. Compute a triangular factorization PrAPe = LU. Here Pr and Pc are permutation matrices. 
Premultiplying by Pr reorders the rows of A, and postmultiplying by Pe reorders the columns 



of A. Pr and Pe are chosen to enhance sparsity, numerical stability, and parallelism. L is a, 
lower triangular matrix and U is an upper triangular matrix. Typically L is a unit triangular 
matrix, i.e. Lii = 1. 

2. Solve AX = B by evaluating X = A-I B = (Pe-
1 LU pr-

1 )-1 B = Pe(U- 1(L-l(PrB))). This 
is done efficiently by multiplying from right to left in the last expression: Multiplying PrB 
means permuting the rows of B. Multiplying L-1(PrB) means solving nrhs triangular sys­
tems of equations with matrix L by substitution. Similarly, multiplying U-l(L-l(PrB)) ' 
means solving triangular systems with U. Finally, multiplying Pe(U- 1(L- 1(Pr B))) is again 
permutation. 

The simplest implementation, used by the "simple driver routines" within SuperLU and Su­
per L U _MT, is as follows: 

Simple Driver Algorithm 

1. Choose Pe to order the columns of A to increase the sparsity of the computed Land U factors, 
and hopefully increase parallelism (for SuperLU_MT). 

2. Compute the LU factorization of APe. SuperLU and SuperLU_MT can perform dynamic 
pivoting of the rows during factorization for numerical stability, computing Pn Land U at 
the, same time. 

3. Solve the system using Pr, Pc, Land U as described above. 

The simple driver subroutines for double precision real data are called dgssv and pdgssv for' 
SuperLU and SuperLU_MT, respectively. The letter d in the subroutine names means double 
precision real; other options are s for single precision real, c for single precision complex, and z for 
double precision complex. The subroutine naming scheme is analogous to the one used in LAPACK 
[1]. 

SuperL U _DIST does not include this simple driver. 
There is also an "expert driver subroutine" that can provide more accurate solutions, compute 

error bounds, and solve a sequence of related linear systems more economically. It is available in 
all three libraries. 

Expert Driver Algorithm 

1. Equilibrate the matrix A, i.e. compute diagonal matrices Dr and De so that A = DrADe is 
"better conditioned" than A, i.e. A -1 is less sensitive to perturbations in A than A-I is to 
perturbations in A. 

2. Preorder the rows of A (SuperLU_DIST only), i.e. replace A by PrA where Pr is a permutation 
matrix. We call this step "static pivoting", and it is only done in the distributed memory 
algorithm. 

3. Order the columns of A to increase the sparsity of the computed Land U factors, and 
hopefully increase parallelism (for SuperLU_MT and SuperLU_DIST). In other words, replace 
A by AP; in SuperLU and SuperLU_MT, or replace A by PeAP; in SuperLU_DIST, where 
Pe is a permutation matrix. 

4. Compute the LU factorization of A. SuperLU and SuperLU_MT can perform dynamic pivot­
ing of the rows during factorization for numerical stability. In contrast, SuperLU _DIST uses 
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the order computed by the preordering step but replaces tiny pivots by larger numbers for 
stability. 

5. Solve the system using the computed triangular faCtors. 

6. Iteratively refine the solution, again using the computed triangular factors. This is equivalent 
to Newton's method. 

7. Compute error bounds. Both forward and backward error bounds are computed, as described 
below. 

The expert driver subroutines for double precision real data are called dgssvx, pdgssvx and 
pdgssvx...ABglobal for SuperLU, SuperLU_MT and SuperLU_DIST, respectively. Sequential Su­
perLU also provides single precision real (s), single precision complex (c), and double precision 
complex (z) versions. SuperLU_MT only provides double precision real (d). SuperLU_DIST pro­
vides both double precision real (d) and complex (z). 

The driver routines are composed of several lower level computational routines for computing 
permutations, computing L U factorization, solving triangular systems, and so on. The L U factor­
ization routine for all three libraries also handles nons quare matrices. For large matrices, the LU 
factorization steps takes most of the time, although choosing Pc to order the columns can also be 
time-consuming. 

1.3 What the three libraries have in common 

1.3.1 Input and Output Data Formats 

All three libraries accept A and B as double precision real. (Sequential SuperLU additionally 
accepts single precision real and both single and double precision complex. SuperLU _DIST also 
accepts double precision complex.) 

A is stored in a sparse data structure according to the struct Super Matrix, which is described in 
section 3.2. In particular, A may be supplied in either column-compressed format ("Harwell-Boeing 
format"), or row-compressed format (Le. AT stored in column-compressed, format). B, which is 
overwritten by the solution X, is stored as a dense matrix in column-major order. (In the current 
version of SuperLU_DIST, A and B are replicated across all processors; in a future version they 
will be distributed.) 

(The storage of Land U differs among the three libraries, as discussed in section 1.4.) 

1.3.2 Tuning Parameters for BLAS 

All three libraries depend on having high performance BLAS (Basic Linear Algebra Subroutine) 
libraries [18, 7, 8] in order to get high performance. In particular, they depend on matrix-vector 
multiplication or matrix-matrix multiplication of relatively small dense matrices. The sizes of these 
small dense matrices can be tuned to match the "sweet spot" of the BLAS by setting certain 
tuning parameters described in section 2.8.3 for SuperLU, in section 3.4.2 for SuperLU_MT, and 
in section 4.7.2 for SuperLU_DIST. 

(In addition, SuperLU_MT and SuperLU_DIST let one control the number of parallel proces.ses 
to be used, as described in section 1.4.) 
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-----------------------------------------------------------------------------------~ 

1.3.3 Performance Statistics 

The expert driver in all three libraries returns a struct with certain kinds of performance data, 
namely the time and number of floating point operations in each phase of the computation, and· 
data about the sizes of the matrices Land U. These statistics are collected in the course of the 
computation. A variable SuperLUStat is declared with the following type: 

typedef struet { 
·int *panel_histo; 1* histogram of panel size distribution *1 
double *utime; 1* time spent in various phases *1 
float *ops; 1* floating-point operation count in various phases *1 

} SuperLUStat_t; 

For both SuperLU and SuperLU_MT, there is only one copy of these statistics variable. But 
for SuperLU_DIST, each process keeps a local copy ofthis variable, and records its local statistics. 
We need to use MPI reduction routines to find any global information, such as the sum of the 
floating-point operation count on all processes. 

Before the computation, routine Statlni t should be called to malloc storage and perform 
initialization for the fields panel...histo, utime, and ops. The phases are defined by the enumeration 
type PhaseType in SRC/util. h. In the end, routine StatFree should be called to free storage of the 
above statistics fields. After deallocation, the statistics are no longer accessible. Therefore, users 
should extract the information they need before calling StatFree, which can be accomplished by 
calling StatPrint. 

An inquiry function dQuerySpace is provided to compute memory usage statistics. This routine 
should be called after the LU factorization. It calculates the storage requirement based on the size 
of the Land U data structures and working arrays. 

1.3.4 Error Handling 

Invalid Arguments and XERBLA 

Similar to LAPACK, for all the SuperLU routines, we check the validity of the input arguments 
to each routine .. 1£ an illegal value is supplied to one of the input arguments, the error handler 
XERBLA is called, and a message is written to the standard output, indicating which argument 
has an illegal value. The program returns immediately from the routine, with a negative value of 
INFO. 

Computational failures with INFO> 0 

A positive value of INFO on return from a routine indicates a failure in the course of the computa­
tion, such as a matrix being singular, or the amount of memory (in bytes) already allocated when 
malloc fails. 

ABORT on unrecoverable errors 

A macro ABORT is defined in SRC/util.h to handle unrecoverable errors that occur in the middle 
of the computation, such as malloe failure. The default action of ABORT is to call 

superlu_abort_and_exitCchar *msg) 
which prints an error message, the line number and the file name at which the error occurs, and 
calls the exit function to terminate the program. 
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If this type of termination is not appropriate in some environment, users can alter the behavior 
of the abort function. When compiling the SuperLU library, users may choose the C preprocessor 
definition 

-DUSER-ABORT = my_abort 
At the same time, users would supply the following my _abort function 

my_abort(char *msg) 
which overrides the behavior of superlu_abort_and_exit. 

1.3.5 Ordering the Columns of A for Sparse Factors 

There is a choice of orderings for the columns of A either in the simple or expert driver, in section 1.2: 

• Natural ordering, 

• Multiple Minimum Degree (MMD) [22] applied to the structure of AT A, 

• Multiple Minimum Degree (MMD) [22] applied to the structure of AT + A, 

• Column Approximate Minimum Degree (COLAMD) [4], and 

• Use a Pc supplied by the user as input. 

COLAMD is designed particularly for un symmetric matrices, and does not require explicit 
formation of AT A. It usually gives comparable orderings as MMD on AT A, and is faster. 

The orderings based on graph partitioning heuristics are also popular, as exemplified in the 
METIS package [17]. The user can simply input this ordering in the permutation vector for Pc. 
Note that many graph partitioning algorithms are designed for symmetric matrices. The user may 
still apply them to the structures of AT A or A + AT. Our routines getata and a_pIus_at in the 
file get_perm_c. c can be used to form AT A or A + AT. 

1.3.6 Iterative Refinement 

Step 6 of the expert driver algorithm, iterative refinement, serves to increase accuracy of the 
computed solution. Given the initial approximate solution x from step 5, the algorithm for step 6 
is as follows (where x and b are single columns of X and B, respectively): 

Compute residual r = Ax - b 
While residual too large 

Solve Ad = r for correction d 
Update solution x = x - d 
Update residual r = Ax - b 

end while 

If r and then d were computed exactly, the updated solution x - d would be the exact solution. 
Roundoff prevents immediate convergence. 

The criterion "residual too large" in the iterative refinement algorithm above is essentially that 

BERR == m~x Irill Si (1.1 ) 
! 
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exceeds the machine roundoff level, or is continuing to decrease quickly enough. Here Si is the scale 
factor 

Si = (IAI'lxl + Ibl)i = L IAijl 'Ixjl + Ibil 
j 

In this expression IAI is the n-by-n matrix with entries IAlij = IAijl, Ihl and Ixl are similarly 
column vectors of absolute entries of b and x, respectively, and IAI . Ixl is conventional matrix­
vector multiplication. 

The purpose of this stopping criterion is explained in the next section. 

1.3.7 Error Bounds 

Step 7 of the expert driver algorithm computes error bounds. 
It is shown in [2, 23] that BERR defined in Equation 1.1 measures the componentwise relative 

backward error of the computed solution. This means that the computed x satisfies a slightly 
perturbed linear system of equations (A + E)x = b + j, where IEijl ~ BERR· IAijl and llil ~ 
BERR· Ibil for all i and j. It is shown in [2, 25] that one step of iterative refinement usually 
reduces BERR to near machine epsilon. For example, if BERR is 4 times machine epsilon, then 
the computed solution x is identical to the solution one would get by changing each nonzero entry 
of A and b by at most 4 units in their last places, and then solving this perturbed system exactly. 
If the nonzero entries of A and b are uncertain in their bottom 2 bits, then one should generally not 
expect a more accurate solution. Thus BERR is a measure of backward error specifically suited 
to solving sparse linear systems of equations. Despite roundoff, BERR itself is always computed 
to within about ±n times machine epsilon (and usually much more accurately) and so BERR is 
quite accurate. 

In addition to backward error, the expert driver computes a forward error bound 

Here IIxlioo == maxi IXil. Thus, if F ERR = 10-6 then each component of x has an error bounded 
by about 10-6 times the largest component of x. The algorithm used to compute FERR is an 
approximation; see [2, 16] for a discussion. Generally F ERR is accurate to within a factor of 10 
or better, which is adequate to say how many digits of the large entries of x are correct. 

(SuperLU_DIST's algorithm for FERR is slightly less reliable [20].) 

1.3.8 Solving a Sequence of Related Linear Systems 

It is very common to solve a sequence ofrelated linear systems A(l)X(l) = B(l), A(2)X(2) = B(2), ... 

rather than just one. When A(l) and A(2) are similar enough in sparsity pattern and/or numerical 
entries, it is possible to save some of the work done when solving with A (1) to solve with A (2). 

This can.result in significant savings. Here are the options, in increasing order of "reuse of prior 
information" : 

1. Factor from scratch. No previous information is used. If one were solving just one linear 
system, or a sequence of unrelated linear systems, this is the option to use. 

2. Reuse PC) the column permutation. The user may save the column permutation and reuse 
it. This is most useful when A(2) has the same sparsity structure as A(l), but not necessarily 
the same (or similar) numerical entries. Reusing Pc saves the sometimes quite expensive 
operation of computing it. 
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3. Reuse PC! Pr and data structures allocated for Land U. If Pr and Pc do not change, then the 
work of building the data structures associated with Land U (including the elimination tree 
[13]) can be avoided. This is most useful when A (2) has the same sparsity structure and similar 
numerical entries as A (1). When the numerical entries are not similar, one can still use this 
option, but at a higher risk of numerical instability (BERR will always report whether or not 
the solution was computed stably, so one cannot get an unstable answer without warning). 

4. Reuse PC! Pr! Land U. In other words, we reuse essentially everything. This is most 
commonly used when A(2) = A(l), but B(2) f= B(l), i.e. when only the right-hand sides differ. 
It could also be used when A(2) and A(l) differed just slightly in numerical values, in the 
hopes that iterative refinement converges (using A (2) to compute residuals but the triangular 
factorization of A (1) to solve). 

Because of the different ways Land U are computed and stored in the three libraries, these 4 
options are specified slightly differently; see Chapters 2 through 4 for details. 

1.3.9 Interfacing to other languages 

All three drivers, and their computational routines, may be called by C or Fortran. 

1.4 How the three libraries differ 

1.4.1 Input and Output Data Formats 

All Sequential SuperLU routines are available in single and double precision (real or complex), but 
SuperLU_MT routines are only available in double precision real, and SuperLU~IST routines are 
available in double precision (real or complex). 

L and U are stored in different formats in the three libraries: 

• Land U in Sequential SuperL U. L is a "column-supernodal" matrix, in storage type SCformat. 
This means it is stored sparsely, with supernodes (consecutive columns with identical struc­
tures) stored as dense blocks. U is stored in column-compressed format NCformat. See 
section 2.3 for details. 

• Land U in SuperLU~T. Because of parallelism, the columns of Land U may not be 
computed in consecutive order, so they may be allocated and stored out of order. This means 
we use the "column-supernodal-permuted" format SCPformat for L and "column-permuted" 
format NCPformat for U. See section 3.2 for details. 

• Land U in SuperLU_DIST. Now Land U are distributed across multiple processors. As 
described in detail in section 4.3, we use a 2-D block-cyclic format, which has been used 
for dense matrices in libraries like ScaLAPACK [3]. But for sparse matrices, the blocks are 
no longer identical in size, and vary depending on the sparsity structure of Land U. The 
detailed storage format is discussed in section 4.4 and illustrated in Figure 4.1. 

1.4.2 Parallelism 

Sequential SuperL U has no explicit parallelism. Some parallelism may still be exploited on an 
SMP by using a multithreaded BLAS library if available. But it is likely to be more effective to 
use SuperLU_MT on an SMP, described next. 
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SuperLU_MT lets the user choose the number of parallel threads to use. The mechanism varies 
from platform to platform and is described in section 3.6. 

Super.LU.J)IST not only lets the user specify the number of processors, but how they are 
arranged into a 2-D grid. Furthermore, MPI permits any subset of the processors allocated to the 
user may be used for SuperLU_DIST, not just consecutively numbered processors (say 0 through 
P-1). See section 4.3 for details. 

1.4.3 Pivoting Strategies for Stability 

Sequential SuperLU and SuperLU_MT use the same pivoting strategy, called threshold pivoting, to 
determine the row permutation Pro Suppose we have factored the first i-I columns of A, and are 
seeking the pivot for column i. Let ami be a largest entry in magnitude on or below the diagonal 
of the partially factored A: /ami/ = maXj;::i /aji/' Depending on a threshold 0 < u ::; 1 input by the 
user, the code will use the diagonal entry aii as the pivot in column i as long as laid 2: u ·!ami!, and 
otherwise use ami. So if the user sets u = 1, ami (or an equally large entry) will be selected as the 
pivot; this corresponds to the classical partial pivoting strategy. If the user has ordered the matrix 
so that choosing diagonal pivots is particularly good for sparsity or parallelism, then smaller values 
of u will tend to choose those diagonal pivots, at the risk of less numerical stability. Using u = 0 
guarantees that the pivots on the diagonal will be chosen, unless they are zero. The error bound 
BERR measure how much stability is actually lost. 

Threshold pivoting turns out to be hard to parallelize on distributed memory machines, because 
of the fine-grain communication and dynamic data structures required. So SuperL U _DIST uses a 
new scheme called static pivoting instead. In static pivoting the pivot order (Pr ) is chosen before 
numerical factorization, using a weighted perfect matching algorithm (9], and kept fixed during 
factorization. Since both row and column orders (Pr and Pc) are fixed before numerical factoriza­
tion, we can extensively optimize the data layout, load balance, and communication schedule. The 
price is a higher risk of numeric instability, which is mitigated by diagonal scaling, setting very 
tiny pivots to larger values, and iterative refinement [20]. Again, error bound BERR measure how 
much stability is actually lost. 

1.4.4 Memory Management 

Because offill-in of entries during Gaussian elimination, Land U typically have many more nonzero 
entries than A. If Pr and Pc are not already known, we cannot determine the number and locations 
of these nonzeros before performing the numerical factorization. This means that some kind of 
dynamic memory allocation is needed. 

Sequential SuperL U lets the user either supply a preallocated space work [J of length lwork, or 
depend on malloc/free. The variable FILL can be used to help the code predict the amount of fill, 
which can reduce both fragmentation and the number of calls to malloc/free. If the initial estimate 
of the size of Land U from FILL is too small, the routine allocates more space and copies the 
current Land U factors to the new space and frees the old space. If the routine cannot allocate 
enough space, it calls a user-specifiable routine ABORT. See sections 1.3.4 for details. 

SuperLU_MT is similar, except that the current alpha version cannot reallocate more space for 
Land U if the initial size estimate from FILL is too small. Instead, the program calls ABORT and 
the user must start over with a larger value of FILL. See section 3.4.2. 

SuperLU_DIST actually has a simpler memory management chore, because once Pr and Pc are 
determined, the structures of Land U can be determined efficiently and just the right amount of 
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· memory allocated using malloc and later free. So it will call ABORT only if there is really not 
enough memory available to solve the problem. 

1.4.5 Interfacing to other languages 

Sequential SuperLU has a Matlab interface to the driver via a MEX file. See section 2.7 for details. 

1.5 Performance 

SuperLU library incorporates a number of novel algorithmic ideas developed recently. These al­
gorithms also exploit the features of modern computer architectures, in particular, the multi:level 
cache organization and parallelism. We have conducted extensive experiments on various plat­
forms, with a large collection of test matrices. The Sequential SuperLU achieved up to 40% of the 
theoretical floating-point rate on a number of processors, see [5, 19]. The megaflop rate usually 
increases with increasing ratio of floating-point operations count over the number of nonzeros in the 
Land U factors. The parallel LU factorization in SuperLU_MT demonstrated 5-10 fold speedups 
on a range of commercially popular SMPs, and up to 2.5 Gigaflops factorization rate, see [6, 19]. 
The parallel LU factorization in SuperLU _DIST achieved up to 100 fold speedup on a 512-processor 
Cray T3E, and 10.2 Gigaflops factorization rate, see [20,21]. 

1.6 Software Status and Availability 

All three libraries are freely available for all uses, commercial or noncommercial, subject to the 
following caveats. No warranty is expressed or implied by the authors, although we will gladly 
answer questions and try to :fix all reported bugs. We ask that proper credit be given to the 
authors and that a notice be included if any modifications are made. 

1. Some subroutines carry the following notice: 

Copyright (c) 1994 by Xerox Corporation. All rights reserved. 
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY 
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. 

Permission is hereby granted to use or copy this program for any purpose, provided 
the above notices are retained on all copies. Permission to modify the code and to 
distribute modified code is granted, provided the above notices are retained, and a 
notice that the code was modified is included with the above copyright notice. 

2. The MC64 package carries the following notice: 

COPYRIGHT (c) 1999 Council for the Central Laboratory of the Research Coun­
cils. All rights reserved. PACKAGE MC64A/ AD AUTHORS lain Duff (i.duff@rl.ac.uk) 
and Jacko Koster (jak@iLuib.no) LAST UPDATE 20/09/99 

*** Conditions on external use *** 
The user shall acknowledge the contribution of this package in any publication of 
material dependent upon the use of the package. The user shall use reasonable 
endeavours to notify the authors of the package of this publication. 

The user can modify this code but, at no time shall the right or title to all or any 
part of this package pass to the user. The user shall make available free of charge 
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to the authors for any purpose all information relating to any alteration or addition 
made to this package for the purposes of extending the capabilities or enhancing 
the performance of this package. 

The user shall not pass this code directly to a third party without the express prior 
consent of the authors. Users wanting to licence their own copy of these routines 
should send email to hsl@aeat.co.uk 

None of the comments from the Copyright notice up to and including this one shall 
be removed or altered in any way. 

All three libraries can be obtained from Netlib through the URL address: 

http://~~~.netlib.org/scalapack/prototype/ 

They are also available on the FTP server at UC Berkeley: 

ftp ftp.cs.berkeley.edu 
login: anonymous 
ftp> cd /pub/src/lapack/SuperLU 
ftp> binary 
ftp> get superlu_2.0.tar.gz 

In the future, we will add more functionality in the software, such as sequential and parallel in­
complete L U factorizations, as well as parallel symbolic and ordering algorithms for SuperL U _DIST; 
these latter routines would replace MC64 and have no restrictions on external use. 

All bugs reports and other queries should be e-mailed to xiaoye@nersc.gov and 
demmel@cs.berkeley.edu. 

1.7 Document organization 

The rest of this document is organized as follows. Chapter 2 describes Sequential SuperLU. Chap­
ter 3 describes SuperLU_MT. Chapter 4 describes SuperLU_DIST. Finally, the calling sequence and 
the leading comment of the user-callable routines for all three libraries are listed in the appentices. 
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Chapter 2 

Sequential SuperLU 

2.1 About SuperLU 

In this chapter, SuperLU will always mean Sequential SuperLU. The SuperLU package contains a 
set of subroutines to solve sparse linear systems AX = B. Here A is a square, nonsingular, n x n 
sparse matrix, and X and B are dense n x nrhs matrices, where nrhs is the number of right­
hand sides and solution vectors. Matrix A need not be symmetric or definite; indeed, SuperLU is 
particularly appropriate for matrices with very unsymmetric structure. 

The package uses L U decomposition with partial (or threshold) pivoting, and forward/back 
substitutions. The columns of A may be preordered before factorization (either by the user or by 
SuperLU); this preordering for sparsity is completely separate from the factorization. To improve 
backward stability, we provide working precision iterative refinement subroutines [2]. Routines 
are also available to equilibrate the system, estimate the condition number, calculate the relative 
backward error, and estimate error bounds for the refined solutions. We also include a Matlab 
MEX-file interface, so that our factor and solve routines can be called as alternatives to those built 
into Matlab. The LU factorization routines can handle non-square matrices, but the triangular 
solves are performed only for square matrices. 

The factorization algorithm uses a graph reduction technique to reduce graph traversal time in 
the symbolic analysis. We exploit dense submatrices in the numerical kernel, and organize compu­
tationalloops in a way that reduces data movement between levels of the memory hierarchy. The 
resulting algorithm is highly efficient on modern architectures. The performance gains are particu­
larly evident for large problems. There are "tuning parameters" to optimize the peak performance 
as a function of cache size. For a detailed description of the algorithm, see reference [5]. 

SuperLU is implemented in ANSI C, and must be compiled with a standard ANSI C compiler. 
It includes versions for both real and complex matrices, in both single and double precision. The 
file names for the single-precision real version start with letter "s" (such as sgstrf .c); the file 
names for the double-precision real version start with letter "d" (such as dgstrf . c); the file names 
for the single-precision complex version start with letter "c" (such as cgstrf . c); the file names for 
the double-precision complex version start with letter "z" (such as zgstrf .c). 

2.2 How to call a SuperL U routine 

As a simple example, let us consider how to solve a 5 x 5 sparse linear system AX = B, by calling 
a driver routine dgssv. Figure 2.1 shows matrix A, and its Land U factors. This sample program 
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s u u 
l u 

I p 
e u 

r 

Original matrix A 
s = 19, U = 21, P = 16, e = 5, r = 18, l = 12 

19.00 21.00 21.00 
0.63 21.00 -13.26 -13.26 

0.57 23.58 7.58 
5.00 21.00 

0.63 0.57 -0.24 -0.77 34.20 

Factors F = L + U - I 

Figure 2.1: A 5 X 5 matrix and its Land U factors. 

is located in SuperLU/EXAMPLE/superlu. c. 
The program first initializes the three arrays, a[], asub [] and xa[], which store the nonzero 

coefficients of matrix A, their row indices, and the indices indicating the beginning of each column in 
the coefficient and row index arrays. This storage format is called compressed column format, also. 
known as Harwell-Boeing format [10]. Next, the two utility routines dCreate_CompCoLMatrix and 
dCreateJ)ense.-Matrix are called to set up matrices A and B, respectively, in the data structures 
internally used by SuperLU. The routine get_perm_c is called to generate a column permutation 
vector, stored in perm_c []. A good column permutation should make the Land U factors as sparse 
as possible. The user can supply perm_c [] instead of using the one provided by SuperL U. After 
calling the Super L U routine dgssv, the B matrix is overwritten by the solution matrix X. In 
the end, all the dynamically allocated data structures are de-allocated by calling various utility 
routines. 

SuperLU can perform more general tasks, which will be explained later. 

#include "dsp_defs.h" 
#include "util.h" 

main(int argc, char *argv[]) 
{ 

SuperMatrix A, L, U, B; 
double *a, *rhs; 

s, u, p, e, r, 1; 

*asub, *xa; 
double 
int 
int 
int 

*perm_r; /* row permutations from partial pivoting */ 
*perm_c; /* column permutation vector */ 

int nrhs, info, i, m, n, nnz, permc_spec; 

/* Initialize matrix A. */ 
ill = n = 5; 
nnz = 12; 
if ( ! (a = doubleMalloc(nnz)) ) ABORT("Malloc fails for a[]. II); 
if ( ! (asub = intMalloc(nnz)) ) ABORT("Malloc fails for asub [] . ") ; 
if ( ! (xa = intMalloc(n+1)) ) ABORT("Malloc fails for xa[] . II); 
S = 19.0; u = 21.0; P = 16.0; e = 5.0; r = 18.0; 1 = 12.0; 
a[O] = s; a[1] = 1; a[2] = 1; a[3] = u; a[4] = 1; a[5] = 1; 
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} 

a[6] = u; a[7] = p; a[8] = u; a[9] = e; a[10]= u; a[ll]= r; 
asub[O] = 0; asub[l] = 1; asub[2] = 4; asub[3] = 1; 
asub[4] = 2; asub[5] = 4; asub[6] = 0; asub[7] = 2; 
asub[8] = 0; asub[9] = 3; asub[10]= 3; asub[ll]= 4; 
xa[O] = 0; xa[l] = 3; xa[2] = 6; xa[3] = 8; xa[4] = 10; xa[5] = 12; 

1* Create matrix A in the format expected by SuperLU. *1 
dCreate_CompCol_Matrix(&A, m,n, nnz, a, asub, xa, NC, _D, GE); 

1* Create right-hand side matrix B. *1 
nrhs = 1; 
if ( ! (rhs = doubleMalIoc (m * nrhs)) ) ABORT ( II Malloc fails for rhs [] . ") ; 
for (i = 0; i < m; ++i) rhs[i] = 1.0; 
dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, DN, _D, GE); 

if ( ! (perm_r = intMalIoc(m)) ) ABORT("MalIoc fails for perm_d] . "); 
if ( !Cperm_c = intMalIoc(n» ) ABORT("MalIoc fails for perm_c[].II); 

1* 
* Get column permutation vector perm_c[], according to permc_spec: 
* perme_spec = 0: use the natural ordering 
* permc_spec = 1: use minimum degree ordering on structure of A'*A 
* permc_spec = 2: use minimum degree ordering on structure of A'+A 
*1 

permc_spec = 0; 
get_perm_cCpermc_spec, &A, perm_c); 

dgssv(&A, perm_c, perm_r, &L, &U, &B, &info); 

dPrint_CompCol_Matrix(IA", &A); 
dPrint_CompCoLMatrix(IU", &U); 
dPrint_SuperNode_Matrix("L", &L); 
Printlntl0C"\nperm_rtl, m, perm_r); 

1* De-allocate storage *1 
SUPERLU_FREE (rhs); 
SUPERLU_FREE (perm_r); 
SUPERLU_FREE (perm_c); 
Destroy_CompCol_Matrix(&A); 
Destroy_SuperMatrix_Store(&B); 
Destroy_SuperNode_Matrix(&L); 
Destroy_CompCol_Matrix(&U); 
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typedef struct { 
Stype_ t Stype: 

} 

Dtype_t Dtype: 
Mtype_t Mtype: 
int nrow; 
int ncol; 
void *Store; 

SuperMatrix; 

typedef enum { 

NC, . 1* 
NR, 1* 
SC, 1* 
SR, 1* 
NCP, 1* 

DN 1* 
} Stype~t; 

typedef enum { 

_S, 1* 
_D, 1* 
_C, 1* 
_Z 1* 

} Dtype~t; 

typedef enum { 

GE, 1* 
TRLU, 1* 
TRUU, 1* 
TRL, 1* 
TRU, 1* 
SYL; 1* 
SYU, 1* 
HEL, 1* 
HEU 1* 

} Mtype_t; 

1* Storage type: indicates the storage format of *Store. *1 
1* Data type. *1 
1* Mathematical type *1 
1* number of rows *1 
1* number of columns ~I 
1* pointer to the actual storage of the matrix *1 

column-wise, not supernodal *1 
row-wise, not supernodal *1 
column-wise. supernodal *1 
row-wise, supernodal *1 
column-wise, not supernodal, permuted by columns 
(After column permutation. the consecutive columns of 
nonzeros may not be stored contiguously. *1 

Fortran style column-wise storage for dense matrix *1 

single *1 
double *1 
single-complex *1 
double-complex *1 

general *1 
lower triangular, unit diagonal *1 
upper triangular, unit diagonal *1 
lower triangular *1 
upper triangular *1 
symmetric, store lower half *1 
symmetric, store upper half *1 
Hermitian, ~store lower half *1 
Hermitian, store upper half *1 

Figure 2.2: SuperMatrix data structure. 
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2.3 Matrix data structures 

SuperLU uses a principal data structure SuperMatrix (defined in SRC/supermatrix.h) to repre­
sent a general matrix, sparse or dense. Figure 2.2 presents the specification of the SuperMatrix 
structure. The SuperMatrix structure contains two levels of fields. The first level defines all the 
properties of a matrix which are independent of how it is stored in memory. In particular, it speci­
fies the following three orthogonal properties: storage type (Stype) indicates the type of the storage 
scheme in *Store; data type (Otype) encodes the four precisions; mathematical type (Mtype) spec­
ifies some mathematical properties. The second level (*Store) points to the actual storage used 
to store the matrix. We associate with each Stype xx a storage format called XXformat, such as 
NCformat, SCformat, etc. 

The SuperMatrix type so defined can accommodate various types of matrix structures and 
appropriate operations to be applied on them, although currently SuperLU implements only a 
subset of this collection. Specifically, matrices A, L, U, B, and X can have the following types: 

A L U B X 
Stype NC or NR SC NC ON ON 
Otype1 any any any any any 
Mtype GE TRLU TRU GE GE 

In what follows, we illustrate the storage schemes defined by Stype. Following C's co.nvention, 
all array indices and locations below are zero-based . 

• A may have storage type NC or NR. The NC format is the same as the Harwell-Boeing sparse 
matrix format [10], that is, the compressed column storage. 

typedef struct { 
int nnz; 
void *nzval; 
int *rowind; 
int *colptr; 

} NCformat; 

/* 
/* 
/* 
/* 

number of nonzeros in the matrix */ 
array of nonzero values packed by column */ . 
array of row indices of the nonzeros */ 
colptr[j] stores the location in nzval[] and rowind[] 
which starts column j. It has ncol+l entries. 
and colptr[ncol] = nnz. */ 

The NR format is the compressed row storage defined below. 

typedef struct { 
int nnz; 
void *nzval; 
int *colind; 
int *rowptr; 

} NRformat; 

1* number of nonzeros in the matrix *1 
/* array of nonzero values packed by row */ 
/* array of column indices of the nonzeros */ 
/* rowptr[j] stores the location in nzval[] and colind[] 

which starts row j. It has nrow+l entries. 
and rowptr[nrow] = nnz. */ 

IDtype can be one of _8, -Il, _C or _Z. 
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The factorization and solve routines in SuperLU are designed to handle column-wise storage 
only. If the input matrix A is in row-oriented storage, i.e., in NR format, then the driver 
routines (dgssv and dgssvx) actually perform the LU decomposition on AT, which is column­
wise, and solve the system using the LT and UT factors. The data structures holding Land U . 
on output are different (swapped) from the data structures you get from column-wise input. 
For more detailed descriptions about this process, please refer to the leading comments of 
routines dgssv and dgssvx in Appendix A. 

Alternatively, the users may call a utility routine dCompRmLto_CompCol to convert the input 
matrix in NR format to another matrix in NC format, before calling SuperLU. The definition 
of this routine is 

void sCompRow_to_CompCol(int m, int n, int nnz, 
float *a, int *colind, int *rowptr, 
float **at, int **rowind, int **colptr); 

This conversion takes time proportional to the number of nonzeros in A. However, it requires 
storage for a separate copy of matrix A . 

• L is a supernodal matrix with the storage type SC. Due to the supernodal structure, L is in 
fact stored as a sparse block lower triangular matrix [5]. 

typedef struct { 
int nnz; 
int nsuper; 
void *nzval; 
int *nzval_colptr; 

/* number of nonzeros in the matrix */ 
/* index of the last supernode */ 
1* array of nonzero values packed by column */ 
1* nzval_colptr[j] stores the location in 

nzval[] which starts column j *1 
int *rowind; /* array of compressed row indices of 

rectangular supernodes *1 
int *rowind_colptr;l* rowind_colptr[j] stores the location in 

rowind[] which starts column j *1 
int *col_to_sup; 1* col_to_sup[j] is the supernode number to 

which column j belongs */ 
int *sup_to_col; /* sup_to_col[s] points to the starting column 

of the s-th supernode *1 
} SCformat; 

• Both B and X are stored as conventional two-dimensional arrays in column-major order, with 
the storage type DN. 

typedef struct { 
int Ida; /* leading dimension */ 
void *nzval; /* array of size lda-by-ncol to represent 

a dense matrix */ 
} DNformat; 

Figure 2.3 shows the data structures for the example matrices in Figure 2.1. 
For a description of NCPformat, see section 2.4.1. 
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• A = { Stype = NC; Dtype = _D; Mtype = GE; nrow = 5; ncol = 5; 
*Store = { nnz = 12; 

} 

} 

nzval = [ 19.00, 12.00, 12.00, 21.00, 12.00, 12.00, 21.00, 
16.00, 21.00,5.00, 21.00, 18.00 ]; 

rowind = [ 0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3,4 ]; 
colptr = [0,3,6,8, 10, 12]; 

• U = { Stype = NC; Dtype = _D; Mtype = TRU; nrow = 5; ncol = 5; 

} 

*Store = { nnz = 11; 

} 

nzval = [ 21.00, -13.26, 7.58, 21.00]; 
rowind = [0, 1,2, 0]; 
colptr = [ 0,0, 0, 1,4,4]; 

• L = { Stype = SC; Dtype = _D; Mtype = TRLU; nrow = 5; ncol = 5; 
*Store = { nnz = 11; 

} 

} 

nsuper = 2; 
nzval = [ 19.00, 0.63, 0.63, 21.00, 0.57, 0.57, -13.26, 

23.58, -6.24, 5.00, -0.77, 21.00, 34.20]; 
nzval_colptr = [ ° 3, 6, 9, 11, 13 ]; 
rowind = [ 0, 1, 4, 1, 2, 4, 3, 4 ] ; 
rowind_colptr = [ 0, 3, 6, 6, 8, 8 ] ; 
col_to_sup = [0, 1, 1,2,2]; 
sup_to_col = [0, 1,3,5 ]; 

Figure 2.3: The data structures for a 5 X 5 matrix and its LU factors, as represented III the 
SuperMatrix data structure. Zero-based indexing is used. 
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2.4 Permutations 

Two permutation matrices are involved in the solution process. In fact, the actual factorization we 
perform is PrAP,! = LU, where Pr is determined from partial pivoting (with a threshold pivoting 
option), and Pc is a column permutation chosen either by the user or SuperLU, usually to make the 
Land U factors as sparse as possible. Pr and Pc are represented by two integer vectors perm...r [] . 
and perm_c[], which are the permutations of the integers (0: m - 1) and (0 : n - 1), respectively. 

2.4.1 Ordering for sparsity 

Column reordering for sparsity is completely separate from the LU factorization. The column 
permutation Pc should be applied before calling the factorization routine dgstrf. In principle, any 
ordering heuristic used for symmetric matrices can be applied to AT A (or A + AT if the matrix is 
nearly structurally symmetric) to obtain Pc. Currently, we provide the following ordering options 
through subroutine get_perm_c. 

void get_perm_c(int ispec, SuperMatrix *A, int *perm_c); 

Ispec specifies the ordering to be returned in *perm_c, the integer vector representing the 
permutation matrix Pc: 

ispec = 0: natural ordering (i.e., Pc = 1) 
= 1: MMD applied to the structure of AT A 
= 2: MMD applied to the structure of A + AT 
= 3: COLAMD, approximate minimum degree column ordering 

Alternatively, the users can provide their own column permutation vector. For example, it 
may be an ordering suitable for the underlying physical problem. Both driver routines dgssv and 
dgssvx take perm_c [] as an input argument. 

After permutation Pc is applied to A, we use NCP format to represent the permuted matrix API, 
in which the consecutive columns of non zeros may not be stored contiguously in memory. Therefore, 
we need two separate arrays of pointers, colbeg [] and col end [], to indicate the beginning and 
end of each column in nzval [] and rowind [] . 

typedef struct { 
int nnz; 
void *nzval; 
int *rowind; 
int *colbeg; 

int *colend; 

} NCPformat; 

1* 
1* 
1* 
1* 

/* 

number of nonzeros in the matrix *1 
array of nonzero values, packed by column */ 
array of row indices of the nonzeros *1 
colbeg[j] points to the location in nzval[] and rowind[] 
which starts column j *1 
colend[j] points to one past the location in nzval[] 
and rowind[] which ends column j */ 

2.4.2 Partial pivoting with threshold 

We have included a threshold pivoting parameter u E [0,1] to control numerical stability. The 
user can choose to use a row permutation obtained from a previous factorization. (The argument 
*ref act = 'Y' should be passed to the factorization routine dgstrf.) The pivoting subroutine 
dpivotL checks whether this choice of pivot satisfies the threshold; if not, it will try the diagonal 
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element. If neither of the above satisfies the threshold, the maximum magnitude element in the 
column will be used as the pivot. The pseudo-code of the pivoting policy for column j is given 
below. 

(2) if user specifies pivot row k and \akj\ 2:: thresh and akj =I 0 then 
pivot row = k; 

else if lajjl 2:: thresh and ajj =I 0 then 
pivot row = j; 

else 
pivot row = m; 

endif; 

Two special values of u result in the following two strategies: 

• u = 0.0: either use user-specified pivot order if available, or else use diagonal pivot; 

• u = 1.0: classical partial pivoting. 

2.5 Memory management for Land U 

In the sparse LU algorithm, the amount of space needed to hold the data structures of Land U 
cannot be accurately predicted prior to the factorization. The dynamically growing arrays include 
those for the nonzero values (nzval) and the compressed row indices (ro'!lind) of L, and for the 
nonzero values (nzval) and the row indices (ro'!lind) of U. 

Two alternative memory models are presented to the user: 

• system-level - based on e's dynamic allocation capability (malloe/free); 

• user-level - based on a user-supplied '!lork [] array of size l'!lork (in bytes). This is similar 
to Fortran-style handling of work space. Work [] is organized as a two-ended stack, one end 
holding the Land U data structures, the other end holding the auxiliary arrays of known 
size. 

Except for the different ways to allocate! deallocate space, the logical view of the memory 
organization is the same for both schemes. Now we describe the policies in the memory module. 

At the outset of the factorization, we guess there will be FILL*nnz (A) fills in the factors and 
allocate corresponding storage for the above four arrays, where nnz (A) is the number of nonzeros 
in original matrix A, and FILL is an integer, say 20. (The value of FILL can be set in an inquiry 
function sp_ienvO, see section 2.8.3.) If this initial request exceeds the physical memory constraint, 
the FILL factor is repeatedly reduced, and attempts are made to allocate smaller arrays, until the 
initial allocation succeeds. 

During the factorization, if any array size exceeds the allocated bound, we expand it as follows. 
We first allocate a chunk of new memory of size EXPAND times the old size, then copy the existing 
data into the new memory, and then free the old storage. The extra copying is necessary, because the 
factorization algorithm requires that each of the aforementioned four data structures be contiguous 
in memory. The values of FILL and EXPAND are normally set to 20 and 1.5, respectively. See 
xmemory . e for details. 
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After factorization, we do not garbage-collect the extra space that may have been allocated. 
Thus, there will be external fragmentation in the Land U data structures. The settings of FILL and 
EXPAND should take into account the trade-off between the number of expansions and the amount 
of fragmentation. 

Arrays of known size, such as various column pointers and working arrays, are allocated just 
once. All dynamically-allocated working arrays are freed after factorization. 

2.6 User-callable routines 

The naming conventions, calling sequences and functionality of these routines mimic the corre­
sponding LAPACK software [1]. In the routine names, such as dgstrf, we use the two letters GS to 
denote general sparse matrices. The leading letterx stands for S, D, C, or Z, specifying the data 
type. Appendix A contains, for each individual routine, the leading comments and the complete 
specification of the calling sequence and arguments. 

2.6.1 Driver routines 

We provide two types of driver routines for solving systems of linear equations. The driver routines 
can handle both column- and row-oriented storage schemes. 

• A SImple driver dgssv, which solves the system AX = B by factorizing A and overwriting B 
with the solution X. 

• An expert driver dgssvx, which, in addition to the above, also performs the following functions 
(some of them optionally): 

- solve ATX = B; 

- equilibrate the system (scale A's rows and columns to have unit norm) if A is poorly 
scaled; 

- estimate the condition number of A, check for near-singularity, and check for pivot 
growth; 

- refine the solution and compute forward and backward error bounds. 

These driver routines cover all the functionality of the computational routines. We expect that 
most users can simply use these driver routines to fulfill their tasks with no need to bother with 
the computational routines. 

2.6.2 Computational routines 

The users can invoke the following computational routines, instead ofthe driver routines, to directly 
control the behavior of SuperLU. The computational routines can only handle column-oriented 
storage. 

• dgstrf: Factorize. 

This implements the first-time factorization, or later re-factorization with the same nonzero 
pattern. In re-factorizations, the code has the ability to use the same column permutation 
Pc and row permutation Pr obtained from a previous factorization. Several scalar arguments 
control how the LU decomposition and the numerical pivoting should be performed. dgstrf 
can handle non-square matrices. 

20 



• dgstrs: Triangular solve. 

This takes the Land U triangular factors, the row and column permutation vectors, and the 
right-hand side to compute a solution matrix X of AX = B or AT X = B. 

• dgscon: Estimate condition number. 

Given the matrix A and its factors Land U, this estimates the condition number in the 
one-norm or infinity-norm. The algorithm is due to Hager and Higham [15], and is the same 
as CONDEST in sparse Matlab. 

• dgsequ/xlaqgs: Equilibrate. 

dgsequ first computes the row and column seatings Dr and Dc which would make each row 
and each column of the scaled matrix DrADc have eqmil norm. dlaqgs then applies them to 
the original matrix A if it is indeed badly scaled. The equilibrated A overwrites the original 
A. 

• dgsrfs: Refine solution. 

Given A, its factors Land U, and an initial solution X, this does iterative refinement, using' 
the same precision as the input data. It also computes forward and backward error bounds 
for the refined solution. 

2.7 Matlab interface 

In the SuperLU/MATLAB subdirectory, we have developed a set of MEX-files interface to Matlab. 
Typing make in this directory produces executables to be invoked in Matlab. The current Makefile 
is set up so that the MEX-files are compatible with Matlab Version 5. The user should edit Makefile 
for Matlab Version 4 compatibility. Right now, only the factor routine dgstrf and the simple driver 
routine dgssv are callable by invoking superlu and lusolve in Matlab, respectively. Superlu and 
lusolve correspond to the two Matlab built-in functions lu and \ . In ¥atlab, when you type 

help superlu 
you will find the following description about superlu's functionality and how to use it. 

SUPERLU : Supernodal LU factorization 

Executive summary: 

[L,U,pJ = superlu(A) 
[L,U,prow,pcolJ = superlu(A) 

Details and options: 

is like [L,U,PJ = lu(A) , but faster. 
preorders the columns of A by min degree, 

yielding A(prow,pcol) = L*U. 

With one input and two or three outputs',SUPERLU has the same effect as LU. 
except that the pivoting permutation is returned as a vector, not a matrix: 

[L,U,pJ = superlu(A) returns unit lower triangular L, upper triangular U, 
and permutation vector p with A(p,:) = L*U. 

[L,U] = superlu(A) returns permuted triangular L and upper triangular U 

21 



with A = L*U. 

With a second input, the columns of A are permuted before factoring: 

[L,U,prow] = superlu(A,psparse) returns triangular L and U and permutation 
prow with A(prow,psparse) = L*U. 

[L,U] = superlu(A,psparse) returns permuted triangular L and triangular U 
with A(:,psparse) = L*U. 

Here psparse will normally be a user-supplied permutation matrix or vector 
to be applied to the columns of A for sparsity. COLMMD is one way to get 
such a permutation; see below to make SUPERLU compute it automatically. 
(If psparse is a permutation matrix, the matrix factored is A*psparse'.) 

With a fourth output, a column permutation is computed and applied: 

[L,U,prow,peol] = superlu(A,psparse) returns triangUlar L and U and 
permutations prow and pcol with A(prow,pcol) = L*U. 
Here psparse is a user-supplied column permutation for sparsity, 
and the matrix factored is A(:,psparse) (or A*psparse' if the 
input is a permutation matrix). Output pcol is a permutation 
that first performs psparse, then postorders the etree of the 
column intersection graph of A. The postorder does not affect 
sparsity, but makes supernodes in L consecutive. 

[L,U,prow,peol] = superlu(A,O) is the same as ... = superlu(A,I); it does 
not permute for sparsity but it does postorder the etree. 

[L,U,prow,pcol] = superlu(A) is the same as ... = superlu(A,colmmd(A)); 
it uses column minimum degree to permute columns for sparsity, 
then postorders the etree and factors. 

For a description about lusolve's functionality and how to use it, you can type 
help lusolve 

LUSOLVE : Solve linear systems by supernodal LU factorization. 

x = lusolve(A, b) returns the solution to the linear system A*x = b, 
using a supernodal LU factorization that is faster than Matlab's 
builtin LU. This m-file just calls a mex routine to do the work. 

By default, A is preordered by column minimum degree before factorization. 
Optionally, the user can supply a desired column ordering: 

x = lusolve(A, b, pcol) uses pcol as a column permutation. 
It still returns x = A\b, but it factors A(:,pcol) (if pcol is a 
permutation vector) or A*Pcol (if Pcol is a permutation matrix). 

x = lusolve(A, b, 0) suppresses the default minimum degree ordering; 
that is, it forces the identity permutation on columns. 
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Two M-files trysuperlu.m and trylusolve.m are written to test the correctness of superlu 
and lusolve. In addition to testing the residual norms, they also test the function invocations 
with various number of input/output arguments. 

2.8 Installation 

2.8.1 File structure 

The top level SuperLU / directory is structured as follows: 

SuperLU/README 
SuperLU/CBLAS/ 
SuperLU/EXAMPLE/ 
SuperLU/INSTALL/ 
SuperLU/MATLAB/ 
SuperLU/SRC/ 
SuperLU!TESTING/ 
SuperLU/Makefile 
SuperLU/make.inc 

instructions on installation 
needed BLAS routines in C, not necessarily fast 
example programs 
test machine dependent parameters; this Users' Guide 
Matlab mex-file interface 
C source code, to be compiled into the superlu.a library 
driver routines to test correctness 
top level Makefile that does installation and testing 
compiler, compile flags, library definitions and C 
preprocessor definitions, included in all Makefiles. 

Before installing the package, you may need to edit SuperLU/make. inc for your system. This 
make include file is referenced inside each of the Makefiles in the various subdirectories. As a 
result, there is no need to edit the Makefiles in the subdirectories. All information that is machine 
specific has been defined in make. inc. 

Sample machine-specific make. inc are provided in the top-level SuperLU/ directory for several 
systems, including IBM RS/6000, DEC Alpha, SunOS 4.x, SunOS 5.x (Solaris), HP-PA and SGI 
Iris 4.x. When you have selected the machine on which you wish to install SuperLU, you may copy 
the appropriate sample include file (if one is present) into make. inc. For example, if you wish to 
run SuperLU on an IBM RS/6000, you can do: 

cp make.rs6k make. inc 
For systems other than those listed above, slight modifications to the make. inc file will need 

to be made. In particular, the following three items should be examined: 

1. The BLAS library. 
If there is a BLAS library available on your machine, you may define the following in make. inc: 

BLASDEF = -DUSE_VENDORJBLAS 
BLASLIB = <BLAS library you wish to link with> 

The CBLAS/ subdirectory contains the part of the C BLAS needed by the SuperLU package. 
However, these codes are intended for use only if there is no faster implementation of the 
BLAS already aVailable on your machine. In this case, you should do the following: 

1) In make. inc, undefine (comment out) BLASDEF, define: 

BLASLIB = .. /blas$(PLAT).a 

2) In the SuperLU / directory, type: 

make blaslib 

to make the BLAS library from the routines In the CBLAS/ subdirectory. 
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2. C preprocessor definition CDEFS. . 
In the header file SRC/Cnames .h, we use macros to determine how C routines should be named 
so that they are callable by Fortran.2 The possible options for CDEFS are: 

• -DAdd_: Fortran expects a C routine to have an underscore postfixed to the name; 

• -DNoChange: Fortran expects a C routine name to be identical to that compiled by C; 

• -DUpCase: Fortran expects a C routine name to be all uppercase. 

3. The Matlab MEX-file interface. 
The MATLAB/ subdirectory includes Matlab C MEX-files, so that our factor and solve routines 
can be called as alternatives to those built into Matlab. In the file SuperLU/make. inc, define 
MATLAB to be the directory in which Matlab is installed on your system, for example: 

MATLAB = /usr/local/matlab 

At the SuperLU / directory, type: 

make matlabmex 

to build the MEX-file interface. After you have built the interface, you may go to the MATLAB/ 
subdirectory to test the correctness by typing (in Matlab): 

trysuperlu 

trylusolve 

A Makefile is provided in each subdirectory. The installation can be done completely auto­
matically by simply typing make at the top level. 

2.8.2 Testing 

The test programs in SuperLU/INSTALL subdirectory test two routines: 

• slamch/dlamch determines properties ofthe floating-point arithmetic at run-time (both single 
and double precision), such as the machine epsilon, underflow threshold, overflow threshold, 
and related parameters; 

• SuperLU_timeLO returns the time in seconds used by the process. This function may need 
to be modified to run on your machine. 

The test programs in the SuperLU/TESTING subdirectory are designed to test all the functions of 
the driver routines, especially the expert drivers. The Unix shell script files xtest. csh are used to 
invoke tests with varying parameter settings. The input matrices include an actual sparse matrix 
SuperLU/EXAMPLE/g10 of dimension 100 x 100,3 and numerous matrices with special properties 
from the LAPACK test suite. Table 2.1 describes the properties of the test matrices. 

For each command line option specified in dtest. csh, the test program ddri ve reads in or 
generates an appropriate matrix, calls the driver routines, and computes a number of test ratios 
to verify that each operation has performed correctly. If the test ratio is smaller than a preset 
threshold, the operation is considered to be correct. Each test matrix is subject to the tests listed 
in Table 2.2. 

2Some vendor-supplied BLAS libraries do not have C interfaces. So the re-naming is needed in order for the 
SuperLU BLAS calls (in C) to interface with the fortran-style BLAS. 

3Matrix g10 is first generated with the structure of the lO-by-lO five-point grid, and random numerical values. 
The columns are then permuted by COLMMD ordering from Matlab. 
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Matrix type Description 
0 sparse matrix g10 
1 diagonal 
2 upper triangular 
3 lower triangular 
4 random, K. = 2 
5 first column zero 
6 last column zero 
7 last n/2 columns zero 
8 random, K. = JO.1/e 
9 random, K. = 0.1/e: 
10 scaled near underflow 
11 scaled near overflow 

Table 2.1: Properties of the test matrices. e is 
the machine epsilon and K. is the condition num­
ber of matrix A. Matrix types with one or more 
columns set to zero are used to test the error 
return codes. 

Test Type Test ratio Routines 

0 /lLU - AIi/(nIiAlle) dgstrf 
1 /lb - Axll/CIIA/I IIxl/e) dgssv,dgssvx 
2 /Ix - x*/I/CI/x*llK.e) dgssvx 
3 /Ix - x*II/C/lx*1I FERR) . dgssvx 
4 BERR/e dgssvx 

Table 2.2: Types of tests. x* is the true solution, 
FERR is the error bound, and BERR is the 
backward error. 

Let r be the residual r = b - Ax, and let mi be the number of nonzeros in row i of A. Then 
the componentwise backward error BERR and forward error F ERR [1] are calculated by: 

Irli 
BERR = mtx (IAllxl + Ibl)i 

FERR = IIIA-11 f 1100 . 
/Ix /100 

Here, f js a nonnegative vector whose components are computed as Ii = Irli + mi e (IAllxl +.Ibl)i' 
and the norm in the numerator is estimated using the same subroutine used for estimating the 
condition number. BERR measures the smallest relative perturbation one can make to each entry 
of A and of b so that the computed solution is an exact solution of the perturbed problem. F ERR 
is an estimated bound on the error IIx* - xlloo/llxlloo, where x* is the true solution. For further 
details on error analysis and error bounds estimation, see [1, Chapter 4] and [2]. 

2.8.3 Performance-tuning parameters 

SuperLU chooses such machine-dependent parameters as block size by calling an inquiry function 
sp_ienvO, which may be set to return different values on different machines. The declaration of 
this function is 

int sp_ienv(int ispec); 

Ispec specifies the parameter to be returned, (See reference [5] for their definitions.) 

ispec = 1: the panel size (w) 
= 2: the relaxation parameter to control supernode amalgamation (relax) 
= 3: the maximum allowable size for a supernode (maxsup) 
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On-chip External 
Machine Cache Cache w maxsup rowblk colblk 

RSj6000-590 256 KB - 8 100 200 40 
MIPS R8000 16 KB 4MB 20 100 800 100 
Alpha 21064 8 KB 512 KB 8 100 400 40 
Alpha 21164 8 KB-L1 4 MB 16 50 100 40 

96 KB-L2 
Spare 20 16 KB 1 MB 8 100 400 50 
UltraSpare-I 16 KB 512 KB 8 100 400 40 
Cray J90 - - 1 100 1000 100 

Table 2.3: Typical blocking parameter values for several machines. 

= 4: the minimum row dimension for 2-D blocking to be used (rowblk) 
= 5: the minimum column dimension for 2-D blocking to be used (colblk) 
= 6: the estimated fills factor for Land U, compared with A 

Users are encouraged to modify this subroutine to set the tuning parameters for their own local 
environment. The optimal values depend mainly on the cache size and the BLAS speed. If your 
system has a very small cache, or if you want to efficiently utilize the closest cache in a multilevel 
cache organization, you should pay special attention to these parameter settings. In our technical 
paper [5], we described a detailed methodology for setting these parameters for high performance. 

The relax parameter is usually set between 4 and 8. The other parameter values which give 
good performance on several machines are listed in Table 2.3. In a supernode-panel update, if the 
updating supernode is too large to fit in cache, then a 2-D block partitioning of the supernode is 
used, in which rowblk and colblk determine that a block of size rowblk x colblk is used to update 
current panel. 

If colblk is set greater than maxsup, then the program will never use 2-D blocking. For example, 
for the Cray J90 (which does not have cache), w = 1 and I-D blocking give good performance; 
more levels of blocking only increase overhead. 

2.9 Example programs 

In the SuperLU/EXAMPLE/ subdirectory, we present a few sample programs, such as xLINSOL and 
xLINSOLX, to illustrate the complete calling sequences used to solve systems of equations. These 
include how to set up the matrix structures, how to obtain a fill-reducing ordering, and how to call 
driver routines. A Makefile is provided to generate the executables. A README file in this directory 
shows how to run these examples. 

Based on these sample programs, we now illustrate how we may use SuperLU in some other 
ways. 

2.9.1 Repeated factorizations 

In many iterative processes, matrices with the same sparsity pattern but different numerical values 
must be factored repeatedly. Thus, computing a fill-reducing ordering and performing column 
permutation are needed only once. In addition, the memory for Land U can be allocated only 
once, and reused in the subsequent factorizations. If there is not enough space for Land U from the 

26 

- ---------



mainO 
{ 

} 

1* Declare variables *1 
SuperMatrix A; 1* original matrix *1 
SuperMatrix AC; 1* A postmultiplied by a permutation matrix Q *1 
char refact [lJ ; 
...... 1* declarations of other variables *1 

1* Initialization *1 
{ 

StatIni t (paneLsize, relax); 

} 

1* First-time factorization *1 
*refact = 'N'; 

1* Obtain and apply column permutation *1 
get_perm_e(l, &A, perm_c); 
sp_preorder(refaet, &A, perm_c, etree, &AC); 

1* Factorization *1 
dgstrf(refact, &AC, 1.0, 0.0, relax, panel_size, 

etree, NULL, 0, perm_r, &L, &U, &info); 
...... 1* solve first system *1 

1* Subsequent factorizations *1 
*refaet = 'Y'; 

for ( i = 1; i <= niter; ++i ) { 

} 

dgstrf(refact, &AC, 1.0, 0.0, relax, panel_size, 
etree, NULL, 0, perm_r, &L, &U, &info); 

1* Numerical values of matrix AC may change across iterations. 
The factors L and U are overwritten in each iteration. *1 

{ 

...... 1* solve later system *1 
} 

StatFreeO; 

Figure 2.4: Code segment to perform repeated factorizations. 
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previous factorization (due to different pivoting), the factor routines xGSTRF automatically expand 
memory as needed. Figure 2.4 shows the code segment for this purpose. 

2.9.2 Calling from Fortran 

General rules for mixing Fortran and C programs are as follows . 

• Arguments in C ate passed by value, while in Fortran are passed by reference. So we always 
pass the address (as a pointer) in the C calling routine. (You cannot make a call with numbers 
directly in the parameters.) 

• Fortran uses I-based array addressing, while C uses O-based. Therefore, the row indices 
(rowind) and integer pointers to arrays (colptr) should be adjusted before they are passed 
into a C routine. 

Because of the above language differences, in order to embed SuperLU in a Fortran environment, 
users are required to supply "bridge" routines (in C) for all the SuperLU subroutines that will be 
called from Fortran programs. Figure 2.5 is an example showing how a bridge program should be 
written. See the files f77 ...main. f and c_bridge_dgssv. c for complete descriptions. 

In the future, we may provide complete Fortran interfaces to the user-callable routines in 
SuperLU~ 
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Fortran program (f77_main.f) 

program f77_main 
integer maxn, maxnz 
parameter ( maxn = 10000, maxnz = 100000 ) 
integer rowind(maxnz), colptr(maxn) 
real*8 values (maxnz), b(maxn) 

call c_bridge_dgssv( n, nnz, nrhs, values, rowind, colptr, b, Idb, info) 

stop 
end 

The bridge program in C (c_bridge_dgssv.c) 
~----------------------

int c_bridge_dgssv(int *n, int *nnz, int *nrhs, double *values, int *rowind, 
int *colptr, double *b, int *ldb, int *info) 

{ 

} 

SuperMatrix A, B, L, U; 
int *perm_c, *perm_r; 

1* Adjust to O-based indexing *1 
for (i = 0; i < *nnz; ++i) --rowind[i]; 
for (i = 0; i <= *n; ++i) --colptr[i]; 

1* Construct Matrix structures A and B *1 
dCreate_CompCol_Matrix(&:A; *n, *n, *nnz, values, rowind, colptr, 

Ne, _0, GE); 
dCreate_Oense_Matrix(&B, *n, *nrhs, b, *ldb, DN, _D, GE); 

1* B is overwritten by the solution vector *1 
dgssv(&A, perm_C, perm_r, &L, &U, &B, info); 

Figure 2.5: Interface with Fortran 
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Chapter 3 

Multithreaded SuperLU 

3.1 About SuperLU_MT 

Among the various steps of the solution process in the sequential SuperL U, the LU factorization 
dominates the computation; it usually takes more than 95% of the sequential runtime for large 
sparse linear systems. We have designed and implemented an algorithm to perform the factorization 
in parallel on machines with a shared address space and multithreading. The parallel algorithm 
is based on the efficient sequential algorithm implemented in SuperLU. Although we attempted 
to minim1ze the amount of changes to the sequential code, there are still a number of non-trivial 
modifications to the serial SuperLU, mostly related to the matrix data structures and memory 
organization. All these changes are summarized in Table 3.1 and their impacts on performance are 
studied thoroughly in [6, 19]. In this part of the Users' Guide, we describe only the changes that 
the user should be aware of. Other than these differences, most of the material in chapter 2 is still 
applicable. 

Construct Parallel algorithm 
panel restricted so it does not contain branchings in the elimination tree 
supernode restricted to be a fundamental supernode in the elimination tree 
supernode storage use either static or dynamic upper bound (section 3.4.2) 
pruning & DFS use both G(LT) and pruned G(LT) to avoid locking 

Table 3.1: The differences between the parallel and the sequential algorithms. 

3.2 Storage types for Land U 

As in the sequential code, the type for the factored matrices Land U is SuperMatrix (Figure 2.2), 
however, their storage formats (stored in *Store) are changed. In the parallel algorithm, the 
adjacent panels of the columns may be assigned to different processes, and they may be finished 
and put in global memory out of order. That is, the consecutive columns or supernodes may not be 
stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column 
or supernode, we need pointers to the end of the column or supernode. In particular, the storage 
type for L is SCP (Supernode, Column-wise and Permuted), defined as: 

typedef struct { 
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int nnz; 1* number of nonzeros in the matrix *1 
int nsuper; 1* number of supernodes *1 
void *nzval; 1* pointer to array of nonzero values, 

packed by column *1 
int *nzval_colbeg; 1* nzval_colbeg[j] points to beginning of column 

in nzval[] *1 
int *nzval_colend; 1* nzvaLcolend[j] points to one past the last 

element of column j in nzval[] *1 
int *rowind; 1* pointer to array of compressed row indices of 

the supernodes *1 
int *rowind_colbeg;l* rowind_colbeg[j] points to beginning of column 

in rowind[] *1 
int *rowind_colend;l* rowind_colend[j] points to one past the last 

element of column j in rowind[] *1 
int *coLto_sup; 1* col_to_sup[j] is the supernode number to which 

column j belongs *1 
int *sup_to_colbeg;/* sup_to_colbeg[s] points to the first column 

of the s-th supernode / 
int *sup_to_colend;l* sup_to_colend[s] points toone past the last 

column of the s-th supernode *1 
} SCPformat; 

The storage type for U is NCP, defined as: 

typedef struct { 
int nnz; 1* number of nonzeros in the matrix *1 

j 

j 

void *nzval; /* pointer to array of nonzero values, packed by column *1 
int *rowind; 1* pointer to array of row indices of the nonzeros */ 
int *colbeg; /* colbeg[j] points to the location in nzval[] and rowind[] 

which starts column j */ 
int *colend; /* colend[j] points to one past the location in nzval[] 

and rowind[] which ends column j */ 
} NCPformat; 

The table below summarizes the data and storage types of all the matrices involved in the 
parallel routines: 

A L U B X 
Stype NC or NR SCP NCP DN DN 
Dtype --D --D --D --D --D 

Mtype GE TRLU TRU GE GE 

3.3 User-callable routines 

As in the sequential SuperLU, we provide both computational routines and driver routines. To 
name those routines that involve parallelization in the call-graph, we prep end a letter- p to the 
names of their sequential counterparts, for example pdgstrf. For the purely sequential routines, 
we use the same names as before. Appendix B contains, for each individual routine, the leading 
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comments and the complete specification of the calling sequence and arguments. Here, we only list 
the routines that are different from the sequential ones. 

3.3.1 Driver routines 

We provide two types of driver routines for solving systems of linear equations. The driver routines 
can handle both column- and row-oriented storage schemes. 

• A simple driver pdgssv, which solves the system AX = B by factorizing A and overwriting 
B with the solution X. 

• An expert driver pdgssvx, which, in addition to the above, also performs the following func­
tions (some of them optionally): 

- solve ATX = B; 

- equilibrate the system (scale A's rows and columns to have unit norm) if A is poorly 
. scaled; 

- estimate the condition number of A, check for near-singularity, and check for pivot 
growth; 

- refine the solution and compute forward and backward error bounds. 

3.3.2 Computational routines 

The user can invoke the following computational routines to directly control the behavior of Su­
perL U. The computational routines can only handle column-oriented storage. Except for the par­
allel factorization routine pdgstrf, all the other routines are identical to those appeared in the 
sequential superlu. 

• pdgstrf: Factorize (in parallel). 

This implements the first-time factorization, or later re-factorization with the same nonzero 
pattern. In re-factorizations, the code has the ability to use the same column permutation 
Pc and row permutation Pr obtained from a previous factorization. Several scalar arguments 
control how the LU decomposition and the numerical pivoting should be performed. pdgstrf 
can handle non-square matrices. 

• dgstrs: Triangular solve. 

This takes the Land U triangular factors, the row and column permutation vectors, and the 
right-hand side to compute a solution matrix X of AX = B or AT X = B. 

• dgscon: Estimate condition number. 

Given the matrix A and its factors Land U, this estimates the condition number in the 
one-norm or infinity-norm. The algorithm is due to Hager and Higham [15], and is the same 
as condest in sparse Matlab. 

• dgsequl dlaqgs: Equilibrate. 

dgsequ first computes the row and column scalings Dr and Dc which would make each row 
and each column of the scaled matrix DrADc have equal norm. dlaqgs then applies them to 
the original matrix A if it is indeed badly scaled. The equilibrated A overwrites the original 
A. 
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• dgsrfs: Refine solution. 

Given A, its factors Land U, and an initial solution X, this does iterative refinement, using 
the same precision as the input data. It also computes forward and backward error bounds 
for the refined solution. 

3.4 Installation 

3.4.1 File structure 

The top level Super L U _MT I directory is structured as follows: 

SuperLU_MT/README 
SuperLU_MT/CBLAS/ 
SuperLU_MT/EXAMPLE/ 
SuperLU_MT/INSTALL/ 
SuperLU_MT/SRC/ 
SuperLU_MT/TESTING/ 
SuperLU_MT/Makefile 
SuperLU_MT/make.inc 

instructions on installation 
needed BLAS routines in C, not necessarily fast 
example programs 
test machine dependent parameters; the Users' Guide 
C source code, to be compiled into superlu_mt.a library 
driver routines to test correctness 
top level Makefile that does installation and testing 
compiler, compile flags, library definitions and C 
preprocessor definitions, included in all Makefiles. 

We have ported the parallel programs to a number of platforms, which are reflected in the make 
include files provided in the top level directory, for example, make. sun, make. sgi, make. cray 
and make. pthreads. If you are using one of these machines, such as a Sun, you can simply copy 
make. sun into make. inc before compiling. If you are not using any of the machines to which we 
have ported, you will need to read section 3.6 about the porting instructions. 

The rest of the installation and testing procedure is similar to that described in section 2.8 for 
the serial SuperLU. Then, you can type make at the top level directory to finish installation. In 
the SuperLU...MT /TESTING subdirectory, you can type pdt est . csh to perform testings. 

3.4.2 Performance issues 

Memory management for Land U 

In the sequential SuperLU, four data arrays associated with the Land U factors can be expanded 
dynamically, as described in section 2.5. In the parallel code, the expansion is hard and costly to 
implement, because when a process detects that an array bound is exceeded, it has to send a signal 
to and suspend the execution of the other processes. Then the detecting process can proceed with 
the array expansion. After the expansion, this process must wake up all the suspended processes. 

In this release of the parallel code, we have not yet implemented the above expansion mechanism. 
For now, the user must pre-determine an estimated size for each of the four arrays through the 
inquiry function sp_ienvO. There are two interpretations for each integer value FILL returned 
by calling this function with ispec = 6, 7, or 8. A negative number is interpreted as the fills 
growth factor, that is, the program will allocate (-FILL)*nnz(A) elements for the corresponding 
array. A positive number is interpreted as the true amount the user wants to allocate, that is, the 
program will allocate FILL elements for the corresponding array. In both cases, if the initial request 
exceeds the physical memory constraint, the sizes of the arrays are repeatedly reduced until the 
initial allocation succeeds. 
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int sp_ienv(int ispec); 

Ispec specifies the parameter to be returned: 

ispec = ... 

= 6: size of the array to store the values of the L supernodes (nzval) 
= 7: size of the array to store the columns in U (nzval/rowind) 
= 8: size of the array to store the subscripts of the L supernodes (rowind); 

If the actual fill exceeds any array size, the program will abort with a message showing the 
current column when failure occurs, and indicating how many elements are needed up to the 
current column. The user may reset a larger fill parameter for this array and then restart the 
program. 

To make the storage allocation more efficient for the supernodes in L, we devised a special 
storage scheme. The need for this special treatment and how we implement it are fully explained 
and studied in [6, 19]. Here, we only sketch the main idea. Recall that the parallel algorithm assigns 
one panel of columns to one process. Two consecutive panels may be assigned to two different 
processes, even though they may belong to the same supernode discovered later. Moreover, a third 
panel may be finished by a third process and put in memory between these two panels, resulting 
in the columns of a supernode being noncontiguous in memory. This is undesirable, because then 
we cannot directly call BLAS routines using this supernode unless we pay the cost of copying the 
columns into contiguous memory first. To overcome this problem, we exploited the observation that 
the nonzero structure for L is contained in that of the Householder matrix H from the Householder 
sparse QR transformation [11, 12]. Furthermore, it can be shown that a fundamental supernode of 
L is always contained in a fundamental supernode of H. This containment property is true for for 
any row permutation Pr in PrA = LU. Therefore, we can pre-allocate storage for the L supernodes 
based on the size of H supernodes. Fortunately, there exists a fast algorithm (almost linear in the 
number of nonzeros of A) to compute the size of H and the supernodes partition in H [14]. 

In practice, the above static prediction is fairly tight for most problems. However, for some 
others, the number of non zeros in H greatly exceeds the number of nonzeros in L . . To handle 
this situation, we implemented an algorithm that still uses the supernodes partition in H, but 
dynamically searches the supernodal graph of L to obtain a much tighter bound for the storage. 
Table 6 in [6] demonstrates the storage efficiency achieved by both static and dynamic approach. 

In summary, our program tries to use the static prediction first for the L supernodes. In this 
case, we ignore the integer value given in the function sp_ienv(6), and simply use the nonzero 
count of H. If the user finds that the size of H is too large, he can invoke the dynamic algorithm 
at runtime by setting the following UNIX shell environment variable: 

setenv SuperLUJDYNAMICJ)NODEJ)TORE 1 

The dynamic algorithm incurs runtime overhead. For example, this overhead is usually between 
2% and 15% on a single processor RS/6000-590 for a range of test matrices. 

Symmetric structure pruning 

In both serial and parallel algorithms, we have implemented Eisenstat and Liu's symmetric pruning 
idea of representing the graph G( LT) by a reduced graph G', and thereby reducing the DFS traversal 
time. A subtle difficulty arises in the parallel implementation. . 

When the owning process of a panel starts DFS (depth-first search) on G' built so far, it 
only sees the partial graph, because the part of G' corresponding to the busy panels down the 
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elimination tree is not yet complete. So the structural prediction at this stage can miss some 
nonzeros. After performing the updates from the finished supernodes, the process will wait for 
all the busy descendant panels to finish and perform mQre updates from them. Now, we make 
a conservative assumption that all these busy panels will update the current panel so that their 
nonzero structures are included in the current panel. 

This approximate scheme works fine for most problems. However, we found that this conser­
vatism may sometimes cause a large number of structural zeros (they are related to the supernode 
amalgamation performed at the bottom of the elimination tree) to be included and they in turn 
are propagated through the rest of the factorization. 

We have implemented an exact structural prediction scheme to overcome this problem. In this 
scheme, when each numerical nonzero is scattered into the sparse accumulator array, we set the 
occupied flag as well. Later when we accumulate the updates from the busy descendant panels, we 
check the occupied flags to determine the exact nonzero structure. This scheme avoids unnecessary 
zero propagation at the expense of runtime overhead, because setting the occupied flags must be 
done in the inner loop of the numeric updates. 

We recommend that the user use the approximate scheme (by default) first. If the user finds 
that the amount of fill from the parallel factorization is substantially greater than that from the 
sequential factorization, he can then use the accurate scheme. To invoke the second scheme, the 
user should recompile the code by defining the macro: 

-D SCATTER-FOUND 

for the C preprocessor. 

The inquiry function sp_ienvO 

For some user controllable constants, such as the blocking parameters and the size of the global 
storage for Land U, SuperLU_MT calls the inquiry function sp_ienvO to retrieve their values. 
The declaration of this function is 

int sp_ienv(int ispec). 

The full meanings of the returned values are as follows: 

ispec = 1: the panel size w 
= 2: the relaxation parameter to control supernode amalgamation (relax) 
= 3: the maximum allowable size for a supernode (maxsup) 
= 4: the minimum row dimension for 2-D blocking to be used (rowblk) 
= 5: the minimum column dimension for 2-D blocking to be used (colblk) 
= 6: size of the array to store the values of the L supernodes (nzval) 
= 7: size of the array to store the columns in U (nzval / rowind) 
= 8: size of the array to store the subscripts of the L supernodes (rowind) 

We should take into account the trade-off between cache reuse and amount of parallelism in order 
to set the appropriate wand maxsup. Since the parallel algorithm assigns one panel factorization to 
one process, large values may constrain concurrency, even though they may be good for uniprocessor 
performance. We recommend that wand max sup be set a bit smaller than the best values used in 
the sequential code. 

The settings for parameters 2, 4 and 5 are the same as those described in section 2.8.3. The 
settings for parameters 6, 7 and 8 are discussed in section 3.4.2. 

In the file SRC/sp_ienv. c, we provide sample settings of these parameters for several machines. 
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Programming Environment 
make.inc Platforms Model Variable 
make. pthreads Machines with POSIX threads pthreads 
make.sun Sun Ultra Enterprise Solaris threads 
make.alpha DEC Alpha Servers DECthreads 
make.sgi SGI Power Challenge parallel C MPC....NUM_THREADS 
make.origin SGI/Cray Origin2000 parallel C MPJSET....NUMTHREADS 
make.cray Cray C90/J90 microtasking NCPUS 

Table 3.2: Platforms on which SuperLU_MT was tested. 

3.5 Example programs 

In the SuperLUjiT /EXAMPLE/ subdirectory, we present a few sample programs to illustrate the 
complete calling sequences to use the simple and expert drivers to solve systems of equations. Ex­
amples are also given to illustrate how to perform a sequence of factorizations for the matrices with 
the same sparsity pattern, and how SuperLU_MT can be integrated into the other multithreaded 
application such that threads are created only once. A Makefile is provided to generate the exe­
cutables. A README file in this directory shows how to run these examples. The leading comment 
in each routine describes the functionality of the example. 

3.6 Porting to other platforms 

We have provided the parallel interfaces for a number of shared memory machines. Table 3.2 lists 
the platforms on which we have tested the library, and the respective make. inc files. The most 
portable interface for shared memory programming is POSIX threads [24], since nowadays many 
commercial UNIX operating systems have support for it. We call our POSIX threads interface the 
Pthreads interface. To use this interface, you can copy make. pthreads into make. inc and then 
compile the library. In the last column of Table 3.2, we list the runtime environment variable to 
be set in order to use multiple CPU s. For example, to use 4 CPU s on the Origin2000, you need to 
set the following before running the program: 

setenv MPJSET....NUMTHREADS 4 

In the source code, all the platform specific constructs are enclosed in the C #ifdef preprocessor 
statement. If your platform is different from anyone listed in Table 3.2, you need to go to these 
places and create the parallel constructs suitable for your machine. The two constructs, concurrency 
and synchronization, are explained in the following two subsections, respectively. 

3.6.1 Creating multiple threads 

Right now, only the factorization routine pdgstrf is parallelized, since this is the most time­
consuming part in the whole solution process. There is one single thread of control on entering and 
exiting pdgstrf. Inside this routine, more than one thread may be created. All the newly created 
threads begin by calling the thread function pdgstrLthread and they are concurrently executed 
on multiple processors. The thread function pdgstrLthread expects a single argument of type 
void*, which is a pointer to the structure containing all the shared data objects. 
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Mutex Critical region 
ULOCK allocate storage for a column ,of matrix U 
LLOCK allocate storage for row subscripts of matrix L 
LULOCK allocate storage for the values of the supernodes 
NSUPER...LOCK increment supernode number nsuper 
SCHED...LOCK invoke SchedulerO which may update global task queue 

Table 3.3: Five mutex variables. 

3.6.2 Use of mutexes 

Although the threads pdgstrLthread execute independently of each other, they share the same 
address space and can communicate efficiently through shared variables. Problems may arise if 
two threads try to access (at least one is to modify) the shared data at the same time. Therefore, 
we must ensure that all memory accesses to the same data are mutually exclusive. There are five 
critical regions in the program that must be protected by mutual exclusion. Since we want to allow 
different processors to enter different critical regions simultaneously, we use five mutex variables as 
listed in Table 3.3. The user should properly initialize them in routine ParallelInit, and destroy 
them in routine ParallelFinalize. Both these routines are in file pxgstrf ...synch. c. 
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Chapter 4 

Distributed SuperLU with MPI 

4.1 About SuperLU_DIST 

In this part, we describe the SuperLU _DIST library designed for distributed memory parallel com­
puters. The parallel programming model is SPMD. The library is implemented in ANSI C, using 
MPI [26] for communication, and so is highly portable. We have tested the code on a number 
of platforms, including Cray T3E, IBM SP, and Berkeley NOW. The library includes routines to 
handle both real and complex matrices in double precision. The parallel routine names for the 
double-pFecision real version start with letters "pd" (such as pdgstrf); the parallel routine names 
for double-precision complex version start with letters "pz" (such as pzgstrf). 

4.2 Basic steps to solve a linear system 

In this section, we use a complete sample program to illustrate the basic steps required to use 
the MPI version of the SuperLU library. This program is listed below, and is also available as 
EXAMPLE!pddri ve. c in the source code distribution. All the routines must include the header file 
superlu_ddefs.h (or superlu...zdefs. h, the complex counterpart ) which contains the definitions 
of the data types, the macros and the function prototypes. 

#include <math.h> 
#include "superlu_ddef;:;.h" 

main(int argc, char *argv[]) 
1* 
* Purpose 

* ======= 
* * The driver program PDDRIVE. 

* * This example illustrates how to use pdgssvx_ABglobal with the full 
* (default) options to solve a linear system. 

* * Five basic steps are required: 
* 1. Initialize the MPI environment and the SuperLU process grid 
* 2. Set up the input matrix and the right-hand side 
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{ 

* 3. Set the options argument 
* 4. Call pdgssvx_ABglobal 
* 5. Release the process grid and terminate the MPI environment 

* 
* On the Cray T3E, the program may be run by typing 
* mpprun -n <procs> pddrive -r <proc rows> -c <proc columns> <input_file> 

* 
*1 

superlu_options_t options; 
SuperLUStat_t stat; 
SuperMatrix A; 
ScalePermstruct_t ScalePermstruct; 
LUstruct_t LUstruct; 
gridinfo_t grid; 
double *berr; 
double 
int_t 
int_t 
int_t 
int 
char 

*a, *b, *xtrue; 
*asub, *xa; 
i, m, n, nnz; 
nprow, npcol; 
iam, info, ldb, ldx, nrhs; 
trans [1] ; 

char **cpp, c; 
FILE *fp, *fopen(); 

nprow = 1; 
npcol = 1; 
nrhs = 1; 

1* Default process rows. *1 
1* Default process columns. *1 
1* Number of right-hand side. *1 

1* Parse command line argv[]. *1 
for (cpp = argv+1; *cpp; ++cpp) { 

if ( **cpp == ,-, ) { 
c = *(*cpp+1); 
++cpp; 
switch (c) { 

case 'h': 
printf("Options:\n"); 
printf("\t-r <int>: process rows (default y'd)\n", nprow); 
printf("\t-c <int>: process columns (default 1,d)\n", npcol); 
exit(O); 
break; 

} 

case ;r': nprow = atoi(*cpp); 
break; 

case 'c': npcol = atoi(*cpp); 
break; 
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} 

} else { /* Last arg is considered a filename */ 
if ( ! (fp = fopen(*cpp, "rll)) ) { 

-} 

} 

fprintf(stderr, IIFile does not exist. II ); 
exit(-1) ; 

break; 

/* ------------------------------------------------------------
INITIALIZE MPI ENVIRONMENT. 
------------------------------------------------------------*/ 

MPI_Init( &argc, &argv ); 

/* ------------------------------------------------------------
INITIALIZE THE SUPERLU PROCESS GRID. 
------------------------------------------------------------*/ 

superlu_gridinit(MPI_COMM_WORLD, nprow, npcol, &grid); 

/* Bailout if I do not belong in the grid. */ 
iam = grid. iam; 
if ( iam >= nprow * npcol ) goto out; 

/* ------------------------------------------------------------
PROCESS ° READS THE MATRIX A, AND THEN BROADCASTS IT TO ALL 
THE OTHER PROCESSES. 
------------------------------------------------------------*/ 

if ( ! iam ) { 

} 

/* Read the matrix stored on disk in Harwell-Boeing format. */ 
dreadhb(iam, fp, &m, &n, &nnz, &a, &asub, &xa); 

printf(lI\tDimension\ty'dxy'd\t # nonzeros Y.d\nll , m, n, nnz); 
printf(lI\tProcess grid\tY.d X %d\nll , grid.nprow, grid.npcol); 

/* Broadcast matrix A to the other PEs. */ 
MPI_Bcast( &m, 1, mpLint_t, 0, grid.comm ); 
MPLBcast( &n, 1, mpLint_t, 0, grid.comm ); 
MPLBcast( &nnz, 1, mpLint_t, 0, grid. comm ); 
MPLBcast( a, nnz, MPLDOUBLE, 0, grid.comm ); 
MPI_Bcast( asub, nnz, mpLint_t, 0, grid.comm ); 
MPLBcast( xa, n+1, mpLint_t, 0, grid.comm ) ; 

else { 
/* Receive matrix A from PE 0. */ 
MPI_Bcast( &m, 1, mpi_int_t, 0, grid.comm ); 
MPI_Bcast( &n, 1, mpi_int_t, 0, grid.comm ); 
MPI_Bcast( &nnz, 1, mpi_int_t, 0, grid.comm ); 
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/* Allocate storage for compressed column representation. */ 
dallocateA(n, nnz, &a, &asub, &xa); 

MPI_Bcast( a, nnz, MPI_DOUBLE, 0, grid.comm ) ; 

MPLBcast( asub, nnz, mpLint_t, 0, grid.comm ) ; 

MPI_Bcast( xa, n+l, mpLint_t, 0, grid.comm ) ; 
} 

/* Create compressed column matrix for A. */ 
dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, NC, _D, GE); 

/* Generate the exact solution and compute the right-hand side. */ 
if ( ! (b = doubleMalloc(m * nrhs)) ) ABORT("Malloc fails for b[] II); 
if ( !(xtrue = doubleMalloc(n * nrhs)) ) ABORT("Malloc fails for xtrue[JII); 
*trans = 'N'; 
ldx = n; 
ldb = m; 
dGenXtrue(n, nrhs, xtrue, ldx); 
dFiIIRHS(trans, nrhs, xtrue, ldx, &A, b, ldb); 

if ( ! (berr = doubleMalloc(nrhs)) ) ABORT("Malloc fails for berr[] . "); 

/* ------------------------------------------------------------
NOW WE SOLVE THE LINEAR SYSTEM. 
------------------------------------------------------------*/ 

/* Set the default input options. */ 
set_default_options(&options); 

/* Initialize ScalePermstruct and LUstruct. */ 
ScalePermstructlnit(m, n, &ScalePermstruct); 
LUstructInit(m, n, &LUstruct); 

/* Initialize the statistics variables. */ 
PStatInit(&stat); 

/* Call the linear equation solver. */ 
pdgssvx_ABglobaIC&options, &A, &ScalePermstruct, b, ldb, nrhs, &grid, 

&LUstruct, berr, &stat, &info); 

/* Check the accuracy of the solution. */ 
if ( !iam ) dinf_norm_error(n, nrhs, b, ldb, xtrue, ldx); 

/* Print the statistics. */ 
PStatPrint(&stat, &grid); 

/* ------------------------------------------------------------
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DEALLOCATE STORAGE. 

~-----------------------------------------------------------*1 
PStatFree(&stat); 
Destroy_CompCol_Matrix(&A); 
Destroy_LU(n, &grid, &LUstruct); 
ScalePermstructFree(&ScalePermstruct); 
LUstructFree(&LUstruct); 
SUPERLU_FREE(b); 
SUPERLU_FREE(xtrue); 
SUPERLU_FREE(berr); 

1* ------------------------------------------------------------
RELEASE THE SUPERLU PROCESS GRID. 

------------------------------------------------------------*1 
out: 

superlu_gridexit(&grid); 

} 

1* --------------------------------------------------~---------
TERMINATES THE MPI EXECUTION ENVIRONMENT. 

------------------------------------------------------------*1 
MPLFinalize () ; 

Five basic steps are required to call a SuperLU routine: 

1. Initialize the MPI environment and the SuperLU process grid. 
This is achieved by the calls to the MPI routine MPLInit and the SuperLU routine 
superlu....gridinit. In this example, the communication domain for SuperLU is built upon 
the MPI default communicator MPLCOMM_WORLD. In general, it can be built upon any MPI 
communicator. Section 4.3 contains the details about this step. 

2. Set up the input matrix and the right-hand side. 
In t.his example, process 0 reads the input matrix stored on disk in Harwell-Boeing format [10], 
and broadcasts it to all the other processes. The right-hand side matrix is generated so that 
the exact solution matrix consists of all ones. Currently the library requires the input matrix 
and the right-hand side are available on every process. In the future, we will allow these two 
matrices being distributed on input. 

3. Initialize the input arguments: options, Astruct, LUstruct, stat. 
The input argument options controls how the linear system would be solved-use equilibra­
tioJ:!. or not, how to order the rows and the columns of the matrix, use iterative refinement 
or not. The subroutine set_default_options sets the options argument so that the solver 
performs all the functionality. You can also set it up according to your own needs, see sec­
tion 4.6.1 for the fields of this structure. Astruct is the data structure in which matrix A 
of the linear system and several vectors describing the transformations done to A are stored. 
LUstruct is the data structure in which the distributed Land U factors are stored. Stat is 
a structure collecting the statistics about runtime and flop count. 

4. Call the SuperLU routine pdgssvx...ABglobal. 
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5. Release the process grid and terminate the MPI environment. 
After the computation on a process grid has been completed, the process grid should be 
released by a call to the SuperLU routine superlu...gridexit. When all computations have 
been completed, the MPI routine MPLFinalize should be called. 

4.3 Process grid and MPI communicator 

All MPI applications begin with a default communication domain that includes all processes, say 
N p , of this parallel job. The default communicator MPLCOMM_WORLD represents this communication 
domain. The Np processes are identified as a linear array of process IDs in the range 0 ... Np - 1. 

4.3.1 SuperLU 2-D grid 

For SuperLU library, we create a new process group derived from an existing group using N g 

processes. There is a good reason to use a new group rather than MPLCOMM_WORLD, that is, the 
message passing calls of the SuperLU library will be isolated from those in other libraries or in the 
user's code. For better scalability of the LV factorization, we map the I-D array of Ng processes 
into a logical 2-D process grid. This grid will have nprow process rows and npcol process columns, 
such that nprow * npcol = Ng • A process can be referenced either by its rank in the new group or 
by its coordinates within the grid. The routine superlu...gridinit maps already-existing processes 
to a 2-D process grid. 

superlu_gridinit(MPI_Comm Bcomm, int nprow, int npcol, gridinfo_t *grid); 

This process grid will use the first nprow * npcol processes from the base MPI communicator 
Bcomm, and assign them to the grid in a row-major ordering. The input argument Bcomm is an MPI 
communicator representing the existing base group upon which the new group will be formed. For 
example, it can be MPLCOMM_WORLD. The output argument grid represents the derived group to be 
used in the routines of SuperLU library. Grid is a structure containing the following fields: 

struct { 
MPI_Comm corom; /* MPI communicator for this group */ 
int iam; /* my process rank in this group */ 
int nprow; /* number of process rows */ 
int npcol; /* number of process columns >1:/ 
superlu_scope_t rscp; /* process row scope */ 
superlu_scope_t cscp; /* process column scope */ 

} grid; 

In the LU factorization, some communications occur only among the processes in a row (col­
umn), not among all processes. For this purpose, we introduce two process subgroups, namely rscp 
(row scope) and cscp (column scope). For rscp (cscp) subgroup, all processes in a row (column) 
participate in the communication. 

The macros MYROW(iam, grid) and MYCOLCiam, grid) give the row and column coordinates 
in the 2-D grid of the process who has rank iam. 

NOTE: All processes in the base group, including those not in the new group, must call this grid 
creation routine. This is required by the MPI routine MPLComm_create to create a new communi­
cator. 
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4.3.2 Arbitrary grouping of processes 

It is sometimes desirable to divide up the processes into. several subgroups, each of which performs 
independent work of a single application. So we cannot simply use the first nprotHnpcol processes 
to define the grid. A more sophisticated process-to-grid mapping routine superlu-.gridmap is 
designed to create a grid with processes of arbitrary ranks. 

superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol, 
int usermap[], int Idumap, gridinfo_t *grid)j 

The array usermap [] contains the processes to be used in the newly created grid. usermap [] is 
indexed like a Fortran-style 2-D array with Idumap as the leading dimension. So usermap [i + j *ldumapJ 
(i.e., usermap(i, j) in Fortran notation) holds the process rank to be placed in {i, j} position 
of the 2-D process grid. After grid creation, this subset of processes is logically numbered in 
a consistent manner with the initial set of processes; that is, they have t4e ranks in the range 
o ... nprow * npcol - 1 in the new grid. For example, if we want to map 6 processes with ranks 
11 ... 16 into a 2 x 3 grid, we define usermap = {11, 14, 12, 15, 13, 16} and Idumap = 2. Such a 
mapping -is shown below 

o 1 2 

NOTE: All processes in the base group, including those not in the new group, must call this 
routine. 

Superlu-.gridini t simply calls superlu.-gridmap with usermap [] holding the first nprow * 
npcol process ranks. 

4.4 Matrix distribution and distributed data structures for Land 
U 

We distribute both Land U matrices in a two-dimensional block-cyclic fashion. We first identify 
the supernode boundary based on the nonzero structure of L. This supernode partition is then 
used as the block partition in both row and column dimensions for both Land U. The size of each 
block is matrix dependent. It should be clear that all the diagonal blocks are square and full (we 
store zeros from U in the upper triangle ofthe diagonal block), whereas the off-diagonal blocks may 
be rectangular and may not be full.paragraph The matrix in Figure 4.1 illustrates such a partition. 
By block-cyclic mapping we mean block (1, J) (0 ~ 1, J ~ N - 1) is mapped into the process at 
coordinate {I mod nprow, J mod npeol} of the nprow x npeol process grid. Using this mapping, a 
block L(I, J) in the factorization is only needed by the row of processes that own blocks in row I. 
Similarly, a block U(I, J) is only needed by the column of processes that own blocks in column J. 

In this 2-D mapping, each block column of L resides on more than one process, namely, a column 
of processes. For example in Figure 4.1, the k-th block column of L resides on the column processes 
{O, 3}. Process 3 only owns two nonzero blocks, which are not contiguous in the global matrix. 
The schema on the right of Figure 4.1 depicts the data structure to store the nonzero blocks on 
a process. Besides the numerical values stored in a Fortran-style array nzval [] in column major 
order, we need the information to interpret the location and row subscript of each nonzero. This 
is stored in an integer array index [] , which includes the information for the whole block column 
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Figure 4.1: The 2-D block-cyclic layout and the data structure to store a local block column of L. 

and for each individual block in it. Note that many off-diagonal blocks are zero and hence not 
stored. Neither do we store the zeros in a nonzero block. Both lower and upper triangles of the 
diagonal block are stored in the L data structure. A process owns rN/npcoll block columns of L, 
so it needs rN/nprowl pairs of index/nzval array-so 

For U, we use a row oriented storage for the block rows owned by a process, although for the 
numerical values within each block we still use column major order. Similarly to L, we also use 
a pair of index/nzval arrays to store a block row of U. Due to asymmetry, each nonzero block 
in U has the skyline structure as shown in Figure 4.1 (see [5] for details. on the skyline structure). 
Therefore, the organization of the index [] array is different from that for L, which we omit showing 
in the figure. 

Since currently some steps of the algorithm (steps (1) to (3) in Figure 4.2) are not yet parallel, 
we start with a copy of the entire matrix A on each process. The routine symbfact determines the 
nonzero patterns of L and U as well as the block partition. The routine ddistribute uses this 
information to sets up the Land U data structures and load the initial values of A into Land U. 

4.5 Algorithmic background 

Although partial pivoting is used in both sequential and shared-memory parallel factorization al­
gorithms, it is not used in the distributed-memory parallel algorithm, because it requires dynamic 
adaptation of data structure and load balancing, and so is hard to parallelize. We use alternative 
techniques to stabilize the algorithm, suas as statically pivot large elements to the diagonal, half­
precision diagonal adjustment to avoid small pivots, and iterative refinement. Figure 4.2 sketches 
our GESP algorithm (Gaussian elimination with static pivoting). Numerical experiments show that 
for a wide range of problems, GESP is as stable as GEPP [20]. 

We have parallelized the two most time-consuming steps in this algorithm, which are Step (4) 
and Step (5). Currently, process 0 in the logical process grid computes Dr and Dc and broadcasts 
them to all the other processes, which in turn just apply them to A. Step (2) is accomplished by 
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(1) Row/column equilibration: A t- Dr' A· Dc 
Dr and Dc are diagonal matrices chosen so that the largest entry of each row and 
column is ±1. 

(2) Row permutation: A t- Pr • A 
Pr is a row permutation chosen to make the diagonal large compared to the off-diagonal. 

(3) Find a column permutation Pc to preserve sparsity: A t- Pc' A· P,! 
(4) Factorize A = L· U with control of diagonal magnitude 

if ( laiil < ..fi. IIAII ) then 

set aii to ..fi . "A" 
endif 

(5) Solve A . x = b using the Land U factors, with the following iterative refinement 
iterate: 

r = b - A· x ... sparse matrix-vector multiply 
Solve A . dx = r ... triangular solution 

berr = maxi (lAd:I~lbl)i ... componentwise backward error 
if ( berr > c: and berr :::; ! . lastberr ) then 

x = x + dx 
lastberr = berr 
goto iterate 

endif 

Figure 4.2: The outline of the GESP algorithm. 

a weighted bipartite matching algorithm due to Duff and Koster [9]. Again, process 0 computes 
Pr and then broadcasts it to all the other processes. For Step (3), we provide several ordering 
options, such as multiple minimum degree ordering [22] on the graphs of A + AT or AT A, and the 
approximate minimum degree column ordering [4]. The user can use any other ordering in place of 
these, such as an ordering based on graph partitioning. (Note, since we will pivot on the diagonal 
in Step (4), an ordering based on the structure of A + AT tends to yield sparser factors than that 
based on the structure of AT A. This is different from SuperLU and SuperLU-11T, where we can 
pivot off-diagonal.) In this step, every process runs the same algorithm independently. After the 
above sequential setup, we perform parallel factorization, parallel triangular solutions and parallel 
iterative refinement. 

4.6 User-callable routines 

Appendix C contains the complete specifications of the routines in SuperLUJHST. 

4.6.1 Driver routine 

There is one driver routine to solve systems of linear equations, which is named pdgssvx-ABglobal. 
We recommend that the general users, especially the beginners, use this driver routine rather 
than the computational routines, because correctly using this routine does not require thorough 
understanding of the underlying data structures. Although the interface of this routine is simple, 
we expect its rich functionality can meet the requirements of most applications. Pdgssvx-ABglobal 
performs the following functions: 
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• Equilibrate the system (scale A's rows and columns to have unit norm) if A is poorly scaled; 

• Find a row permutation that makes diagonal of A large relative to the off-diagonal; 

• Find a column permutation that preserves the sparsity of the Land U factors; 

• Solve the system AX = B for X by factoring A followed by forward and back substitutions; 

• Refine the solution X. 

Options argument 

One important input argument to pdgssvx-ABglobal is options, which controls how the linear 
system will be solved. Although the algorithm presented in Figure 4.2 consists of five steps, for 
some matrices not all five steps are needed to get accurate solution. For example, for diagonally 
dominant matrices, choosing the diagonal pivots ensures the stability; there is no need for row 
pivoting in Step (2). In another situation where a sequence of matrices with the same sparsity 
pattern need be factorized, the column permutation Pc (and also the row permutation Pr, if the 
numerical values are similar) need be computed only once, and reused thereafter. CPr and Pc are 
implemented as permutation vectors perm...r and perm_c.) For the above examples, performing all 
five steps does more work than necessary. Options is used to accommodate the various requirements 
of applications; it contains the following fields: 

• Fact 
This option specifies whether or not the factored form of the matrix A is supplied on entry, 
and if not, how the matrix A will be factored base on some assumptions of the previous 
history. fact can be one of: 

- DOF ACT: the matrix A will be factorized from scratch. 

- SamePattern: the matrix A will be factorized assuming that a factorization of a ma-
trix with the same sparsity pattern was performed prior to this one. Therefore, this 
factorization will reuse column permutation vector perm_c. 

- SampPattern...5ameRowPerm: the matrix A will be factorized assuming that a factoriza­
tion of a matrix with the same sparsity pattern and similar numerical values was per­
formed prior to this one. Therefore, this factorization will reuse both row and column 
permutation vectors perm...r and perm_c, both row and column scaling factors Dr and 
Dc, and the distributed data structure set up from the previous symbolic factorization. 

FACTORED: the factored form of A is input. 

• Equil 
This option specifies whether to equilibrate the system. 

• RowPerm 
This option specifies how to permute rows of the original.matrix. 

- NATURAL: use the natural ordering. 

- LargeDiag: use a weighted bipartite matching algorithm to permute the rows to make 
the diagonal large relative to the off-diagonal. 

MY...PERMR: use the ordering given in perm...r input by the user. 
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• ColPerm 
This option specifies the column ordering method for fill reduction. 

- NATURAL: natural ordering. 

~ MMD...AT...PLUS...A: minimum degree ordering on the structure of AT + A. 

- MMD...ATA: minimum degree ordering on the structure of AT A. 

- COLAMD: approximate minimum degree column ordering. 

- MY...PERMC: use the ordering given in perm_c input by the user. 

• ReplaceTinyPivot 
This option specifies whether to replace the tiny diagonals by yfi·IIAII during LU factorization. 

• IterRefine 
This option specifies how to perform iterative refinement. 

- NO: no iterative refinement. 

- DOUBLE: accumulate residual in double precision. 

- EXTRA: accumulate residual in extra precision. (not yet implemented.) 

There is a routine named set_default_options that sets the default values of these options, 
which are: 

fact = DO FACT 
equil = YES 
rowperm = LargeDiag 
colperm = MMD_AT_PLUS_A 
ReplaceTinyPivot = YES 
IterRefine = DOUBLE 

4.6.2 Computational routines 

The experienced users can invoke the following computational routines to directly control the 
behavior of SuperLU in order to meet their requirements. 

• pdgstrf: Factorize in parallel. 
This routine factorizes the input matrix A (or the scaled and permuted A). It assumes that 
the distributed data structures for Land U factors are already set up, and the initial values 
of A are loaded into the data structures. If not, the routine symbfact should be called to 
determine the nonzero patterns of the factors, and the routine ddistribute should be called 
to distribute the matrix. Pdgstrf can factor non~square matrices. 

Currently, A must be globally available on all processes. 

• pdgstrs...Bglobal: Triangular solve in parallel. 
This routine solves the system by forward and back substitutions using the the Land U 
factors computed by pdgstrf. 

Currently, B must be globally available on all processes. 
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• pdgsrfs...ABXglobal: Refine solution in parallel. 
Given A, its factors Land U, and an initial solution X, this routine performs iterative 
refinement. 

Currently, A, B, and X must be globally available on all processes. 

4.7 Installation 

4.7.1 File structure 

The top level SuperLU _DIST / directory is structured as follows: 

SuperLU_DIST/README 
SuperLU_DIST/CBLAS/ 
SuperLU_DIST/EXAMPLE/ 
SuperLU_DIST/INSTALL/ 
SuperLU_DIST/SRC/ 
SuperLU_DIST/Makefile 
SuperLU_DIST/make.inc 

instructions on installation 
needed BLAS routines in C, not necessarily fast 
example programs 
test machine dependent parameters; the Users' Guide. 
C source code, to be compiled into a library 
top level Makefile that does installation and testing 
compiler, compile flags, library definitions and C 
preprocessor definitions, included in all Makefiles. 
(You may need to edit it to be suitable for your 
system before compiling the whole package.) 

Before installing the package, you may need to edit SuperLU...DIST/make. inc for your system. 
This make include file is referenced inside each of the Makefiles in the various subdirectories. As a 
result, there is no need to edit the Makefiles in the subdirectories. All information that is machine 
specific has been defined in this include file. 

Sample machine-specific make. inc are provided in the top-level SuperLU...DIST directory for 
several systems, such as Cray T3E and IBM SP. When you have selected the machine to which you 
wish to install SuperLU_DIST, you may copy the appropriate sample include file (if one is present) 
into make. inc. For example, if you wish to run on a Cray T3E, you can do: 

cp make. t3e make. inc 
For the systems other than those listed above, slight modifications to the make. inc file will 

need to be made. In particular, the following items should be examined: 

1. The BLAS library. 
If there is a BLAS library available on your machine, you may define the following in make. inc: 

BLASDEF = -DUSE_VENDORJ3LAS 
BLASLIB = <BLAS library you wish to link with> 

The CBLAS/ subdirectory contains the part of the BLAS (in C) needed by SuperLU...DIST 
package. However, these routines are intended for use only if there is no faster implementation 
of the BLAS already available on your machine. In this case, you should do the following: 

1) In make.inc, undefine (comment out) BLASDEF, define: 

BLASLIB = .. /blas$(PLAT).a 

2) At the top level SuperLU_DIST directory, type: 

make blaslib 

to create the BLAS library from the routines in CBLAS/ subdirectory. 
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2. C preprocessor definition CDEFS. 
In the header file SRC/Cnames .h, we use macros to determine how C routines should be named 
so that they are callable by Fortran.1 The possible options for CDEFS are: 

• -DAdd_: Fortran expects a C routine to have an underscore postfixed to the name; 

• -DNoChange: Fortran expects a C routine name to be identical to that compiled by Cj 

• -DUpCase: Fortran expects a C routine name to be all uppercase. 

A Makefile is provided in each subdirectory. The installation can be done completely auto­
matically by simply typing make at the top level. 

4.7.2 Performance-tuning parameters 

Similar to sequential SuperLU, several performance related parameters are set in the inquiry func­
tion sp_ienv (). The declaration of this function is 

int sp_ienv(int ispec); 

Ispec specifies the parameter to be returned2 : 

ispec = 2: the relaxation parameter to control supernode amalgamation 
= 3: the maximum allowable size for a block 
= 6: the estimated fills factor for the adjacency structures of Land U 

The values to be returned may be set differently on different machines. The setting of maximum 
block size (parameter 3) should take into account the local Level 3 BLAS speed, the load balance and 
the degree of parallelism. Small block size may result in better load balance and more parallelism, 
but poor individual node performance, and vice versa for large block size. 

4.8 Example programs 

In the SuperLU..DIST/EXAMPLE/ subdirectory, we present a few sample programs, such as pddrive, 
to illustrate the complete calling sequences to use the expert driver to solve systems of equations. 
These include how to set up the process grid and the the input matrix, how to obtain a fill-reducing 
ordering. A Makefile is provided to generate the executables. A README file in this directory shows 
how to run these examples. The leading comment in each routine describes the functionality of the 
example. 

ISome vendor-supplied BLAS libraries do not have C interfaces. So the re-naming is needed in order for the 
SuperL U BLAS calls (in C) to interface with the Fortran-style BLAS. 

2The numbering of 2,3 and 6 is consistent with that used in SuperLU and SuperLU_MT. 
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Appendix A 

Specifications of routines in sequential 
SuperLU 

A.I dgsequ 

void 
dgsequCSuperMatrix *A, double *r, double *c, double *rowcnd, 

double *colcnd, double *amax, int *info) 

Purpose 
--------------

DGSEQU computes row and column scalings intended to equilibrate an 
M-by-N sparse matrix A and reduce its condition number. R returns the row 
scale factors and C the column scale factors, chosen to try to make 
the largest element in each row and column of the matrix B with 
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. 

R(i) and CCj) are restricted to be between SMLNUM = smallest safe 
number and BIGNUM = largest safe number. Use of these scaling 
factors is not guaranteed to reduce the condition number of A but 
works well in practice. 

See supermatrix.h for the definition of 'SuperMatrix' structure. 

Arguments 
------------------

A (input) SuperMatrix* 
The matrix of dimension (A->nrow, A->ncol) whose equilibration 
factors are to be computed. The type of A can be: 
Stype = NC; Dtype = _D; Mtype = GE. 

R (output) double*, size A->nrow 
If INFO = 0 or INFO> M, R contains the row scale factors 
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for A. 

C (output) double*, size A->ncol 
If INFO = 0, C contains the column scale factors for A. 

row end (output) double* 
If INFO = ° or INFO > M, ROWCND contains the ratio of the 
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and 
AMAX is neither too large nor too small, it is not worth 
scaling by R. 

colcnd (output) double* 
If INFO = 0, COLCND contains the ratio of the smallest 
C(i) to the largest C(i). If COLCND >= 0.1, it is not 
worth scaling by C. 

amax (output) double* 
Absolute value of largest matrix element. If AMAX is very 
close to overflow or very close to underflow, the matrix 
should be scaled. 

info (output) int* 
= 0: successful exit 
< 0: if info = -i, the i-th argument had an illegal value 
> 0: if info = i, and i is 

<= A->nrow: the i-th row of A is exactly zero 
> A->ncol: the (i-M)-th column of A is exactly zero 

A.2 dgscon 

void 
dgscon(char *norm, SuperMatrix *L, SuperMatrix *U, 

double anorm, double *rcond, int *info) 

Purpose 
--------------

DGSCON estimates the reciprocal of the condition number of a general 
real matrix A, in either the i-norm or the infinity-norm, using 
the LU factorization computed by DGETRF. 

An estimate is obtained for norm(inv(A)), and the reciprocal of the 
condition number is computed as 

RCOND = 1 / ( norm(A) * norm(inv(A)) ). 

See supermatrix.h for the definition of 'SuperMatrix' structure. 
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Arguments 
========= 

norm (input) char* 
Specifies whether the 1-norm condition number or the 
infinity-norm condition number is required: 
= '1' or '0': 1-norm; 
= 'I': Infinity-norm. 

L (input) SuperMatrix* 
The factor L from the factorization Pr*A*Pc=L*U as computed by 
dgstrf(). Use compressed row subscripts storage for supernodes, 
i.e., L has types: Stype = SC, Dtype = _D, Mtype = TRLU. 

U (input) SuperMatrix* 
The factor U from the factorization Pr*A*Pc=L*U as computed by 
dgstrf(). Use column-wise storage scheme, i.e., U has types: 
Stype = NC, Dtype = _D, Mtype = TRU. 

anorm (input) double 
If NORM = '1' or '0', the 1-norm of the original matrix A. 
If NORM = 'I', the infinity-norm of the original matrix A. 

rcond (output) double* 
The reciprocal of the condition number of the matrix A, 
computed as RCOND = 1/(norm(A) * norm(inv(A))). 

info (output) int* 
= 0: successful exit 
< 0: if INFO = -i, the i-th argument had an illegal value 

A.3 dgsrfs 

void 
dgsrfs(char *trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U, 

int *perm_r, int *perm_c, char *equed, double *R, double *C, 
SuperMatrix *B, SuperMatrix *X, 
double *ferr, double *berr, int *info) 

Purpose 
--------------

DGSRFS improves the computed solution to a system of linear 
equations and provides error bounds and backward error estimates for 
the solution. 
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If equilibration was performed, the system becomes: 
(diag(R)*A_original*diag(C» * X = 'diag(R)*B_original. 

See supermatrix.h for the definition of 'SuperMatrix' structure. 

Arguments 
------------------

trans (input) char* 
Specifies the form of the system of equations: 
= 'N' : A * X = B (No transpose) 
= 'T' : A**T * X = B (Transpose) 
= 'C': A**H * X = B (Conjugate transpose = Transpose) 

A (input) SuperMatrix* 
The original matrix A in the system, or the scaled A if 
equilibration was done. The type of A can be: 
Stype = NC, Dtype = _D, Mtype = GE. 

L (input) SuperMatrix* 
The factor L from the factorization Pr*A*Pc=L*U. Use 
compressed row subscripts storage for supernodes, 
i.e., L has types: Stype = SC, Dtype = _D, Mtype = TRLU. 

U (input) SuperMatrix* 
The factor U from the factorization Pr*A*Pc=L*U as computed by 
dgstrf(). Use column-wise storage scheme, 
i.e., U has types: Stype = NC, Dtype = _D, Mtype = TRU. 

perm_r (input) int*, dimension (A->nrow) 
Row permutation vector, which defines the permutation matrix Pr; 
perm_rEi] = j means row i of A is in position j in Pr*A. 

perm_c (input) int*, dimension (A->ncol) 

equed 

Column permutation vector, which defines the 
permutation matrix Pc; perm_c[i] = j means column i of A is 
in position j in A*Pc. 

(input) Specifies the form of equilibration that was done. 
= 'N': No equilibration. 
= 'R': Row equilibration, i.e., A was premultiplied by diag(R). 
= 'C': Column equilibration, i.e., A was postmultiplied by 

diag(C). 
= 'B': Both row and column equilibration, i.e., A was replaced 

by diag(R)*A*diag(C). 
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R 

C 

B 

x 

FERR 

(input) double*, dimension (A->nrow) 
The row scale factors for A. 
If equed = 'R' or 'B' , A is premultiplied by diag(R). 
If equed = 'N' or 'C', R is not accessed. 

(input) double*, dimension (A->ncol) 
The column scale factors for A. 
If equed = 'C' or 'B' , A is postmultiplied by diag(C). 
If equed = 'N' or 'R', C is not accessed. 

(input) SuperMatrix* 
B has types: Stype = DN, Dtype = _D, Mtype = GE. 
The right hand side matrix B. 
if equed = 'R' or 'B', B is premultiplied by diag(R). 

(input/output) SuperMatrix* 
X has types: Stype = DN, Dtype = _D, Mtype = GE. 
On entry, the solution matrix X, as computed by dgstrs(). 
On exit, the improved solution matrix X. 
if *equed = 'C' or 'B', X should be premultiplied by diagCC) 

in order to obtain the solution to the original system. 

(output) double*, dimension (B->ncol) 
The estimated forward error bound for each solution vector 
X(j) (the j-th column of the solution matrix X). 
If XTRUE is the true solution corresponding to X(j), FERR(j) 
is an estimated upper bound for the magnitude of the largest 
element in (X(j) - XTRUE) divided by the magnitude of the 
largest element in XCj). The estimate is as reliable as 
the estimate for RCOND, and is almost always a slight 
overestimate of the true error. 

BERR (output) double*, dimension (B->ncol) 
The componentwise relative backward error of each solution 
vector X(j) (i.e., the smallest relative change in 
any element of A or B that makes X(j) an exact solution). 

info (output) int* 
= 0: successful exit 
< 0: if INFO = -i, the i-th argument had an illegal value 

A.4 dgssv 

void 
dgssv(SuperMatrix *A, int *perm_c, int *perm_r. SuperMatrix *L, 

SuperMatrix *U, SuperMatrix *B, int *info ) 
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Purpose 
--------------

DGSSV solves the system of linear equations A*X=B, using the 
LU factorization from DGSTRF. It performs the following steps: 

1. If A is stored column-wise (A->Stype = NC): 

1.1. Permute the columns of A, forming A*Pc, where Pc 
is a permutation matrix. For more details of this step, 
see sp_preorder.c. 

1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined 
by Gaussian elimination with partial pivoting. 
L is unit lower triangular with offdiagonal entries 
bounded by 1 in magnitude, and U is upper triangular. 

1.3. Solve the system of equations A*X=B using the factored 
form of A. 

2. If A is stored row-wise (A->Stype = NR), apply the 
above algorithm to the transpose of A: 

2.1. Permute columns of transpose(A) (rows of A), 
forming transpose(A)*Pc, where Pc is a permutation matrix. 
For more details of this step, see sp_preorder.c. 

2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr 
determined by Gaussian elimination with partial pivoting. 
L is unit lower triangular with offdiagonal entries 
bounded by 1 in magnitude, and U is upper triangular. 

2.3. Solve the system of equations A*X=B using the factored 
form of A. 

See supermatrix.h for the definition of 'SuperMatrix' structure. 

Arguments 
------------------

A (input) SuperMatrix* 
Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number 
of linear equations is A->nrow. Currently, the type of A can be: 
Stype = NC or NR; Dtype = _D; Mtype = GE. In the future, more 
general A will be handled. 
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perm_c (input/output) int* 
If A->Stype = NC, column permutation vector of size A->ncol 
which defines the permutation matrix,Pc; perm_c[i] = j means 
column i of A is in position j in A*Pc. 
On exit, perm_c may be overwritten by the product of the input 
perm_c and a permutation that postorders the elimination tree 
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree 
is already in postorder. 

If A->Stype = NR, column permutation vector of size A->nrow 
which describes permutation of columns of transpose(A) 
(rows of A) as described above. 

perm_r (output) int* 
If A->Stype = NC, row permutation vector of size A->nrow, 
which defines the permutation matrix Pr, and is determined 
by partial pivoting. perm_rei] = j means row i of A is in 
position j in Pr*A. 

If A->Stype = NR, permutation vector of size A->ncol, which 
determines permutation of rows of transpose(A) 
(columns of A) as described above. 

L (output) SuperMatrix* 
The factor L from the factorization 

Pr*A*Pc=L*U (if A->Stype = NC) or 
Pr*transpose(A)*Pc=L*U (if A->Stype = NR). 

Uses compressed row subscripts storage for supernodes, i.e., 
L has types: Stype = SC, Dtype = _D, Mtype = TRLU. 

U (output) SuperMatrix* 
The factor U from the factorization 

Pr*A*Pc=L*U (if A->Stype = NC) or 
Pr*transpose(A)*Pc=L*U (if A->Stype = NR). 

Uses column-wise storage scheme, i.e., U has types: 
Stype = NC, Dtype = _D, Mtype = TRU. 

B (input/output) SuperMatrix* 
B has types: Stype = DN, Dtype = _D, Mtype = GE. 
On entry, the right hand side matrix. 
On exit, the solution matrix if info = 0; 

info (output) int* 
= 0: successful exit 
> 0: if info = i, and 1 1S 

<= A->ncol: U(i,i) is exactly zero. The factorization has 
been completed, but the factor U is exactly singular, 
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so the solution could not be computed. 
> A->ncol: number of bytes allocated when memory allocation 

failure occurred, plus A->ncol. 

A.5 dgssvx 

void 
dgssvx(char *fact, char *trans, char *refact, 

SuperMatrix *A, factor_param_t *factor_params, int *perm_c, 
int *perm_r, int *etree, char *equed, double *R, double *C, 
SuperMatrix *L, SuperMatrix *U, void *work, int lwork, 
SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, 
double *rcond, double *ferr, double *berr, 
mem_usage_t *mem_usage, int *info ) 

Purpose 
--------------

DGSSVX solves the system of linear equations A*X=B or A'*X=B, using 
the.LU factorization from dgstrf(). Error bounds on the solution and 
a condition estimate are also provided. It performs the following steps: 

1. If A is stored column-wise (A->Stype = NC): 

1.1. If fact 
system: 

trans 
trans 
trans 

= 

= 
= 
= 

'E', scaling factors are computed to equilibrate the 

'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B 
'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B 
'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B 

Whether or not the system will be equilibrated depends on the 
scaling of the matrix A, but if equilibration is used, A is 
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if trans='N') 
or diag(C)*B (if trans = 'T' or 'C'). 

1.2. Permute columns of A, forming A*Pc, where Pc is a permutation 
matrix that usually preserves sparsity. 
For more details of this step, see sp_preorder.c. 

1.3. If fact = 'N' or 'E', the LU decomposition is used to factor the 
matrix A (after equilibration if fact = 'E') as Pr*A*Pc = L*U, 
with Pr determined by partial pivoting. 

1.4. Compute the reciprocal pivot growth factor. 

1.5. If some U(i,i) = 0, so that U is exactly singular, then the 
routine returns with info = i. Otherwise, the factored form of 
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A is used to estimate the condition number of the matrix A. If 
the reciprocal of the condition number is less than machine 
precision, info = A->ncol+1 is returned as a warning, but the 
routine still goes on to solve for X and computes error bounds 
as described below. 

1.6. The system of ,equations is solved for X using the factored form 
of A. 

1.7. Iterative refinement is applied to improve the computed solution 
matrix and calculate error bounds and backward error estimates 
for it. 

1.S. If equilibration was used, the matrix X is premultiplied by 
diag(C) (if trans = 'N') or diag(R) (if trans = 'T' or 'C') so 
that it solves the original system before equilibration. 

2. If A is stored row-wise (A->Stype = NR), apply the above algorithm 
to the transpose of A: 

2.1. If fact = 'E'. scaling factors are computed to equilibrate the 
system: 

trans 
trans 
trans 

Whether 

= 'N' : 
= 'T' : 
= 'c' : 
or not 

diag(R)*A'*diag(C) *inv(diag(C»*X = diag(R)*B 
(diag(R)*A'*diag(C»**T *inv(diag(R»*X = diag(C)*B 
(diag(R)*A'*diag(C»**H *inv(diag(R»*X = diag(C)*B 
the system will be equilibrated depends on the 

scaling of the matrix A, but if equilibration is used, A' is· 
overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
(if trans='N') or diag(C)*B (if trans = 'T' or 'C'). 

2.2. Permute columns of transpose(A) (rows of A), 
forming transpose(A)*Pc, where Pc is a permutation matrix that 
usually preserves sparsity. 
For more details of this step, see sp_preorder.c. 

2.3. If fact = 'N' or 'E', the LU decomposition is used to factor the 
transpose(A) (after equilibration if fact = 'E') as 
Pr*transpose(A)*Pc = L*U with the permutation Pr determined by 
partial pivoting. 

2.4. Compute the reciprocal pivot growth factor. 

2.5. If some U(i,i) = 0, so that U is exactly singular, then the 
routine returns with info = i. Otherwise, the factored form 
of transpose(A) is used to estimate the condition number of the 
matrix A. If the reciprocal of the condition number 
is less than machine precision, info = A->nrow+l is returned as 
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a warning, but the routine still goes on to solve for X and 
computes error bounds as described below. 

2.6. The system of equations is solved for X using the factored form 
of transpose(A). 

2.7. Iterative refinement is applied to improve the computed solution 
matrix and calculate error bounds and backward error estimates 
for it . 

. 2.8. If equilibration was used, the matrix X is premultiplied by 
diag(e) (if trans = 'N') or diag(R) (if trans = 'T' or 'e') so 
that it solves the original system before equilibration. 

See supermatrix.h for the definition of 'SuperMatrix' structure. 

Arguments 
------------------

fact (input) char* 

trans 

Specifies whether or not the factored form of the matrix 
A is supplied on entry, and if not, whether the matrix A should 
be equilibrated before it is factored. 
= 'F': On entry, L, U, perm_r and perm_c contain the factored 

form of A. If equed is not 'N', the matrix A has been 
equilibrated with scaling factors R and e. 
A, L, U, perm_r are not modified. 

= 'N': The matrix A will be factored, and the factors will be 
stored in L and U. 

= 'E': The matrix A will be equilibrated if necessary, then 
factored into L and Uo 

(input) char* 
Specifies the form of 
= 'N': A *X = B 
= 'T': A**T * X = B 
= 'e': A**H * X = B 

the system of equations: 
(No transpose) 
(Transpose) 
(Transpose) 

ref act (input) char* 
Specifies whether we want to re-factor the matrix. 
= 'N': Factor the matrix A. 
= 'Y': Matrix A was factored before, now we want to re-factor 

matrix A with perm_r and etree as inputs. Use 
the same storage for the L\U factors previously allocated, 
expand it if necessary. User should insure to use the same 
memory model. 

If fact = 'F', then ref act is not accessed. 
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A (input/output) SuperMatrix* 
Matrix A inA*X=B, of dimension (A-~nrow, A->ncol). The number 
of the linear equations is A->nrow. Currently, the type of A can be: 
Stype = NC or NR, Dtype = _D, Mtype = GE. In the future, 
more general A can be handled. 

On entry, If fact = 'F' and equed is not 'N', then A must have 
been equilibrated by the scaling factors in Rand/or C. 
A is not modified if fact = 'F' or 'N', or if fact = 'E' and 
equed = 'N' on exit. 

On exit, if fact = 'E' and equed is not 'N', A is scaled as follows: 
If A->Stype = NC: 

equed = 'R': A:= diag(R) * A 
equed = 'C': A:= A * diag(C) 
equed = 'B': A:= diag(R) * A * diag(C). 

If A->Stype = NR: 
equed = 'R': transpose(A) := diag(R) * transpose(A) 
equed = 'C': transpose (A) := transpose(A) * diag(C) 
equed = 'B': transpose (A) := diag(R) * transpose(A) * diag(C). 

factor_params (input) factor_param_t* 
The structure defines the input scalar parameters, consisting of 
the following fields. If factor_params = NULL, the default 
values are used for all the fields; otherwise, the values 
are given by the user. 
- panel_size (int): Panel size. A panel consists of at most 

panel_size consecutive columns. If panel_size = -1, use 
default value 8. 

- relax (int): To control degree of relaxing supernodes. If the 
number of nodes (columns) in a subtree of the elimination 
tree is less than relax, this subtree is considered as one 
supernode, regardless of the row structures of those columns. 
If relax = -1, use default value 8. 

- diag_pivot_thresh (double): Diagonal pivoting threshold. 
At step j of the Gaussian elimination, if 

abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)), 
then use A_jj as pivot. ° <= diag_pivot_thresh <= 1. 
If diag_pivot_thresh = -1, use default value 1.0, 
which corresponds to standard partial pivoting. 

- drop_tol (double): Drop tolerance threshold. (NOT IMPLEMENTED) 
At step j of the Gaussian elimination, if 

abs(A_ij)/(max_i abs(A_ij)) < drop_tol, 
then drop entry A_ij. ° <= drop_tol <= 1. 
If drop_tol = -1, use default value 0.0, which corresponds to 
standard Gaussian elimination. 
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perm_c (input/output) int* 
If A->Stype = NC, Column permutation vector of size A->ncol, 
vhich defines the permutation matrix Pc; perm_c[i] = j means 
column i of A is in position j in A*Pc. 
On exit, perm_c may be overvritten by the product of the input 
perm_c and a permutation that postorders the elimination tree 
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree 
is already in postorder. 

If A->Stype = NR, column permutation vector of size A->nrov, 
vhich describes permutation of columns of transpose(A) 
(rovs of A) as described above. 

perm_r (input/output) int* 

etree 

equed 

If A->Stype = NC, rov permutation vector of size A->nrov, 
vhich defines the permutation matrix Pr, and is determined 
by partial pivoting. perm_rei] = j means rov i of A is in 
position j in Pr*A. 

If A->Stype = NR, permutation vector of size A->ncol, vhich 
determines permutation of rovs of transpose(A) 
(columns o·f A) as described above. 

If ref act is not 'Y', perm_r is output argument; 
If ref act = 'Y', the pivoting routine viII try to use the input 
perm_r, unless a certain threshold criterion is violated. 
In that case, perm_r is overvritten by a nev permutation 
determined by partial pivoting or diagonal threshold pivoting. 

(input/output) int*, dimension (A->ncol) 
Elimination tree of Pc'*A'*A*Pc. 
If fact is not 'F' and refact = 'Y', etree is an input argument, 
othervise it is an output argument. 
Note: etree is a vector of parent pointers for a forest vhose 
vertices are the integers 0 to A->ncol-l; etree[root]==A->ncol. 

(input/output) char* 
Specifies the form of equilibration that vas done. 
= 'N' 
= 'R' 
= 'C' 
= 'B' 

: 

: 
: 

: 

No equilibration. 
Rov equilibration, i.e., A vas premultiplied by diag(R). 
Column equilibration, i.e., A vas postmultiplied by diag(C). 
Both rov and column equilibration, i.e., A vas replaced 
by diag(R)*A*diag(C). 

If fact = 'F', equed is an input argument, othervise it is 
an output argument. 

64 



R (input/output) double*. dimension (A->nrow) 
The row scale factors for A or transpose(A). 
If equed = 'R' or 'B'. A (if A->Stype = Ne) or transpose(A) (if 

A->Stype = NR) is multiplied on the left by diag(R). 
If equed = 'N' or 'e'. R is not accessed. 
If fact = 'F'. R is an input argument; otherwise. R is output. 
If fact = 'F' and equed = 'R' or 'B', each element of R must 

be positive. 

e (input/output) double*, dimension (A->ncol) 
The column scale factors for A or transpose(A). 
If equed = 'C' or 'B', A (if A->Stype = NC) or transpose(A) (if 

A->Stype = NR) is multiplied on the right by diag(e). 
If equed = 'N' or 'R'. e is not accessed. 
If fact = 'F', e is an input argument; otherwise, e is output. 
If fact = 'F' and equed = 'e' or 'B'. each element of e must 

be positive. 

L (output) SuperMatrix* 
The factor L from the factorization 

Pr*A*Pc=L*U (if A->Stype = Ne) or 
Pr*transpose(A)*Pc=L*U (if A->Stype = NR). 

Uses compressed row subscripts storage for supernodes, i.e., 
L has types: Stype = se, Dtype = _D, Mtype = TRLU. 

U (output) SuperMatrix* 
The factor U from the factorization 

Pr*A*Pc=L*U (if A->Stype = Ne) or 
Pr*transpose (A) *Pc=L*U (if A->Stype = NR). 

Uses column-wise storage scheme, i.e., U has types: 
Stype = He, Dtype = _D, Mtype = TRU. 

work (workspace/output) void*, size (lwork) (in bytes) 
User supplied workspace, should be large enough 
to hold data structures for factors L and U. 

lwork 

On exit, if fact is not 'F'. L and U point to this array. 

(input) int 
Specifies the size of work array in bytes. 
= 0: allocate space internally by system malloc; 
> 0: use user-supplied work array of length lwork in bytes, 

returns error if space runs out. 
= -1: the routine guesses the amount of space needed without 

performing the factorization, and returns it in 
mem_usage->total_needed; no other side effects. 

See argument 'mem_usage' for memory usage statistics. 
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B (input/output) SuperMatrix* 
B has types: Stype = ON. Otype = _0. Mtype = GE. 
On entry. the right hand side matrix. 
On exit. 

if equed = 'N'. B is not modified; otherwise 
if A->Stype = NC: 

if trans = 'N' and equed = 'R' or 'B'. B is overwritten by 
diag(R)*Bi 

if 

if trans = 'T' or 'e' and equed = 'e' of 'B' • B is 
overwritten by diag(e)*Bi 

A->Stype = NR: 
if trans = 'N' and equed = 'e' or 'B' • B is overwritten by 

diag(e)*Bi 
if trans = 'T' or 'e' and equed = 'R' of 'B'. B is 

overwritten by diag(R)*B. 

x (output) SuperMatrix* 
X has types: Stype = DN. Dtype = _D. Mtype = GE. 
If info = 0 or info = A->nco1+1. X contains the solution matrix 
to the original system of equations. Note that A and B are modified 
on exit if equed is not 'N'. and the solution to the equilibrated 
system is inv(diag(e»*X if trans = 'N' and equed = 'e' or 'B'. 
or inv(diag(R))*X if trans = 'T' or 'C' and equed = 'R' or 'B'. 

recip_pivot_growth (output) double* 

rcond 

The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ). 
The infinity norm is used. If recip_pivot_growth is much less 
than 1, the stability of the LU factorization could be poor. 

(output) doub1e* 
The estimate of the reciprocal condition number of the matrix A 
after equilibration (if done). If rcond is less than the machine 
precision (in particular. if rcond = 0). the matrix is singular 
to working precision. This condition is indicated by a return 
code of info> O. 

FERR (output) doub1e*. dimension (B->nco1) 
The estimated forward error bound for each solution vector 
X(j) (the j-th column of the solution matrix X). 
If XTRUE is the true solution corresponding to X(j). FERR(j) 
is an estimated upper bound for the magnitude of the largest 
element in (X(j) - XTRUE) divided by the magnitude of the 
largest element in X(j). The estimate is as reliable as 
the estimate for ReOND, and is almost always a slight 
overestimate of the true error. 
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BERR (output) double*, dimension (B->ncol) 
The componentwise relative backward error of each solution 
vector X(j) (i.e., the smallest rel~tive change in 
any element of A or B that makes X(j) an exact solution). 

mem_usage (output) mem_usage_t* 
Record the memory usage statistics, consisting of following fields: 
- for_lu (float) 

The amount of space used in bytes for L\U data structures. 
- total_needed (float) 

The amount of space needed in bytes to perform factorization. 
- expansions (int) 

The number of memory expansions during the LU factorization. 

info (output) int* 
= 0: successful exit 
< 0: if info = -i. the i-th argument had an illegal value 
> 0: if info = i, and i is 

<= A->ncol: U(i,i) is exactly zero. The factorization has 
been completed, but the factor U is exactly 
singular. so the solution and error bounds 
could not be computed. 

= A->ncol+l: U is nonsingular, but RCONOis less than machine 
precision, meaning that the matrix is singular to 
working precision. Nevertheless. the solution and 
error bounds are computed because there are a number 
of situations where the computed solution can be more 
accurate than the value of RCONO would suggest. 

> A->ncol+l: number of bytes allocated when memory allocation 
failure occurred. plus A->ncol. 

A.6 dgstrf 

void 
dgstrf(char *refact, SuperMatrix *A. double diag_pivot_thresh, 

double drop_tol, int relax, int panel_size, int *etree, 
void *work, int lwork, int *perm_r, int *perm_c, 
SuperMatrix *L, SuperMatrix *U, int *info) 

Purpose 
--------------

OGSTRF computes an LU factorization of a general sparse m-by-n 
matrix A using partial pivoting with row interchanges. 
The factorization has the form 

Pr * A = L * U 
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where Pr is a row permutation matrix, L is lower triangular with unit 
diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper 
triangular (upper trapezoidal if A->nrow <A->ncol). 

See supermatrix.h for the definition of 'SuperMatrix' structure. 

Arguments 
========= 

ref act (input) char* 
Specifies whether we want to use perm_r from a previous factor. 
= 'Y': re-use perm_r; perm_r is input, unchanged on exit. 
= 'N': perm_r is determined by partial pivoting, and output. 

A (input) SuperMatrix* 
Original matrix A, permuted by columns, of dimension 
(A->nrow, A->ncol). The type of A can be: 
Stype = Nep; Dtype = D; Mtype = GE. 

diag_pivot_thresh (input) double 
Diagonal pivoting threshold. At step j of the Gaussian elimination, 
if abs(A_jj) >= thresh * (max_(i>=j) abs(A_ij)), use A_jj as pivot. 
o <= thresh <= 1. The default value of thresh is 1, corresponding 
to partial pivoting. 

drop_tol (input) double (NOT IMPLEMENTED) 

relax 

Drop tolerance parameter. At step j of the Gaussian elimination, 
if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij. 
o <= drop_tol <= 1. The default value of drop_tol is O. 

(input) int 
To control degree of relaxing supernodes. If the number 
of nodes (columns) in a subtree of the elimination tree is less 
than relax, this subtree is considered as one supernode, 
regardless of the row structures of those columns. 

panel_size (input) int 

etree 

A panel consists of at most panel_size consecutive columns. 

(input) int*, dimension (A->ncol) 
Elimination tree of A'*A. 
Note: etree is a vector of parent pointers for a forest whose 
vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol. 
On input, the columns of A should be permuted so that the 
etree is in a certain postorder. 

work (input/output) void*, size (lwork) (in bytes) 
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lwork 

User-supplied work space and space for the output data structures. 
Not referenced if lwork = 0; 

(input) int 
Specifies the size of work array in bytes. 
= 0: allocate space internally by system malloc; 
> 0: use user-supplied work array of length lwork in bytes, 

returns error if space runs out. 
= -1: the routine guesses the amount of space needed without 

performing the factorization, and returns it in 
*info; no other side effects. 

perm_r (input/output) inU, dimension (A->nrow) 
Row permutation vector which defines the permutation matrix Pr, 
perm_rEi] = j means row i of A is in position j in Pr*A. 
If refact is not 'Y', perm_r is output argument; 
If refact = 'Y'. the pivoting routine will try to use the input 
perm_r. unless a certain threshold criterion is violated. 
In that case, perm_r is overwritten by a new permutation 
determined by partial pivoting or diagonal threshold pivoting. 

(input) int*. dimension (A->ncol) 
Column permutation vector, which defines the 
permutation matrix Pc; perm_c[i] = j means column i of A is 
in position j in A*Pc. 
When searching for diagonal. perm_c[*J is applied to the 
row subscripts of A. so that diagonal threshold pivoting 
can find the diagonal of A, rather than that of A*Pc. 

L (output) SuperMatrix* 
The factor L from the factorization Pr*A=L*U; use compressed row 
subscripts storage for supernodes. i.e., L has type: 
Stype = SC, Dtype = _D, Mtype = TRLU. 

U (output) SuperMatrix* 

info 

The factor U from the factorization Pr*A*Pc=L*U. Use column-wise 
storage scheme, i.e., U has types: Stype = NC, 
Dtype = _D, Mtype = TRU. 

(output) int* 
= 0: 
< 0: 
> 0: 

<= 

successful 
if info = 
if info = 

exit 
-i, the 
i, and 

i-th argument had an illegal value 
i is 

A->ncol: U(i,i) is exactly zero. The factorization has 
been completed. but the factor U is exactly singular. 
and division by zero will occur if it is used to solve a 
system of equations. 
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> A->ncol: number of bytes allocated when memory allocation 
failure occurred, plus A->ncol. If lwork = -1, it is 
the estimated amount of space needed, plus A->ncol. 

A.7 dgstrs 

void 
dgstrs(char *trans, SuperMatrix *L, SuperMatrix *U, 

int *perm_r, int *perm_c, SuperMatrix *B, int *info) 

Purpose 
======= 

DGSTRS solves a system of linear equations A*X=B or A'*X=B 
with A sparse and B dense, using the LU factorization computed by 
DGS'J;'RF. 

See supermatrix.h for the definition of 'SuperMatrix' structure. 

Arguments 
------------------

trans (input) char* 
Specifies the form 
= 'N': A * X = B 
= 'T': A'* X = B 
= 'C': A**H * X = 

of the system of equations: 
(No transpose) 
(Transpose) 
B (Conjugate transpose) 

L (input) SuperMatrix* 
The factor L from the factorization Pr*A*Pc=L*U as computed by 
dgstrf(). Use compressed row subscripts storage for supernodes, 
i.e., L has types: Stype = SC, Dtype = _D, Mtype = TRLU. 

U (input) SuperMatrix* 
The factor U from the factorization Pr*A*Pc=L*U as computed by 
dgstrf(). Use column-wise storage scheme, i.e., U has types: 
Stype = NC, Dtype = _D, Mtype = TRU. 

perm_r (input) int*, dimension (L->nrow) 
Row permutation vector, which defines the permutation matrix Pr; 
perm_rei] = j means row i of A is in position j in Pr*A. 

perm_c (input) int*, dimension (L->ncol) 
Column permutation vector, which defines the 
permutation matrix Pc; perm_c[i] = j means column i of A is 
in position j in A*Pc. 
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B (input/output) SuperMatrix* 
B has types: Stype = ON, Otype = _0. Mtype = GE. 
On entry, the right hand side matrix. 
On exit, the solution matrix if info = 0; 

info (output) int* 
= 0: successful exit 
< 0: if info = -i, the i-th argument had an illegal value 

A.S dlaqgs 

void 
dlaqgs(SuperMatrix *A, double *r, double *c, 

double rowcnd, double colcnd, double amax, char *equed) 

Purpose 
--------------

OLAQGS equilibrates a general sparse M by N matrix A using the row and 
scaling factors in the vectors R and C. 

See supermatrix.h for the definition of 'SuperMatrix' structure. 

Arguments 
------------------

A (input/output) SuperMatrix* 
On exit, the equilibrated matrix. See EQUED for the form of 
the equilibrated matrix. The type of A can be: 
Stype = NC; Dtype = _D; Mtype = GE. 

R (input) double*, dimension (A->nrow) 
The row scale factors for A. 

C (input) double*, dimension (A->ncol) 
The column scale factors for A. 

rowcnd (input) double 
Ratio of the smallest R(i) to the largest R(i). 

colcnd (input) double 
Ratio of the smallest C(i) to the largest C(i). 

amax (input) double 
Absolute value of largest matrix entry. 
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aquad (output) char* 
Specifies the form of equilibration that was done. 
= 'N': No equilibration 
= 'R': Row equilibration, i.e., A has been premultiplied by 

diag(R). 
= 'C': Column equilibration, i.e., A has been postmultiplied 

by diag(C). 
= 'B': Both row and column equilibration, i.e., A has been 

replaced by diag(R) * A * diag(C). 
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Appendix B 

Specifications of routines in 
multithreaded SuperLU_MT 

B.1 pdgssv 

void 
pdgssv(int nprocs, SuperMatrix *A, int *perm_c, int *perm_r, 

SuperMatrix *L, SuperMatrix *U, SuperMatrix *B, int *info ) 

Purpose 
======= 

pdgssv() solves the system of linear equations A*X=B. using the parallel 
LU factorization routine pdgstrf(). It performs the following steps: 

1. If A is stored column-wise (A->Stype = NC): 

1.1. Permute the columns of A, forming A*Pc, where Pc is a 
permutation matrix. 
For more details of this step, see sp_preorder.c. 

1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined 
by Gaussian elimination with partial pivoting. 
L is unit lower triangular with offdiagonal entries 
bounded by 1 in magnitude, and U is upper triangular. 

1.3. Solve the system of equations A*X=B using the factored 
form of A. 

2. If A is stored row-wise (A->Stype = NR), apply the above algorithm 
to the transpose of A: 

2.1. Permute columns of transpose(A) (rows of A), 
forming transpose(A)*Pc. where Pc is a permutation matrix. 
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For more details of this step, see sp_preorder.c. 

2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr 
determined by Gaussian elimination with partial pivoting. 
L is unit lower triangular with offdiagonal entries 
bounded by 1 in magnitude, and U is upper tr"iangular. 

2.3. Solve the system of equations A*X=B using the factored 

See supermatrix.h for the definition of ISuperMatrix" structure. 

Arguments 
------------------

nprocs (input) int 
Number of processes (or threads) to be spawned and used to perform 
the LU factorization by pdgstrf(). There is a single thread of 
control to call pdgstrf(), and all threads spawned by pdgstrf() 
are terminated before returning from pdgstrf(). 

A (input) SuperMatrix* 
Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where 
A->nrow = A->ncol. Currently, the type of A can be: 
Stype = NC or NR; Dtype = _D; Mtype = GE. In the future, 
more general A will be handled. 

perm_c (input/output) int* 
If A->Stype=NC, column permutation vector of size A->ncol, 
which defines the permutation matrix Pc; perm_c[iJ = j means 
column i of A is in position j in A*Pc. 
On exit, perm_c may be overwritten by the product of the input 
perm_c and a permutation that postorders the elimination tree 
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree 
is already in postorder. 

If A->Stype=NR, column permutation vector of size A->nrow 
which describes permutation of columns of transpose(A) 
(rows of A) as described above. 

perm_r (output) int*, 
If A->Stype=NR, row permutation vector of size A->nrow, 
which defines the permutation matrix Pr, and is determined 
by partial pivoting. perm_rei] = j means row i of A is in 
position j in Pr*A. 

If A->Stype=NR, permutation vector of size A->ncol, which 
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determines permutation of rows of transpose(A) 
(columns of A) as described above. 

L (output) SuperMatrix* 
The factor L from the factorization 

Pr*A*Pc=L*U (if A->Stype=NC) or 
Pr*transpose(A)*Pc=L*U (if A->Stype=NR). 

Uses compressed row subscripts storage for supernodes, i.e., 
L has types: Stype = SCP. Dtype = _D. Mtype = TRLU. 

U (output) SuperMatrix* 
The factor U from the factorization 

Pr*A*Pc=L*U (if A->Stype=NC) or 
Pr*transpose(A)*Pc=L*U (if A->Stype=NR). 

Use column-wise storage scheme. i.e .• U has types: 
Stype = NCP. Dtype = _D. Mtype = TRU. 

B (input/output) SuperMatrix* 
B has types: Stype = DN. Dtype = _D. Mtype = GE. 
On entry, the right hand side matrix. 
On exit. the solution matrix if info = 0; 

info (output) int* 
= 0: successful exit 
> 0: if info = i. and i is 

<= A->ncol: U(i,i) is exactly zero. The factorization has 
been completed. but the factor U is exactly singular. 
so the solution could not be computed. 

> A->ncol: number of bytes allocated when memory allocation 
failure occurred. plus A->ncol. 

B.2 pdgssvx 

void 
pdgssvx(int nprocs. pdgstrf_options_t *pdgstrf_options. SuperMatrix *A. 

int *perm_c, int *perm_r, equed_t *equed, double *R. double *C, 
SuperMatrix *L. SuperMatrix *U. 
SuperMatrix *B. SuperMatrix *X. double *recip_pivot_growth. 
double *rcond, double *ferr, double *berr. 
superlu_memusage_t *superlu_memusage, int *info) 

Purpose 
======= 

PDGSSVX solves the system of linear equations A*X=B or A'*X=B, using 
the LU factorization from dgstrf(). Error bounds on the solution and 

75 



a condition estimate are also provided. It performs the following steps: 

1. If A is stored column-wise (A->Stype = NC): 

1.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate 
the system: 

trans = NOTRANS: diag(R)*A*diag(C)*inv(diag(C))*X = diag(R)*B 
trans = TRANS: (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B 
trans = CONJ: (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B 

Whether or not the system will be equilibrated depends on the 
scaling of the matrix A, but if equilibration is used, A is 
overwritten by diag(R)*A*diag(C) and B by diag(R)*B 
(if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ). 

1.2. Permute columns of A, forming A*Pc, where Pc is a permutation matrix 
that usually preserves sparsity. 
For more details of this step, see sp_colorder.c. 

1.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to 
factor the matrix A (after equilibration if fact = EQUILIBRATE) as 
Pr*A*Pc = L*U, with Pr determined by partial pivoting. 

1.4. Compute the reciprocal pivot growth factor. 

1.5. If some U(i,i) = 0, so that U is exactly singular, then the routine 
returns with info = i. Otherwise, the factored form of A is used to 
estimate the condition number of the matrix A. If the reciproca~ of 
the condition number is less than machine precision, 
info = A->ncol+1 is returned as a warning, but the routine still 
goes on to solve for X and computes error bounds as described below. 

1.6. The system of equations is solved for X using the factored form 
of A. 

1.7. Iterative refinement is applied to improve the computed solution 
matrix and calculate error bounds and backward error estimates 
for it. 

1.8. If equilibration was used, the matrix X is premultiplied by 
diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ) 
so that it solves the original system before equilibration. 

2. If A is stored row-wise (A->Stype = NR), apply the above algorithm 
to the transpose of A: 

2.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate 
the system: 
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trans = NOTRANS:diag(R)*A'*diag(C)*inv(diag(C»*X = diag(R)*B 
trans = TRANS: (diag(R)*A'*diag(C»**T *inv(diag(R»*X = diag(C)*B 
trans = CONJ: (diag(R)*A'*diag(C»**H *inv(diag(R»*X = diag(C)*B 

Whether or not the system will be equilibrated depends on the 
scaling of the matrix A, but if equilibration is used, A' is 
overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
(if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ). 

2.2. Permute columns of transpose(A) (rows of A), 
forming transpose(A)*Pc, where Pc is a permutation matrix that 
usually preserves sparsity. 
For more details of this step, see sp_colorder.c. 

2.~3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to 
factor the matrix A (after equilibration if fact = EQUILIBRATE) as 
Pr*transpose(A)*Pc = L*U, with the permutation Pr determined by 
partial pivoting. 

2A. Compute the reciprocal pivot growth factor. 

2.5. If some U(i,i) = 0, so that U is exactly singular, then the routine 
returns with info = i. Otherwise, the factored form of transpose(A) 
is used to estimate the condition number of the matrix A. 
If the reciprocal of the condition number is less than machine 
precision, info = A->nrow+1 is returned as a warning, but the 
routine still goes on to solve for X and computes error bounds 
as described below. 

2.1). The system of equations is solved for X using the factored form 
of transpose(A). 

2.7. Iterative refinement is applied to improve the computed solution 
matrix and calculate error bounds and backward error estimates 
for it. 

2.8. If equilibration was used, the matrix X is premultiplied by 
diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ) 
so that it solves the original system before equilibration. 

See supermatrix.h for the definition of 'SuperMatrix' structure. 

Arguments 
------------------

procs (input) int 
Number of processes (or threads) to be spawned and used to perform 
the LU factorization by pdgstrf(). There is a single thread of 
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control to call pdgstrf(), and all threads spawned by pdgstrf() 
are terminated before returning from pdgstrf(). 

pdgstrf_options (input) pdgstrf_options_t* 
The structure defines the input parameters and data structure 
to control how the LU factorization will be performed. 
The following fields should be defined for this structure: 

o fact (fact_t) 
Specifies whether or not the factored form of the matrix 
A is supplied on entry, and if not, whether the matrix A should 
be equilibrated before it is factored. 
= FACTORED: On entry, L, U, perm_r and perm_c contain the 

factored form of A. If equed is not NOEQUIL, the matrix A has 
been equilibrated with scaling factors R and C. 
A, L, U, perm_r are not modified. 

= DOFACT: The matrix A will be factored, and the factors will be 
stored in L and U. 

- EQUILIBRATE: The matrix A will be equilibrated if necessary, 
then factored into L and U. 

Specifies the form of the system of equations: 
= NOTRANS: A * X = B (No transpose) 
= TRANS: A**T * X = B (Transpose) 
= CONJ: A**H * X = B (Transpose) 

o refact (yes_no_t) 
Specifies whether this is first time or SUbsequent factorization. 
= NO: this factorization is treated as the first one; 
= YES: it means that a factorization was performed prior to this 

one. Therefore, this factorization will reuse some 
existing data structures, such as L and U storage, column 
elimination tree, and the symbolic information of the 
Householder matrix. 

o panel_size (int) 
A panel consists of at most panel_size consecutive columns. 

o relax (int) 
To control degree of relaxing supernodes. If the number 
of nodes (columns) in a subtree of the elimination tree is less 
than relax, this subtree is considered as one supernode, 
regardless of the row structures of those columns. 

o diag_pivot_thresh (double) 
Diagonal pivoting threshold. At step j of the Gaussian 
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elimination, if 
abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)), 

use A_jj as pivot, else use A_ij with maximum magnitude. 
o <= diag_pivot_thresh <= 1. The default value is 1, 
corresponding to partial pivoting. 

o usepr (yes_no_t) 
Whether the pivoting will use perm_r specified by the user. 
= YES: use perm_rj perm_r is input, unchanged on exit. 
= NO: perm_r is determined by partial pivoting, and is output. 

o drop_tol (double) (NOT IMPLEMENTED) 
Drop tolerance parameter. At step j of the Gaussian elimination, 
if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij. 
o <= drop_tol <= 1. The default value of drop_tol is 0, 
corresponding to not dropping any entry. 

o work (void*) of size lwork 
User-supplied work space and space for the output data structures. 
Not referenced if lwork = 0; 

o lwork (int) 
Specifies the length of work array. 
= 0: allocate space internally by system malloc; 
> 0: use user-supplied work array of length lwork in bytes, 

returns error if space runs out. 
= -1: the routine guesses the amount of space needed without 

performing the factorization, and returns it in 
superlu_memusage->total_needed; no other side effects. 

A (input/output) SuperMatrix* 
Matrix A in A*X=B, of dimension (A->nrow. A->ncol). where 
A->nrow = A->ncol. Currently, the type of A can be: 
Stype = NC or NR, Dtype = _D, Mtype = GE. In the future, 
more general A will be handled. 

On entry, If pdgstrf_options->fact = FACTORED and equed is not 
NOEQUIL, then A must have been equilibrated by the scaling factors 
in Rand/or C. On exit, A is not modified 
if pdgstrf_options->fact = FACTORED or DOFACT, or 
if pdgstrf_options->fact = EQUILIBRATE and equed = NOEQUIL. 

On exit, if pdgstrf_options->fact = EQUILIBRATE and equed is not 
NOEQUIL, A is scaled as follows: 
If A->Stype = NC: 

equed = ROW: A.- diag(R) * A 
equed = COL: A.- A * diag(C) 
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equed = BOTH: A := diag(R) * A * diag(C). 
If A->Stype = NR: 

equed = ROW: transpose(A) := diag(R) * transpose(A) 
equed = COL: transpose(A) := transpose(A) * diag(C) 
equed = BOTH: transpose(A) := diag(R) * transpose(A) * diag(C). 

perm_c (input/output) int* 
If A->Stype = NC, Column permutation vector of size A->ncol, 
which defines the permutation matrix Pc; perm_c[i] = j means 
column i of A is in position j in A*Pc. 
On exit, perm_c may be overwritten by the product of the input 
perm_c and a permutation that postorders the elimination tree 
of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree 
is already in postorder. 

If A->Stype = NR, column permutation vector of size A->nrow, 
which describes permutation of columns of transpose(A) 
(rows of A) as described above. 

perm_r (input/output) int* 

equed 

If A->Stype = NC, row permutation vector of size A->nrow, 
which defines the permutation matrix Pr, and is determined 
by partial pivoting. perm_rEi] = j means row i of A is in 
position j in Pr*A. 

If A->Stype = NR, permutation vector of size A->ncol, which 
determines permutation of rows of transpose(A) 
(columns of A) as described above. 

If pdgstrf_options->usepr = NO, perm_r is output argument; 
If pdgstrf_options->usepr = YES, the pivoting routine will try 

to use the input perm_r, unless a certain threshold criterion 
is violated. In that case, perm_r is overwritten by a new 
permutation determined by partial pivoting or diagonal 
threshold pivoting. 

(input/output) equed_t* 
Specifies the form of equilibration that was done. 
= NOEQUIL: No equilibration. 
= ROW: Row equilibration, i.e., A was premultiplied by diag(R). 
= COL: Column equilibration, i.e., A was postmultiplied by diag(C). 
= BOTH: Both row and column equilibration, i.e., A was replaced 

by diag(R)*A*diag(C). 
If pdgstrf_options->fact = FACTORED, equed is an input argument, 
otherwise it is an output argument. 

R (input/output) double*, dimension (A->nrow) 
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The row scale factors for A or transpose(A). 
If equed = ROW or BOTH, A (if A->Stype = NC) or transpose(A) 

(if A->Stype = NR) is multiplied on the left by diag(R). 
If equed = NOEQUIL or COL, R is not accessed. 
If fact = FACTORED, R is an input argument; otherwise, R is output. 
If fact = FACTORED and equed = ROW or BOTH, each element of R must 

be positive. 

C (input/output) double*, dimension (A->ncol) 
The column scale factors for A or transpose(A). 
If equed = COL or BOTH, A (if A->Stype = NC) or transpose(A) 

(if A->Stype = NR) is multiplied on the right by diag(C). 
If equed = NOEQUIL or ROW, C is not accessed. 
If fact = FACTORED, C is an input argument; otherwise, C is output. 
If fact = FACTORED and equed = COL or BOTH, each element of C must 

be positive. 

L (output) SuperMatrix* 
The factor L from the factorization 

Pr*A*Pc=L*U (if A->Stype = NC) or 
Pr*transpose(A)*Pc=L*U (if A->Stype = NR). 

Uses compressed row subscripts storage for supernodes, i.e., 
L has types: Stype = SCP. Dtype = _D. Mtype = TRLU. 

U (output) SuperMatrix* 
The factor U from the factorization 

Pr*A*Pc=L*U (if A->Stype = NC) or 
Pr*transpose(A)*Pc=L*U (if A->Stype = NR). 

Uses column-wise storage scheme, i.e., U has types: 
Stype = NCP, Dtype = _D, Mtype = TRU. 

B (input/output) SuperMatrix* 
B has types: Stype = DN, Dtype = _D, Mtype = GE. 
On entry, the right hand side matrix. 
On exit, 

if equed = NOEQUIL, B is not modified; otherwise 
if A->Stype = NC: 

if trans = NOTRANS and equed = ROW or BOTH, B is overwritten 
by diag(R)*B; 

if trans = TRANS or CONJ and equed = COL of BOTH, B is 
overwritten by diag(C)*B; 

if A->Stype = NR: 
if trans = NOTRANS and equed = COL or BOTH, B is overwritten 

by diag(C)*B; 
if trans = TRANS or CONJ and equed = ROW of BOTH, B is 

overwritten by diag(R)*B. 
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x (output) SuperMatrix* 
X has types: Stype = DN, Dtype = _D, Mtype = GE. 
If info = 0 or info = A->ncol+1, X contains the solution matrix 
to the original system of equations. Note that A and B are modified 
on exit if equed is not NOEQUIL, and the solution to the 
equilibrated system is inv(diag(C))*X if trans = NOTRANS and 
equed = COL or BOTH, or inv(diag(R))*X if trans = TRANS or CONJ 
and equed = ROW or BOTH. 

recip_pivot_gro~th (output) double* 

rcond 

The reciprocal pivot gro~th factor computed as 
max_j ( max_i(abs(A_ij)) I max_i(abs(U_ij)) ). 

If recip_pivot_gro~th is much less than 1, the stability of the 
LU factorization could be poor. 

(output) double* 
The estimate of the reciprocal condition number of the matrix A 
after equilibration (if done). If rcond is less than the machine 
precision (in particular, if rcond = 0), the matrix is singular 
to ~orking precision. This condition is indicated by a return 
code of info> O. 

ferr (output) double*, dimension (B->ncol) 
The estimated for~ard error bound for each solution vector 
X(j) (the j-th column of the solution matrix X). 
If XTRUE is the true solution corresponding to X(j), FERR(j) 
is an estimated upper bound for the magnitude of the largest 
element in (X(j) - XTRUE) divided by the magnitude of the 
largest element in X(j). The estimate is as reliable as 
the estimate for RCOND, and is almost al~ays a slight 
overestimate of the true error. 

berr (output) double*, dimension (B->ncol) 
The component~ise relative back~ard error of each solution 
vector X(j) (i.e., the smallest relative change in 
any element of A or B that makes X(j) an exact solution). 

superlu_memusage (output) superlu_memusage_t* 
Record the memory usage statistics, consisting of follo~ing fields: 
- for_lu (float) 

The amount of space used in bytes for L\U data structures. 
- total_needed (float) 

The amount of space needed in bytes to perform factorization. 
- expansions (int) 

The number of memory expansions during the LU factorization. 

info (output) int* 
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= 0: successful exit 
< 0: if info = -i, the i-th argument had an illegal value 
> 0: if info = i, and i is 

<= A->ricol: U(i,i) is exactly zero. The factorization has­
been completed, but the factor U is exactly 
singular, so the solution and error bounds 
could not be computed. 

= A->ncol+1: U is nonsingular, but RCOND is less than machine 
precision, meaning that the matrix is singular to 
working precision. Nevertheless, the solution and 
error bounds are computed because there are a number 
of situations where the computed solution can be more 
accurate than the value of RCOND would suggest. 

> A->ncol+1: number of bytes allocated when memory allocation 
failure occurred, plus A->ncol. 

B.3 pdgstrf 

void 
pdgstrf(pdgstrf_options_t *pdgstrf_options, SuperMatrix *A, int *perm_r, 

SuperMatrix *L, SuperMatrix *U, Gstat_t *Gstat, int *info) 

Purpose 
======= 

PDGSTRF computes an LU factorization of a general sparse nrow-by-ncol 
matrix A using partial pivoting with row interchanges. The factorization 
has the form 

Pr * A = L * U 
where Pr is a row permutation matrix, L is lower triangular with unit 
diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is 
upper triangUlar (upper trapezoidal if A->nrow < A->ncol). 

Arguments 
------------------

pdgstrf_options (input) pdgstrf_options_t* 
The structure defines the parameters to control how the sparse 
LU factorization is performed. The following fields must be set 
by the user: 

o nprocs (int) 
Number of processes to be spawned and used for factorization. 

o refact (yes_no_t) 
Specifies whether this is first time or subsequent factorization. 
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= NO: this factorization is treated as the first one; 
= YES: it means that a factorization ~as performed prior to this 

one. Therefore, this factorization ~ill reuse some 
existing data structures, such as L and U storage, column 
elimination tree, and the symbolic information of the 
Householder matrix. 

o panel_size (int) 
A panel consists of at most panel_size consecutive columns. 

o relax (int) 
Degree of relaxing supernodes. If the number of nodes (columns) 
in a subtree of the elimination tree is less than relax, this 
subtree is considered as one supernode, regardless of the ro~ 
structures of those columns. 

o diag_pivot_thresh (double) 
Diagonal pivoting threshold. At step j of Gaussian elimination, 
if abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij», 
use A_jj as pivot. ° <= diag_pivot_thresh <= 1. The default 
value is 1.0, corresponding to partial pivoting. 

o usepr (yes_no_t) 
Whether the pivoting ~ill use perm_r specified by the user. 
= YES: use perm_r; perm_r is input, unchanged on exit. 
= NO: perm_r is determined by partial pivoting, and is output. 

o drop_tol (double) (NOT IMPLEMENTED) 
Drop tolerance parameter. At step j of the Gaussian elimination, 
if abs(A_ij)/(max_i abs(A_ij» < drop_tol, drop entry A_ij. 
° <= drop_tol <= 1. The default value of drop_tol is 0, 
corresponding to not dropping any entry. 

o perm_c (inU) 
Column permutation vector of size A->ncol, ~hich defines the 
permutation matrix Pc; perm_c[i] = j means column i of A is 
in position j in A*Pc. 

o perm_r (int*) 
Column permutation vector of size A->nro~. 
If pdgstrf_options->usepr = NO, this is an output argument. 

o ~ork (void*) of size l~ork 
User-supplied ~ork space and space for the output data structures. 
Not referenced if l~ork = 0; 

o l~ork (int) 
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Specifies the length of work array. 
= 0: allocate space internally by system mallocj 
> 0: use user-supplied work array of length lwork in bytes, 

returns error if space runs out. 
= -1: the routine guesses the amount of space needed without 

performing the factorization, and returns it in 
superlu_memusage->total_neededj no other side effects. 

A (input) SuperMatrix* 
Original matrix A, permuted by columns, of dimension 
(A->nrow, A->ncol). The type of A can be: 
Stype = NCPj Dtype = _Dj Mtype = GE. 

perm~r (input/output) int*. dimension A->nrow 
Row permutation vector which defines the permutation matrix Pr, 
perm_r[i] = j means row i of A is in position j in Pr*A. 
If pdgstrf_options->usepr = NO, perm_r is output argument; 
If pdgstrf_options->usepr = YES, the pivoting routine will try 

to use the input perm_r, unless a certain threshold criterion 
is violated. In that ~ase, perm_r is overwritten by a new 
permutation determined by partial pivoting or diagonal 
threshold pivoting. 

L (output) SuperMatrix* 
The factor L from the factorization Pr*A=L*Uj use compressed row 
SUbscripts storage for supernodes, i.e., L has type: 
Stype = SCP, Dtype = _D, Mtype = TRLU. 

U (output) SuperMatrix* 
The factor U from the factorization Pr*A*Pc=L*U. Use column-wise 
storage scheme, i.e., U has types: Stype = NCP, Dtype = _D, 
Mtype = TRU. 

Gstat (output) Gstat_t* 
Record all the statistics about the factorization: 
See Gstat_t structure defined in util.h. 

info (output) int* 
= 0: successful exit 
< 0: if info = -i, the i-th argument had an illegal value 
> 0: if info = i, and i is 

<= A->ncol: U(i,i) is exactly zero. The factorization has 
been completed, but the factor U is exactly singular, 
and division by zero will occur if it is used to solve a 
system of equations. 

> A->ncol: number of bytes allocated when memory allocation 
failure occurred, pius A->ncol. 
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Appendix C 

Specifications of routines in 
MPI-based SuperLU_DIST 

C.l pdgssvx~Bglobal 

void 
pdgssvx_ABglobaICsuperlu_options_t *options. SuperMatrix *A. 

Purpose 
--------------

ScalePermstruct_t *ScalePermstruct. 
double B[], int ldb. int nrhs. gridinfo_t *grid, 
LUstruct_t *LUstruct, double *berr, 
SuperLUStat_t *stat, int *info) 

pdgssvx_ABglobal solves a system of linear equations A*X=B. 
by using Gaussian elimination with II static pivotingll to 
compute the LU factorization of A. 

Static pivoting is a teChnique that combines the numerical stability 
of partial pivoting with the scalability of Cholesky Cno pivoting), 
to run accurately and efficiently on large numbers of processors. 

See our paper.at http://www.nersc.gov/-xiaoye/SuperLU/ for a detailed 
description of the parallel algorithms. 

Here are the options for using this code: 

1. Independent of all the other options specified below, the 
user must supply 

- B, the matrix of right hand sides. and its dimensions Idb and nrhs 
grid, a structure describing the 2D processor mesh 
options->IterRefine, which determines whether or not to 

improve the accuracy of the computed solution using 
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iterative refinement 

On output, B is overwritten with the s61ution X. 

2. Depending on options->Fact, the user has several options 
for solving A*X=B. The standard option is for factoring 
A IIfrom scratch ll 

•. (The other options, described below, 
are used when A is sufficiently similar to a previously 
solved problem to save time by reusing part or all of 
the previous factorization.) 

options->Fact = DOFACT: A is factored IIfrom scratch ll 

In this case the user must also supply 

A, the input matrix 

as well as the following options, which are described in more 
detail below: 

options->Equil , to specify how to scale the rows and columns 
of A to "equilibrate" it (to try to reduce its 
condition number and so improve the 
accuracy of the computed solution) 

options->RowPerm, to specify how to permute the rows of A 
(typically to control numerical stability) 

options->ColPerm, to specify how to permute the columns of A 
(typically to control fill-in and enhance 
parallelism during factorization) 

options->ReplaceTinyPivot, to specify how to deal with tiny 
pivots encountered during factorization 
(to control numerical stability) 

The outputs returned include 

ScalePermstruct, modified to describe how the input matrix A 
was equilibrated and permuted: 

ScalePermstruct->DiagScale, indicates whether the rows and/or 
columns of A were scaled 

ScalePermstruct->R, array of row scale factors 
ScalePermstruct->C, array of column scale factors 
ScalePermstruct->perm_r, row permutation vector 
ScalePermstruct->perm_c, column permutation vector 
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(part of ScalePermstruct may also need to be supplied on input, 
depending on options->RowPerm and options->ColPerm as described 
later) . 

A, the input matrix A overwritten by the scaled and permuted matrix 
Pc*Pr*diag(R)*A*diag(C) 

where 
Pr and Pc are row and columns permutation matrices determined 

by ScalePermstruct->perm_r and ScalePermstruct->perm_c, 
respectively, and 

diag(R) and diag(C) are diagonal scaling matrices determined 
by ScalePermstruct->DiagScale, ScalePermstruct->R and 
ScalePermstruct->C 

LUstruct, which contains the L and U factorization of Ai where 

(Note that Ai = Aout * Pc-T, where Aout is the matrix stored 
in A on output.) 

3. The second value of options->Fact assumes that a matrix with the same 
sparsity pattern as A has already been factored: 

options->Fact = SamePattern: A is factored, assuming that it has 
the same nonzero pattern as a previously factored matrix. In this 
case the algorithm saves time by reusing the previously computed 
column permutation vector stored in ScalePermstruct->perm_c 
and the lI elimination tree" of A stored in LUstruct->etree 

In this case the user must still specify the f?llowing options 
as before: 

options->Equil 
options->RowPerm 
options->ReplaceTinyPivot 

but not options->ColPerm, whose value is ignored. This is because the 
previous column permutation from ScalePermstruct->perm_c is used as 
input. The user must also supply 

A, the input matrix 
ScalePermstruct->perm_c, the column permutation 
LUstruct->etree, the elimination tree 

The outputs returned include 
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A, the input matrix A overwritten by the scaled and permuted matrix 
as described above 

ScalePermstruct, modified to describe how the input matrix A was 
equilibrated and row permuted 

LUstruct, modified to contain the new L and U factors 

4 .. The third value of options->Fact assumes that a matrix B with the same 
sparsity pattern as A has already been factored, and where the 
row permutation of B can be reused for A. This is useful when A and B 
have similar numerical values, so that the same row permutation 
will make both factorizations numerically stable. This lets us reuse 
all of the previously computed structure of L and U. 

options->Fact = SamePattern_SameRowPerm: A is factored, 
assuming not only the same nonzero pattern as the previously 
factored matrix B, but reusing B's row permutation. 

In this case the user must still specify the following options 
as before: 

options->Equil 
options->ReplaceTinyPivot 

but not options->RowPerm or options->CoIPerm, whose values are ignored. 
This is because the permutations from ScalePermstruct->perm_r and 
ScalePermstruct->perm_c are used as input. 

The user must also supply 

A, the input matrix 
ScalePermstruct->DiagScale, how the previous matrix was rowand/or 

column scaled 
ScalePermstruct->R, the row scalings of the previous matrix, if any 
ScalePermstruct->C, the columns scalings of the previous matrix, 

if any 
ScalePermstruct->perm_r, the row permutation of the previous matrix 
ScalePermstruct->perm_c, the column permutation of the previous 

matrix 
all of LUstruct, the previously computed information about L and U 

(the actual numerical values of L and U stored in 
LUstruct->Llu are ignored) 

The outputs returned include 

A, the input matrix A overwritten by the scaled and permuted matrix 
as described above 

ScalePermstruct, modified to describe how the input matrix A was 
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equilibrated 
(thus ScalePermstruct->DiagScale, R and C may be modified) 

LUstruct, modified to contain the new,L and U factors 

5. The fourth and last value of options->Fact assumes that A is 
identical to a matrix that has already been factored on a previous· 
call, and reuses its entire LU factorization 

options->Fact = Factored: A is identical to a previously 
factorized matrix, so the entire previous factorization 
can be reused. 

In this case all the other options mentioned above are ignored 
(options->Equil, options->RowPerm, options->ColPerm, 
options->ReplaceTinyPivot) 

The user must also supply 

A, the unfactored matrix, only in the case that iterative refinment 
is to be done (specifically A must be the output A from 
the previous call, so that it has been scaled and permuted) . 

all of ScalePermstruct 
all of LUstruct, including the actual numerical values of L and U 

all of which are unmodified on output. 

Arguments 
------------------

options (input) superlu_options_t* 
The structure defines the input parameters to control 
how the LU decomposition will be performed. 
The following fields should be defined for this structure: 

o Fact (fact_t) 
Specifies whether or not the factored form of the matrix 
A is supplied on entry, and if not, how the matrix A should 
be factorized based" on the previous history. 

= DOFACT: The matrix A will be factorized from scratch. 
Inputs: A 

options->Equil, RowPerm, ColPerm, ReplaceTinyPivot 
Outputs: modified A 

(possibly rowand/or column scaled and/or 
permuted) 

all of ScalePermstruct 
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all of LUstruct 

= SamePattern: the matrix A will be factorized assuming 
that a factorization of a matrix with the same sparsity 
pattern was performed prior to this one. Therefore. this 
factorization will reuse column permutation vector 
ScalePermstruct->perm_c and the elimination tree 
LUstruct->etree 

Inputs: A 
options->Equil. RowPerm. ReplaceTinyPivot 
ScalePermstruct->perm_c 
LUstruct->etree 

Outputs: modified A 
(possibly rowand/or column scaled and/or 
permuted) 

rest of ScalePermstruct (DiagScale. R, C, perm_r) 
rest of LUstruct (GLU_persist, Llu) 

= SamePattern_SameRowPerm: the matrix A will be factorized 
assuming that a factorization of a matrix with the same 
sparsity pattern and similar numerical values was performed 
prior to this one. Therefore. this factorization will reuse 
both row and column scaling factors R and C, and the 
both row and column permutation vectors perm_r and perm_c, 
distributed data structure set up from the previous symbolic 
factorization. 

Inputs: A 
options->Equil, ReplaceTinyPivot 
all of ScalePermstruct 
all of LUstruct 

Outputs: modified A 
(possibly rowand/or column scaled and/or 
permuted) 

modified LUstruct->Llu 
= FACTORED: the matrix A is already factored. 

Inputs: all of ScalePermstruct 
all of LUstruct 

o Equil (yes_no_t) 
Specifies whether to equilibrate the system. 
= NO: no equilibration. 
= YES: scaling factors are computed to equilibrate the system: 

diag(R)*A*diag(C)*inv(diag(C»)*X = diag(R)*B. 
Whether or not the system will be equilibrated depends 
on the scaling of the matrix A, but if equilibration is 
used, A is overwritten by diag(R)*A*diag(C) and B by 
diag(R)*B. 
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o RowPerm (rowperm_t) 
Specifies how to permute rows of th~ matrix A. 
= NATURAL: use the natural ordering. 
= LargeDiag: use the Duff/Koster algorithm to permute rows of 

the original matrix to make the diagonal large 
relative to the off-diagonal. 

= MY_PERMR: use the ordering given in ScalePermstruct->perm_r 
input by the user. 

o ColPerm (colperm_t) 
Sp~cifies what type of column permutation to use to reduce fill. 
= NATURAL: use the natural ordering. 
= COLAMD: use approximate minimum degree column ordering. 
= MMD_ATA: use minimum degree ordering on structure of A'*A. 
= MMD_AT_PLUS_A: use minimum degree ordering on structure of A'+A. 
= MY_PERMC: use the ordering given in ScalePermstruct->perm_c. 

o ReplaceTinyPivot (yes_no_t) 
= NO: do not modify pivots 
= YES: replace tiny pivots by sqrt(epsilon)*norm(A) during 

LU factorization. 

o IterRefine (IterRefine_t) 
Specifies how to perform iterative refinement. 
= NO: no iterative refinement. 
= DOUBLE: accumulate residual in double precision. 
= EXTRA: accumulate residual in extra precision. 

NOTE: all options must be indentical on all processes when 
calling this routine. 

A (input/output) SuperMatrix* 
On entry, matrix A in A*X=B, of dimension (A->nrow, A->ncol). 
The number of linear equations is A->nrow. The type of A must be: 
Stype = Ne; 'Dtype = _D; Mtype = GE. That is, A is stored in 
compressed column format (also known as Harwell-Boeing format). 
See supermatrix.h for the definition of 'SuperMatrix'. 
This routine only handles square A, however, the LU factorization 
routine pdgstrf_Aglobal can factorize rectangular matrices. 
On exit, A may be overwritten by Pc*Pr*diag(R)*A*diag(C), 
depending on ScalePermstruct->DiagScale, options->RowPerm and 
options->colpem: 

if ScalePermstruct->DiagScale != NOEQUIL, A is overwritten by 
diag(R)*A*diag(C). 

if options->RowPerm != NATURAL, A is further overwritten by 
Pr*diag(R)*A*diag(C). 
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if options->CoIPerm != NATURAL, A is further overwritten by 
Pc*Pr*diag(R)*A*diag(C). 

If all the above condition are true; the LU decomposition is 
performed on the matrix Pc*Pr*diag(R)*A*diag(C)*PcAT. 

NOTE: Currently, A must reside in all processes when calling 
this routine. 

ScalePermstruct (input/output) ScalePermstruct_t* 
The data structure to store the scaling and permutation vectors 
describing the transformations performed to the matrix A. 
It contains the following fields: 

o DiagScale (DiagScale_t) 
Specifies the form of equilibration that was done. 
= NOEQUIL: no equilibration. 
= ROW: row equilibration, i.e., A was premultiplied by 

diag(R). 
= COL: 

= BOTH: 

Column equilibration, i.e., A was postmultiplied 
by diag(C). 
both row and column equilibration, i.e., A was 
replaced by diag(R)*A*diag(C). 

If options->Fact = FACTORED or SamePattern_SameRowPerm, 
DiagScale is an input argument; otherwise it is an output 
argument. 

o perm_r (int*) 
Row permutation vector, which defines the permutation matrix Prj 
perm_rei] = j means row i of A is in position j in Pr*A. 
If options->RowPerm = MY_PERMR, or 
options->Fact = SamePattern_SameRowPerm, perm_r is an 
input argument; otherwise it is an output argument. 

o perm_c (int*) 
Column permutation vector, which defines the 
permutation matrix Pc; perm_c[i] = j means column i of A is 
in position j in A*Pc. 
If options->CoIPerm = MY_PERMC or options->Fact = SamePattern 
or options->Fact = SamePattern_SameRowPerm, perm_c is an 
input argument; otherwise, it is an output argument. 
On exit, perm_c may be overwritten by the product of the input 
perm_c and a permutation that postorders the elimination tree 
of Pc*A'*A*Pc'j perm_c is not changed if the elimination tree 
is already in postorder. 

o R (double*) dimension (A->nrow) 
The row scale factors for A. 
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If DiagScale = ROW or BOTH, A is multiplied on the left by 
diag(R). 

If DiagScale = NOEQUIL or COL, R is not defined. 
If options->Fact = FACTORED or SamePattern_SameRowPerm, R is 
an input argument; otherwise, R is an output argument. 

o C (double*) dimension (A->ncol) 
The column scale factors for A. 
If DiagScale = COL or BOTH, A is multiplied on the right by 

diag(C). 
If DiagScale = NoEQUIL or ROW, C is not defined. 
If options->Fact = FACTORED or SamePattern_SameRowPerm, C is 
an input argument; otherwise, C is an output argument. 

B (input/output) double* 
On entry, the right-hand side matrix of dimension (A->nrow, nrhs). 
On exit, the solution matrix if info = 0; 

NOTE: Currently, B must reside in all processes when calling 
this routine. 

ldb (input) int (global) 
The leading dimension of matrix B. 

nrhs (input) int (global) 

grid 

The number of right-hand sides. 
If nrhs = 0, only LU decomposition is performed, the forward 
and back substitution are skipped. 

(input) gridinfo_t* 
The 2D process mesh. It contains the MPI communicator, the number 
of process rows (NPRoW), the number of process columns (NPCOL), 
and my process rank. It is an input argument to all the 
parallel routines. 
Grid can be initialized by subroutine SUPERLU_GRIDINIT. 
See superlu_ddefs.h for the definition of 'gridinfo_t'. 

LUstruct (input/output) LUstruct_t* 
The data structures to store the distributed L and U factors. 
It contains the following fields: 

o etree (int*) dimension (A->ncol) 
Elimination tree of A'*A, dimension A->ncol. 
It is computed in sp_colorder() during the first factorization, 
and is reused in the subsequent factorizations of the matrices 
with the same nonzero pattern. 
On exit of sp_colorder(), the columns of A are permuted so that 
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the etree is in a certain postorder. This postorder is reflected 
in ScalePermstruct->perm_c. 

NOTE: Etree is a vector of parent pointers for a forest whose 
vertices are the integers 0 to A->ncol-1; 
etree[root] = A->ncol. 

o Glu_persist (Glu_persist_t*) 
Global data structure (xsup, supno) replicated on all processes, 
describing the supernode partition in the factored matrices 
L and U: 

xsup[s] is the leading column of the s-th supernode, 
supno[i] is the supernode number to which column i belongs. 

o Llu (LocaILU_t*) 
The distributed data structures to store L and U factors. 
See superlu_ddefs.h for the definition of 'LocaILU_t'. 

berr (output) double*, dimension (nrhs) 
The componentwise relative backward error of each solution 
vector X(j) (i.e., the smallest relative change in 
any element of A or B that makes X(j) an exact solution). 

stat (output) SuperLUStat_t* 
Record the statistics on runtime and floating-point operation count. 
See util.h for the definition of 'SuperLUStat_t'. 

info (output) int* 
= 0: successful exit 
> 0: if info = i, and ~ ~s 

<= A->ncol: U(i,i) is exactly zero. The factorization has 
been completed, but the factor U is exactly singular, 
so the solution could not be computed. 

> A->ncol: number of bytes allocated when memory allocation 
failure occurred, plus A->ncol. 

C.2 pdgstrf 

void 
pdgstrf(superlu_options_t *options, int m, int n, double anorm, 

LUstruct_t *LUstruct, gridinfo_t *grid, SuperLUStat_t *stat, int *info) 

Purpose 
======= 

pdgstrf performs the LU factorization in parallel. 
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Arguments 
------------------

options (input) superlu_options_t* 
The structure defines the input parameters to control 
how the LU decomposition will be performed. 
The following field should be defined: 
o ReplaceTinyPivot (yes_no_t) 

Specifies whether to replace the tiny diagonals by 
sqrt(epsilon)*norm(A) during LU factorization. 

m (input) int 
Number of rows in the matrix. 

n (input) int 
Number of columns in the matrix. 

anorm (input) double 
The norm of the original matrix A, or the scaled A if 
equilibration was done. 

LUstruct (input/output) LUstruct_t* 
The data structures to store the distributed L and U factors. 
The following fields should be defined: 

o Glu_persist (input) Glu_persist_t* 
Global data structure (xsup, supno) replicated on all processes, 
describing the supernode partition in the factored matrices 
L and U: 

xsup[s] is the leading column of the s-th supernode, 
supno[i] is the supernode number to which column i belongs. 

o Llu (input/output) LocaILU_t* 
The distributed data structures to store L and U factors. 
See superlu_ddefs.h for the definition of 'LocaILU_t'. 

grid (input) gri~info_t* 
The 2D process mesh. It contains the MPI communicator, the number 
of process rows (NPROW), the number of process columns (NPCOL), 
and my process rank. It is an input argument to all the 
parallel routines. 
Grid can be initialized by subroutine SUPERLU_GRIDINIT. 
See superlu_ddefs.h for the definition of 'gridinfo_t'. 

stat (output) SuperLUStat_t* 
Record the statistics on runtime and floating-point operation counto 
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See util.h for the definition of 'SuperLUStat_t'. 

info (output) int* 
= 0: successful exit 
< 0: if info = -i, the i-th argument had an illegal value 
> 0: if info = i, U(i,i) is exactly zero. The factorization has 

been completed, but the factor Uis exactly singular, 
and division by zero will occur if it is used to solve a 
system of equations. 

C.3 pdgstrs-Bglobal 

void 
pdgstrs_Bglobal(int n, LUstruct_t *LUstruct, gridinfo_t *grid, double *B, 
int ldb, int nrhs, SuperLUStat_t *stat, int *info) 

Purpose 
--------------

pdgstrs_Bglobal solves a system of distributed linear equations 
A*X = B with a general N-by-N matrix A using the LU factorization 
computed by pdgstrf. 

Arguments 
========= 

n (input) int (global) 
The order of the system of linear equations. 

LUstruct (input) LUstruct_t* 
The distributed data structures storing L and U factors. 
The L and U factors are obtained from pdgstrf for 
the possibly scaled and permuted matrix A. 
See superlu_ddefs.h for the definition of 'LUstruct_t'. 

grid (input) gridinfo_t* 
The 2D process mesh. It contains the MPI communicator, the number 
of process rows (NPROW), the number of process columns (NPCOL), 
and my process rank. It is an input argument to all the 
parallel routines. 
Grid can be initialized by subroutine SUPERLU_GRIDINIT. 
See superlu_ddefs.h for the definition of 'gridinfo_t'. 

B (input/output) double* 
On entry, the right-hand side matrix of the possibly equilibrated 
and row permuted system. 
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On exit, the solution matrix of the possibly equilibrated 
and row permuted system if info = 0; 

NOTE: Currently, the N-by-NRHS matrix B must reside on all 
processes when calling this routine. 

ldb (input) int (global) 
Leading dimension of matrix B. 

nrhs (input) int (global) 
Number of right-hand sides. 

stat (output) SuperLUStat_t* 
Record the statistics about the triangular solves. 
See util.h for the definition of 'SuperLUStat_t'. 

info (output) int* 
= 0: successful exit 
< 0: if info = -i, the i-th argument had an illegal value 

C.4 pdgsrfs-ABXglobal 

void 
pdgsrfs_ABXglobal(int n, SuperMatrix *A, double anorm, LUstruct_t *LUstruct, 

gridinfo_t *grid. double *B. int ldb. double *X, int ldx, 
int nrhs, double *berr, SuperLUStat_t *stat, int *info) 

Purpose 
--------------

pdgsrfs_ABXglobal improves the computed solution to a system of linear 
equations and provides error bounds and backward error estimates 
for the solution. 

Arguments 
------------------

n (input) int (global) 
The order of the system of linear equations. 

A (input) SuperMatrix* 
The original matrix A, or the scaled A if equilibration was done. 
A is also permuted into the form Pc*Pr*A*Pc', where Pr and Pc 
are permutation matrices. The type of A can be: 
Stype = NCP; Dtype = _D; Mtype = GE. 
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NOTE: Currently, A must reside in all processes when calling 
this routine. 

anorm (input) double 
The norm of the original matrix A, or the scaled A if 
equilibration was done. 

LUstruct (input) LUstruct_t* 
The distributed data structures storing L and U factors. 
The L and U factors are obtained from pdgstrf for 
the possibly scaled and permuted matrix A. 
See superlu_ddefs.h for the definition of 'LUstruct_t'. 

grid (input) gridinfo_t* 
The 2D process mesh. It contains the MPI communicator, the number 
of process rows (NPROW), the number of process columns (NPCOL), 
and my process rank. It is an input argument to all the 
parallel routines. 
Grid can be initialized by subroutine SUPERLU_GRIDINIT. 
See superlu_ddefs.h for the definition of 'gridinfo_t'. 

B (input) double* (global) 
The N-by-NRHS right-hand side matrix of the possibly equilibrated 
and row permuted system. 

NOTE: Currently, B must reside on all processes when calling 
this routine. 

ldb (input) int (global) 
Leading dimension of matrix B. 

X (input/output) double* (global) 
On entry, the solution matrix X, as computed by PDGSTRS. 
On exit, the improved solution matrix X. 
If DiagScale = COL or BOTH, X should be premultiplied by diag(C) 
in order to obtain the solution to the original system. 

NOTE: Currently, X must reside on all processes when calling 
this routine. 

ldx (input) int (global) 
Leading dimension of matrix X. 

nrhs (input) int 
Number of right-hand sides. 

berr (output) double*, dimension (nrhs) 
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The componentwise relative backward error of each solution 
vector X(j) (i.e., the smallest relative change in 
any element of A or B that makes X(j) ,an exact solution). 

stat (output) SuperLUStat_t* 
Record the statistics about the refinement steps. 
See util.h for the definition of SuperLUStat_t. 

info (output) int* 
= 0: successful exit 
< 0: if info = -i, the i-th argument had an illegal value 
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