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Internet-of-Things (IoT) systems have become pervasive for smart homes. In recent

years, many of these IoT sensing systems are developed to enable in-home long-term

monitoring applications, such as personalized services in smart homes, elderly/patient

monitoring, etc. However, these systems often require complicated and expensive

installation processes, which are some of the main concerns affecting users’ adoption

of smart home systems. In this work, we focus on floor vibration-based occupant

monitoring systems, which enables non-intrusive in-home continuous occupant

monitoring, such as patient step tracking and gait analysis. However, to enable these

applications, the system would require known locations of vibration sensors placed in

the environment. Current practice relies on manually input of location, which makes the

installation labor-intensive, time consuming, and expensive. On the other hand, without

known location of vibration sensors, the output of the system does not have intuitive

physical meaning and is incomprehensive to users, which limits the systems’ usability.

We present AutoLoc, a scheme to estimate the location of the vibration sensors in

a two-dimensional space in the view of a nearby camera, which has spatial physical

meaning. AutoLoc utilizes occupants’ walking events captured by both vibration sensors

and the co-located camera to estimate the vibration sensors’ location in the camera view.

First, AutoLoc detects and localizes the occupant’s footsteps in the vision data. Then,

it associates the time and location of the event to the floor vibration data. Next, the

extracted vibration data of the given event from multiple vibration sensors are used to

estimate the sensors’ locations in the camera view coordinates.We conducted real-world

experiments and achieved up to 0.07 meters localization accuracy.

Keywords: vibration based human sensing, autonomous sensor configuration, cross modal sensing, sensor

location estimation, multilateration

1. INTRODUCTION

Over years, IoT systems became more pervasive to enable human-centric smart building
applications, such as patient care, elderly care, and in-home occupant monitoring (Saraubon
et al., 2018; Pandey and Litoriya, 2019). These systems infer occupant information, such
as identity, location, gait, etc., from ambient non-intrusive sensors, such as WiFi, vibration,
powerline (Xu et al., 2013; Mirshekari et al., 2018; Zhou et al., 2019). To enable such
functionalities, the systems often require the vibration sensor locations in the room coordinates
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(Khan et al., 2009; Xiao et al., 2009), which is currently input
manually by experts. This results in the complicated installation
process and increasing the labor cost, which makes the system
less desirable to end-users (Balta-Ozkan et al., 2013). As a
result, plug-and-play sensing systems that can autonomously

configure the vibration sensor locations are required to save
users time and reduce dependency on outside experts. This will
eventually reduce the deployment cost and increase the scalability
of the systems for users without IoT domain knowledge such as
caregiver of elderly.

Efforts have been done on sensors’ location arrangement
estimation (Sun et al., 2011; Kuang et al., 2013; Kamminga
et al., 2016) or virtual mapping (Purohit et al., 2013b). However,
they can only achieve relative sensor positions estimation, which
lacks of the association to the real-world coordinates, e.g., room
coordinates. Without an intuitive association to the real-world
environment, the system outputs are often not explainable to the
end users.

Sensor fusion-based approaches are then explored, leveraging
the advantage of the camera as a “helper” modality and inferring
the information of other “helpee” modalities. They utilize the
cameras in the environment to capture the shared human
information—the posture—and establish the association to the
other modality, e.g., wearables (Ruiz et al., 2019, 2020) and
floor vibration sensing (He et al., 2020). However, the localization
resolution of these prior works is limited—either limited to
limbs or one spatial dimension. For a generalized sensing system
configuration, 2D sensor locations are needed to enable various
context-based or collaborative tasks, such as activity recognition
and localization.

In this work, we target the emerging indoor human sensing
modality of floor vibration, which provides non-intrusive in-
home continuous monitoring, such as patient tracking, gait
analysis, behavior profiling, etc. As illustrated in the motivation
example in Figure 1, vibration sensing devices are placed in the
target sensing area to capture occupant induced floor vibration
for human information inference. These sensing devices, similar
to Amazon Echo, are semi-mobile and can be easily deployed
by placing them on the floor. However, for applications such
as patient tracking and gait analysis, they use vibration sensors
as anchor devices to infer excitation locations, which requires
the prior knowledge of the sensors’ locations (Mirshekari et al.,
2018; Fagert et al., 2019). Acquiring this information could
be troublesome for users, especially those without domain
knowledge on how does the system function. Furthermore, even
we were able to acquire this prior knowledge for the initial
deployment viamanual measurements, the sensor locations may
be updated in a human-in-the-loop manner to optimize system
performance (Yu et al., 2021), which would require another
round of manual measurements. This would significantly reduce
the usability of the system and autonomous sensor location
configuration is desirable.

To achieve autonomous vibration sensor location
configuration, we present AutoLoc, a scheme that repurposes
data from vibration sensors and a co-located camera to localize
the deployed vibration sensors in a 2-D space. AutoLoc does

not require the prior knowledge of the camera location, nor
line-of-sight (LoS) between the camera and the target vibration
sensors. AutoLoc achieves this by utilizing the occupant footstep
information captured by both the camera and the vibration
sensors in their common sensing area. Whenever a person walks
through the common sensing area, the camera can detect the
occupant’s footsteps using pose estimation and localize these
footsteps in the target 2-D area (e.g., the living room). The
footstep-induced vibration signal propagates through the floor
and is captured by multiple vibration sensors in the common
sensing area. AutoLoc associates the footstep’s information—(1)
the footstep’s location in the camera view and (2) the footstep’s
relative location to a pair of vibration sensors—between two
modalities. To leverage existing cameras people may have in
the environment as well as their limited computational power,
e.g., smartphone, smart TV, AutoLoc adopts light weighted
pose estimation model to acquire footstep location in the
camera view. To reflect such constraint, we conduct the system
evaluation with BlazePose, a lightweight pose estimation model
that can run on devices like a smartphone (Bazarevsky et al.,
2020). Our system models sensor localization problem as
an inverse of prior work on multitateration-based footstep
localization (Mirshekari et al., 2018). AutoLoc estimates 2-D
room coordinates of each vibration sensor pair by solving the
multilateration equations (Mirshekari et al., 2018) with the
footstep locations as known variables and sensor locations as
unknown variables.

Challenges for AutoLoc include (1) how to accurate footstep
event detection and localization via video signal with noisy
posture estimation? (2) how to solve multilateration equations
with unknown vibration propagation velocity? and (3) how to
select a subset of footstep events from accumulating sensor
data to achieve accurate vibration sensor localization? AutoLoc
tackles these challenges by combining physical and data-driven
knowledge (details in section 3) and achieves an up to 0.07meters
localization accuracy for co-located vibration sensors in real-
world experiments, which is an up to 4× improvement compared
to baselines. We summarize the contribution of this work as
follows.

• We present AutoLoc, a cross-modal scheme for autonomous
sensing device 2-D location configuration.

• We use physical knowledge on surface wave propagation
properties to determine equation constraints for accurate
multilateration solutions.

• We design a spatial-aware algorithm that takes physical
location information of data inputs into account to improve
the sensor location estimation accuracy

• We conduct real-world experiments to evaluate the scheme.

The rest of the paper is organized as follows. First, we discuss
the scope of this work compared to the prior works in section 2.
Next, we introduce the detailed system design in section 3.
Then, we provide system evaluation with real-world deployment
comparing to multiple baselines in section 4. Finally, we discuss
the potential future direction in section 5 and conclude this work
in section 6.
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A B

FIGURE 1 | Motivation examples for AutoLoc. (A) Vibration sensors are deployed in the living room area for application of elderly in-home monitoring. A co-located

camera can capture the room view. AutoLoc estimates these vibration sensors’ location in the room coordinates via camera data with or without a line-of-sight to the

vibration sensors. (B) Manual measurement of these vibration sensor locations is costly and could significantly impact the usability of the system.

2. RELATED WORK

We summarize relevant prior work in this section and compare
AutoLoc to them.

2.1. Vibration-Based Human Sensing
Physical vibration signals induced by people in the buildings are
used to indirectly infer human information for both physical
and physiology information, include and not limited to identity
(Pan et al., 2017), location (Mirshekari et al., 2018; Drira et al.,
2021), activity (Hu et al., 2020; Sun et al., 2020), heart beat (Jia
et al., 2016), and gait (Fagert et al., 2019). The intuition is that
people induce physical vibrations all the time, such as stepping
on the floor, heart-pounding in the chest, etc. Vibration sensors
placed on the ambient surfaces can capture these vibrations
propagating through the surface and infer the source of the signal.
These prior works demonstrate the feasibility and potential of
the physical vibration-based sensing system for various human-
centric applications, which validates the motivation of this work.

System often require sensors to have overlapping sensing area
to enable applications such as step-level localization (Mirshekari
et al., 2018), gait analysis (Fagert et al., 2020), and activity
recognition (Hu et al., 2020; Sun et al., 2020). On the other
hands, for applications such as localization and gait analysis,
sensor devices’ locations in the room coordinates are also
needed. Therefore, autonomous sensor location configuration is
important for these vibration-based human sensing applications.

2.2. Device Localization
Localizing devices have been explored widely for robotics
and mobile-based approaches. Various approaches have been

explored over many sensing modalities. Landmark based
approaches were adopted as data-driven approaches over visual
landmarks (Se et al., 2002), infrared light landmark (Lee and
Song, 2007), RF landmark (Purohit et al., 2013a), etc. On the
other hand, multilateration is a commonly used approach as
physics based approaches. It has been applied on acoustic-
(Höflinger et al., 2014), WiFi- (Arthi et al., 2020), UWB- (Onalaja
et al., 2014), BLE- (Shchekotov and Shilov, 2018) based systems.
These devices and systems are mostly equipped with transceivers
for ranging purpose. Acoustic-based devices relative physical
arrangement detection problem is also being explored, where the
sources of the signal and the devices are localized simultaneously
(Sun et al., 2011; Kuang et al., 2013; Kamminga et al., 2016).
However, they were able to achieve the relative arrangement of
the device rather than the absolute physical locations. As a result,
their target application/usage is also different fromwhat we target
in this work. In addition, the signal and sensingmodality targeted
in this paper—building vibration based occupant monitoring—
faces more challenges such as high decay rate, high distortion,
dispersion and ambient noise compared to prior work of
acoustic-based sensing.

2.3. Cross-Modal Autonomous System
Configuration
Multiple co-located sensing modalities are used to enable
automation of system configuration. These modalities are
associated over the shared context (both spatial and temporal)
in the physical world that can be captured by different types
of sensors (Han et al., 2018; Pan et al., 2018; Yu et al., 2019;
He et al., 2020). Motion has been used as the shared context
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between IMUs on wearables and camera view to enable auto-
pairing for IoT devices (Pan et al., 2018). Event timing is another
type of shared context that is used to generate encryption keys
for secured pairing (Han et al., 2018). These systems relies on a
direct measurable context for both sensing modalities. However,
when there is no directly measurable shared context, the indirect
inference introduce more challenges, such as vibration-based
sensing modalities. Footstep location has been used as a shared
context to associate the vibration devices absolute locations (He
et al., 2020). However, it is only been explored in a 1-D scenario,
which is not sufficient for some of the applications such as
localization and activity recognition. In this work, we focus on
the 2-D solution of the vibration sensor localization via camera
captured ambient occupant context.

3. SYSTEM DESIGN

The system consists of mainly three modules, the sensing module
(section 3.1), the event detection and alignment module (section
3.2), and sensor placement estimation module (section 3.3),
as shown in Figure 2. First, the Sensing module takes both
structural vibration and vision data as inputs. Next, the Event
Detection and Alignment module detects the footstep using a

light-weighted posture estimation on vision data, and uses the
detected heel keypoints to acquire 2-D coordinates of the footstep
in the common sensing area. AutoLoc segments the structural
vibration signal using the timestamp of this detected footstep and
assigns this footstep’s 2D coordinates to the segment of signal.
However, due to the noisy output of the light-weighted posture
estimation model, the raw signal association may be erroneous,
which leads to high localization error in the final estimation. We
leverages physical knowledge on the human-induced vibration
signal quality to select the subset of signals and ensure high
estimation accuracy. Thus, Sensor Placement Estimation module
first selects the footstep event with a signal-to-noise ratio (SNR)
higher than a threshold and over different areas. AutoLoc then
estimates sensors’ locations using the selected known footstep
locations via multilateration. To further reduce the estimation
error, AutoLoc updates the sensors’ locations iteratively when
more footstep events are acquired.

3.1. Sensing Module: Application and
Assumptions
AutoLoc takes both vision and floor vibration sensing data as
inputs and they are synchronized to second-level. We consider
the floor vibration sensing systems are deployed in the home

FIGURE 2 | System overview.

A B

FIGURE 3 | Pedestrian posture estimation for footstep event detection (A) BlazePose outputs keypoints of human posture marked in blue dots. The red dot marks

the detected heel keypoints. AutoLoc tracks the heel keypoints for footstep detection. (B) Sensing area H’ × L’ in the floor coordinate projected from H × L in the

camera view (A).
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environment—the sensing devices are placed on the floor by
the wall or under the furniture—as the example shown in
Figure 1. When occupants walk in their home, their footsteps
induce floor vibrations, which can be captured by the vibration
sensors nearby.

We assume two scenarios for the camera setup. (1) Some area
in the home is already covered by a camera, e.g., smart TV with
a built-in camera (Samsung Inc., 2017) in the living room or
surveillance camera in the doorway, and can be re-purposed for
autonomous configuration purposes. (2) A device with camera,
e.g., a smartphone, is temporarily set up for a short period of time
for autonomous configuration purposes. The camera captures
sensing areas overlapping deployed vibration sensors’ sensing
areas, which we refer to as their common sensing area.

3.2. Footstep Event Detection and
Alignment
AutoLoc takes synchronized vision and vibration signals as inputs
and outputs the footstep-induced vibration signals and their
locations in x and y coordinates. First, AutoLoc extracts the
occupant’s heel keypoints on vision data via pose estimation
(section 3.2.1). Then, these heel keypoints are used to detect
the occupant’s footstep events (section 3.2.2). Next, the heel
keypoints extracted by the pose estimation are used to acquire
footstep event’s 2D location (section 3.2.3). Finally, AutoLoc
extracts the vibration signal induced by the detected footstep
event using event timestamp and associates it with the estimated
location (section 3.2.4).

3.2.1. Heel Keypoint Tracking
AutoLoc uses pose estimation model to detect the posture of
occupants in the sensing area. To make sure the pose estimation
is not too demanding computationally we used BlazePose
(Bazarevsky et al., 2020). BlazePose is a lightweight convolutional
neural network for pose estimation that can run devices with
less computational power and user already owns like smartphone
(Bazarevsky et al., 2020). The model takes raw frames from video
data as the input and outputs the coordinates of 33 keypoints
of the human posture in that frame. Figure 3A demonstrates an
example camera view and the pedestrian posture captured with
keypointsmarked in red dots. Among these 33 keypoints we track
the position of two heel keypoints since our goal is to extract the
footstep timing of the heel strikes, which induce floor vibration.

3.2.2. Vision-Based Footstep Event Detection
We define a footstep event from heel strike to pre swing phase in
the gait cycle (Whittle, 2014). The intuition of the event detection
is that during this phase, the corresponding heel does not move.
However, due to the noisy output of the light-weighted posture
estimation module, the estimated location of heel keypoint may
fluctuate by a few pixels. To tackle this problem, we apply the
moving average of a window size swVision to smooth the heel
keypoints position. Figures 4A,B show detected heel keypoints
before and after applying the sliding window. The smoothed heel
keypoint position at time t is denoted as heelPt .
Algorithm 1 depicts details of the event detection. AutoLoc takes
the heel keypoint location at time t – heelPt as the input. If the

A

B

C

FIGURE 4 | Cross-modal footstep event signal association example. (A)

shows heel keypoints location detected in video frames before smoothing. (B)

shows heel keypoints location detected in video frames after smoothing. The

red and greed dots mark detected footstep event. (C) shows the floor

vibration signal in blue lines and extracted footstep event signal segments

detection by the cross-modal context in red and green segments.

distance between heelPt and heelPt−1 is less than motionTh, the
system considers that the foot is not moving and increments
the counter stableFrame. If the distance between heelPt and
heelPt−1 is larger than motionTh, the system considers it as the
end of a potential footstep and checks stableFrame value. If the
stableFrame value is larger than the frameTh value, the system
assigns footstep event time eTime as t − stableFrame/2. After
detecting the footstep event at eTime, AutoLoc calculates eLoc,
the pixel location of the footstep event in the camera view, as the
mean of the heel keypoint locations from time t − stableFrame
to t − 1.

3.2.3. Vision-Based Footstep Localization
We predefined floor coordinates in the camera view to associate
footstep’s pixel location to it. Figure 3 shows an example of (a)
the floor coordinates H × L in the camera view and (b) the
projected floor coordinate H′ × L′. This projection requires a
3 × 3 transformation matrix, which can be computed using
the coordinated four points of the sensing area in the camera
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Algorithm 1: Vision-based footstep event detection.

Data: heelPt : heel keypoint at time t
Result: footstep event’s time eTime and location in frame

eLoc
stableFrame = 0;
while true do

if |heelPt − heelPt−1| < motionTh then
stableFrame = stableFrame+ 1;

else

if stableFrame > frameTh then
eTime = t − stableFrame/2;
eLoc = avg(heelPt−stableFrame, ..., heelPt−1);

stableFrame = 0;

view and the coordinates of the transformed image (Forsyth and
Ponce, 2011).
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C′ = MC (1)

Here, x, y in C represents the coordinates of one point of
sensing area in the camera view, i.e., eLoc, and 1 is the scaling
factor, while x′, y′ in C′ represents the new coordinates of the
corresponding point in the transformed image, i.e., fLoc,. M is
the transformation matrix, in which the 2 × 2 upper left matrix
[

a1 a2
a3 a4

]

defines scaling and rotation transformation. The two

elements of right column

[

b1
b2

]

defines translation vector and

in last row[c1, c2] defines projection vector (Forsyth and Ponce,
2011). Given C and C′, the transform matrix M is estimated by
solving the overdetermined linear system. Then the transformed
heel keypoint (x′

h
, y′

h
) can be further calculated by Equation (1)

givenM and xh, yh. (x
′
h
, y′

h
) is under the new coordinate (H′×L′),

which is the physical area location. Figure 3B shows an example
of the sensing area view transformed from the original camera
view in (a).

In addition, the heel keypoints detected by the pose estimation
algorithm are not the precise contact points between the foot
and the floor due to the shoe-induced offset and camera
view perspective. As a result, AutoLoc empirically adds an
offset (x∗, y∗) to the estimated heel location (x′

h
, y′

h
) as the

footstep location.

3.2.4. Footstep-Induced Vibration Signal Location

Association
Once we acquire the time and location of the footstep events
from the camera data, we further derive the vibration sensors’
locations. Because these two sensing modalities capture the same
footstep event at two different gait cycles—the camera captures
the footstep at the terminal stance phase, while the vibration
sensor captures the footstep at the initial contact phase—AutoLoc

have to compensate this cycle difference to ensure accurate
association. For the footstep event detected at the time eTime
by the camera, the foot-floor initial contact would occur before
the heel motion is detected as stable since there is a detection
delay. As a result, AutoLoc segments the vibration signal between
eTime− eDelay and eTime− eDelay + eDuration as the footstep
event. The configuration of these values will be detailed in
section 4. Figure 4 depicts an example of detected footsteps
and their association between (a) the camera data and (b) the
vibration signal.

3.3. Vibration Sensor Location Estimation
When occupants pass by the common sensing area H × L
multiple times, their detected footstep events accumulate. With
the footstep event signals extracted and their locations estimated,
AutoLoc further calculates the vibration sensors’ location. To do
so, AutoLoc solves the multilateration equations with locations
of footsteps as the known variables and sensor locations as
unknown variables. In this way,AutoLoc simultaneously localizes
the pair of vibration sensors that capture the footstep event.

3.3.1. Inverted Problem for Step-Level Localization
We model the vibration sensor localization problem in the same
form as the multilateration-based footstep localization, but with
inverted known and unknown variables.

In the footstep localization problem, locations of the deployed
floor vibration sensors are known. Based on the vibration sensors
outputs, the systemmeasures Time Difference of Arrival (TDoA)
between sensor pairs and conducts TDoA-based multilateration
by solving the set of equations for footstep locations (Mirshekari
et al., 2018).

In our problem setting, footstep locations can be estimated
using the vision data as discussed in section 3.2.3. Therefore, we
consider them as the known variables. On the other hand, the
locations of the pair of sensors sLoc1 and sLoc2 are unknown
variables. When a footstep event occurs at location fLoc at time
t0, its vibration signal propagates through the floor surface and
reaches the sensor located at sLoc at time ts. This physical process
can be described as

(ts − t0)v = ‖sLoc− fLoc‖2 (2)

where v is the wave propagation velocity. Due to camera’s low
sampling rate and noisy vision-based footstep detection, the
measurement of t0 is not accurate enough for the propagation
time measurement.

To counter this problem, AutoLoc utilizes pairwise sensors
monitoring the same area and localize them via Time Difference
of Arrival (TDoA) based multilateration. We consider the
pairwise sensors at the positions (sLoc1) and (sLoc2). They receive
the signal from same footstep at the location fLoc at time t1 and t2
respectively. Based on Equation (2), AutoLoc acquires the TDoA
of these pairwise sensors as follows.

(t1−t2)×v = TDoA×v = ‖sLoc1−fLoc‖2−‖sLoc2−fLoc‖2 (3)

The TDoA between signals captured by these pairwise sensors
can be calculated as the time domain shift, which we will discuss
in detail in section 3.3.2.
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3.3.2. Time Difference of Arrival (TDoA)

Measurements
Acquiring accurate TDoA measurements from vibration signals
propagating over floor is challenging because of the dispersion
effects (Mirshekari et al., 2018). The dispersion effects result in
different propagation velocities over different frequency band,
which directly impact the signal waveform that are used for
calculating their time domain shift. Wavelet decomposition
and filtering has been proven to be efficient for reducing the
dispersion effects (Mirshekari et al., 2018). As a result, AutoLoc
first applies the wavelet filter of frequency band filtBand to
the signal. Then, AutoLoc measures the time domain shift by
subtracting the time of the first peak detected in the filtered signal.
The first peak is selected as the peak within the footstep event
signal segment with a height no less than 1/K of the highest value
of this signal segment.

3.3.3. Solving Non-linear Least Square Problems With

Physical Constraints
Note that for the 2-D localization problem, the unknown
variables in Equation (3) are v, and 2-D coordinates of sLoc1 and
sLoc2. However, an impractical solution where v = 0 and sLoc1 =
sLoc2 with any arbitrary values would satisfy these equations. To
avoid this solution,AutoLoc applies two physical constraints: (1)
the range of the wave propagation velocity based on the prior
knowledge on surface waves; and (2) the range of the possible
sensor location based on the vibration sensing range limitations.

For a given wave propagation velocity v, AutoLoc constructs a
non-linear least square problem with m footstep induced signal
at location fLoci, i = 1...m based on Equation (3).

fi(x)
2 = (‖sLoc1 − fLoci‖2 − ‖sLoc2 − fLoci‖2)− TDoAi × v (4)

minimize f (x) =

m
∑

n=1

fi(x)
2

x fonts inconsistency where x is a vector contains the unknown
coordinates of sLoc1 and sLoc2. We used Trust-region Reflective
(TRF) Optimization (Branch et al., 1999) algorithm to solve
the non-linear least squares problem, which is empirically
used due to its robustness and ability to solve ill-conditioned
problems (Yuan, 2000). TRF is a bound constrained non-
linear minimization algorithm, which is based on Newton’s
Method of root finding. It is an iterative procedure, which
represent objective function as quadraticmodel implied by Taylor
series expansion at the current point. At the kth iteration, the
model computes

minimize ψk(s) = gTk s+
1

2
sT(Hk + Ck)s,

||Dks|| ≤ 1k (5)

where gk = ∇f (xk) is the gradient and Hk = ∇2f (xk) is Hessian
matrix at the current iteration (Yuan, 2000). Dk,Ck are affine
scaling matrices and 1k is the trust region bound on the step.
By solving Equation (5), we compute a step sk and value of x is
updated along with the trust region 1k. The affine matrix make
sure the step is strictly feasible and pointing inside the bounds.

The iteration stops when ‖gk‖2 < ǫ. On the other hand, to select
the proper velocity value v, AutoLoc conducts a grid search on v
in the range of the surface wave propagation velocities find out
the number and cite and outputs the results with the minimized
cost function of f (x) (Yuan, 2000).

3.3.4. Spatial Characterization and Data Selection
AutoLoc localizes a pair of sensors at a time by solving the
non-linear least square problem discussed in section 3.3.1. The
physics guided model—in our case, the multilateration model—
is often more sensitive to noise than the data-driven model.
Therefore, a data-driven selection procedure is essential to ensure
the accuracy of the model. AutoLoc tackles this challenge from
two aspects.

First of all, the error and noise of the TDoA measurements
would impact the sensor localization accuracy. Intuitively, when
the vibration signal’s Signal-to-Noise Ratio (SNR) is low, the
signal is impacted by noise more and has a higher chance to result
in errors of the TDoA measurements. To improve the TDoA
measurement over the pair of sensors, AutoLoc selects footstep
events with high fidelity for the task—high SNR for the target pair
of sensors—for sensor localization. For a detected event, AutoLoc
measures the SNR of the event signals captured by both sensors in
the target pair. If both signals’ SNR is higher than the threshold
sFidelity, AutoLoc consider its spatial characteristics is valid for
sensor localization.

Secondly, other than the individual footstep event spatial
characteristics, the spatial characteristics of the group of events
used in Equation (4) is also important. If the TDoA estimations
are all similar, the solution can be impacted by the noise
significantly. AutoLoc ensures to capture footstep events with
high spatial variance to ensure the accuracy of the sensor location
estimation by selecting events from different subareas to solve the
non-linear least square problem.

4. EXPERIMENTS AND EVALUATION

We conduct real-world experiments to evaluate AutoLoc. In
this section, we first introduce the hardware and deployment
followed by the data collection procedure in section 4.1.
Then, we listed detailed algorithm implementation settings and
baselines in section 4.2. Finally, we present results and provide
analysis to demonstrate the accuracy and robustness of AutoLoc
in section 4.3.

4.1. Hardware and Data Collection
Figure 5 demonstrate the setup at the sensing area, where the
camera is placed at a height of 7ft from the floor.We consider this
setup because it is common in home scenario where an existing
surveillance camera or smart TV’s top camera is available.
These cameras often captures the hallway or living room area
where occupants walk by. A commercial camera (Amcrest IP4M-
1028EB-28MM) amc (Amcrest Camra Manual, 2019) is used to
record the video at resolution of 2, 688×1, 520 and 30 frames per
second. Four floor vibration sensors are set up on a concrete floor
as shown in Figure 5B. Geophone SM-24 (Input/Output Inc,
2006) vibration sensors are used to capture the floor vibrations.
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The magnitude of footstep-induced vibration signals from the
sensors is approximately 10−3 to 10−2 Volt. In order to ensure the
digitized signal resolution for later analysis, we use a low-voltage
rail-to-rail OpAmp LMV385 lmv (Operational Amplifier, 2020)
to amplify the vibration sensor’s signal before it is converted to
digital signals. Finally, the amplified signal is digitized by the
Analog-to-Digital Converter. Vibration sensors are synchronized
to microsecond-level. The four sensors’ (Sensor 1–4) locations in
the floor coordinates are (0.31, 0.61), (1.52, 0.61), (0.31, 1.83),
(1.52, 1.83) in meters, respectively, as shown in Figure 5B. We
consider this setup based on prior work’s deployment setting
on floor vibration based pedestrian localization and gait analysis
(Mirshekari et al., 2018; Fagert et al., 2020; Shi et al., 2020). The
occupant walks through the target sensing area following the
walking tracesmarked as the solid blue lines. The occupant passes
by the common sensing area back and forth 16 times following
each path marked by the blue line.

4.2. Implementation of AutoLoc and
Baselines
We implement AutoLoc as discussed in section 3 with key
parameters setting listed in Table 1. For these experiments, we
refer to solving the non-linear least square problem and get
a pairwise sensor location with four footstep events as one
estimation.We consider two subareas as twowalking trace paths.
For each estimation, AutoLoc first randomly selects a trace out of
16 from one subarea. Then AutoLoc extracts the detected footfall
events that have an SNR higher than the threshold sFidelity. If
the extracted event number is no less than two, AutoLoc outputs

A

B

FIGURE 5 | Experiment deployment illustration. A camera is deployed 6 ft

away from the sensing area as shown in (A). Four vibration sensors are

deployed in the sensing area 4 ft apart as shown in (B). The blue lines in (B)

depict walking traces of the pedestrian.

the two events with the highest SNR for localization. Otherwise,
AutoLoc randomly selects another trace from the rest of the
traces until at least two events are extracted. Then, AutoLoc does
the same selection procedure for the other subarea and outputs
two events for localization. The selected footsteps are used to
construct a non-linear problem as discussed in Equation (4).
AutoLoc uses the TRF Optimization algorithm to solve this non-
linear problem for sensor location estimation with constrained
boundaries for four unknown variables.

To demonstrate the advantage of the Spatial Characterization
and Data Selection, we compare our approach with two baselines.

Baseline 1: Random Selection. This baseline keeps on
selecting a trace at random from all 32 traces (16 in each subarea)
without repeating, until it accumulates four or more footsteps
events. Then, the first four events are selected to form a non-
linear problem. Then least square method is used to solve non-
linear problem for sensor location estimation.

Baseline 2: SNR-based Selection. This baseline randomly
selects traces from total 32 traces without replacement until it
collects at least four detected footfall events with SNR higher
than the threshold sFidelity. Once four or more footsteps are
collected, we select the four events with the highest SNR to
conduct sensor localization.

Note that each method (Baseline 1, Baseline 2, and AutoLoc)
is repeated 1,000 times to ensure the selected trace combinations
are not biased.

AutoLoc considers the localization fail under the following
conditions: (1) when the number of selected footstep events are
less than four, (2) when at least one of the sensors (from the
target pair) estimated location is on the constrained boundaries
of the non-linear least square problem setting. As a result, we
use the following metrics to evaluate the system performance:
(1) localization error: as the Euclidean distance between the
estimated sensor location and the ground truth; (2) localization
success rate: as another metric.

4.3. Results and Analysis
In this section, we present the results of the vibration sensor
localization and analyze them over multiple aspects. We first
demonstrate the robustness of the Spatial Characterization
and Data Selection scheme (section 3.3.4) by comparing the

TABLE 1 | AutoLoc implementation parameters.

Parameters Values Description

motionTh 9 pixel Threshold for heel motion detection

frameTh 15 frames Threshold for footfall event detection

swVision 4 frames Vision smoothing sliding window

(x∗, y∗) (0, 0.05) m Heel point calibration offset

eDelay 0.3 sec Footfall event detection delay

eDuration 0.5 sec Segment event duration

filtBand 7 Wavelet filtering band

K 4 First peak detection threshold

H′ × L′ 8ft× 8ft Target sensing area
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localization error and success rate to those of the baselines in
section 4.3.1. Next, we explored the system parameters (e.g.,
threshold values) and their impact on the sensor localization
accuracy in section 4.3.2. Finally, we demonstrate that with more
iterations of location estimation, AutoLoc can further refine the
final estimation and enhance the accuracy in section 4.3.3.

4.3.1. Data Selection Scheme Comparison
We compare the performance of AutoLoc to the two baselines
over four sensors’ localization accuracy in Figure 6. The x-axis is
the sensor ID and the y-axis is the localization error in meters.
The average error using Baseline 1 and 2 are depicted in blue and
orange bars with the standard deviation plotted as error bars. The
corresponding results of AutoLoc is presented in green bars with
error bars depicting the standard deviation. We observe that for
Baseline 1, where the footfall events are not constrained by SNR,
result the highest average localization errors of 0.91, 1.06, 1.03,
and 0.88 m for the four sensors, respectively. With the constraint
on SNR, Baseline 2 achieves average localization errors of 0.43,
0.41, 0.47, and 0.61 m, respectively. AutoLoc applies another
constraint on spatial-variance and achieves average localization
errors of 0.33, 0.24, 0.49, and 0.61 m, which shows an up to 4 ×
improvement compare to the baselines.

FIGURE 6 | Localization errors of sensors over different locations. The x-axis

is the Sensor ID. The y-axis is the localization errors. Blue, orange, and green

bars represent results from Baseline 1, Baseline 2, and our approach AutoLoc,

respectively. Sensor 3 and 4 demonstrate higher localization error, which could

be caused by lower vision-based footfall localization accuracy due to the

farther distance between the camera and selected footfall events.

FIGURE 7 | Localization success rate for different sensor pairs. Blue, orange,

and green bars represent results from Baseline 1, Baseline 2, and AutoLoc,

respectively.

Since the system discard the estimation that is exactly on
the boundary, we further depict the success rate of estimations
in Figure 7. The x-axis is the sensor pair, and the y-axis is the
success rate. We observe that AutoLoc not only achieves the
highest localization accuracy, it also achieves the highest success
rate among the three approaches, indicating the importance of
the high quality data selection. For Baseline 1 and 2, the success
rate for the pair Sensor 1-2 (78.8 and 87.8) show slightly higher
success rate than that of the pair Sensor 3-4 (76.3 and 77.4). Our
approach AutoLoc achieves 0.95 and 0.99 success rate for the
sensor pair Sensor 1-2 and 3-4, respectively.

4.3.2. Impact of Vision Based Detection Thresholds
Since the footfall events’ spatial and temporal information relies
on vision-based event detection, we investigate the relevant
parameters (motionTh and frameTh) to understand their impacts
to AutoLoc.

motionTh determines the system’s sensitivity to noise
within the posture estimation keypoints. Figure 8 depicts the
localization error of the four sensors at differentmotionTh values.
The x-axis is the motionTh value with unit in pixels, and the y-
axis is the localization errors in meters. We observe that impact

FIGURE 8 | Vision-based footfall event detection parameter motionTh and its

impact on localization error. Blue, orange, green, and red bars represent

Sensor 1, Sensor 2, Sensor 3, and Sensor 4’s localization error, respectively.

The error bars depict standard deviation values.

FIGURE 9 | Vision-based footfall event detection parameter motionTh and its

impact on localization success rate.
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of themotionTh is more significant for Sensors 1 and 2 compared
to Sensors 3 and 4. This could be caused by difference in distance
between camera and sensor pair’s sensitive area. The localization
errors are the lowest whenmotionTh = 9 for Sensor 1 and Sensor
2, which are 0.34 and 0.25 m, respectively. When the motionTh
increases, the tolerance of motion noise is increased, which lead
to a higher false positive rate for footfall event detection. As a
result, we observe higher localization errors (0.49, 0.55, 0.49, and
0.61 m, respectively) when motionTh = 13. On the other hand,
when the motionTh decreases, the false negative rate of footfall
event detection increase, which reduces the spatial-variance of
the events that can be used. This reduction in spatial-variance
results a higher localization errors. For example localization error
is (0.48, 0.44, 0.55, and 0.57, respectively), when motionTh = 5.
We also analyze the localization success rate and depict the results
in Figure 9. The x-axis is the motionTh value and the y-axis
is the success rate. We observe that when motionTh = 9 the
system achieves the highest success rate of 0.97. When motionTh
decreases, the false positive detection will lead to more errors, i.e.,
the estimation falls on constraint bounds.

To understand the effect ofmotionTh on vision-based footstep
detection over different distances, we analyze the precision and
recall scores of the footstep detection module when footsteps are
of different distance to the camera. Considering the center of our

FIGURE 10 | Precision and recall score for footsteps closer than 8 ft away

from camera with different motionTh values.

FIGURE 11 | Precision and recall score for footsteps farther than 8 ft away

from camera with different motionTh values.

target sensing area is 8ft away from the camera, we analyze the
results of footsteps that are closer than 8ft away from the camera
and those that are farther than 8ft away from the camera.

Figure 10 shows the precision and recall scores of footsteps
that are closer than 8ft away from the camera when different
motionTh values are adopted. The recall score (orange bars)
increases as the value of motionTh increases, because less
footsteps will be discarded due to the heel keypoint fluctuation
from the noisy pose estimation. This decreases the number of
footsteps that are not detected (false negative). However, because
of this, the number of false positive detection also increases,
which causes the decreasing trend in precision score (blue bars)
asmotionTh increases.

Figure 11 shows those of footsteps that are farther than
8ft away from the camera. We observe that the changes of
the precision and recall score are less significant compared to
those are closer to the camera, and yet they bear the similar
overall trends—the precision score shows a decreasing trend for
motionTh values between 7 and 13 and the recall score shows
an increase trend between 5 and 9. Precision score is lower
for motionTh value 5 in the farther distance area, because the
farther distance leads to less pixel changes for the same amount
of motion, causing a high false positive when motionTh is low,
i.e., value 5.

The frameTh value determines the system’s sensitivity to
human mobility. Figure 12 shows the localization errors at
different frameTh values. The x-axis is the frameTh values and
y-axis is localization error. When frameTh increases, we observe
a decrease in localization errors for Sensors 1 and 2 (Sensor
1: 0.38, 0.38, 0.35, 0.35, and 0.38 m; Sensor 2: 0.36, 0.31, 0.26,
0.25, and 0.21 m). The impact on Sensors 3 and 4 is not clear,
this is because the events selected by Sensors 3 and 4 (high
SNR vibration signals) will be farther from the camera than
those selected by Sensors 1 and 2. When footsteps are farther
away from the camera, more motion will lead to less change in
pixels, which in turn will reduce motionTh’s impact on footsteps
selection. When frameTh increases to 19, the localization error
for Sensors 3 and 4 decreased to 0.35 and 0.40meters respectively.
This could be because only very stable footsteps are detected;
and to a certain extent, this filters out high fidelity data and

FIGURE 12 | Vision-based footstep event detection parameter frameTh and

its impact on localization error.
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FIGURE 13 | Vision-based footstep event detection parameter frameTh and

its impact on success rate.

FIGURE 14 | Number of traces sampled when frameTh vary. The x-axis is the

frameTh value and the y-axis is the number of traces sampled till four footfall

events that met constraints being extracted.

hence improves the accuracy. Figure 13 shows the localization
success rates are all greater than 0.9 for the investigated frameTh
values, which demonstrates our system’s robustness. To further
understand how this parameter impacts system performance, we
plot the number of traces being sampled in order to extract at
least four footfall events that meet the signal fidelity constraints
in Figure 14. We observe that the number of traces sampled,
increases with the frameTh. For Sensors 1 and 2, the average
number of traces needed to successfully localize the sensors
increases from 5.7 to 13 as frameTh increase from 11 to 19
frames. Sensors 3 and 4 demonstrate the same trend, but show a
smaller increment in the number of traces (6.21 to 7.26 traces).
This increasing trend is because when frameTh increases, the
number of detected footfall events decrease, but the number of
true positive events increases. As a result, more traces need to be
sampled in order to acquire enough events for sensor localization.
AutoLoc takes frameTh = 15 as the parameter setting taking into
account both the localization error and data usage efficiency.

4.3.3. Impact of Numbers of Refine Iteration
To demonstrate the importance of the iterative location update
module, we further evaluate the impact of number of refine
iteration k. In order to understand the impact of the iterative
refinement of the location estimation, we depict the localization

FIGURE 15 | Number of iteration and its impact on localization errors. The

x-axis is the number of iterations of estimation used for sensor localization,

and y-axis is the localization error. Blue, orange, green, and red bars represent

results of Sensor 1, Sensor 2, Sensor 3, and Sensor 4, respectively.

FIGURE 16 | Sensor localization visualization (with 20 iteration refinement).

Blue, orange, green and red dots represent estimations of Sensor 1, Sensor 2,

Sensor 3, and Sensor 4, respectively. Black dots represent ground truth

locations.

error values after different numbers of iterations in Figure 15.
Bars in four different colors are used to represent the average of
the localization error and the error bars represent the standard
deviation of the errors of the four sensors. We observed a general
decreasing trend across all the sensors when the number of
iteration increased. The highest improvement is for Sensor 2,
where the average localization error reduced by 0.175 meters
when the number of iteration increases from k = 1 to k = 20,
which is an 2.5 × improvement. Besides, the standard deviation
decrease from 0.17 to 0.03 meters, which indicates a more
stable estimation. To intuitively demonstrate the localization
performance, we plot the successfully localized sensor location
with 20 iterations of refinement in Figure 16, where black dots
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represents the ground truth. Blue, orange, green, and red dots
depict refined sensor location estimation.

5. DISCUSSION

We discuss the limitation and future direction of AutoLoc.

5.1. Simultaneously Synchronization and
Localization
In this work, we assume the devices are synchronized, which
may not be true for many heterogeneous systems. When the
synchronization resolution between sensors are low, the TDoA
estimation between pairwise sensors may be impacted and
reduce the sensor localization accuracy. We plan to explore
reinforcement learning approach in the future to tackle this
problem, where the system takes footstep localization via given
sensor localization results as the reward and selection of the
clock shift values as actions. In this way, the clock shift can
be estimated over iteration and the clocks synchronization
is improved.

5.2. Occlusion-Aware Footstep Event
Detection
In this work, we do not assume the line-of-sight (LoS) between
the camera and the vibration sensors, but we do assume the LoS
between the camera and the occupant. However, when deployed
at home scenario, especially when there is furniture around,
this assumption may no longer hold. When partial occlusion
occur, the posture estimation module may fail to output the
posture keypoints, or output erroneous keypoint locations. This
may impact our system’s performance, since AutoLoc relies on
the detected heel keypoints for footstep event detection. Recent
work on posture estimation addresses the explicit occlusion issue
estimation with explicit occlusion via occlusion-aware posture
estimation (Cheng et al., 2020; Zhang et al., 2020), which can
be applied in our system to enhance the system robustness.
In addition, since the occupants move around, there are areas
or frames with opportunistic LoS between the camera and
occupant, which can be used for sensor localization when the
events accumulate.

5.3. Automatic Sensing Area Detection
In this work, we manually select the sensing area on the floor
in the camera view. However, this procedure can be potentially
automated with prior work of the ground detection (David, 2008;
Wang et al., 2016) and vanishing point analysis (Gerogiannis
et al., 2012). Recent work on indoor layout estimation can
also provide powerful detection tools for this purpose with
the assistance of the LiDAR sensor (Li and Stevenson, 2020).

We envision that with various sensors installed—both direct
(e.g., camera, LiDAR) and indirect (e.g., vibration, mmWave,
magnetic) sensing approaches—the inference of the environment
and people in it can form a holistic view of the physical world.
Built upon that, the IoT systems can further achieve autonomous
configuration with zero human interaction.

In this work, we do not focus on the environment (e.g., room
layout) modeling part of the IoT system automation. Instead,
we focus on the association of information across different
modalities and enable auto configuration of “indirect” sensing
modality—floor vibration based human sensing. In the future,
we plan to explore how multiple sensing modalities can further
achieve each others’ optimum configuration and information
inference accuracy.

6. CONCLUSION

In this paper, we present AutoLoc, a cross-modal vibration sensor
location configuration scheme. AutoLoc utilizes the ambient
occupant sensing information—footstep locations—captured by
co-located cameras as the shared context to achieve autonomous
vibration sensor location estimation. A spatial characterization-
based data selection scheme is applied to further enhance
the location estimation accuracy. Real-world experiments are
conducted to evaluate AutoLoc. AutoLoc achieves an up to 0.07
meters sensor localization accuracy and demonstrates an up to
4× improvement compared to baselines.
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