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Tumor-Infiltrating B- and
T-Cell Repertoire in Pancreatic
Cancer Associated With Host
and Tumor Features
Silvia Pineda1,2*, Evangelina López de Maturana1, Katharine Yu2,3, Akshay Ravoor2,
Inés Wood1, Núria Malats1† and Marina Sirota2,3*†

1 Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and Centro de
Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain, 2 Bakar Computational Health Sciences Institute,
University of San Francisco, California (UCSF), San Francisco, CA, United States, 3 Department of Pediatrics, University of
San Francisco, California (UCSF), San Francisco, CA, United States

Background: Infiltrating B and T cells have been observed in several tumor tissues,
including pancreatic ductal adenocarcinoma (PDAC). The majority known PDAC risk
factors point to a chronic inflammatory process leading to different forms of immunological
infiltration. Understanding pancreatic tumor infiltration may lead to improved knowledge of
this devastating disease.

Methods: We extracted the immunoglobulins (IGs) and T cell receptors (TCRs) from
RNA-sequencing of 144 PDAC from TCGA and 180 pancreatic normal tissue from GTEx.
We used Shannon entropy to find differences in IG/TCR diversity. We performed a
clonotype analysis considering the IG clone definition (same V and J segments, same
CDR3 length, and 90% nucleotide identity between CDR3s) to study differences among
the tumor samples. Finally, we performed an association analysis to find host and tumor
factors associated with the IG/TCR.

Results: PDAC presented a richer and more diverse IG and TCR infiltration than normal
pancreatic tissue. A higher IG infiltration was present in heavy smokers and females and it
was associated with better overall survival. In addition, specific IG clonotypes classified
samples with better prognosis explaining 24% of the prognosis phenotypic variance. On
the other hand, a larger TCR infiltration was present in patients with previous history of
diabetes and was associated with lower nonantigen load.

Conclusions: Our findings support PDAC subtyping according to its immune repertoire
landscape with a potential impact on the understanding of the inflammatory basis of
PDAC risk factors as well as the design of treatment options and prognosis monitoring.

Keywords: B-cell repertoire, immunoglobulins, T-cell repertoire, pancreatic cancer, tumor microenvironment,
tumor infiltration, compositional analysis
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a dreadful disease
and, despite its relatively low population incidence, it is the
deadliest cancer worldwide with a 7% 5-year survival rate. It is
projected that PDAC will become second in the cancer mortality
ranking before 2030 (1) if action is not immediately taken.
Furthermore, this is the single cancer for which there has been
no improvement in its fatal prognosis over the last decades
despite the many efforts to improve tertiary prevention
(treatment). Even new personalized treatments, through more
radical surgical resection, neoadjuvant, immunotherapy, and
targeted chemotherapy, benefits only a small fraction of patients.

PDAC is a multifactorial and heterogeneous disease. To
decipher its complexity at both molecular and etiological level,
more comprehensive strategies are needed. Among the well-
established PDAC risk factors, tobacco, alcohol, non-O blood
group, chronic pancreatitis, type 2 diabetes mellitus, and obesity
have been associated with an increased risk of PDAC (2–4), while
nasal allergies and asthma were associated with reduced risk (5).
At the molecular level, somatic copy number alterations and
mutations leading to altered expression of key oncogenes and
tumor suppressor genes (KRAS, TP53, SMAF4, and CDKN2A)
contribute to the complex molecular landscape of PDAC (6–8).
Despite these important findings, there are still a number of
unknown risk factors, probably interacting with molecular
factors, contributing to this devastating disease.

The majority of known risk factors point to a chronic
inflammatory process and different forms of inflammation play
critical roles at different stages of tumor development, which
might result in tumor microenvironments containing innate
immune cells (macrophages, neutrophils, and mast, myeloid-
derived suppressor, dendritic, and natural killer cells) and
adaptive immune cells (T and B lymphocytes), in addition to
cancer cells and their surrounding stroma (fibroblasts,
endothelial cells, pericytes, and mesenchymal cells).
Furthermore, there is a strong intercommunication among all
these components either by direct contact or by production of
cytokines and chemokines controlling the tumor growth (9).
Indeed, six immune subtypes based on immune expression
signatures across all TCGA tumors have been proposed and
showed an association with prognosis, genetics, and immune
modulatory alterations, demonstrating the importance of
studying the immune infiltration as an important factor in
cancer development (10), as already shown in PDAC (11–13),
as well as in other cancers (14). The microenvironment of human
cancer is complex and often shows different characteristics
according to the carcinogenic pathways involved, the
mutations harboring neo-antigens, or their clinicopathological
impact interacting with the adaptive immune system that acts as
orchestrator and effector of immunity. Therefore, a
characterization of the tumor immune-infiltrating cells of the
adaptive immune response can be of potential importance.

The key feature of B and T cells is their enormous diversity. A
potent adaptive immune response is reliant upon the expansion
of B- and T-cell clones during infection. In the context of PDAC,
the T-cell immune repertoire (IR) has been characterized in
Frontiers in Immunology | www.frontiersin.org 2
peripheral blood (15–17) and, while T-cell infiltration has been
observed in several tumor tissues, the function of infiltrating B
cells is still ill-defined (18). Therefore, the aim of this study was
to characterize the tumor-infiltrating B- and T-cell repertoire in
PDAC and its interaction with host and tumor features. We
found that the PDAC microenvironment presented significantly
higher TCR and IG infiltration than normal pancreatic tissue.
We also found that TCRs were associated with the lower
presence of neoantigens and previous history of diabetes while
the IGs were associated with better prognosis and were higher in
females and heavy smokers. Selected IGK clones classified PDAC
tumors with better prognosis and the variability of IGK clones
explained 24% of the prognostic phenotypic variance. These
results support PDAC subtyping according to its IR landscape
with a potential impact on understanding the inflammatory basis
of PDAC risk factors as well as the design of treatment options
and prognosis improvement.
MATERIALS AND METHODS

TCGA Data
We downloaded the RNAseq fastq file with a total of 181 samples
from PAAD-TCGA from the legacy. We used TCGA biolinks to
download the clinical and biospecimen samples (https://
bioconductor.org/packages/release/bioc/html/TCGAbiolinks.
html). We then used the samples from (19) for re-classification
and restricted to those confirmed as PDAC, ending with a total of
144 patients. In comparison to previous analysis on PDAC
samples from TCGA, we curated and extracted very carefully
the PDAC samples.

GTEx Data
We downloaded the RNAseq fastq files with a total 195 pancreas
samples from dbGaP Accession phs000424 using the SRA run
selector NCBI. Then, we filtered out those samples that did not
pass QC for RNAseq as reported by the GTEx Consortium (20)
and those that reported to have cancer. Finally, we used a final
dataset with 180 pancreatic samples from healthy individuals.

IG and TCR Data Extraction
We used MiXCR tool to align the RNA-seq fastq files to the VDJ
region to extract IGH, IGK, and IGL, and TRA, TRB, TRD, and
TRG. We applied the pipeline described in https://mixcr.
readthedocs.io/en/master/ for alignments using paired-end
RNA-seq. The median number of reads and clones for the four
datasets are in Supplementary Table S1. TRD and TRG reads
and clones were very low; therefore, we decided to filter out these
receptors for the analysis. We performed a quality control
procedure at sample level, filtering out the individuals with IG
clones < 100 and those with T clones < 100, resulting in 143 and
135 samples, respectively.

Diversity Analysis
We performed diversity analysis considering two measures. As
the number of reads might be dependent on the total sequencing
September 2021 | Volume 12 | Article 730746
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reads, we defined expression of IG and TCR as: IGi=TCRi =
Mi

Ni+Mi
, where i corresponds to each sample,Mi is the number of

reads that map to a specific IG/TCR, and Ni is the number of
reads that map to anything else in the genome.

We defined an IG clone as those reads that had the same V
and J gene, same CDR3 length, and 90% of nucleotide identity,
and a TCR clone as those reads that had the same V, J gene, and
CDR3 length and 95% of nucleotide identity. We restricted this
analysis to those reads that estimated the CDR3 region. This
definition allowed studying diversity, shared and common
clones, and clonal expansion. To define diversity, we used
Shannon entropy (H), which provides information about the
size distribution.

H = −o
N

i=1
pilog2pi

WhereN is the number of unique clones and pi is the frequency
of clone i. H ranges from 0 (sample with only one clone) to
Hmax = log2N (sample with a uniform distribution of clones).

Then, we used Wilcoxon rank test to measure the differences
regarding the diversity and richness of all the features (IGH, IGK,
IGL, TRA, and TRB expression and entropy) between the tumor
and normal pancreatic tissue of four datasets (TCGA, GTEx, and
the two validation sets). We also performed a Spearman
correlation test to check the correlation among all the features
considering both measures, richness and diversity, and all
receptors (IGH, IGK, IGL, TRA, and TRB) in the TCGA and
GTEx datasets.

The measures can be highly dependent on the sequencing
depth. In the case of the expression, we accounted for this
calculating the expression by dividing the number of reads by
the total number of sequencing reads in the RNA-seq fastq files.
For the entropy, although this measure should not be highly
affected by the sequencing depth, we randomly sampled different
proportions of the sequence data for each sample and, then, we
calculated the entropy measure in its corresponding sampled
dataset. We performed the random sampling 10 times in each
proportion to avoid possible stochastic effects and calculated the
mean value as the final estimate.

Network Analysis
The network generation algorithm is similar to the one used
previously by our group (21) and others (22). Briefly, each vertex
represented a B/T-cell sequence where its size was defined by all
the identical sequences. Edges were calculated using the clone
definition (same V and J segments, same CDR3 length, and 90%/
95% nucleotide identity between CDR3s for BCR/TCR,
respectively) and clusters represent each clone in the
repertoire. The analysis was done using igraph package in R
using the layout_with_graphopt option to generate the plot.

To quantify the network, we calculated the Gini Index for
vertex and cluster sizes. Gini Index was a measure of unevenness
extensively used to measure wealth distribution. It measured the
inequality among values of frequency distribution. We used the
Gini function from ineq package in R to calculate the Gini
coefficient for vertex size and cluster size distribution. A Gini
Frontiers in Immunology | www.frontiersin.org 3
coefficient of zero expresses perfect equality and a Gini coefficient
of 1 expressed maximal inequality. When applied to vertex size,
Gini(V), the overall clonal nature is represented. If Gini(V) was
closer to 1, vertices were unequal, showing expansion of some of
them, and closer to 0, otherwise. When applied to cluster size,
Gini(C), clonal dominance was represented. If closer to 1,
clusters were unequal and therefore represented dominant
clones; if closer to 0, all clusters were of equal size.

Association Analysis
To perform the association analyses between the immune
features estimated in TCGA with the molecular data, immune
characteristics, and the host and clinical data, we used Pearson
correlation for the continuous variables and Wilcoxon test for
the categorical variables. Since the expression features follow a
skewed distribution, we applied a log10 transformation before
performing the statistical test. The variables we analyzed were the
ones reported in (23) considering tumor purity measured using
ABSOLUTE (7, 24) inferring the purity based on DNA somatic
mutations and leukocyte fraction based on DNA methylation as
described by Carter et al. (24). We also assessed the association
with the three classifications of PDAC subtypes (23). Then, we
analyzed all the immune signatures proposed by Thorsson et al.
(10) and all the clinical and epidemiological data available in the
TCGA. Finally, we performed a survival analysis using Cox
regression adjusted for age, sex, and pathological stage.

Clonotype Analysis
Clonotypes were quantified as the number of reads for each clone
per sample. The data produced after this definition involved
high-dimensional structured multivariate and sparse data that
are compositional. A composition is defined as a vector of
positive real numbers, x = (x1,…,xk), xi > 0, that contains
relative information. In addition, they were constrained by the
sequencing depth that induces strong dependencies and spurious
correlations among the number of reads for the different clones.
To deal with all these issues, we took advantage of the
compositional data analysis. Since we wanted to select a group
of clonotypes associated with the outcome, we applied the CLR-
LASSO to perform variable selection (25) using compositional
data. This LASSO method transforms the data with the CLR
transformation, which projects the compositional data to a
Euclidean space. The clr transformation is defined as:

clr(x) = clr(x1, :::, xk) = log(
x1
g(x)

), :::, log(
xk
g(x)

)

� �
,

Where g(x) = (∏xj)
1/k is the geometric mean of the composition.

Before applying the CLR transformation, we added an offset
of 1 to the whole matrix to deal with the zeros. So, we applied the
CLR-LASSO to find the clonotypes of the IGH, IGK, and IGL
associated differently with the normal pancreatic tissue (GTEx)
and PDAC samples (TCGA). Then, we applied a hierarchical
clustering with the clonotypes selected to cluster the samples.
These results were validated by applying a principal component
analysis using the four datasets (TCGA, GTEx, and the two
validation sets). We also checked whether the samples grouped
September 2021 | Volume 12 | Article 730746
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in the different clusters had different cell composition, which was
obtained applying the xCELL tool (26) to the RNA-seq data,
using a Kruskal–Wallis test.
Estimation of Whole IGK Profile-Based
Prognostic Score
We applied a Bayesian RKHS (27) to estimate the prognostic
score for PDAC cases in TCGA based on their IGK profile:

y = Xb + Zp + ϵ

Where y corresponds to the survival time of each PDAC case,
x is an incidence matrix relating the systematic effects (b, age at
initial pathologic diagnosis, gender, and pathologic stage) to each
individual, Z is a design matrix allocating records (y) to the
vector of whole IGK-based prognostic scores (p), and ϵ
corresponds to the residual effects. p and ϵ are assumed to
follow the prior distributions p∼Nð0, KIGKs 2

IGK) and ϵ∼N(0, I
s 2
ϵ ), where KIGK is the IGK profile-based relationship matrix

between individuals, computed using a linear kernel with the
linkernel function of apcluster R package, and s 2

IGK is the the
variance explained by the IGK profiles. The prior distributions
for both variances (s 2

IGK and s 2
ϵ ) were inverted chi-

square distributions.
Estimates of the systematic (b) and IGK-based prognostic

scores (p) and those of the variances were obtained from their
posterior distributions using a Gibbs sampling implemented in
the BGLR R package (28). We ran a McMC chain of 500,000
iterations, and the first 100,000 were discarded as burn-in.

The proportion of the prognostic variance explained by the
IGK-based variance was estimated as s 2

IGK
s 2
IGK+s

2
ϵ
.
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RESULTS

Study Subjects
We used data from a total of 144 confirmed PDAC cases from
TCGA (19) (https://portal.gdc.cancer.gov/) to extract the IG and
TCR read sequences and characterize the tumoral immune
infiltration using the proposed pipeline (Figure 1). We
compared them with normal pancreatic tissue samples from
180 healthy individuals from GTEx (https://www.gtexportal.org/
home/). Subject characteristics are shown in Table 1. The sex
distribution was similar in both populations, but individuals with
PDAC were significantly older (p < 0.001). To further validate
our results, we used 10 PDAC samples publicly available from
(29) and two pancreatic tissue samples with two replicates per
sample from healthy individuals from (30). The PDAC samples
from Jie Lin et al. had tumors with lower stage (p = 0.006) in
comparison to the TCGA and were younger than the TCGA
PDAC cases (p = 0.03).

B- and T-Cell Repertoire
We usedMiXCR (31) to extract the read sequences from RNA-seq
to their respective IGH, IGK, and IGL, and TRA, TRB, TRD, and
TRG types. We obtained a total number of 8,660,640 IG reads
(mean 60,564/sample) and 92,153 TCR reads (mean 644/sample)
for the TCGA samples and 227,011 IG reads (mean 1,261/sample)
and 12,961 TCR reads (mean 72/sample) for the GTEx samples.
Supplementary Table S1 shows the sequencing summary for IG
and TCR reads for all datasets. Then, we grouped the reads into
clones (same V and J gene, same CDR3 length, and 90% for IG
and 95% for TCR nucleotide identity) defined by those cells that
come from the same common ancestor.
FIGURE 1 | Overall study pipeline. Comparison of 144 tumor pancreatic tissue from TCGA with 180 normal pancreatic tissue from GTEx. Data for validation were
considered from Jin et al. (29) with 10 PDAC samples and Fagerberg Lin et al. (30) with two replicated from two normal samples. We used the MiXCR tool to extract
IG and TCR from RNA sequencing data and then performed a detailed statistical study to characterize properly the tumor-infiltrating immune repertoire by applying
diversity, network, association, and clonotype analyses.
September 2021 | Volume 12 | Article 730746

https://portal.gdc.cancer.gov/
https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pineda et al. Tumoral Features Associated With Immune Repertoire
Richness and Diversity of IG and TCR
Infiltration Were Higher in PDAC Samples
Compared to Normal Pancreatic
Tissue Samples
We defined richness and diversity features to study the IR for all
IG and TCR chain types. We accounted for richness using a
measure of overall expression by counting the number of mRNA
reads that map to an IG or TCR normalized by the total number
of reads. Then, we calculated the diversity measured by the
Shannon entropy to consider not only the number but also the
size distribution of the clones. We observed a much higher IGH,
IGK, IGL, TRA, and TRB richness and diversity in tumoral
samples in comparison to the normal samples (p < 2.2 × 1016) in
the discovery datasets (TCGA and GTEx). When compared with
the validation set, the PDAC samples locate in the same ranges
than the PDAC from TCGA showing highly significant p-values
(p < 10−5) for all IG and TCR richness in comparison to GTEx.
Similar results can be observed with the normal samples,
although due to a very small sample size, the p-values were
slightly significant, especially for the diversity measure
(Figures 2A, B). We observed that richness and diversity of
TCR were lower than those for IG [mean (TCR) = 644, mean
(IG) = 60,563, p < 2.2 × 1016] (Figures 2A, B), although the IG
and TCR richness was significantly correlated, especially in the
PDAC samples (Figures 2C, D). As expected, we also observed
that diversity of the IGL and IGK was lower than that of the IGH
(p = 1.7 × 10−10) for PDAC samples (Figure 2B). To discard the
effect of diabetes given that it is an immune-related disease and a
risk factor of pancreatic cancer, we performed the same analysis
in a subset of non-diabetic patients and the results remained
significant (Supplementary Figure S1).

It is worth mentioning that the IGK richness was not
significantly correlated (rho = 0.17) with its corresponding
diversity in tumors (Figure 2D), while in normal tissue, the
correlation was high (rho = 0.64) (Figure 2C). This could
indicate that IGK clonotypes were more clonally expanded and
had a more restricted IR in tumors. In an opposite direction, the
correlation between the IG measures and TCR measures was
Frontiers in Immunology | www.frontiersin.org 5
lower in normal tissue and non-significant for TRB richness in
comparison to PDAC.

An important requirement of this approach is that the
measures must not be highly dependent on the depth of
sequencing and scale invariant. In the case of the expression
measures, we corrected each sample for its sequencing depth,
and for the entropy measure, we tested all of the measures as a
function of sequencing depth by doing a sensitivity analysis,
consisting of randomly sampling different proportions of the
sequence data for each sample. Then, we calculated the
corresponding entropy parameter. Importantly, the entropy
measures for all the IG and TCR types showed little variation
at different sample sizes, even when subsampling was as low as
20% (Supplementary Figure S2).

IG Repertoires Were Clonally Expanded in
PDAC Samples While TCR Were Not
We defined an IG and TCR network based on sequence diversity
as previously published by our group (21) and others (22). Each
vertex was represented by a unique B- or T-cell receptor, and the
number of identical B- or T-cell receptors based on their
nucleotide sequences defined the vertex size. An edge was
defined between vertices when they belonged to the same clone
(same V and J gene, same CDR3 length, and 90% for IG and 95%
for TCR nucleotide identity), so clusters of B or T cells could be
seen as groups of interconnected vertices forming a clone. In
order to compare the networks across samples, we used the Gini
index, an unevenness measure ranging 0–1. When applied to
vertex size (Gini(V)), the overall clonal nature was represented,
meaning that if Gini(V) was closer to 1, vertices were unequally
showing expansion of some of them, and closer to 0, otherwise.
When applied to cluster size (Gini(C)), clonal dominance was
represented. If G(C) was closer to 1, clusters were unequal and
therefore they represented dominant clones; if closer to 0, all
clusters were of equal size. We observed that PDAC samples had
a much higher IGH, IGK, and IGL clonal expansion and more
dominant clones in comparison to the normal samples in the
discovery set (p < 2.2 × 1016), and similarly as before, this is
TABLE 1 | Patient/sample characteristics.

TCGA (PDAC) Jie Lin et al. (29) (PDAC) *p-value GTEx (Normal) **p-value Fagerberg Lin et al. (30) (Normal)

PDAC Healthy 144 10 180 4
Age Mean (SD) 64.9 (11.0) 61.4 (8.1) 0.03 50.4 (11.6) <0.001
Sex Female 67 (46%) 4 (40%) 0.7 72 (40%) 0.3

Male 77 (54%) 6 (60%) 108 (60%)
Histological grade G1 20 1 0.06

G2 80 9
G3 43 0
Missing 1 0

Pathological stage Stage I 11 5 0.006
Stage II 124 5
Stage III 3 0
Stage IV 4 0
Missing 2 0
September
*Comparison between TCGA (PDAC) and Jie Lin et al. (PDAC) using Fisher exact test for the categorical variables and Wilcoxon test for continuous variables.
**Comparison between TCGA (PDAC) and GTEx (Normal) using Fisher exact test for the categorical variables and Wilcoxon test for continuous variables.
2021 | Volume 12 | Article 730746
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validated in the other two datasets (Figure 3A). A network
representation of the IG IR of one PDAC sample and one normal
sample is represented in Figure 3C. While IGK and IGL showed
very high Gini(C) [mean (sd) = 0.5 (0.1) and 0.4 (0.1),
Frontiers in Immunology | www.frontiersin.org 6
respectively] and Gini(V) [mean (sd) = 0.5 (0.2) and 0.5 (0.2),
respectively] for PDAC samples, IGH had the lowest Gini(V)
Gini(C) [mean (sd) = 0.3 (0.2) and 0.1 (0.1), respectively],
meaning that the IGK and IGL IR might be more restricted by
A

B C

FIGURE 3 | Network analysis. Vertex Gini Index plotted against Cluster Gini Index for IGH, IGK, and IGL (A), and TRA and TRB (B). The scatter plot represents
each sample. Boxplots show the Gini(V) and Gini(C) differences. p-values (TCGA vs. GTEx) − IGH: p (Gini(V) < 2.2 × 10−16, p (Gini(C) TCGA vs. GTEx) < 2.2 × 10−16;
IGK: p (Gini(V) < 2.2 × 10−16, p (Gini(C) TCGA vs. GTEx) < 2.2 × 10−16; IGL: p (Gini(V) < 2.2 × 10−16, p (Gini(C) TCGA vs. GTEx) < 2.2 × 10−16. B-cell repertoire
networks (C) from two samples representing one PDAC from TCGA (purple) and one normal pancreas from GTEx (green). Each vertex represents a unique BCR
being the vertex size defined by the number of identical BCRs considering the nucleotide sequences. An edge exists between vertices when they belong to the same
clone as defined before, so clusters are groups of interconnected vertices forming a clone.
A

B D

C

FIGURE 2 | Diversity analysis. Boxplots showing IGH, IGK, IGL, TRA, and TRB expression (A) and Shannon entropy (B). The p-values correspond to the statistical
differences by applying a Wilcoxon test. Correlation plot for the GTEx-normal dataset (C) and TCGA-PDAC dataset (D). The numbers correspond to the Pearson
coefficient and the colored ones are statistically significant (FDR < 0.05).
September 2021 | Volume 12 | Article 730746
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specific clones, likely because they were less diverse as we
observed previously. Interestingly, we also found that the
networks for TCR were not expanded or dominated by any
clone (Figure 3B), suggesting that the T-cell repertoire was not
as active as the B-cell repertoire in PDAC.

We performed a sensitivity analysis to test whether the Gini(C)
and Gini(V) stayed invariant to the sequencing depth and we also
showed little variation at different sample sizes, even when
subsampling as low as 20% (Supplementary Figure S3).

Immune Repertoire Features Were
Significantly Associated With Other
Molecular and Immune Characteristics
of the PDAC Samples
We assessed the association between the IR features extracted
from RNA with other characteristics extracted from other
molecular data, such as somatic mutation and DNA
methylation (23). We observed a significant inverse association
between all the IG and TCR features (richness and diversity) with
tumor purity measured using ABSOLUTE (7, 24), an approach
that infers the purity based on DNA somatic mutations
[correlation ranging from −0.3 (IGK entropy) to −0.6 (TRA
expression) with very significant p-values from 0.001 to 3.3 ×
10−14], and a positive association with leukocyte fraction based
on DNA methylation as described by Carter et al. (24)
[correlation ranging from 0.2 (IGK entropy) to 0.7 (TRA
expression) with very significant p-values from 0.01 to 1.0 ×
10−23] (Figure 4A). As expected, the tumors with higher IG or
TCR infiltration were less pure and had more leukocytes based
on DNA methylation data. We assessed IR features according to
the PDAC subtype classification by Collison, Bailey, and Moffit
and only observed differences in IR features between tumor
subtypes based on Bailey’s classification: the immunogenic
Frontiers in Immunology | www.frontiersin.org 7
subtype showed the highest IG infiltration (p < 0.001 for IGs and
p < 10−8 for TCRs) (Figure 4C and Supplementary Figure S4).
Although significant, the lowest correlation with purity and DNA
methylation was with the IGK entropy (Figure 4A), meaning that
tumors that had lower diversity were purer and had less leukocytes
based on DNA methylation.

Then, we characterized the IR by a distinct distribution of
scores over five immune signatures and a set of compiled scores
for Th1, Th2, and Th17 cells proposed by Thorsson et al. (10)
(Figure 4B). As expected, we found a significant positive
association between lymphocyte infiltration and levels of IG
and TCR richness and diversity [correlation ranging from 0.4
(IGK entropy) to 0.9 (TRA expression) with highly significant p-
values from 10−6 to 10−45 respectively]. Interestingly, we
observed that macrophage regulation was also associated with
higher levels of IG and TCR richness [correlation ranging from
0.3 (IGK entropy) to 0.8 (TRA expression) with highly significant
p-values from 10−4 to 10−29 respectively]. More subtly, IG
richness was associated with an increased level of TGF beta
response [correlation 0.3 (p = 1.6 × 10−3), 0.2 (p = 1.1 × 10−2),
and 0.2 (p = 8.4 × 10−3) for IGH, IGK, and IGL, respectively]
while TCR diversity was associated with an increased level of IFN
gamma response [correlation 0.2 (p < 10−2) TRA expression and
entropy]. Moreover, TCR richness and diversity were associated
with a decreased wound healing signature activity [correlation
−0.3 (p = 2.5 × 10−3) TRA expression and 0.2 (p = 2.6 × 10−2)
TRB expression], and the direction of the association between
TCR and TGF beta response was negative.

In addition, IG and TCR richness were highly associated with
increased levels of Th1 cells [correlation 0.3 (p < 10−5) IGH, IGK,
and IGL expression 0.4 (p < 10−5) TRA and TRB expression and
entropy], which are activators of both B and T cells in the
immune system. Furthermore, a higher richness of TCR was
A B C

FIGURE 4 | Association analysis with molecular and immune characteristics. Pearson correlation (A) with the association between the immune repertoire features
and tumor purity and leukocyte DNA methylation measures. Pearson correlation (B) between the IG and TCR features with immune expression signatures and
characteristics. The * shows if the correlation is significant (FDR < 0.05). Boxplots with the association between IG and TCR with subtypes of pancreatic cancer
using a Wilcoxon test (C).
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associated with lower levels of Th17 [correlation −0.2 (p < 10−2)
TRA and TRB expression].

Immune Repertoire Features Were
Associated With Clinical, Demographic,
Tumoral Neoantigen Load and Mutation
Rate, and Prognosis in PDAC Samples
We tested all the clinical and demographic variables available on
the TCGA, and we found that IG richness and diversity were
nominally significantly higher in females (p = 0.038 for IGK
expression) and heavy smokers [p = 0.015, p = 0.062, and p =
0.041 (IGH, IGK, and IGL entropy) and p = 0.048, p = 0.031, and
p = 0.031 (IGH, IGK, and IGL expression)] (Figures 5A, B) while
TCR richness and diversity were associated with a history of
diabetes [p = 0.031 and p = 0.0063 (TRA and TRB expression)
and p = 0.026 and p = 0.018 (TRA and TRB entropy)]
(Figure 5B). In addition, higher levels of TCR infiltration were
associated (passed Bonferroni multiple testing correction) with a
lower incidence of neoantigens [correlation −0.2 (p = 8.7 × 10−3)
and −0.2 (p = 7.9 × 10−4), TRA and TRB expression] and silent
[correlation −0.4 (p = 1.9 × 10−7), −0.3 (p = 6.6 × 10−9), −0.3 (p =
3.7 × 10−5), and −0.3 (p = 2.9 × 10−5), TRA and TRB entropy and
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expression] and non-silent mutational rate [correlation −0.3 (p =
3.1 × 10−5), −0.4 (p = 2.9 × 10−6), −0.3 (p = 8.3 × 10−4), and −0.3
(p = 5.3 × 10−4), TRA and TRB entropy and expression]
(Figure 5C). We also performed a survival analysis using Cox
regression analysis considering all IG and TCR measures
adjusted for age, sex, and pathological stage. Higher richness,
diversity, and clonal expansion for IGH (HR [95% CI] = 0.63
[0.43,0.92] and 0.84 [0.75,0.95], expression and entropy,
respectively), IGK (HR [95% CI] = 0.66 [0.44,0.98] and 0.80
[0.63,1.02], expression and entropy, respectively), and IGL (HR
[95% CI] = 0.58 [0.39,0.86] and 0.85 [0.69,1.04], expression and
entropy, respectively) were associated with a better overall PDAC
survival, while TCR was not (Figure 5D).

IGK Clonotypes Distinguished PDAC
Samples From Normal Pancreatic Tissue
and Classified PDAC Patients With Better
Prognosis Using Compositional
Data Analysis
We wanted to see whether some particular clonotypes (defined
by the same V and J gene, same CDR3 length, and 90%
nucleotide identity) were discriminating the PDAC samples
A B

DC

FIGURE 5 | Association analysis with clinical, demographic, mutational rate, and prognosis. Linear regression model showing the association between the IG and
smoking (A). Boxplot showing the association between TCR and diabetes and the association between IG and sex using a Wilcoxon test (B). Pearson correlation
showing the association between the TCR and IG with neoantigen load and mutational rate (C). Forest plot showing the hazard ratios and 95% confidence intervals for
the Cox regression (adjusted by age, sex, and pathological stage) of IG/TCR measures with overall survival (D). The * shows if the correlation is significant (FDR < 0.05).
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from the normal pancreatic tissue. Clonotypes can be treated as
compositional data (random vectors with strictly positive
components whose sum is constant) since they are expressed
as number of reads grouped by clones and are constrained by the
sequencing depth. Therefore, to find whether particular
clonotypes were associated with the outcome, we took
advantage of the compositional data methodology that has
been extensively used in microbiome studies. In this context,
we applied the centered log ratio (CLR)-LASSO (25) to select the
clonotypes associated with the outcome (normal vs. PDAC). We
applied the CLR-LASSO to all IG chains, but we could not
perform this analysis with TCR clonotypes due to the lack of
overlapping clonotypes. We found 24 IGK clonotypes that
discriminate PDAC from normal pancreas. Applying
hierarchical clustering to those clonotypes, we found three
main clusters that classified our PDAC samples (Figure 6A).
Using principal component analysis (PCA), we validated the 24
clonotypes in the validation datasets as shown in Figure 6B,
where both PDAC datasets were located together and both
normal pancreas dataset clustered together away from the
PDAC samples. Interestingly PDAC samples in cluster 1,
Frontiers in Immunology | www.frontiersin.org 9
which had lower infiltration and was more similar to the
normal pancreas, were associated with higher purity and poor
survival (Figure 6C). The clusters were not associated with sex,
smoking, or history of diabetes. Finally, we performed a
deconvolution analysis using xCell (26) and investigated
whether there were differences in cell proportions among the
three clusters (Figure 6D). We found that cluster 3 was the one
with higher infiltration and better survival and had increased
levels of DC, monocytes, all type of B cells, CD8 T cells,
macrophages, HSC, and fibroblasts, as well as lower levels of
epithelial cells.

IGK Clonotypes Explained a Large
Prognostic Phenotypic Variance
We finally obtained a prognostic score using all identified IGK
clonotypes by applying a Bayesian Reproducing Kernel Hilbert
Space regression (RKHS), where the kernel was linear
(Supplementary Figure S5). We observed that the most
similar samples based on their IGK profile were enriched with
the ones previously clustered in cluster 3 using the 24 IGKs
discriminating tumor and normal samples. On the contrary,
A B

DC

FIGURE 6 | Clonotype analysis. Heatmap showing the IGK clonotypes selected by CLR-LASSO to discriminate PDAC (TCGA) vs. Normal Pancreas (GTEx). The
three main clusters are obtained by unsupervised cluster analysis using hierarchical clustering (A). Bi-plot showing the two first principal component analysis using
the 24 clonotypes selected and applied to both discovery and validation datasets (B). Kaplan–Meier curves for overall survival with the three clusters obtained and
the boxplot with the tumor purity measured using ABSOLUTE7,27 that infers the purity based on DNA somatic mutations (C). Comparison between the three clusters
with the cell content deconvoluted using xCell. Those cells are the ones that show significant differences across the three clusters using Kruskal–Wallis test (FDR <
0.05) (D).
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samples with the lowest similarities based on their whole IGK
profile were the ones belonging to previously defined cluster 1.
After applying the RKHS adjusted by age, sex, and pathological
stage, we estimated the variance explained by the IGK profiles,
which explained 24% of the prognostic phenotypic variance.
DISCUSSION

We have conducted a systematic study to characterize the tumor-
infiltrating B- and T-cell repertoire in PDAC and normal
pancreatic samples. In normal tissues, the microenvironment
represents an important barrier to avoid the development and
spread of tumors. However, the pro-tumor immunity function in
cancer cells would be altered by recruiting infiltrating immune
cells transforming into tumor microenvironment benefitting
tumor growth (32). It is the interaction and coevolution of
cancer cells, as well as the microenvironment, that promotes
the pancreatic tumor. In this analysis, we found that both
richness and diversity of B- and T-cell IRs were higher in
PDAC tumors compared to normal pancreatic tissue showing
that TCR and IG may recognize a broad array of tumor-
expressed and self-antigens.

We observed that all IGs and TCRs were positively correlated
with lymphocyte infiltration and leukocyte DNA methylation as
sources of proinflammatory mediators in the tumor
microenvironment. They were also inversely correlated with
tumor purity since tumor-infiltrating immune repertoire is
associated with a low neoplastic cellularity. We also found that
immunogenic and ADEX subtypes (8), previously associated
with lower neoplastic cellularity (23), were associated with a
higher tumor-infiltrating immune repertoire. These results were
in line with previous work showing that the immunogenic
subtype had a lower purity and higher leukocyte infiltration
based on DNA methylation than the other subtypes (7)
supporting the robustness of our IR data extracted from
RNAseq. IG and TCR were positively associated with
macrophage regulation pointing out to be regulators of tumor
immunity (33). Nevertheless, TCR and IG seemed to have
different patterns of activation and/or proliferation. TCRs were
associated with increased levels of IFN-gamma response and
lower levels of Th17 cells, in agreement with the fact that IFN-
gamma is the main stimulator of Th1 differentiation and has
been shown to inhibit Th17 differentiation. We also observed
that tumor neoantigen load is inversely associated with lower
TCR infiltration. In previous analysis of a different PDAC
dataset, high mutational load has also been associated with
fewer cytotoxic T cells (34). This inverse association, together
with the fact that we found little evidence of expansion of the
T-cell repertoires, suggests that infiltrating T cells are inactive/
exhausted and they cannot generate an effective immune
response. This could be due to an immune-suppressive tumor
microenvironment and potential immune escape (35) decreasing
the efficiency of neoantigen presentation in tumors where the
T-cell infiltration is higher. Many human cancers express
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inflammatory molecules that lead to an intrinsic pro-oxidant
environment in the cancer cells, as well as potentiating a
microenvironment that drives immune escape and resistance
to apoptosis.

We focused on the association between the IR and lifestyle
risk factors and comorbidities. Indeed, we found that individuals
with diabetes have higher TCR expression in their tumors. We
could speculate whether the possible immune escape could be
driven by some inflammatory pathways since diabetes is a pro-
inflammatory PDAC risk factor (36). On the other hand, we
observed that levels of IG were related with females and heavy
smokers. Tobacco smoking might create a high frequency of
somatic mutations, a huge burden of neoantigens, and an
amplified immunogenicity. Indeed, smoking has been
previously associated with higher infiltrated immune
microenvironment in breast and lung cancer (37, 38). We
observed borderline significance showing a higher neoantigens
load among smokers in PDAC samples, but smoking has a lot of
missing values and TCGA is not well designed for this purpose.
Although the differences were nominally significant, we observed
a higher amount of IGK expression in females. Similarly, a recent
finding reported an increased expression of immune checkpoint
genes, and those associated with B-cell recruitment and function,
in high-grade bladder cancer tumors from females compared to
those from males (39).

Interestingly, we observed approximately 40-fold differences
between tumor and normal samples regarding the number of IG
reads. The importance of B cells in the tumor microenvironment
has been investigated and discussed recently, but it is still
understudied in many tumors. Their role is diverse, being
responsible of secretion of antibodies and cytokines,
modulating T-cell and innate immune responses and
recognizing antigens (40). B cells are described to affect pro- or
anti-tumor response (18), and their role is still controversial,
having been linked to both good and bad prognosis (41). In our
analysis, we observed that IGs were clonally expanded in the
tumor compared to normal pancreatic tissue and presumably
active; thus, they could be playing an anti-tumor response since
patients with more IG expression and diversity have a better
prognosis, suggesting that an enhancement of these responses
should be considered in the design of cancer immunotherapies.

CDR3 sequences derived from IGK are the most abundant
across all tissues, accounting on average for 54% of the entire B-
cell population (42). Interestingly, the IGK constant locus
(IGKC) has been associated with an improved prognosis in
colorectal cancer (43), non-small cell lung carcinoma (44),
breast cancer (45), and ovarian cancer (46), suggesting the
important role of the humoral immune system, especially the
IGKC in cancer development. In this study, we observed a large
presence of the IGK clonotypes to the PDAC development. First
of all, IGK IRs showed larger differences in terms of clonal
expansion compared to normal pancreatic tissue, and we were
also able to classify the PDAC tumors in three main clusters
based on a selection of 24 IGK clonotypes. These clusters
displayed different prognosis outcomes. In addition, the cluster
with the better prognosis was enriched in DCs, macrophages,
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and B and T cells, and had a lower tumor purity showing an
active immune response, while the one with worse prognosis was
enriched in epithelial cells and had higher purity representing the
classical “tumor cell” subtype. Moreover, with a well-designed
prognostic score using RKHS, we estimated that 24% of the
prognostic phenotypic variance was explained by considering all
IGK clonotypes showing a large association with this cluster
system based on the similarity matrix obtained by linear
kernel. In further studies, it would be interesting to examine
whether the IGK clonotypes that infiltrate the PDAC tumor
microenvironment could be found in blood or plasma and,
consequently, they could be proposed as “non-invasive”
prognosis biomarkers.

Several limitations of this study should be recognized. First,
we extracted the IG and TCR from RNA-seq data. There are
several tools, including MiXCR, that have been designed for this
purpose and they provide accurate annotations, but future
analysis with targeted sequencing and functional studies will be
necessary to validate the extracted features and associations.
Second, RNAseq data of pancreatic normal tissue and tumors
were obtained separately from different studies, which could
affect our results. However, our findings were also validated in
completely independent datasets and demonstrate that the
findings reported in this analysis are robust. We are aware that
the validation set of normal pancreatic tissue is very small, but we
are confident in the validation results since the two PDAC
datasets behaved similarly in all the analysis performed.
Nevertheless, these findings will need to be further validated in
a larger sample size study and leveraging other complimentary
approaches such as immunohistochemistry and/or targeted IR
sequencing. In addition, another potential follow-up would be
the comparison with adjacent normal matched samples, which
would greatly enhance the biological and potential significance
of the findings. Third, the sequencing depth was different
within and across datasets. To address this issue, we used
several strategies. We obtained the expression of IG and TCR
by dividing the reads by their corresponding total sequencing
depth for each sample. For the Shannon entropy and
Gini index, we performed a subsampling sensitivity analysis to
make sure that the results were accurate across all subsamples,
and for the clonotype analysis, we used compositional data
analysis using the CLR transformation. Finally, the clinical
data provided by TCGA is limited since the purpose of the
program initially was to characterize tumors at the molecular
level; therefore, future analysis with more detailed clinical
immune-related data, including biomarkers such as TLS,
would be informative.

Despite these limitations, our results are sound, revealing that
the tumor-infiltrating IR found in our study provide further
insights necessary to understand the immunogenicity of PDAC.
Being able to determine which PDAC cases have more
infiltration of TCR and IG and which are the molecular and
clinical factors associated with them will facilitate prevention of
the disease and the development of potential therapeutical
strategies and could be used to improve better patient
stratification for clinical trials.
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Supplementary Figure 1 | Diversity analysis in the subset of non-diabetic
patients. Boxplots showing IGH, IGK, IGL, TRA and TRB expression (A) and
Shannon entropy (B). The p-values correspond to the statistical differences by
applying a Wilcoxon-test. Correlation plot for the GTEX-normal dataset (C) and
TCGA-PDAC dataset (D). The numbers correspond to the Pearson coefficient and
the colored ones are statistically significant (FDR < 0.05).
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Supplementary Figure 2 | Entropy estimation after applying a downsampling
strategy for IG entropy (A) and TCR (B). The estimates were calculated randomly
sampled different proportions (20, 40, 60, and 80) of the sequence data for each
sample, and them the entropy was calculated in its corresponding sampled dataset.
The same processed was repeated 10 times in each proportion to avoid possible
stochastic effects and calculated the mean value as the final estimate.

Supplementary Figure 3 | Gini(V) and Gini(C) after applying a downsampling
strategy. The estimates were calculated randomly sampled different proportions
(20, 40, 60, and 80) of the sequence data for each sample and the entropy was
Frontiers in Immunology | www.frontiersin.org 12
calculated in its corresponding sampled dataset. The same processed was
repeated 10 times in each proportion to avoid possible stochastic effects and
calculated the mean value as the final estimate.

Supplementary Figure 4 | Boxplots with the association between IG and TCR
with subtypes of pancreatic cancer defined by Bailey, Collison, and Moffit.

Supplementary Figure 5 | Similarity matrix between samples based on the IGK
clonotypes calculated by linear kernel. IGK clonotypes based variance explained
24% of the prognostic phenotypic variance calculated using RKHS.
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