Lawrence Berkeley National Laboratory

Recent Work

Title

THE GAM RAYS OF 100254

Permalink

https://escholarship.org/uc/item/29n28462

Authors

Asaro, Frank
Stephens, Frank
Thompson, S.G.
et al.

Publication Date

1954-10-22

UNIVERSITY OF CALIFORNIA

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call
Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSIT Y OF CALIFORNIA
Radiation Laboratory
Berkeley, California
Contract No。W-7405-eng-48

THE GAMMA RAYS OF 100^{254}
Frank Asaro, Frank S. Stephens, Jr.,
S. G. Thompson, and I. Perlman

October 22, 1954

Printed for the U. S. Atomic Energy Commission

THE GAMMA RAYS OF 100^{254}.
Frank Asaro, Frank S. Stephens, Jr.,
S. G. Thompson, and I. Perlman Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

October 22, 1954
ABSTRACT
Gamma rays of $42 \pm 4\left(2 \times 10^{-2}\right.$ percent $)$ and $94 \pm 2 \mathrm{kev}$ (4. 4×10^{-2} percent) were found in coincidence with alpha particles of 100^{254}. The L x-rays (from the internal conversion of the 42 -kev gamma rayd were measured and from the intensity the population of the first excited state was calculated to be 15 ± 2 percent. The gamma rays are interpreted as cascading transitions resulting from the de-excitation of Bohr - Mottelson rotational states having spins of 2 and 4 , even parity.

The abundances of the alpha transitions to the spin 4 states of even-even nuclides in this region (after normalizing for differences in energy separation from the ground state) exhibit a pronounced minimum for curium emitters and progressively increase for emitters of higher and lower atomic number.

THE GAMMA RAYS OF 100^{254}
Frank Asaro, Frank S. Stephens, Jr.,
S. G. Thompson, and I. Perlman
Radiation Laboratory and Department of Chemistry University of California, Berkeley, California

October 22, 1954

INTRODUCTION

The alpha-decay properties of evenoeven nuclei in the heavy element region present a remarkably uniform picture in several aspects. The energy levels of the product nuclei as defined by analysis of the alpha spectra have spacings which correlate well with the Bohr and Mottelson ${ }^{\text {l-3 }}$ formulation for collective rotational motion in highly deformed nuclei. Other regularities observed are concerned with the degree of population of the several states and these, of course, must receive explanation through alpha-decay theory. As an example, Rasmussen ${ }^{4}$ has obtained semi-quantitative explanation for the population of the second rotational states in terms of nuclear quadrupole interaction with the emerging alpha particle wave. The interaction is such that a large intrinsic quadrupole moment can suppress the population of the second rotational state $(\ell=4$ transition) as compared to the $\ell=2$ and $\ell=0$ transitions to the first rotational state and the base state of the band, respectively. In observing the trends of these properties; it is of interest to obtain data over as broad a range of mass numbers and atomic numbers as possible. The present communication is on $100^{254} 5-8$ which is the heaviest nuclear species yet available for such studies ${ }^{9}$. The amount of this isotope which has been prepared is too small for
measurement of the alpha spectrum with a high resolution spectrograph, but the gamma rays can be measured by $a-\gamma$ coincidence counting and bear such close resemblance to those of other even-even nuclei which have been examined carefully that the decay scheme can be deduced with some confidence.

The isotope 100^{254} is prepared by the intensive neutron irradiation of lower elements, ultimately uranium ${ }^{10,5}$. Of interest here is the fact that californium isotopes, arising from β°-decay of lower elements, capture neutrons successively until the 20 -day β^{-}-emitter, Cf^{253}, is reached. This decays to 99^{253} which is an alpha emitter of 20 days half life which captures a neutron to give the 36 -hour β°-emitter 99^{254} : The 3 -hour a eemitter 100^{254} soon grows into equilibrium with its parent. In order to take advantage of the longer half life of 99^{254} in working on 100^{254}, chemical isolation of the 99 fraction was effected. Such preparations therefore contained:

(1) 99^{253}	20 d half life	$6.64 \mathrm{Mev} a$
(2) 99^{254}	36 h half life	β°
(3) 100^{254}	3.2 h half life	7.22 Mev a

EXPERIMENTAL RESULTS AND DISCUSSION

For the present measurements two preparations were employed.
One of these was of low intensity and consisted of 7000 disintegrations per minute (dis/min) of 99^{253} and $300 \mathrm{dis} / \mathrm{min}$ of $36-$ hour 99^{254} in equilibrium with its daughter, 3. 2 -hour 100^{254}. The sample was mounted on an aluminum plate 0.5 mil thick. The second sample was more intense and the 100^{254} had been separated chemically
from element 99 and was essentially isotopically pure. At the start of measurements it contained $30,000 \mathrm{dis} / \mathrm{min}$.

The weak source (containing mixed radioactivities) was the first one available and was used to establish the population of alpha transitions to the first excited state (see Fig. 2). On the assumption that the decay scheme of 100^{254} is not unlike that of other evenoeven nuclei such as $\mathrm{Cf}^{246} 11, \mathrm{Cm}^{242}, 12$ and $\mathrm{Pu}^{238} 13$, this transition should lead to a $2+$ state some 40 kev above the ground state and this state would be deexcited by a highly converted gamma-transition. The measurement of the L x-ray intensity would therefore form the basis for calculating the population of the $2+$ state.

- The alpha particlesol $x-r a y$ coincidence rate was determined in a manner to be explained presently. The geometry of the arrange ment was calibrated using the welleknown $60-\mathrm{kev}$-ray of Am^{241}. The absorption and fluorescent yield ${ }^{14}$ corrections were made as second order corrections by comparison in the same apparatus with the somewhat softer L x-rays from the decay of Cm^{242}. The final corrected intensity of the transition to the 2 state was 15 ± 2 percent. This is significantly lower than is the case for some lighter elements as will be explained below.

The coincidence counting mentioned above was done with a sodium iodide crystal and 50 ochannel pulse height analyzer for the photon side and a thallium octivated potassium iodide crystal $(1 / 32$ in. * $1 / 4$ in. $\times 1 / 4$ in. $)$ with a single-channel pulse height selector for the alpha-particle side. The a-y coincidence counting per se discriminated against the gamma rays from $9.9{ }^{254}$ decay. To eliminate coineidences
with the alpha particles of 99^{253}, the pulses from the potassium iodide crystal were fed into the single-channel pulse height selector and those within a chosen energy band were used to gate the $50-\mathrm{ch}$ annel pulse analyzer. (The potassium iodide crystal could give an alpha。 particle energy resolution of 5 percent without difficulty at low geometry but was 7.6 percent in the manner used here ol

The second preparation which contained no 99^{253} was used for an examination of the gamma-ray spectrum. It had been mounted on a 0.5 mil platinum plate. Coincidence counting was again employed in order to decrease background effects, but since alpha energy discrimination was not necessary, a zinc sulfide screen on the face of a photomultiplier tube could serve as a high geometry alpha-particle detector.

The composite data from three measurements of the alpha-gamma coincidence spectrum is shown in Fig. l. In addition to the prominent L x-ray peak, two gamma rays of $42 \pm 4 \mathrm{kev}$ and $94 \pm 2 \mathrm{kev}$ were seen. The decay period of the L x-rays and the $94-\mathrm{kev}$ gamma ray could be. measured with some accuracy and both showed half lîves of about 3 hours. The peak at. 66 kev is seen when any emitter of gamma rays of sufficient energy is counted on platinum and is due principally to K xorays of platinum produced by fluorescent excitation. There may be small contributions at this energy from the escape peak of the 94-kev gamma ray and also from the backscattered radiation. The line showing the "maximum contribution from spontaneous fission" was determined in the following manner. The isotope Cf 252 which has a high ratio of spontaneous fission to alpha disintegration ${ }^{15,16}$ had been used to determine the gamma-ray spectrum in coincidence
with the fission process as it registers in the detection system employed here. The gamma-ray intensity as a function of energy in the range of interest here was flat. It was assumed that this distribution would be the same for 100^{254} and the calculated intensity is shown in Fig. 1 as a maximum value since all of the spontaneous fission fragments may not have been counted by the zinc sulfide detector. In calculating the intensities of the gamma rays from the alpha decay process, we assumed a spontaneous fission gamma-ray background of one -half the maximum value shown in Fig. 1. This assumption could introduce a 10 percent error in the intensity of the $94-\mathrm{kev}$ gamma ray and a correspondingly larger error for the 42 -kev peak.

The 42 ± 4 kev gamma ray did not give a sufficient number of events to determine its energy with accuracy, hence the large limits of error. Its intensity was 2×10^{-2} percent (of the alpha disintegrations) and under the very likely assumption that the gamma ray is from the transition giving rise to the L x-rays, the conversion coefficient can be calculated. It will be recalled that L x-ray measurements indicated 15 percent population of the first excited state; therefore the conversion coefficient is 750 . Within the accuracy of our information this is in good agreement with an E2 transition similar to that found for all other even-even nuclei in this region.

The 94-kev transition also has its analogy in the alpha decay of other heavy even-even nuclei and has been placed accordingly in the decay scheme (Fig. 2) defining a state at 136 kev . The energy spacing agrees with the assignment to a $4+$ state as part of a rotational band according to the Bohr-Mottelson theory ${ }^{2,3}$.

The intensities of alpha transitions to the second evenøspin states of even-even nuclei have been discussed in previous publications ${ }^{17,4}$ and are of interest because they are not explained by previous alpha: decay theory. It is found that the intensities of alpha transitions to these states are much lower than would be calculated from simple alpha-decay theory and follow a trend illustrated by Fig. 3. Here the ratio of expected alpha intensity to measured intensity is plotted as the "hindrance factor" on the ordinate scale.

The point for 100^{254} was determined according to the following reasoning: it is assumed that the $94-\mathrm{kev}$ transition is analogous to the 103 -kev transition of $\mathrm{Cm}^{242} 12$ and has the same conversion coefficient. From the measured gamma-ray intensity, 4.4×10^{-2} percent, the calculated intensity of the alpha group populating this state turns out to be at least 0.3 percent. From this the hindrance factor can be calculated as indicated in Fig. 3.

Rasmussen ${ }^{4}$ has obtained semi-quantitative explanation of this phenomenon by taking into account the interaction between the outgoing alpha-particle wave and the intrinsic nuclear quadrupole moment. He finds that the population of the $4+$ state should be depressed depending upon the magnitude of the quadrupole distortion. It is also of interest that the coupling should cause alpha-particle waves of each angular momentum value to go through a node which may explain the maximum effect in the region of curium alpha-emitters.

This work was done under the auspices of the U. S. Atomic Energy Commission.

REFERENCES

1. F. Asaro and I. Perlman, Phys. Rev. 87, 393 (1952); ibid., 91, 763 (1953)
2. A. Bohr and B. R. Mottelson, Phys. Rev. 89, 316 (1953); ibid., 90, 717 (1953); Kgl. Danske Videnskab Selskab, Mat. -fys. Medd. 27, No. 16 (1953)
3. A. Bohr, Rotational States of Atomic Nuclei (Ejnar Munksgaard, Copenhagen, 1954)
4. J. O. Rasmussen, Jr., University of California Radiation Laboratory Unclassified Document UCRL-2431 (December, 1953)
5. Harvey, Thompson, Ghiorso, and Choppin, Phys. Rev. 93, 1129 (1954)
6. Fields, Studier, Mech, Diamond, Friedman, Magnusson, and Huizenga, Phys. Rev. 94, 209 (1954)
7. Studier, Fields, Diamond, Mech, Friedman, Sellers, Pyle, Stevens, Magnusson, and Huizenga, Phys. Rev̀. 93, 1428 (1954)
8. Ghiorso, Thompson, Higgins, Harvey, and Choppin, Phys. Rev. 95, 293 (1954)
9. We are greatly indebted to Drs. B. G. Harvey, A. Ghiorso, and G. R. Choppin for making available to us the preparations of 100^{254} used in the present study.
10. Thompson, Ghiorso, Harvey, and Choppin, Phys. Rev. 93, 908 (1954)
11. Hummel, Chetham-Strode, Asaro, and Perlman, unpublished data.
12. Asaro, Thompson, and Perlman, Phys. Rev. 92, 694 (1953)
13. F. Asaro and I. Perlman, Phys. Rev. 94, 381 (1954)
14. B. B. Kinsey, Can. J. Research, 26A, 404 (1948)
15. Ghiorso, Thompson, Choppin, and Harvey, Phys. Rev. 94, 1081 (1.954)
16. Diamond, Magnusson, Mech, Stevens, Friedman, Studier, Fields, and Huizenga, Phys. Rev. 94, 1083 (1954)
17. F. Asaro and I. Perlman, Phys. Rev。 91, 763 (1953)

Fig. 1. Alpha particle--gamma ray coincidence spectrum of 100254 .

$$
-12-
$$

MU-8452

Fig. 2. Decay scheme of 100^{254}.

Fig. 3. Hindrance factors for alpha groups to the second even spin state of even-even nuclei.

