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Abstract

Phylogenetic Models Linking Speciation and Extinction
to Chromosome and Mating System Evolution

by
William Allen Freyman

Doctor of Philosophy in Integrative Biology
and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley
Dr. Bruce G. Baldwin, Chair

Key evolutionary transitions have shaped the tree of life by driving the processes of spe-
ciation and extinction. This dissertation aims to advance statistical and computational ap-
proaches that model the timing and nature of these transitions over evolutionary trees. These
methodological developments in phylogenetic comparative biology enable formal, model-
based, statistical examinations of the macroevolutionary consequences of trait evolution.
Chapter 1 presents computational tools for data mining the large-scale molecular sequence
datasets needed for comparative phylogenetic analyses. I describe a novel metric, the miss-
ing sequence decisiveness score (MSDS), which assesses the phylogenetic decisiveness of a
matrix given the pattern of missing sequence data. In Chapter 2, I introduce a class of
phylogenetic models of chromosome number evolution that accommodate both anagenetic
and cladogenetic change. The models reveal the mode of chromosome number evolution; is
chromosome evolution occurring primarily within lineages, primarily at lineage splitting, or
in clade-specific combinations of both? Furthermore, these models permit estimation of the
location and timing of possible chromosome speciation events over the phylogeny. Finally,
Chapter 3 demonstrates a new method of stochastic character mapping for state-dependent
speciation and extinction models and applies it to test the impact of plant mating systems
on the extinction of lineages. This approach estimates the timing of both character state
transitions and shifts in diversification rates over the phylogeny. Confirming long standing
theory, I found that self-compatible lineages have higher extinction rates and lower net diver-
sification rates compared to self-incompatible lineages. Additionally, the method shows that
the loss of self-incompatibility is followed by a short-term spike in speciation rates, which
declines after a time lag of several million years resulting in evolutionary decline.
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Introduction

The evolution of life has long been understood to be a branching process through time,
with all extant species representing twigs on the great tree of life. In the past 20 years,
evolutionary biology has made enormous progress by mathematically modeling this branch-
ing process using the framework of phylogenetic theory. A major challenge for phylogenetic
theory has been modeling the key evolutionary transitions that drive the diversification of
life; transitions in trait evolution that may be associated with the speciation process and/or
may drive shifts in the macroevolutionary rates of speciation and extinction. This disserta-
tion aims to advance statistical and computational approaches that model the timing and
nature of these transitions over evolutionary trees. These methodological developments in
phylogenetic comparative biology enable formal, model-based, statistical examinations of
the macroevolutionary consequences of trait evolution. I apply these methods to test long-
standing hypotheses about the role of chromosome changes in the speciation process and the
impact of plant mating systems on the extinction of lineages.

Comparative phylogenetic analyses require increasingly massive datasets to achieve statis-
tical power. Fortunately the amount of phylogenetically informative sequence data available
in online databases is growing at an exponential rate. However, computational techniques
are needed to extract this data from online repositories and automate construction of large-
scale molecular sequence matrices. These approaches frequently produce vast matrices with
sparse taxon coverage that underscore the need for methods to evaluate the effect of miss-
ing data. Chapter 1 presents the software Supermatrix Constructor (SUMAC), a tool to
data mine GenBank, construct phylogenetic supermatrices, and assess the phylogenetic de-
cisiveness of a matrix given the pattern of missing sequence data. I develop a novel metric,
the missing sequence decisiveness score (MSDS), which measures how much each individual
missing sequence contributes to the phylogenetic decisiveness of the matrix. MSDS can be
used to compare supermatrices and prioritize the acquisition of new sequence data. This
approach is then used to construct datasets for the following chapters.

Chapter 2 introduces a class of phylogenetic models of chromosome number evolution
that accommodate both anagenetic and cladogenetic change. Chromosome number is a key
feature of the higher-order organization of the genome, and changes in chromosome number
play a fundamental role in evolution and possibly the speciation process itself. Dysploid
gains and losses in chromosome number, as well as polyploidization events, may drive re-
productive isolation and lineage diversification. The models developed here reveal the mode
of chromosome number evolution; is chromosome evolution occurring primarily within lin-
eages, primarily at lineage splitting, or in clade-specific combinations of both? Furthermore,
these models permit estimation of the location and timing of possible chromosome specia-
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tion events over the phylogeny. I test the models’ accuracy with simulations and re-examine
chromosomal evolution in Aristolochia, Carex section Spirostachyae, Helianthus, Mimulus
sensu lato, and Primula section Aleuritia, finding evidence for clade-specific combinations of
anagenetic and cladogenetic dysploid and polyploid modes of chromosome evolution.

Chapter 3 demonstrates a new method of stochastic character mapping for state-dependent
speciation and extinction (SSE) models. This approach estimates the timing and nature of
both character state transitions and shifts in diversification rates over the phylogeny. I apply
it to study mating system evolution over a densely sampled fossil-calibrated phylogeny of
the plant family Onagraceae. Utilizing a hidden state SSE model I tested the association
of the loss of self-incompatibility with shifts in diversification rates. Confirming long stand-
ing theory, I found that self-compatible lineages have higher extinction rates and lower net
diversification rates compared to self-incompatible lineages. Further, my mapped character
histories show that the loss of self-incompatibility is followed by a short-term spike in speci-
ation rates, which declines after a time lag of several million years resulting in negative net
diversification. Lineages that have long been self-compatible such as Fuchsia and Clarkia
are in a previously unrecognized and ongoing evolutionary decline.

2



Chapter 1

Data mining for large-scale
phylogenetic analyses

Abstract

The amount of phylogenetically informative sequence data in GenBank is growing at an
exponential rate, and large phylogenetic trees are increasingly used in research. Tools are
needed to to construct phylogenetic sequence matrices from GenBank data and evaluate the
effect of missing data. Supermatrix Constructor (SUMAC) is a tool to data mine GenBank,
construct phylogenetic supermatrices, and assess the phylogenetic decisiveness of a matrix
given the pattern of missing sequence data. SUMAC calculates a novel metric, missing sequence
decisiveness scores (MSDS), which measure how much each individual missing sequence
contributes to the decisiveness of the matrix. MSDS can be used to compare supermatrices
and prioritize the acquisition of new sequence data. SUMAC constructs supermatrices either
through an exploratory clustering of all GenBank sequences within a taxonomic group, or
by using guide sequences to build homologous clusters in a more targeted manner. SUMAC

assembles supermatrices for any taxonomic group recognized in GenBank, and is optimized
to run on multicore computer systems by parallelizing multiple stages of operation. SUMAC

is implemented as a Python package that can run as a stand-alone command line program,
or its modules and objects can be incorporated within other programs. SUMAC is released
under the open source GPLv3 license and is available at https://github.com/wf8/sumac.

1.1 Introduction

In pursuit of large-scale evolutionary questions, biologists are increasingly using massive
phylogenetic datasets to reconstruct ever-growing portions of the tree of life. These large
phylogenetic trees are commonly inferred using a supermatrix approach, in which multiple
datasets are combined and analyzed simultaneously (de Queiroz and Gatesy 2007). However,
assembling and utilizing supermatrices is challenging due to difficulties such as determining
homology of molecular sequences, assembling chimeric operational taxonomic units, and
managing the amount of missing data. Despite these challenges, considerable bioinformatic
advances have made large supermatrix based phylogenetic analyses more common.
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Multiple software tools for building supermatrices are already available to evolutionary
biologists. The PhyLoTA Browser (Sanderson et al. 2008) provides a web interface to view all
GenBank sequences within taxonomic groups clustered into homologs. A different approach
is implemented in the programs PHLAWD (Smith et al. 2009) and NCBIminer (Xu et al. 2015),
which mine GenBank for sequence clusters homologous to guide sequences provided by the
user. The method implemented in SUMAC (Supermatrix Constructor) combines elements
of both approaches; the user can perform an exploratory clustering of all GenBank sequences
within a taxonomic group or provide guide sequences to build homologous sequence clusters
in a more targeted manner. Furthermore, by calculating supermatrix assessment metrics
derived from the concept of phylogenetic decisiveness (Steel and Sanderson 2010) SUMAC

provides a unique toolkit with which GenBank can be repeatedly mined using different
settings and the resulting data matrices can be compared. In this paper my objectives are
to (1) introduce the SUMAC software, (2) describe a novel metric that assesses the effect of
missing data in phylogenetic supermatrices, and (3) illustrate the use of SUMAC with a case
study.

1.2 Implementation

1.2.1 Overview

SUMAC is a Python package designed to run as a stand-alone command-line program, though
the modules can also be imported and used in other Python scripts. When run from the
command-line, SUMAC will perform a number of steps to construct a supermatrix. First, SUMAC
creates a local SQLite3 (Hipp and Kennedy 2007) database of the specified GenBank division
(e.g. PLN or MAM), automatically downloading sequences from NCBI if necessary. Using
NCBI taxonomy, SUMAC searches the local database for all sequences in the user-specified
ingroup and outgroup. Found sequences are then clustered as putative homologs in one of
two ways: (1) performing exhaustive all-by-all BLASTn (Camacho et al. 2009) comparisons
of each ingroup and outgroup sequence and using a single-linkage hierarchical clustering
algorithm, or (2) user-provided guide sequences that typify each cluster are BLASTed against
all ingroup and outgroup sequences.

1.2.2 Hierarchical clustering algorithms

By default, SUMAC clusters sequences using the SLINK (Sibson 1973) single-linkage hierar-
chical clustering algorithm. This achieves 0(n2) time complexity by representing the den-
drogram of hierarchical sequence clusters in pointer representation. Given n sequences and
the dendrogram c, pointer representation consists of two functions:

Π(i) = max{j : (i, j) ∈ c(Λ(i)) ∧ i, j ∈ [0, n− 1]}
Λ(i) = inf{h : ∃j > i ∧ (i, j) ∈ c(h) ∧ i, j ∈ [0, n− 1]}

The function Π(i) is the last sequence that sequence i clusters with, and Λ(i) is the distance h
(the BLAST e-value) between sequence Π(i) and sequence i. SUMAC’s default clustering depth
is an e-value threshold of 1.0e−10 and a sequence length percent similarity threshold of 0.5,
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though both thresholds can be modified by the user with optional command-line arguments.
If run with the command line flag --hac, SUMAC will instead cluster sequences using a naive
hierarchical agglomerative clustering (HAC) algorithm. Proposed by Sneath (Sneath 1957),
this single-linkage clustering algorithm uses an agglomerative scheme that merges the closest
sequence clusters into consecutively larger clusters. However, with O(n3) time complexity
the HAC algorithm is considerably less efficient than the SLINK algorithm.

1.2.3 Alignments

Once clustering is complete, SUMAC discards clusters that are not phylogenetically informa-
tive (< 4 taxa), and aligns each cluster of sequences using MAFFT (Katoh et al. 2002) with
the --adjustdirection flag to ensure correct sequence polarity. The individual locus align-
ments are saved to enable gene tree inference, and then the alignments are concatenated by
species binomial (based on the NCBI taxonomy) to create the final supermatrix. Finally, a
number of metrics are reported, a graph indicating taxon coverage density is generated, and
spreadsheets (in CSV format) are produced with information about each DNA region and
GenBank accession used in the supermatrix.

1.2.4 Parallelization

SUMAC utilizes Python’s multiprocessing module (Python Software Foundation 2008) to par-
allelize BLAST comparisons and MAFFT alignments on multicore computer systems. SUMAC

also depends on the BioPython (Cock et al. 2009) library for sequence manipulation.

1.3 Missing Sequence Decisiveness Scores

Large-scale sequence matrices may contain a great deal of missing data, and quantifying the
effect of that missing data can be difficult. When run with the --decisiveness command-
line flag, SUMAC will calculate the fraction of triples, a metric of the partial decisiveness
(PD) of the sequence matrix (Sanderson et al. 2010). PD measures how the arrangement of
missing data in a multi-locus sequence matrix limits the number of trees out of all possible
trees that can be inferred. The fraction of triples is the easiest PD metric to compute and
applies to the set of all rooted trees; it is the percentage of each possible set of three taxa
which all have sequence data for at least one of the same gene regions.

Here I extend the fraction of triples concept by introducing missing sequence decisiveness
scores (MSDS). MSDS measure the contribution of each individual missing sequence to the
overall PD of the matrix. MSDS values are in the range [0, 1] and are only assigned to
missing sequences. When the MSDS of a missing sequence is close to 1 the addition of new
data will increase the PD of the matrix more than where MSDS is low. In this way MSDS
prioritize which sequences to add to the matrix, and identifies taxa or loci that contribute
disproportionately to the lack of decisiveness in the matrix. SUMAC produces a graph that
portrays the distribution of MSDS across the supermatrix (Figure 1.1). PD metrics and
MSDS can be applied to any multi-locus phylogenetic matrix, thus SUMAC can calculate
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these metrics for user provided sequence alignments as well as those mined by SUMAC from
GenBank.

Given a set of n taxa X and a collection S = {Y1, ..., Yk} of subsets of X with an overall
fraction of triples ε, the MSDS Mij of taxon i and locus j is:

Mij =

[
Θi −min{Θl : l ∈ X}

max{Θm : m ∈ X} −min{Θl : l ∈ X}

+
Υj −min{Υs : s ∈ S}

max{Υt : t ∈ S} −min{Υs : s ∈ S}

]/
2,

where Θi =
ε

εi
,Υj =

ε

εj
.

εi is the fraction of triples of S with taxon i removed, and εj is the fraction of triples of S
with locus j removed. For the case εi = 0 or εj = 0:

Θi = ε

(
n

3

)
,Υj = ε

(
n

3

)
.

The calculations above are performed after values for ε, εi for all i ∈ X, and εj for all
j ∈ S are computed using a modified version of Fischer’s phylogenetic decisiveness decision
problem algorithm for rooted trees (Fischer 2012). This algorithm has an O(k · n3) time
complexity.

1.4 Case Study: Onagraceae

1.4.1 Overview

To demonstrate the utility of SUMAC for discovering phylogenetically informative sequences
within GenBank, I compared the construction of a phylogenetic supermatrix using both the
PhyLoTA Browser (Sanderson et al. 2008) and SUMAC. I did not use PHLAWD (Smith et al.
2009) or NCBIminer (Xu et al. 2015) since they only target genes already known to be of
interest. The goal of this example was to build a supermatrix of the plant families Onagraceae
(as an ingroup) and Lythraceae (as an outgroup) with as many informative loci as possible.

1.4.2 PhyLoTa data mining

I searched the PhyLoTa database for the taxon names Onagraceae and Lythraceae, retrieving
5504 and 2547 sequences respectively. PhyLoTa constructed supermatrics for each of the
two groups separately, resulting in an Onagraceae supermatrix with 325 species and 43
phylogenetically informative sequence clusters. The Lythraceae supermatrix had 172 species
and 77 phylogenetically informative clusters. Upon inspection many of the sequence clusters
should have been combined; for example, 8 of the 43 Onagraceae clusters were fragments of
the 18S ribosomal gene. To use these data for a phylogenetic analysis the 120 Onagraceae
and Lythraceae clusters would need to be reviewed and manually combined.
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1.4.3 SUMAC data mining

I ran SUMAC with the command python -m sumac -d pln -i Onagraceae -o Lythraceae.
SUMAC retrieved 5764 Onagraceae sequences and 3133 Lythraceae sequences. SUMAC found
846 more sequences than PhyLoTa because SUMAC always uses the latest available release of
GenBank (release 205 in this case), whereas PhyLoTa was developed using GenBank release
194. SUMAC constructed an initial supermatrix of 599 Onagraceae and Lythraceae species
consisting of 108 phylogenetically informative sequence clusters.

Like the results from PhyLoTa, some of the 108 sequence clusters should have been com-
bined (again 8 of the clusters were fragments of 18S ribosomal DNA). With SUMAC, however,
the user has options to produce a more satisfactory data matrix. One option is to repeat the
data mining process using less stringent thresholds for clustering. These can be configured
by the user with the --evalue and --length flags. Another option, and the one demon-
strated here, is to select sequences from the recovered clusters to act as guide sequences and
build homologous clusters in a targeted manner similar to the approach used in PHLAWD. This
option combines the strengths of both the PhyLoTa and PHLAWD methods.

Table 1.1: Missing sequence decisiveness scores (MSDS) for some of the 2857 missing sequences
in the data matrix shown in Figure 1.1. The scores are shown in descending order, prioritizing which
holes in the data matrix should be filled to increase the phylogenetic decisiveness of the sequence matrix.
SUMAC outputs the entire list as a CSV spreadsheet.

MSDS Rank MSDS OTU Gene Region Gene Name

1 0.862 Ludwigia peploides 1 ITS
2 0.857 Ludwigia hyssopifolia 1 ITS
3 0.775 Epilobium brachycarpum 1 ITS
4 0.772 Clarkia lewisii 1 ITS
5 0.772 Epilobium macropus 1 ITS
...
...

2855 0.001 Sonneratia ovata 2 matK
2856 0.001 Sonneratia ovata 9 pgiC
2857 <0.001 Sonneratia ovata 3 ndhF

Out of the 108 sequence clusters, I selected guide sequences from the 10 clusters with the
highest taxon coverage. SUMAC was then run a second time using the --guide flag to produce
a final supermatrix of 10 gene regions and 384 species (Figure 1.1). The final taxon coverage
density was 0.26 and the partial decisiveness was 0.31. If necessary, this last step could
be repeated using different gene regions to try to increase the decisiveness of the sequence
matrix. Furthermore, SUMAC prioritized the acquisition of new sequence data by calculating
MSDS scores for each missing sequence (Table 1.1).
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Figure 1.1: Missing sequence decisiveness scores (MSDS) for a sequence matrix with 10 genes,
384 OTUs, taxon coverage density of 0.26, and partial decisiveness of 0.31. Pale yellow represents
sequence data present, shades of orange represent missing sequences with low to intermediate MSDS ( 0-
0.75), and red to maroon represents missing sequences with high MSDS ( 0.75-1.0). MSDS measures how
much the individual missing sequence contributes to the decisiveness of the matrix given the overall pattern
of missing data. MSDS prioritizes which sequences to add to the matrix; where MSDS is high the addition
of new data will increase the decisiveness of the matrix more than where MSDS is low.
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Figure 1.2: Fossil-calibrated Onagraceae phylogeny estimated using data mined by SUMAC.
Bayesian chronogram of Onagraceae estimated to demonstrate the utility of SUMAC. Approximate positions
of fossil calibration points are shown as black circles. All genera described in Wagner et al. (2007) are colored.
Final results shown in Figure 3.10; for the methods used to infer the phylogeny see Section 3.5.2. Detailed
divergence time estimates with 95% HPD intervals are shown in Table 3.3.
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Figure 1.3: Posterior probabilities of Onagraceae phylogeny estimated using data mined by
SUMAC. Bayesian chronogram of Onagraceae estimated to demonstrate the utility of SUMAC. Estimated pos-
terior probabilities close to 1.0 are shown in green. Final results shown in Figure 3.10; for the methods used
to infer the phylogeny see Section 3.5.2. Detailed divergence time estimates with 95% HPD intervals are
shown in Table 3.3.
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1.5 Discussion

The advantage of the supermatrix approach to phylogenetic estimation is that it combines
data from diverse sources into one large analysis. Using guide sequences makes supermatrix
construction much faster, however it requires a priori knowledge of which DNA regions will
be used in the supermatrix. Performing all-by-all BLAST comparisons is computationally
more expensive, but it effectively data mines GenBank in an exploratory fashion, so that
sequence data not necessarily used in previous systematic studies can also be incorporated
into the supermatrix. SUMAC enables both options to be pursued, and provides metrics
to compare the resulting supermatrices. Additionally, GenBank can be repeatedly mined
using different clustering threshold values to optimize the resulting sequence matrix for the
taxonomic group being analyzed and the sequence data available.

Missing sequence decisiveness scores (MSDS) quantify the distribution of phylogenetic
partial decisiveness over a given multi-locus sequence matrix (Figure 1.1). Multiple proper-
ties of MSDS are worth exploring in an expanded simulation study. For example, sequences
could be selectively removed from a complete dataset to examine how MSDS are related to
phylogenetic uncertainty during tree inference. MSDS could be mapped onto the branches of
phylogenies to determine the impact missing data has on the posterior probabilities and/or
bootstrap values of clades.

With methodological refinements such as those presented here, supermatrix methods
will continue to be widely used for large-scale phylogenetic studies. However, alternative
approaches such as supertrees (Von Haeseler 2012) and coalescent-based gene tree/species
tree methods (Maddison 1997) are increasingly used. SUMAC outputs both a concatenated
supermatrix and individual gene alignments, enabling the application of multiple phyloge-
netic inference methods. Many of the methodological advances developed for supermatrix
approaches apply equally well to gene tree/species tree approaches, thus utilities like SUMAC

will continue to be indispensable as researchers aggregate increasingly large phylogenetic
datasets and assess the effect of missing data.
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Chapter 2

Cladogenetic and anagenetic models
of chromosome number evolution

Abstract

Chromosome number is a key feature of the higher-order organization of the genome, and
changes in chromosome number play a fundamental role in evolution. Dysploid gains and
losses in chromosome number, as well as polyploidization events, may drive reproductive
isolation and lineage diversification. The recent development of probabilistic models of chro-
mosome number evolution in the groundbreaking work by Mayrose et al. (2010, ChromEvol)
have enabled the inference of ancestral chromosome numbers over molecular phylogenies and
generated new interest in studying the role of chromosome changes in evolution. However,
the ChromEvol approach assumes all changes occur anagenetically (along branches), and
does not model events that are specifically cladogenetic. Cladogenetic changes may be ex-
pected if chromosome changes result in reproductive isolation. Here we present a new class
of models of chromosome number evolution (called ChromoSSE) that incorporate both an-
agenetic and cladogenetic change. The ChromoSSE models allow us to determine the mode
of chromosome number evolution; is chromosome evolution occurring primarily within lin-
eages, primarily at lineage splitting, or in clade-specific combinations of both? Furthermore,
we can estimate the location and timing of possible chromosome speciation events over the
phylogeny. We implemented ChromoSSE in a Bayesian statistical framework, specifically in
the software RevBayes, to accommodate uncertainty in parameter estimates while leveraging
the full power of likelihood based methods. We tested ChromoSSE’s accuracy with simula-
tions and re-examined chromosomal evolution in Aristolochia, Carex section Spirostachyae,
Helianthus, Mimulus sensu lato (s.l.), and Primula section Aleuritia, finding evidence for
clade-specific combinations of anagenetic and cladogenetic dysploid and polyploid modes of
chromosome evolution.

2.1 Introduction

A central organizing component of the higher-order architecture of the genome is chromosome
number, and changes in chromosome number have long been understood to play a funda-
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mental role in evolution. In the seminal work Genetics and the Origin of Species (1937),
Dobzhansky identified “the raw materials for evolution”, the sources of natural variation,
as two evolutionary processes: mutations and chromosome changes. “Chromosomal changes
are one of the mainsprings of evolution,” Dobzhansky asserted, and changes in chromosome
number such as the gain or loss of a single chromosome (dysploidy), or the doubling of the
entire genome (polyploidy), can have phenotypic consequences, affect the rates of recom-
bination, and increase reproductive isolation among lineages and thus drive diversification
(Stebbins 1971). Recently, evolutionary biologists have studied the macroevolutionary con-
sequences of chromosome changes within a molecular phylogenetic framework, mostly due to
the groundbreaking work of Mayrose et al. (2010, ChromEvol) which introduced likelihood-
based models of chromosome number evolution. The ChromEvol models have permitted
phylogenetic studies of ancient whole genome duplication events, rapid “catastrophic” chro-
mosome speciation, major reevaluations of the evolution of angiosperms, and new insights
into the fate of polyploid lineages (e.g. Pires and Hertweck 2008; Mayrose et al. 2011; Tank
et al. 2015).

One aspect of chromosome evolution that has not been thoroughly studied in a probabilis-
tic framework is cladogenetic change in chromosome number. Cladogenetic changes occur
solely at speciation events, as opposed to anagenetic changes that occur within lineages and
are not associated with speciation events. Studying cladogenetic chromosome changes in a
phylogenetic framework has been difficult since the approach used by ChromEvol models
only anagenetic changes and ignores the changes that occur specifically at speciation events
and may be expected if chromosome changes result in reproductive isolation. Reproductive
incompatibilities caused by chromosome changes may play an important role in the spe-
ciation process, and led White (1978) to propose that chromosome changes perform “the
primary role in the majority of speciation events.” Indeed, chromosome fusions and fissions
may have played a role in the formation of reproductive isolation and speciation in the great
apes (Ayala and Coluzzi 2005), and the importance of polyploidization in plant speciation
has long been appreciated (Coyne et al. 2004; Rieseberg and Willis 2007). Recent work by
Zhan et al. (2016) revealed phylogenetic evidence that polyploidization is frequently cladoge-
netic in land plants. However, their approach did not examine the role dysploid changes may
play in speciation, and it required a two step analysis in which one first used ChromEvol to
infer ploidy levels, and then a second modeling step to infer the proportion of ploidy shifts
that were cladogenetic. Since ChromEvol only models anagenetic polyploidization events
these two modeling steps are inconsistent with one another.

Here we present models of chromosome number evolution that simultaneously account
for both cladogenetic and anagenetic polyploid as well as dysploid changes in chromosome
number over a phylogeny. These models reconstruct an explicit history of cladogenetic and
anagenetic changes in a clade, enabling estimation of ancestral chromosome numbers. Our
approach also identifies different modes of chromosome number evolution among clades; we
can detect primarily anagenetic, primarily cladogenetic, or clade-specific combinations of
both modes of chromosome changes. Furthermore, these models allow us to infer the timing
and location of possible polyploid and dysploid speciation events over the phylogeny. Since
these models only account for changes in chromosome number, they ignore speciation that
may accompany other types of chromosome rearrangements such as inversions. Our models
cannot determine that changes in chromosome number “caused” the speciation event, but
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they do reveal that speciation and chromosome change are temporally correlated. Thus,
these models can give us evidence that the chromosome number change coincided with
cladogenesis and so may have played a significant role in the speciation process.

A major challenge for all phylogenetic models of cladogenetic character change is account-
ing for unobserved speciation events due to lineages going extinct and not leaving any extant
descendants (Bokma 2002), or due to incomplete sampling of lineages in the present. Teas-
ing apart the phylogenetic signal for cladogenetic and anagenetic processes given unobserved
speciation events is a major difficulty. The Cladogenetic State change Speciation and Ex-
tinction (ClaSSE) model (Goldberg and Igić 2012) accounts for unobserved speciation events
by jointly modeling both character evolution and the phylogenetic birth-death process. Our
class of chromosome evolution models uses the ClaSSE approach, and could be considered
a special case of ClaSSE. We implemented our models (called ChromoSSE) in a Bayesian
framework and use Markov chain Monte Carlo algorithms to estimate posterior probabil-
ities of the model’s parameters. However, compared to most character evolution models,
SSE models require additional complexity since they must model extinction and speciation
processes. Using simulations, we examined the impact of this additional complexity on our
chromosome evolution models’ performance. Note that ChromoSSE uses the SSE approach
to integrate over all unobserved speciation events and in this work we do not investigate how
chromosome number affects diversification rates. Nonetheless, our implementation enables
chromosome number dependent speciation and extinction rates to be estimated and this will
be explored in future work.

Out of the class of ChromoSSE models described here, it is possible that no single model
will adequately describe the chromosome evolution of a given clade. The most parameter-
rich ChromoSSE model has at least 12 independent rate parameters, however the models
that best describe a given dataset (a phylogeny and a set of observed chromosome counts)
may be special cases of the full model. For example, there may be a clade for which the best
fitting models have no anagenetic rate of polyploidization (the rate = 0.0) and for which all
polyploidization events are cladogenetic. To explore the entire space of all possible models
of chromosome number evolution we constructed a reversible jump Markov chain Monte
Carlo (Green 1995) that samples across models of different dimensionality, drawing samples
from chromosome evolution models in proportion to their posterior probability and enabling
Bayes factors for each model to be calculated. This approach incorporates model uncertainty
by permitting model-averaged inferences that do not condition on a single model; we draw
estimates of ancestral chromosome numbers and rates of chromosome evolution from all
possible models weighted by their posterior probability. For general reviews of this approach
to model averaging see Madigan and Raftery (1994), Hoeting et al. (1999), Kass and Raftery
(1995), and for its use in phylogenetics see Posada and Buckley (2004). Averaging over all
models has been shown to provide a better average predictive ability than conditioning on
a single model (Madigan and Raftery 1994). Conditioning on a single model ignores model
uncertainty, which can lead to an underestimation in the uncertainty of inferences made from
that model (Hoeting et al. 1999). In our case, this can lead to overconfidence in estimates
of ancestral chromosome numbers and chromosome evolution parameter value estimates.

Our motivation in developing these phylogenetic models of chromosome evolution is to
determine the mode of chromosome number evolution; is chromosome evolution occurring
primarily within lineages, primarily at lineage splitting, or in clade-specific combinations of
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both? By identifying how much of the pattern of chromosome number evolution is explained
by anagenetic versus cladogenetic change, and by identifying the timing and location of
possible chromosome speciation events over the phylogeny, the ChromoSSE models can help
uncover how much of a role chromosome changes play in speciation. In this paper we
first describe the ChromoSSE models of chromosome evolution and our Bayesian method of
model selection, then we assess the models’ efficacy by testing them with simulated datasets,
particularly focusing on the impact of unobserved speciation events on inferences, and finally
we apply the models to five empirical datasets that have been previously examined using
other models of chromosome number evolution.

2.2 Methods

2.2.1 Models of Chromosome Evolution

In this section we introduce our class of probabilistic models of chromosome number evo-
lution. We are interested in modeling the changes in chromosome number both within
lineages (anagenetic evolution) and at speciation events (cladogenetic evolution). The an-
agenetic component of the model is a continuous-time Markov process similar to Mayrose
et al. (2010) as described below. The cladogenetic changes are accounted for by a birth-death
process similar to Maddison et al. (2007) and Goldberg and Igić (2012), except each type
of cladogenetic chromosome event is given its own rate. Thus, the birth-death process has
multiple speciation rates (one for each type of cladogenetic change) and a single constant
extinction rate. Our models of chromosome number evolution can therefore be understood as
a specific case of the Cladogenetic State change Speciation and Extinction (ClaSSE) model
(Goldberg and Igić 2012), which integrates over all possible unobserved speciation events (due
to lineages that were unsampled or have gone extinct) directly in the likelihood calculation
of the observed chromosome counts and tree shape. To test the importance of accounting for
unobserved speciation events we also briefly describe a version of the model that handles dif-
ferent cladogenetic event types as transition probabilities at each observed speciation event
and ignores unobserved speciation events, similar to the dispersal-extinction-cladogenesis
(DEC) models of geographic range evolution (Ree and Smith 2008).

Our implementation assumes chromosome numbers can take the value of any positive
integer, however to limit the transition matrices to a reasonable size for likelihood calculations
we follow Mayrose et al. (2010) in setting the maximum chromosome number Cm to n+ 10,
where n is the highest chromosome number in the observed data. Note that we allow this
parameter to be set in our implementation. Hence, it is easily possible to test the impact of
setting a specific value for the maximum chromosome count.

Our models contain a set of 6 free parameters for anagenetic chromosome number evolu-
tion, a set of 5 free parameters for cladogenetic chromosome number evolution, an extinction
rate parameter, and a vector of Cm root frequencies of chromosome numbers, for a total of
12+Cm free parameters. All of the 11 chromosome rate parameters can be removed (fixed to
0.0) except the cladogenetic no-change rate parameter. Thus, the class of chromosome num-
ber evolution models described here has a total of 210 = 1024 nested models of chromosome
evolution.
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Figure 2.1: Modeled cladogenetic chromosome evolution events. At each speciation event 9 different
cladogenetic events are possible. The rate of each type of speciation event is λijk where i is the chromosome
number before cladogenesis and j and k are the states of each daughter lineage immediately after cladogenesis.
The dashed lines represent possible chromosomal changes within lineages that are modeled by the anagenetic
rate matrix Q.
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Chromosome evolution within lineages

Chromosome number evolution within lineages (anagenetic change) is modeled as a continuous-
time Markov process similar to Mayrose et al. (2010). The continuous-time Markov process
is described by an instantaneous rate matrix Q where the value of each element represents
the instantaneous rate of change within a lineage from a genome of i chromosomes to a
genome of j chromosomes. For all elements of Q in which either i = 0 or j = 0 we define
Qij = 0. For the off-diagonal elements i 6= j with positive values of i and j, Q is determined
by:

Qij =



γae
γm(i−1) j = i+ 1,

δae
δm(i−1) j = i− 1,

ρa j = 2i,

ηa j = 1.5i,

0 otherwise,

(2.1)

where γa, δa, ρa, and ηa are the rates of chromosome gains, losses, polyploidizations, and
demi-polyploidizations. γm and δm are rate modifiers of chromosome gain and loss, respec-
tively, that allow the rates of chromosome gain and loss to depend on the current number of
chromosomes. This enables modeling scenarios in which the probability of fusion or fission
events is positively or negatively correlated with the number of chromosomes. If the rate
modifier γm = 0, then γae

0(i−1) = γa. If the rate modifier γm > 0, then γae
γm(i−1) ≥ γa, and

if γm < 0 then γae
γm(i−1) ≤ γa. These two rate modifiers replace the parameters λl and δl

in Mayrose et al. (2010), which in their parameterization may result in negative transition
rates. Here we chose to exponentiate γm and δm to ensure positive transition rates, and
avoid ad hoc restrictions on negative transition rates that may induce unintended priors.
Note that this assumes the rates of chromosome change can vary exponentially as a function
of the current chromosome number, whereas Mayrose et al. (2010) assumes a linear function.

For odd values of i, we set Qij = η/2 for the two integer values of j resulting when
j = 1.5i was rounded up and down. We define the diagonal elements i = j of Q as:

Qii = −
Cm∑
i 6=j

Qij. (2.2)

The probability of anagenetically transitioning from chromosome number i to j along a
branch of length t is then calculated by exponentiation of the instantaneous rate matrix:

Pij(t) = e−Qt. (2.3)

Chromosome evolution at cladogenesis events

At each lineage divergence event over the phylogeny, nine different cladogenetic changes in
chromosome number are possible (Figure 2.1). Each type of cladogenetic event occurs with
the rate φc, γc, δc, ρc, ηc, representing the cladogenesis rates of no change, chromosome gain,
chromosome loss, polyploidization, and demi-polyploidization, respectively. The speciation
rates λ for the birth-death process generating the tree are given in the form of a 3-dimensional
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matrix between the ancestral state i and the states of the two daughter lineages j and k.
For all positive values of i, j, and k, we define:

λijk =



φc j = k = i

γc/2 j = i+ 1 and k = i,

γc/2 j = i and k = i+ 1,

δc/2 j = i− 1 and k = i,

δc/2 j = i and k = i− 1,

ρc/2 j = 2i and k = i,

ρc/2 j = i and k = 2i,

ηc/2 j = 1.5i and k = i,

ηc/2 j = i and k = 1.5i,

0 otherwise,

(2.4)

so that the total speciation rate of the birth-death process λt is given by:

λt = φc + γc + δc + ρc + ηc. (2.5)

Similar to the anagenetic instantaneous rate matrix described above, for odd values of i, we
set λijk = ηc/4 for the integer values of j and k resulting when 1.5i is rounded up and down.
The extinction rate µ is constant over the tree and for all chromosome numbers.

Note that this model allows only a single chromosome number change event on a maxi-
mum of one of the daughter lineages at each cladogenesis event. Changes in both daughter
lineages at cladogenesis are not allowed; at least one of the daughter lineages must inherit
the chromosome number of the ancestor. The model also assumes that cladogenesis events
are always strictly bifurcating and that there are no hard polytomies.

Likelihood Calculation Accounting for Unobserved Speciation

The likelihood of cladogenetic and anagenetic chromosome number evolution over a phy-
logeny is calculated using a set of ordinary differential equations similar to the Binary State
Speciation and Extinction (BiSSE) model (Maddison et al. 2007). The BiSSE model was
extended to incorporate cladogenetic changes by Goldberg and Igić (2012). Following Gold-
berg and Igić (2012), we define DNi(t) as the probability that a lineage with chromosome
number i at time t evolves into the observed clade N . We let Ei(t) be the probability that
a lineage with chromosome number i at time t goes extinct before the present, or is not
sampled at the present. However, unlike the full ClaSSE model the extinction rate µ does
not depend on the chromosome number i of the lineage. The differential equations for these
two probabilities is given by:

dDNi(t)

dt
= −

(
Cm∑
j=1

Cm∑
k=1

λijk +
Cm∑
j=1

Qij + µ

)
DNi(t)

+
Cm∑
j=1

QijDNj(t) +
Cm∑
j=1

Cm∑
k=1

λijk

(
DNk(t)Ej(t) +DNj(t)Ek(t)

)
(2.6)
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Figure 2.2: Chromosome evolution through time. An illustration of chromosome evolution events that
could occur during each time interval ∆t along the branches of a phylogeny. Equations 2.6 and 2.7 (subfigures
a and b, respectively) sum over each possible chromosome evolution event and are numerically integrated
backwards through time over the phylogeny to calculate the likelihood. a) DNi(t) is the probability that the
lineage at time t evolves into the observed clade N . To calculate the change in this probability over ∆t we
sum over three possibilities: no event occurred, an anagenetic change in chromosome number occurred, or a
speciation event with a possible cladogenetic chromosome change occurred followed by an extinction event
on one of the two daughter lineages. b) Ei(t) is the probability that the lineage goes extinct or is not sampled
at the present. To calculate the change in this probability over ∆t we sum over four possibilities: no event
occurred followed eventually by extinction, extinction occurred, an anagenetic change occurred followed by
extinction, or a speciation event with a possible cladogenetic change occurred followed by extinction of both
daughter lineages.

dEi(t)

dt
= −

(
Cm∑
j=1

Cm∑
k=1

λijk +
Cm∑
j=1

Qij + µ

)
Ei(t)

+ µ+
Cm∑
j=1

QijEj(t) +
Cm∑
j=1

Cm∑
k=1

λijkEj(t)Ek(t), (2.7)

where λijk for each possible cladogenetic event is given by equation 2.4, and the rates of
anagenetic changes Qij are given by equation 2.1. See Figure 2.2 for an explanation of
equations 2.6 and 2.7.

The differential equations above have no known analytical solution. Therefore, we nu-
merically integrate the equations for every arbitrarily small time interval moving along each
branch from the tip of the tree towards the root. When a node l is reached, the probability
of it being in state i is calculated by combining the probabilities of its descendant nodes m
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and n as such:

Dli(t) =
Cm∑
j=1

Cm∑
k=1

λijkDmj(t)Dnk(t), (2.8)

where again λijk for each possible cladogenetic event is given by equation 2.4. Letting D
denote a set of observed chromosome counts, Ψ an observed phylogeny, and θq a particular
set of chromosome evolution model parameters, then the likelihood for the model parameters
θq is given by:

P (D,Ψ|θq) =
Cm∑
i=1

πiD0i(t), (2.9)

where πi is the root frequency of chromosome number i and D0i(t) is the likelihood of the
root node being in state i conditional on having given rise to the observed tree Ψ and the
observed chromosome counts D.

Initial Conditions

The initial conditions for each observed lineage at time t = 0 for the extinction probabilities
described by equation 2.7 are Ei(0) = 1 − ρs for all i where ρs is the sampling probability
of including that lineage. For lineages with an observed chromosome number of i, the initial
condition is DNi(0) = ρs. The initial condition for all other chromosome numbers j is
DNj(0) = 0.

Likelihood Calculation Ignoring Unobserved Speciation

To test the effect of unobserved speciation events on inferences of chromosome number evo-
lution we also implemented a version of the model described above that only accounts for
observed speciation events. At each lineage divergence event over the phylogeny, the prob-
abilities of cladogenetic chromosome number evolution P ({j, k}|i) are given by the simplex
{φp, γp, δp, ρp, ηp}, where φp, γp, δp, ρp, and ηp represent the probabilities of no change, chro-
mosome gain, chromosome loss, polyploidization, and demi-polyploidization, respectively.
This approach does not require estimating speciation or extinction rates.

Here, we calculate the likelihood of chromosome number evolution over a phylogeny
using Felsenstein’s pruning algorithm (Felsenstein 1981) modified to include cladogenetic
probabilities similar to models of biogeographic range evolution (Landis et al. 2013; Landis
2017). Let D again denote a set of observed chromosome counts and Ψ represent an observed
phylogeny where node l has descendant nodes m and n. The likelihood of chromosome
number evolution at node l conditional on node l being in state i and θq being a particular
set of chromosome evolution model parameter values is given by:

Pl(D,Ψ|i, θq) =

Cm∑
j=1

Cm∑
k=1

P ({j, k}|i)︸ ︷︷ ︸
cladogenetic

[ Cm∑
je=1

Pjje(tm)Pm(D,Ψ|je, θq)
][ Cm∑

ke=1

Pkke(tn)Pn(D,Ψ|ke, θq)
]

︸ ︷︷ ︸
anagenetic

, (2.10)
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where the length of the branches between l and m is tm and between l and n is tn. The
state at the end of these branches near nodes m and n is je and ke, respectively. The state
at the beginning of these branches, where they meet at node l, is j and k respectively. The
cladogenetic term sums over the probabilities P ({j, k}|i) of all possible cladogenetic changes
from state i to the states j and k at the beginning of each daughter lineage. The anagenetic
term of the equation is the product of the probability of changes along the branches from
state j to state je and state k to state ke (given by equation 2.3) and the likelihood of the
tree above node l recursively computed from the tips.

The likelihood for the model parameters θq is given by:

P (D,Ψ|θq) =
Cm∑
i=1

πiP0(D,Ψ|i, θq), (2.11)

where P0(D,Ψ|i, θq) is the conditional likelihood of the root node being in state i and πi is
the root frequency of chromosome number i.

Estimating Parameter Values and Ancestral States

For any given tree with a set of observed chromosome counts, there exists a posterior dis-
tribution of model parameter values and a set of probabilities for the ancestral chromosome
numbers at each internal node of the tree. Let P (si, θq|D,Ψ) denote the joint posterior
probability of θq and a vector of specific ancestral chromosome numbers si given a set of
observed chromosome counts D and an observed tree Ψ. The posterior is given by Bayes’
rule:

P (si, θq, |D,Ψ) =
P (D,Ψ|si, θq)P (si|θq)P (θq)∫

θ

Cm∑
s=1

P (D,Ψ|s, θ)P (s|θ)P (θ)dθ

. (2.12)

Here, P (si|θq) is the prior probability of the ancestral states s conditioned on the model
parameters θq, and P (θq) is the joint prior probability of the model parameters.

In the denominator of equation 2.12 we integrate over all possible values of θ and sum over
all possible ancestral chromosome numbers s. Since θ is a vector of 12 +Cm parameters and
s is a vector of n−1 ancestral states where n is the number of observed tips in the phylogeny,
the denominator of equation 2.12 requires a high dimensional integral and an extremely large
summation that is impossible to calculate analytically. Instead we use Markov chain Monte
Carlo methods (Metropolis et al. 1953; Hastings 1970) to estimate the posterior probability
distribution in a computationally efficient manner.

Ancestral states are inferred using a two-pass tree traversal procedure as described in
Pupko et al. (2000), and previously implemented in a Bayesian framework by Huelsenbeck
and Bollback (2001) and Pagel et al. (2004). First, partial likelihoods are calculated during
the backwards-time post-order tree traversal in equations 2.6 and 2.7. Joint ancestral states
are then sampled during a pre-order tree traversal in which the root state is first drawn
from the marginal likelihoods at the root, and then states are drawn for each descendant
node conditioned on the state at the parent node until the tips are reached. Again, we
must numerically integrate over a system of differential equations during this root-to-tip
tree traversal. This integration, however, is performed in forward-time, thus the set of
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ordinary differential equations must be slightly altered since our models of chromosome
number evolution are not time reversible. Accordingly, we calculate:

dDNi(t)

dt
= −

(
Cm∑
j=1

Cm∑
k=1

λijk +
Cm∑
j=1

Qij + µ

)
DNi(t)

+
Cm∑
j=1

QjiDNj(t) +DNj(t)Ek(t)

(
Cm∑
j=1

Cm∑
k=1

λjik +
Cm∑
j=1

Cm∑
k=1

λjki

)
(2.13)

dEi(t)

dt
=

(
Cm∑
j=1

Cm∑
k=1

λijk +
Cm∑
j=1

Qij + µ

)
Ei(t)

− µ−
Cm∑
j=1

QijEj(t)−
Cm∑
j=1

Cm∑
k=1

λijkEj(t)Ek(t), (2.14)

during the forward-time root-to-tip pass to draw ancestral states from their joint distribution
conditioned on the model parameters and observed chromosome counts. See Freyman and
Höhna (2017b) for a derivation of these equations. For more details and validation of our
method to estimate ancestral states, please see Section 2.5.1.

Priors

Model parameter priors are listed in Table 2.1. Our implementation allows all priors to
be easily modified so that their impact on results can be effectively assessed. Priors for
anagenetic rate parameters are given an exponential distribution with a mean of 2/Ψl where
Ψl is the length of the tree Ψ. This corresponds to a mean rate of two events over the observed
tree. The priors for the rate modifiers γm and δm are assigned a uniform distribution with
the range −3/CM to 3/Cm. This sets minimum and maximum bounds on the amount the
rate modifiers can affect the rates of gain and loss at the maximum chromosome number to
γae
−3 = γa0.050 and γae

3 = γa20.1, and δae
−3 = δa0.050 and δae

3 = δa20.1, respectively.
The speciation rates are drawn from an exponential prior with a mean equal to an

estimate of the net diversification rate d̂. Under a constant rate birth-death process not
conditioning on survival of the process, the expected number of lineages at time t is given
by:

E(Nt) = N0e
td, (2.15)

where N0 is the number of lineages at time 0 and d is the net diversification rate λ−µ (Nee
et al. 1994b; Höhna 2015). Therefore, we estimate d̂ as:

d̂ = (lnNt − lnN0)/t, (2.16)

where Nt is the number of lineages in the observed tree that survived to the present, t is the
age of the root, and N0 = 2.

The extinction rate µ is given by:

µ = r × λt = r × (φc + γc + δc + ρc + ηc), (2.17)
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where λt is the total speciation rate and r is the relative extinction rate. The relative
extinction rate r is assigned a uniform (0,1) prior distribution, thus forcing the extinction
rate to be smaller than the total speciation rate. The root frequencies of chromosome
numbers π are drawn from a flat Dirichlet distribution.

Table 2.1: Model parameter names and prior distributions. See the main text for complete descrip-
tion of model parameters and prior distributions. Ψl represents the length of tree Ψ and Cm is the maximum
chromosome number allowed.

Parameter X f(X)

Anagenetic Chromosome gain rate γa Exponential(λ = Ψl/2)
Chromosome loss rate δa Exponential(λ = Ψl/2)
Polyploidization rate ρa Exponential(λ = Ψl/2)
Demi-polyploidization rate ηa Exponential(λ = Ψl/2)
Linear component of chromosome gain rate γm Uniform(−3/Cm, 3/Cm)
Linear component of chromosome loss rate δm Uniform(−3/Cm, 3/Cm)

Cladogenetic No change φc Exponential(λ = 1/d̂)

Chromosome gain γc Exponential(λ = 1/d̂)

Chromosome loss δc Exponential(λ = 1/d̂)

Polyploidization ρc Exponential(λ = 1/d̂)

Demi-polyploidization ηc Exponential(λ = 1/d̂)
Other Root frequencies π Dirichlet(1,. . . ,1)

Relative-extinction r Uniform(0, 1)

2.2.2 Model Uncertainty and Selection

Model Averaging

To account for model uncertainty we calculate the posterior density of chromosome evolution
model parameters θ without conditioning on any single model of chromosome evolution. For
each of the 1024 chromosome models Mk, where k = 1, 2, . . . , 1024, the posterior distribution
of θ is

P (θ|D) =
K∑
k=1

P (θ|D,Mk)P (Mk|D). (2.18)

Here we average over the posterior distributions conditioned on each model weighted by
the model’s posterior probability. We assume an equal prior probability for each model
P (Mk) = 2−10.

Reversible Jump Markov Chain Monte Carlo

To sample from the space of all possible chromosome evolution models, we employ reversible
jump MCMC (Green 1995). This algorithm draws samples from parameter spaces of differing
dimensions, and in stationarity samples each model in proportion to its posterior probability.
This permits inference of each model’s fit to the data while simultaneously accounting for
model uncertainty.
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Our reversible jump MCMC moves between models of different dimensions using augment
and reduce moves (Huelsenbeck et al. 2000; Pagel and Meade 2006; May et al. 2016). The
reduce move proposes that a parameter should be removed from the current model by setting
its value to 0.0, effectively disallowing that class of evolutionary event. Augment moves
reverse reduce moves by allowing the parameter to once again have a non-zero value. Both
augment and reduce moves operate on all chromosome rate parameters except for φc the rate
of no cladogenetic change. Thus the least complex model the MCMC can sample from is one
in which φc > 0.0 and all other chromosome rate parameters are set to 0.0, corresponding to
a model of no chromosomal changes over the phylogeny. The prior probability of reducing
or augmenting model Mk is Pr(Mk) = Pa(Mk) = 0.5.

Bayes Factors

In some cases we wish to compare the fit of models to summarize the mode of evolution
within a clade. Bayes factors (Kass and Raftery 1995) compare the evidence between two
competing models Mi and Mj

Bij =
P (D|Mi)

P (D|Mj)
=
P (Mi|D)

P (Mj|D)
/
P (Mi)

P (Mj)
. (2.19)

In words, the Bayes factor Bij is given by the ratio of the posterior odds to the prior odds
of the two models. Unlike other methods of model selection such as Akaike Information
Criterion (AIC; Akaike 1974) and the Bayesian Information Criterion (BIC; Schwarz 1978),
Bayes factors take into account the full posterior densities of the model parameters and
do not rely on point estimates. Furthermore AIC and BIC ignore the priors assigned to
parameters, whereas Bayes factors penalizes parameters based on the informativeness of the
prior. If the prior is informative but overlaps little with the likelihood it is penalized more
than a diffuse uninformative prior that allows the parameter to take on whatever value is
informed by the data (Xie et al. 2011).

2.2.3 Implementation

The model and MCMC analyses described here are implemented in C++ in the software
RevBayes (Höhna et al. 2016). In Section 2.5.1 we validated our SSE likelihood calculations
and ancestral state estimates against those of the R package diversitree (FitzJohn 2012).
Rev scripts that specify the chromosome number evolution model (ChromoSSE) described
here as a probabilistic graphical model (Höhna et al. 2014a) and run the empirical analyses in
RevBayes are available at http://github.com/wf8/ChromoSSE. The RevGadgets R package
(available at https://github.com/revbayes/RevGadgets) contains functions to summarize
results and generate plots of inferred ancestral chromosome numbers over a phylogeny.

The MCMC proposals used are outlined in Section 2.5.2. Aside from the reversible
jump MCMC proposals described above, all other proposals are standard except for the
ElementSwapSimplex move operated on the Dirichlet distributed root frequencies parameter.
This move randomly selects two elements r1 and r2 from the root frequencies vector and swaps
their values. The reverse move, swapping the original values of r1 and r2 back, will have the
same probability as the initial move since r1 and r2 were drawn from a uniform distribution.

24

http://github.com/wf8/ChromoSSE
https://github.com/revbayes/RevGadgets


Thus, the Hasting ratio is 1 and the ElementSwapSimplex move is a symmetric Metropolis
move.

2.2.4 Simulations

We conducted a series of simulations to: 1) test the effect of unobserved speciation events
due to extinction on chromosome number estimates when using a model that does not ac-
count for unobserved speciation, 2) compare the accuracy of models of chromosome evolution
that account for unobserved speciation versus those that do not, 3) test the effect of jointly
estimating speciation and extinction rates with chromosome number evolution, 4) test for
identifiability of cladogenetic parameters, and 5) test the effect of incomplete sampling of
extant lineages on ancestral chromosome number estimates. We will refer to each of the 5
simulations above as experiment 1, experiment 2, experiment 3, experiment 4, and exper-
iment 5. Detailed descriptions of each experiment and the methods used to simulate trees
and chromosome counts are in Section 2.5.3.

For all 5 experiments, MCMC analyses were run for 5000 iterations, where each iteration
consisted of 28 different moves in a random move schedule with 79 moves per iteration
(see Section 2.5.2). Samples were drawn with each iteration, and the first 1000 samples
were discarded as burn in. Effective sample sizes (ESS) for all parameters in all simulation
replicates were over 200, and the mean ESS values of the posterior for the replicates was
1470.3. See Section 2.5.4 for more on convergence of simulation replicates. To perform all 5
experiments 2100 independent MCMC analyses were run requiring a total of 89170.6 CPU
hours on the Savio computational cluster at the University of California, Berkeley.

Summarizing Simulation Results

To summarize the results of our simulations, we measured the accuracy of ancestral state
estimates as the percent of simulation replicates in which the true root chromosome number
8 was found to be the maximum a posteriori (MAP) estimate. To evaluate the uncertainty of
the simulations, we calculated the mean posterior probability of root chromosome number for
the simulation replicates that correctly found 8 to be the MAP estimate. We also calculated
the proportion of simulation replicates for which the true model of chromosome number
evolution used to simulate the data (as given by the table in Section 2.5.3) was estimated to
be the MAP model, and calculated the mean posterior probabilities of the true model. To
compare the accuracy of model averaged parameter value estimates we calculated coverage
probabilities. Coverage probabilities are the percentage of simulation replicates for which the
true parameter value falls within the 95% highest posterior density (HPD). High accuracy
is shown when coverage probabilities approach 1.0.

2.2.5 Empirical Data

Phylogenetic data and chromosomes counts from five plant genera were analyzed (see Ta-
ble 2.2). Like in Mayrose et al. (2010) we assumed each species had a single cytotype, however
polymorphism could be accounted for by a vector of probabilities for each chromosome count.
Sequence data for Aristolochia was downloaded from TreeBASE (Vos et al. 2010) study ID
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1586. Sequences for Helianthus, Mimulus sensu lato, and Primula were downloaded directly
from GenBank (Benson et al. 2005), reconstructing the sequence matrices from Timme et al.
(2007), Beardsley et al. (2004), and Guggisberg et al. (2009). For each of these four datasets
phylogenetic analyses were performed with all gene regions concatenated and unpartitioned,
assuming the general time-reversible (GTR) nucleotide substitution model (Tavaré 1986;
Rodriguez et al. 1990) with among-site rate variation modeled using a discretized gamma
distribution (Yang 1994) with four rate categories. Since divergence time estimation in years
is not the objective of this study, and only relative branching times are needed for our models
of chromosome number evolution, a birth-death tree prior was used with a fixed root age of
10.0 time units. The MCMC analyses were performed in RevBayes, and were sampled every
100 iterations and run for a total of 400000 iterations, with samples from the first 100000
iterations discarded as burnin. Convergence was assessed by ensuring that the effective sam-
ple size for all parameters was over 200. The maximum a posteriori tree was calculated and
used for further chromosome evolution analyses. For Carex section Spirostachyae the time
calibrated tree from Escudero et al. (2010) was used.

Ancestral chromosome numbers and chromosome evolution model parameters were then
estimated for each of the five clades. Since testing the effect of incomplete taxon sampling
on chromosome evolution inference of the empirical datasets was not a goal of this work, we
focus here on results using a taxon sampling fraction ρs of 1.0 (though see the Discussion
section for more on this). MCMC analyses were run in RevBayes for 11000 iterations, where
each iteration consisted of 28 different Metropolis-Hastings moves in a random move schedule
with 79 moves per iteration (see Section 2.5.2). Samples were drawn each iteration, and the
first 1000 samples were discarded as burn in. Effective sample sizes for all parameters were
over 200. For all datasets except Primula we used priors as outlined in Table 2.1. To
demonstrate the flexibility of our Bayesian implementation and its capacity to incorporate
prior information we used an informative prior for the root chromosome number in the
Primula section Aleuritia analysis. Our dataset for Primula section Aleuritia also included
samples from Primula sections Armerina and Sikkimensis. Since we were most interested in
estimating chromosome evolution within section Aleuritia, we used an informative Dirichlet
prior {1, ..., 1, 100, 1....1} (with 100 on the 11th element) to bias the root state towards the
reported base number of Primula x = 11 (Conti et al. 2000). Note all priors can be easily
modified in our implementation, thus the impact of priors can be efficiently tested.

2.3 Results

2.3.1 Simulations

General Results

In all simulations, the true model of chromosome number evolution was infrequently esti-
mated to be the MAP model (< 36% of replicates), and when it was the posterior probability
of the MAP model was very low (< 0.12; Table 2.3). We found that the accuracy of root
chromosome number estimation was similar whether the process that generated the simu-
lated data was cladogenetic-only or anagenetic-only (Tables 2.3 and 2.4). However, when the
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Table 2.2: Empirical data sets analysed.

Clade Study Gene region Alignment
length (bp)

Number of
OTUs

Haploid chro-
mosome num-
bers range

Aristolochia Ohi-Toma
et al. (2006)

matK 1268 34 3 - 16

Carex section
Spirostachyae

Escudero et al.
(2010)

ITS, trnK
intron

see Escudero
et al. (2010)

24 30 - 42

Helianthus Timme et al.
(2007)

ETS 3085 102 17 - 51

Mimulus sensu
lato

Beardsley
et al. (2004)

trnL intron,
ETS, ITS

2210 115 8 - 46

Primula
section
Aleuritia

Guggisberg
et al. (2009)

rpl16 intron,
rps16 intron,
trnL intron,
trnL-trnF
spacer,
trnT-trnL
spacer,
trnD-trnT
region

5705 56 9 - 36

data was simulated under a process that included both cladogenetic and anagenetic evolution
we found a decrease in accuracy in the root chromosome number estimates in all cases.

Experiment 1 Results

The presence of unobserved speciation in the process that generated the simulated data
decreased the accuracy of ancestral state estimates (Figure 2.3, Table 2.3). Similarly, un-
certainty in root chromosome number estimates increased with unobserved speciation (lower
mean posterior probabilities; Table 2.3). The accuracy of parameter value estimates as
measured by coverage probabilities was similar (results not shown).

Experiment 2 Results

When comparing estimates from ChromoSSE that account for unobserved speciation to
estimates from the non-SSE model that does not account for unobserved speciation, we
found that the accuracy in estimating model parameter values was mostly similar, though for
some cladogenetic parameters there was higher accuracy with the model that did account for
unobserved speciation (ChromoSSE; Figure 2.4). For both models estimates of anagenetic
parameters were more accurate than estimates of cladogenetic parameters when the true
generating model included cladogenetic changes.

We found that ChromoSSE had more uncertainty in root chromosome number estimates
(lower mean posterior probabilities) compared to the non-SSE model that did not account for
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unobserved speciation. Similarly, the root chromosome number was estimated with slightly
lower accuracy (Table 2.4).

Experiment 3 Results

We found that jointly estimating speciation and extinction rates with chromosome number
evolution using ChromoSSE slightly decreased the accuracy of root chromosome number
estimates, and further it increased the uncertainty of the inferred root chromosome number
(as reflected in lower mean posterior probabilities; Table 2.4). Fixing the speciation and
extinction rates to their true value removed much of the increased uncertainty associated
with using a model that accounts for unobserved speciation (Table 2.4).

Experiment 4 Results

Under simulation scenarios that had cladogenetic changes but no anagenetic changes, we
found that ChromoSSE overestimated anagenetic parameters and underestimated cladoge-
netic parameters (Figure 2.5 A), which explains the lower coverage probabilities of cladoge-
netic parameters reported above for experiment 2 (Figure 2.4). When anagenetic parameters
were fixed to 0.0 cladogenetic parameters were no longer underestimated (Figure 2.5 A), and
the coverage probabilities of cladogenetic parameters increased slightly (Figure 2.5 B).

Experiment 5 Results

We found that incomplete sampling of extant lineages had a minor effect on the accuracy of
ancestral chromosome number estimates (Figure 2.6). Accuracy only slightly decreased as
the percentage of extant lineages sampled declined from 100% to 50%, and decreased more
rapidly when the percentage went to 10%. As measured by the proportion of simulation
replicates that inferred the MAP root chromosome number to be the true root chromosome
number, the accuracy of ancestral states estimated under ChromoSSE declined from 0.80
accuracy at 100% taxon sampling to 0.69 at 10% taxon sampling. Essentially no difference in
accuracy was detected between the non-SSE model that does not take unobserved speciation
into account and ChromoSSE. Furthermore, little difference in accuracy was detected using
ChromoSSE with the taxon sampling probability ρs set to 1.0 compared to ChromoSSE with
ρs set to the true value (0.1, 0.5, or 1.0; Figure 2.6).
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Figure 2.3: Experiment 1 results: the effect of unobserved speciation events on the maximum
a posteriori (MAP) estimates of root chromosome number. Model averaged MAP estimates of the
root chromosome number for 100 replicates of each simulation type on datasets that included unobserved
speciation and datasets that did not include unobserved speciation. Each circle represents a simulation
replicate, where the size of the circle is proportional to the number of lineages that survived to the present
(the number of extant tips in the tree). The true root chromosome number used to simulate the data was 8
and is marked with a pink dotted line.

Figure 2.4: Experiment 2 results: the effect of using a model that accounts for unobserved
speciation on coverage probabilities of chromosome model parameters. Each point represents
the proportion of simulation replicates for which the 95% HPD interval contains the true value of the
model parameter. Coverage probabilities of 1.00 mean perfect coverage. The circles represent coverage
probabilities for estimates made using the non-SSE model that does not account for unobserved speciation,
and the triangles represent coverage probabilities for estimates made using ChromoSSE that does account
for unobserved speciation.
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Table 2.3: Experiment 1 results: the effect of ignoring unobserved speciation events on chro-
mosome evolution estimates. Regardless of the true mode of chromosome evolution, the presence of
unobserved speciation events in the process that generated the simulated data decreased accuracy in esti-
mating the true root state. The columns from left to right are: 1) an indication of whether or not the data
was simulated with a process that included unobserved speciation, 2) the true mode of chromosome evolution
used to simulate the data, (for description see main text and Section 2.5.3), 3) the percent of simulation
replicates in which the true chromosome number at the root used to simulate the data was found to be the
maximum a posteriori (MAP) estimate, 4) the mean posterior probability of the MAP estimate of the true
root chromosome number, 5) the percent of simulation replicates in which the true model used to simulate
the data was also found to be the MAP model, and 6) the mean posterior probability of the MAP estimate
of the true model.

Unobserved
Speciation
Events
Included When
Simulating
Data?

Mode of
Evolution Used
to Simulate
Data

True Root
State
Estimated (%)

Mean Posterior
of True Root
State

True Model
Estimated (%)

Mean Posterior
of True Model

No Cladogenetic 93 0.92 13 0.10

No Anagenetic 89 0.91 31 0.12

No Mixed 88 0.84 0 0.0

Yes Cladogenetic 78 0.87 15 0.09

Yes Anagenetic 83 0.91 36 0.12

Yes Mixed 62 0.80 2 0.10
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Table 2.4: Experiments 2 and 3 results: the effects of using a model that accounts for un-
observed speciation and of jointly estimating diversification rates on ancestral chromosome
number estimates. This table compares estimates of chromosome evolution using a non-SSE model that
does not account for unobserved speciation events with ChromoSSE that does account for unobserved speci-
ation events (Experiment 2), and compares estimates of chromosome evolution when jointly estimated with
speciation and extinction rates versus when the true speciation and extinction rates are given (Experiment
3). Regardless of the true mode of chromosome evolution, the use of a model that accounts for unobserved
speciation increases uncertainty in root state estimates. The columns from left to right are: 1) an indication
of which experiment the results pertain to, 2) an indication of whether or not the estimates were made
with ChromoSSE (that accounts for unobserved speciation), 3) whether diversification rates were jointly
estimated with chromosome evolution, 4) the percent of simulation replicates in which the true chromosome
number at the root used to simulate the data was found to be the MAP estimate, 5) the mean posterior
probability of the MAP estimate of the true root chromosome number.

Experiment # Estimates
Made w/
Model That
Accounted for
Unobserved
Speciation?

Speciation and
Extinction
Rates Jointly
Estimated?

Mode of
Evolution Used
to Simulate
Data

True Root
State
Estimated (%)

Mean Posterior
of True Root
State

2 No No Cladogenetic 78 0.87

2 No No Anagenetic 83 0.91

2 No No Mixed 62 0.80

2 & 3 Yes Yes Cladogenetic 78 0.81

2 & 3 Yes Yes Anagenetic 80 0.86

2 & 3 Yes Yes Mixed 61 0.72

3 Yes No Cladogenetic 78 0.84

3 Yes No Anagenetic 83 0.90

3 Yes No Mixed 62 0.76
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Figure 2.5: Experiment 4 results: testing identifiability of cladogenetic parameters under
ChromoSSE. a) Chromosome parameter value estimates from 100 simulation replicates under a simulation
scenario with no anagenetic changes (cladogenetic only). The stars represent true values. The box plots
compare parameter estimates made when anagenetic parameters were fixed to 0 to estimates made when
all parameters were free. When all parameters were free the anagenetic parameters were overestimated and
cladogenetic parameters were underestimated. When the anagenetic parameters were fixed to 0 the estimates
for the cladogenetic parameters were more accurate. b) Coverage probabilities of chromosome evolution
parameters under the cladogenetic only model of chromosome evolution. The accuracy of cladogenetic
parameter estimates increased when anagenetic parameters were fixed to 0.
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Figure 2.6: Experiment 5 results: the effect of incomplete sampling. The accuracy of ancestral
chromosome number estimates slightly declined as the percentage of sampled extant lineages decreased from
100% to 50%, and decreased more quickly once the percentage of extant lineages decreased to 10%. There
was little difference between the non-SSE model (light grey) that does not take into account unobserved
speciation and ChromoSSE (medium and dark grey) which does take into account unobserved speciation.
Furthermore, little difference in accuracy was detected using ChromoSSE with the taxon sampling probability
ρs set to 1.0 (medium grey) and with ρs set to the true value (0.1, 0.5, or 1.0; dark grey). The accuracy
of chromosome number estimates was measured by the proportion of simulation replicates for which the
estimated MAP root chromosome number corresponded with the true chromosome number used to simulate
the data.

2.3.2 Empirical Data

Model averaged MAP estimates of ancestral chromosome numbers for each of the five em-
pirical datasets are show in Figures 2.7, 2.8, 2.9, 2.10, and 2.11. The mean model-averaged
chromosome number evolution parameter value estimates for the empirical datasets are re-
ported in Table 2.5. Posterior probabilities for the MAP model of chromosome number
evolution were low for all datasets, varying between 0.04 for Carex section Spirostachyae
and 0.21 for Helianthus (Table 2.6). Bayes factors supported unique, clade-specific combi-
nations of anagenetic and cladogenetic parameters for all five datasets (Table 2.6). None of
the clades had support for purely anagenetic or purely cladogenetic models of chromosome
evolution.

The ancestral state reconstructions for Aristolochia were highly similar to those found
by Mayrose et al. (2010). We found a moderately supported root chromosome number of
8 (posterior probability 0.45), and a polyploidization event on the branch leading to the
Isotrema clade which has a base chromosome number of 16 with high posterior probability
(0.88; Figure 2.7). On the branch leading to the main Aristolochia clade we found a dysploid
loss of a single chromosome. Overall, we estimated moderate rates of anagenetic dysploid
and polyploid changes, and the rates of cladogenetic change were 0 except for a moderate rate
of cladogenetic dysploid loss (Tables 2.5). There was only one cladogenetic change inferred
in the MAP ancestral state reconstruction, which was a recent possible dysploid speciation
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event that split the sympatric west-central Mexican species Aristolochia tentaculata and A.
taliscana.

In Helianthus, on the other hand, we found high rates of cladogenetic polyploidization,
and low rates of anagenetic change (Tables 2.5). 12 separate possible polyploid speciation
events were identified over the phylogeny (Figure 2.8), and cladogenetic polyploidization
made up 16% of all observed and unobserved speciation events. Bayes factors gave very
strong support for models that included cladogenetic polyploidization as well as anagenetic
demi-polyploidization (Table 2.6), the latter explaining the frequent anagenetic transitions
from 34 to 51 chromosomes found in the MAP ancestral state reconstruction. The well
supported root chromosome number of 17 (posterior probability 0.91) corresponded with
the findings of Mayrose et al. (2010).

As opposed to the Helianthus results, the Carex section Spirostachyae estimates had
very low rates of polyploidization and instead had high rates of cladogenetic dysploid change
(Tables 2.5). An estimated 36.9% of all observed and unobserved speciation events included
a cladogenetic gain or loss of a single chromosome. Overall, the rates of anagenetic changes
were estimated to be much lower than the rates of cladogenetic changes. Bayes factors did
not support either anagenetic or cladogenetic polyploidization (Table 2.6). The MAP root
chromosome number of 37, despite being very weakly supported (0.08), corresponds with
the findings of Escudero et al. (2014), where it was also poorly supported (Figure 2.9).

In Primula, we found a base chromosome number for section Aleuritia of 9 with high
posterior probability (0.82; Figure 2.10), which agrees with estimates from Glick and Mayrose
(2014). We estimated moderate rates of anagenetic and cladogenetic changes, including both
cladogenetic polyploidization and demi-polyploidization (Table 2.5). The MAP ancestral
state estimates include an inferred history of possible polyploid and demi-polyploid speciation
events in the clade containing the tetraploid Primula halleri and the hexaploid P. scotica.
Primula is the only dataset out of the five analysed here for which Bayes factors supported
the inclusion of cladogenetic demi-polyploidization (Table 2.6).

The well supported root chromosome number of 8 (posterior probability 0.90) found
for Mimulus s.l. corresponds with the inferences reported in Beardsley et al. (2004). We
estimated moderate rates of anagenetic dysploid gains and losses, as well as a moderate rate of
cladogenetic polyploidization (Table 2.5). Bayes factors also supported models that included
anagenetic dysploid gain and loss, as well as cladogenetic polyploidization (Table 2.6). The
MAP ancestral state reconstruction revealed that most of the possible polyploid speciation
events took place in the Diplacus clade, particularly in the clade containing the tetraploids
Mimulus cupreus, M. glabratus, M. luteus, and M. yecorensis (Figure 2.11). Additionally,
an ancient cladogenetic polyploidization event is inferred for the split between the two main
Diplacus clades at about 5 million time units ago.
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Figure 2.7: Ancestral chromosome number estimates of Aristolochia. The model averaged MAP
estimate of ancestral chromosome numbers are shown at each branch node. The states of each daughter
lineage immediately after cladogenesis are shown at the “shoulders” of each node. The size of each circle is
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Figure 2.8: Ancestral chromosome number estimates of Helianthus. The model averaged MAP
estimate of ancestral chromosome numbers are shown at each branch node. The states of each daughter
lineage immediately after cladogenesis are shown at the “shoulders” of each node. The size of each circle is
proportional to the chromosome number and the color represents the posterior probability. The MAP root
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Figure 2.10: Ancestral chromosome number estimates of Primula section Aleuritia. The model
averaged MAP estimate of ancestral chromosome numbers are shown at each branch node. The states of
each daughter lineage immediately after cladogenesis are shown at the “shoulders” of each node. The size
of each circle is proportional to the chromosome number and the color represents the posterior probability.
The MAP root chromosome number of section Aleuritia is 9 with a posterior probability of 0.82. The arrows
show the inferred history of possible polyploid and demi-polyploid speciation events in the clade containing
the tetraploids Primula egaliksensis and P. halleri and the hexaploid P. scotica. Clades corresponding to
sections are indicated at right.
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Figure 2.11: Ancestral chromosome number estimates of Mimulus sensu lato. The model aver-
aged MAP estimate of ancestral chromosome numbers are shown at each branch node. The states of each
daughter lineage immediately after cladogenesis are shown at the “shoulders” of each node. The size of each
circle is proportional to the chromosome number and the color represents the posterior probability. The
MAP root chromosome number is 8 with a posterior probability of 0.90. The arrows highlight the inferred
history of repeated polyploid speciation events in the Diplacus clade, which contains the tetraploids Mimulus
cupreus, M. glabratus, M. luteus, and M. yecorensis. Clades corresponding to segregate genera are indicated
at right.
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Table 2.5: Mean model-averaged parameter value estimates for empirical datasets. Rates for
all parameters are given in units of chromosome changes per branch length unit except for µ which is given
in extinction events per time units.

Clade γa δa ρa ηa γm δm φc γc δc ρc ηc µ

Aristolochia 0.02 0.05 0.01 0.0 -0.01 -0.01 0.43 0.0 0.04 0.0 0.0 0.19
Carex section
Spirostachyae

0.19 0.79 0.16 0.13 0.0 0.04 2.49 2.15 0.15 0.95 0.5 2.26

Helianthus 0.0 0.02 0.0 0.03 -0.0 -0.0 0.68 0.0 0.0 0.13 0.0 0.09
Mimulus s.l. 0.03 0.02 0.01 0.0 0.02 0.02 0.65 0.0 0.0 0.05 0.0 0.16
Primula
section
Aleuritia

0.01 0.05 0.01 0.01 -0.0 -0.0 2.39 0.01 0.03 0.15 0.09 2.47
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2.4 Discussion

The results from the empirical analyses show that the ChromoSSE models detect strikingly
different modes of chromosome evolution with clade-specific combinations of anagenetic and
cladogenetic processes. Anagenetic dysploid gains and losses were supported in nearly all
clades; however, cladogenetic dysploid changes were supported only in Carex. The occurrence
of anagenetic dysploid changes in all clades suggest that small chromosome number changes
due to gains and losses may frequently have a minimal effect on the formation of reproductive
isolation, though our results suggest that Carex may be a notable exception. Anagenetic
polyploidization was only supported in Aristolochia, while cladogenetic polyploidization was
supported in Helianthus, Mimulus s.l., and Primula. These findings confirm the evidence
presented by Zhan et al. (2016) that polyploidization events could play a significant role
during plant speciation.

Our models shed new light on the importance of whole genome duplications as a key
driver in evolutionary diversification processes. Helianthus has long been understood to
have a complex history of polyploid speciation (Timme et al. 2007), but our results here are
the first to statistically show the prevalance of cladogenetic polyploidization in Helianthus
(occuring at 16% of all speciation events) and how few of the chromosome changes are es-
timated to be anagenetic. Polyploid speciation has also been suspected to be common in
Mimulus s.l. (Vickery 1995), and indeed we estimated that 7% of speciation events were
cladogenetic polyploidization events. We also estimated that the rates of cladogenetic dys-
ploidization in Mimulus s.l. were 0, which is in contrast to the parsimony based inferences
presented in Beardsley et al. (2004), which estimated 11.5% of all speciation events included
polyploidization and 13.3% included dysploidization. Their estimates, however, did not
distinguish cladogenetic from anagenetic processes, and so they likely underestimated ana-
genetic changes. Our ancestral state reconstructions of chromosome number evolution for
Helianthus, Mimulus s.l., and Primula show that polyploidization events generally occurred
in the relatively recent past; few ancient polyploidization events were reconstructed (one
exception being the ancient cladogenetic polyploidization event in Mimulus clade Diplacus).
This pattern appears to be consistent with recent studies that show polyploid lineages may
undergo decreased net diversification (Mayrose et al. 2011; Scarpino et al. 2014), leading some
to suggest that polyploidization may be an evolutionary dead-end (Arrigo and Barker 2012).
While in the analyses presented here we fixed rates of speciation and extinction through
time and across lineages, an obvious extension of our models would be to allow these rates
to vary across the tree and statistically test for rate changes in polyploid lineages.

Our findings also suggest dysploid changes may play a significant role in the speciation
process of some lineages. The genus Carex is distinguished by holocentric chromosomes that
undergo common fusion and fission events but rarely polyploidization (Hipp 2007). This
concurs with our findings from Carex section Spirostachyae, where we saw no support for
models including either anagenetic or cladogenetic polyploidization. Instead we found high
rates of cladogenetic dysploid change, which is congruent with earlier results that show that
Carex diversification is driven by processes of fission and fusion occurring with cladogenetic
shifts in chromosome number (Hipp 2007; Hipp et al. 2007). Hipp (2007) proposed a speci-
ation scenario for Carex in which the gradual accumulation of chromosome fusions, fissions,
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and rearrangements in recently diverged populations increasingly reduce the fertility of hy-
brids between populations, resulting in high species richness. More recently, Escudero et al.
(2016) found that chromosome number differences in Carex scoparia led to reduced ger-
mination rates, suggesting hybrid dysfunction could spur chromosome speciation in Carex.
Holocentricity has arisen at least 13 times independently in plants and animals (Melters et al.
2012), thus future work could examine chromosome number evolution in other holocentric
clades and test for similar patterns of cladogenetic fission and fusion events.

The models presented here could also be used to further study the role of divergence in
genomic architecture during sympatric speciation. Chromosome structural differences have
been proposed to perform a central role in sympatric speciation, both in plants (Gottlieb
1973) and animals (Feder et al. 2005; Michel et al. 2010). In Aristolochia we found most
changes in chromosome number were estimated to be anagenetic, with the only cladogenetic
change occuring among a pair of recently diverged sympatric species. By coupling our
chromosome evolution models with models of geographic range evolution it would be possible
to statistically test whether the frequency of cladogenetic chromosome changes increase in
sympatric speciation events compared to allopatric speciation events, thereby testing for
interaction between these two different processes of reproductive isolation and evolutionary
divergence.

The simulation results from Experiment 1 demonstrate that extinction reduces the accu-
racy of inferences made by models of chromosome evolution that do not take into account
unobserved speciation events. Furthermore, the simulations performed in Experiments 2
and 3 show that the substantial uncertainty introduced in our analyses by jointly estimating
diversification rates and chromosome evolution resulted in lower posterior probabilities for
ancestral state reconstructions. We feel that this is a strength of our method; the lower pos-
terior probabilities incorporate true uncertainty due to extinction and so represent more con-
servative estimates. Additionally, the simulation results from Experiment 4 reveal that rates
of anagenetic evolution were overestimated and rates of cladogenetic change were underesti-
mated when the generating process consisted only of cladogenetic events. This suggests the
possibility that our models of chromosome number evolution are only partially identifiable,
and that the results of our empirical analyses may have a similar bias towards overestimating
anagenetic evolution and underestimating cladogenetic evolution. This bias may be an issue
for all ClaSSE type models, but the practical consequences here are conservative estimates
of cladogenetic chromosome evolution.

An important caveat for all phylogenetic methods is that estimates of model parameters
and ancestral states can be highly sensitive to taxon sampling (Heath et al. 2008). All of the
empirical datasets examined here included non-monophyletic taxa that were treated as sep-
arate lineages. We made the unrealistic assumptions that 1) each of the non-monophyletic
lineages sharing a taxon name have the same cytotype, and 2) the taxon sampling probability
(ρs) for the birth-death process was 1.0. The former assumption could drastically affect an-
cestral state estimates, but its effect can only be confirmed by obtaining chromosome counts
for each lineage regardless of taxon name. While the results from simulation Experiment 5
showed that fixing ρs to 1.0 did not decrease the accuracy of inferred ancestral states, we
still performed extra analyses of the empirical datasets with different values of ρs (results
not shown). The results indicated that total speciation and extinction rates are sensitive to
ρs, but the relative speciation rates (e.g. between φc and γc) remained similar. The ancestral
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state estimates of cladogenetic and anagenetic chromosome changes were robust to different
values of ρs. This could vary among datasets and care should be taken when considering
which lineages to sample.

Bayesian model averaging is particularly appropriate for models of chromosome number
evolution since conditioning on a single model ignores the considerable degree of model un-
certainty found in both the simulations and the empirical analyses. In the simulations the
true model of chromosome evolution was rarely inferred to be the MAP model (< 39% of
replicates), and in the instances it was correctly identified the posterior probability of the
MAP model was < 0.13. The posterior probabilities of the MAP models for the empiri-
cal datasets were similarly low, varying between 0.04 and 0.22. Conditioning on a single
poorly fitting model of chromosome evolution, even when it is the best model available,
results in an underestimate of the uncertainty of ancestral chromosome numbers. Further-
more, Bayesian model averaging enabled us to detect different modes of chromosome number
evolution without the limitation of traditional model testing procedures in which multiple
analyses are performed that each condition on a different single model. This is a particularly
useful approach when the space of all possible models is large.

Our RevBayes implementation facilitates model modularity and easy experimentation.
Experimenting with different priors or MCMC moves is achieved by simply editing the Rev

scripts that describe the model. Though in our analyses here we ignored phylogenetic un-
certainty by assuming a fixed known tree, we could easily incorporate this uncertainty by
modifying a couple lines of the Rev script to integrate over a previously estimated posterior
distribution of trees. We could also use molecular sequence data simultaneously with the
chromosome models to jointly infer phylogeny and chromosome evolution, allowing the chro-
mosome data to help inform tree topology and divergence times. In this paper we chose not
to perform joint inference so that we could isolate the behavior of the chromosome evolution
models; however, this is a promising direction for future research.

There are a number of challenging directions for future work on phylogenetic chromo-
some evolution models. Models that incorporate multiple aspects of chromosome morphology
such as translocations, inversions, and other gene synteny data as well as the presence of
ring and/or B chromosomes have yet to be developed. None of our models currently account
for allopolyploidization; indeed few phylogenetic comparative methods can handle reticulate
evolutionary scenarios that result from allopolyploidization and other forms of hybridization
(Marcussen et al. 2015). A more tractable problem is mapping chromosome number changes
along the branches of the phylogeny, as opposed to simply making estimates at the nodes as
we have done here. Since the approach described here models both anagenetic and cladoge-
netic chromosome evolution processes while accounting for unobserved speciation events, the
rejection sampling procedure used in standard stochastic character mapping (Nielsen 2002;
Huelsenbeck et al. 2003) is not sufficient. While data augmentation approaches such as those
described by Bokma (2008) could be utilized, they require complex MCMC algorithms that
may have difficulty mixing. Another option is to extend the method described in this paper
to draw joint ancestral states by numerically integrating root-to-tip over the tree into a new
procedure called joint conditional character mapping. This sort of approach would infer
the joint MAP history of chromosome changes both at the nodes and along the branches of
the tree, and provide an alternative to stochastic character mapping that will work for all
ClaSSE type models.

44



2.4.1 Conclusions

The analyses presented here show that the ChromoSSE models of chromosome number evo-
lution successfully infer different clade-specific modes of chromosome evolution as well as the
history of anagenetic and cladogenetic chromosome number changes for a clade, including
reconstructing the timing and location of possible chromosome speciation events over the
phylogeny. These models will help investigators study the mode and history of chromosome
evolution within individual clades of interest as well as advance understanding of how funda-
mental changes in the architecture of the genome such as whole genome duplications affect
macroevolutionary patterns and processes across the tree of life.

2.5 Supporting Information

2.5.1 Validating Ancestral State Estimates

Ancestral State Estimates of SSE Models

The code repository http://github.com/wf8/anc_state_validation contains scripts to
validate the Monte Carlo method of ancestral state estimation for state-dependent speciation
and extinction (SSE) models we implemented in RevBayes (Höhna et al. 2016) against the
analytical marginal ancestral state estimation implemented in the R package diversitree

(FitzJohn 2012).
Although the closest model to ChromoSSE implemented in diversitree is ClaSSE

(Goldberg and Igić 2012), ancestral state estimation for ClaSSE is not implemented in
diversitree. Therefore here we compare the ancestral state estimates for BiSSE (Mad-
dison et al. 2007) as implemented in diversitree to the estimates made by RevBayes.
Note that as implemented in RevBayes the BiSSE, ChromoSSE, ClaSSE, MuSSE (FitzJohn
2012), and HiSSE (Beaulieu and OMeara 2016) models use the same C++ classes and algo-
rithms for parameter and ancestral state estimation, so validating ancestral state estimates
for BiSSE should provide confidence in estimates made by RevBayes for all these SSE models.

In RevBayes we sample ancestral states for SSE models from their joint distribution
conditional on the tip states and the model parameters during the MCMC. However, in this
work we summarize the MCMC samples by calculating the marginal posterior probability
of each node being in each state. So the RevBayes marginal ancestral state reconstructions
which are estimated via MCMC are directly comparable to the analytical marginal ancestral
states computed by diversitree. It would be possible to summarize the samples from the
MCMC to reconstruct the maximum a posteriori joint ancestral state reconstruction, but we
have not done so in this work.

Comparison of RevBayes Estimates to diversitree

Here we show ancestral state estimates under BiSSE for an example where the tree and tip
data were simulated in diversitree with the following parameters: λ0 = 0.2, λ1 = 0.4, µ0 =
0.01, µ1 = 0.1, and q01 = q10 = 0.1. The ancestral state reconstructions from RevBayes and
diversitree are shown in Figures 2.13 and 2.14, respectively.
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The log-likelihood as computed by diversitree was -109.46, whereas with RevBayes it
was -109.71. Small differences in the log-likelihoods are expected due to differences in the way
diversitree and RevBayes calculate probabilities at the root, and also due to numerical
approximations. However both reconstructions should return the same probabilities for
ancestral states at the root, and indeed diversitree calculated the root probability of
being in state 0 as 0.555 and RevBayes calculated it as 0.554. The estimated posterior
probabilities are very close for all nodes. This is shown in a plot comparing the marginal
posterior probabilities for all nodes being in state 1 as estimated by RevBayes against the
diversitree estimates (Figure 2.12).

Figure 2.12: Posterior probabilities of marginal ancestral state estimates. Each point represents
the marginal posterior probability of a node being in state 1 as estimated by RevBayes plotted against
the estimates made by diversitree. The marginal ancestral states were estimated under BiSSE from a
tree and tip data simulated with the following parameters: λ0 = 0.2, λ1 = 0.4, µ0 = 0.01, µ1 = 0.1, and
q01 = q10 = 0.1. The full ancestral state reconstructions from RevBayes and diversitree are shown in
Figures 2.13 and 2.14, respectively.
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Figure 2.13: Ancestral state estimates from RevBayes. Marginal ancestral states estimated under
BiSSE from a tree and tip data simulated with the following parameters: λ0 = 0.2, λ1 = 0.4, µ0 = 0.01, µ1 =
0.1, and q01 = q10 = 0.1.
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Figure 2.14: Ancestral state estimates from diversitree. Marginal ancestral states estimated under
BiSSE from a tree and tip data simulated with the following parameters: λ0 = 0.2, λ1 = 0.4, µ0 = 0.01, µ1 =
0.1, and q01 = q10 = 0.1. Dark blue represents state 0 and yellow represents state 1.
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2.5.2 Metropolis-Hastings Moves

The Metropolis-Hastings moves used in all ChromoSSE analyses are outlined in Table 2.7.
All MCMC proposals are standard except the ElementSwapSimplex move and the reversible
jump MCMC proposals. These are described in detail in the main text. MCMC analyses
were run in RevBayes for 11000 iterations, where each iteration consisted of 79 MCMC moves
per iteration. The 79 moves were randomly drawn from the 28 different Metropolis-Hastings
moves listed in Table 2.7 using the weights listed. Samples of parameter values and joint
ancestral states were drawn each iteration, and the first 1000 samples were discarded as burn
in.

Table 2.7: MCMC moves used for chromosome number evolution analyses. See the main text for
further explanations of the moves used. Samples were drawn from the MCMC each iteration, where each
iteration consisted of 28 different moves in a random move schedule with 79 moves per iteration.

Parameter X Move Weight

Anagenetic Chromosome gain rate γa Scale(λ = 1) 2
Chromosome gain rate γa Reduce/Augment 2
Chromosome loss rate δa Scale(λ = 1) 2
Chromosome loss rate δa Reduce/Augment 2
Polyploidization rate ρa Scale(λ = 1) 2
Polyploidization rate ρa Reduce/Augment 2
Demi-polyploidization rate ηa Scale(λ = 1) 2
Demi-polyploidization rate ηa Reduce/Augment 2
Linear component of gain rate γm Slide(δ = 0.1) 1
Linear component of gain rate γm Slide(δ = 0.001) 1
Linear component of gain rate γm Reduce/Augment 2
Linear component of loss rate δm Slide(δ = 0.1) 1
Linear component of loss rate δm Slide(δ = 0.001) 1
Linear component of loss rate δm Reduce/Augment 2

Cladogenetic No change φc Scale(λ = 5) 2
Chromosome gain γc Scale(λ = 5) 2
Chromosome gain γc Reduce/Augment 2
Chromosome loss δc Scale(λ = 5) 2
Chromosome loss δc Reduce/Augment 2
Polyploidization ρc Scale(λ = 5) 2
Polyploidization ρc Reduce/Augment 2
Demi-polyploidization ηc Scale(λ = 5) 2
Demi-polyploidization ηc Reduce/Augment 2
All cladogenetic rates φc, γc, δc,

ρc, ηc

Joint Up-Down
Scale(λ = 0.5)

2

Other Root frequencies π BetaSimplex(α = 0.5) 10
Root frequencies π ElementSwapSimplex 20
Relative-extinction r Scale(λ = 5) 3
Relative-extinction and all clado rates r, φc, γc,

δc, ρc, ηc

Joint Up-Down
Scale(λ = 0.5)

2

Total 28 79
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2.5.3 Simulation Details

Description of Simulation Experiments

Experiment 1

In experiment 1 we tested the effect of unobserved speciation events due to extinction on
chromosome number estimates when using a model that does not account for unobserved
speciation. Is the additional model complexity required to account for unobserved speciation
necessary, or are the effects of unobserved speciation negligible and safe to ignore? Using the
non-SSE model described above that does not account for unobserved speciation, ancestral
chromosome numbers and chromosome evolution model parameters were estimated for each
of the 600 datasets.

Experiment 2

Here we compared the accuracy of models of chromosome evolution that account for un-
observed speciation versus those that do not. Since extinction can safely be assumed to
be present to some extent in all clades, it is likely that all empirical datasets contain some
unobserved speciation. Do we see an increase in accuracy when we account for unobserved
speciation events, or conversely do we see an increase in the variance of our estimates that
perhaps describes true uncertainty due to extinction? To test this, we estimated ances-
tral chromosome numbers and chromosome evolution model parameters over the simulated
datasets that included unobserved speciation using both ChromoSSE that accounts for un-
observed speciation as well as the non-SSE model that does not.

Experiment 3

In experiment 3 we tested the effect of jointly estimating speciation and extinction rates
with chromosome number evolution. Estimating speciation and extinction rates accurately
is notoriously challenging (Nee et al. 1994a; Rabosky 2010; Beaulieu and O’Meara 2015; May
et al. 2016), so how much of the variance in chromosome evolution estimates made with mod-
els that jointly estimate speciation and extinction are due to uncertainty in diversification
rates? Here we compared our estimates of ancestral chromosome numbers and chromosome
evolution model parameters using ChromoSSE that accounts for unobserved speciation (and
in which speciation and extinction rates are jointly estimated) with estimates made from
ChromoSSE but where the true rates of speciation and extinction used to simulate the data
were fixed. The latter analyses were given the true rates of total speciation and extinction,
but still had to estimate the proportion of speciation events for each type of cladogenetic
event.

Experiment 4

Since we model the same chromosome number transitions as both cladogenetic and anage-
netic processes, it is possible that the two processes could be confounded and our models may
not be fully identifiable. Furthermore, preliminary results suggested our models overestimate
anagenetic changes and underestimate cladogenetic changes when the true generating process
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Figure 2.15: Tree simulations. 100 trees were simulated under the birth-death process as described
in the main text for Experiments 1, 2, 3, and 4. Chromosome number evolution was simulated over the
unpruned trees that included all extinct lineages, as well as over the same trees but with extinct lineages
pruned. This resulted in two simulated datasets: one simulated under a process that did have unobserved
speciation events, and one simulated with no unobserved speciation events. Shown above is a histogram
of the number of lineages that survived to the present, the tree lengths, Colless’ Index (a measure of tree
imbalance; Colless 1982), and lineage through time plots of the 100 pruned and unpruned trees.

includes cladogenetic evolution. Here we compared cladogenetic and anagenetic estimates
made by ChromoSSE under simulation scenarios that only included cladogenetic changes.
Do we see an increase in accuracy of cladogenetic parameter estimates when anagenetic
changes are disallowed (fixed to 0)?

Experiment 5

Experiments 1-3 deal with the increase in uncertainty caused by unobserved speciation events
due to extinction. Here we focused on the effect of unobserved speciation due to incomplete
taxon sampling by comparing chromosome number estimates at 3 levels of taxon sampling:
100%, 50%, and 10%. We compared estimates made by both the ChromoSSE model and the
non-SSE model, as well as compared estimates made by ChromoSSE using the true taxon
sampling probability ρs versus estimates made by ChromoSSE using ρs fixed to 1.0.
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Table 2.8: Simulation parameter values. Parameter values used to simulate datasets. The top 3 rows
show the 3 modes of chromosome number evolution simulated for Experiments 1, 2, 3, and 4: anagenetic
only, cladogenetic only, and mixed. Row 4 shows the parameter values used to simulate data for Experiment
5. The total speciation rate λt = 0.25 and the extinction rate µ = 0.15. The root state was fixed to 8.

Simulation
mode γa δa ρa ηa γm δm φc γc δc ρc ηc

Anagenetic 0.0085 0.0085 0.0085 - - - λt - - - -
Cladogenetic - - - - - - 0.85λt 0.05λt 0.05λt 0.05λt -
Mixed 0.0085 0.0085 0.0085 - - - 0.85λt 0.05λt 0.05λt 0.05λt -
Experiment 5 0.0025 0.0025 0.0025 - - - 0.93λt 0.02λt 0.02λt 0.02λt -

Methods Used to Simulate Data

For experiments 1, 2, 3, and 4 the same set of simulated trees and chromosome counts were
used. Since ChromoSSE assumes the total rates of speciation and extinction are fixed over
the tree (see Equation 2.5), trees were first simulated with constant diversification rates,
and then cladogenetic and anagenetic chromosome evolution was simulated over the trees.
100 trees were simulated under the birth-death process with λ = 0.25 and µ = 0.15 (see
Figure 2.15) using the R package diversitree (FitzJohn 2012). The trees were conditioned
on an age of 25.0 time units and a minimum of 10 extant lineages. To test the effect
of unobserved speciation events due to lineages going extinct on cladogenetic estimates,
chromosome number evolution was simulated along the trees including their extinct lineages
(unpruned) and the same 100 trees but with the extinct lineages pruned. All chromosome
number simulations were performed using RevBayes (Höhna et al. 2016).

Three models were used to generate simulated chromosome counts: a model where all
chromosome evolution was anagenetic, a model where all chromosome evolution was clado-
genetic, and a model that mixed both anagenetic and cladogenetic changes (Table 2.8).
Parameter values were roughly informed by the mean values estimated from the empirical
datasets. The mean length of the simulated trees was 253.5 (Figure 2.15). Hence, the anage-
netic rates were set to 2/235.5 ≈ 0.0085 which corresponds to an expected value of 2 events
over the tree for each of the four transition types. The root chromosome number was fixed
to be 8. Simulating data for all 3 models over both the pruned and unpruned tree resulted
in 600 simulated datasets. To reproduce the effect of using reconstructed phylogenies all in-
ferences were performed using the trees with extinct lineages pruned and with chromosome
counts from extinct lineages removed.

Since Experiment 5 focused on the effect of incomplete taxon sampling on chromosome
number estimates, the trees used needed to be conditioned on a known number of extant tips.
The trees used for the previous simulations were conditioned only on age and a minimum of
10 extant lineages and so were not appropriate. To simulate 100 trees conditioned on 200
extant lineages we used the R package TreeSim (Stadler 2011) with λ = 0.25 and µ = 0.15
(like above). Complete trees with both extant and extinct lineages were simulated, and
then chromosome evolution was simulated over the complete tree. Since these trees had
a significantly longer mean length (2020.1 compared to 253.5) we used different rates of
chromosome evolution to simulate data compared to Experiments 1, 2, 3, and 4 (Table 2.8).
Chromosome numbers were only simulated using a mixed anagenetic and cladogenetic model.
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The anagenetic rates were set to 5/2020.1 ≈ 0.0025 which corresponds to an expected value
of 5 events over the tree for each of the four transition types. Like Experiments 1, 2, 3, and 4,
the root chromosome number was fixed to be 8. Once chromosome data was simulated over
the complete trees, the extinct taxa were pruned off leaving trees with 100% taxon sampling.
50% of the tips were randomly pruned off to create trees with 50% taxon sampling, and 90%
of the tips were randomly pruned off to create trees with 10% taxon sampling.

2.5.4 MCMC Convergence of Simulation Replicates

Effective sample sizes (ESS) for all parameters in all simulation replicates were over 200,
and the mean ESS values of the posterior for the replicates was 1470.3. Since the space of
possible models is so large (1024 possible models, see main text), we replicated all analyses
that included unobserved speciation in Experiment 1 three independent times to ensure that
MCMC convergence was not an issue in detecting the true model of chromosome number
evolution used to simulate the data. The results displayed in Table 2.9 show that the
percentage of simulation replicates in which the true model was inferred to be the MAP
model, and the mean posterior of the true model, converged and were stable across all three
independent runs.

Table 2.9: Simulation Experiment 1 replicated 3 times. Estimates of the true model that generated
the simulated data and estimates of the posterior probability of the true model were stable and converged
across multiple independent replicates of the experiment.

Replicate Mode of Evolution Used
to Simulate Data

True Model Estimated (%) Mean Posterior of True
Model

1 Cladogenetic 15 0.09
1 Anagenetic 36 0.12
1 Mixed 2 0.10

2 Cladogenetic 15 0.09
2 Anagenetic 36 0.12
2 Mixed 2 0.09

3 Cladogenetic 15 0.09
3 Anagenetic 36 0.12
3 Mixed 2 0.10
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Chapter 3

Stochastic character mapping of
state-dependent diversification

Abstract

A major goal of evolutionary biology is to identify key evolutionary transitions that cor-
respond with shifts in speciation and extinction rates. Stochastic character mapping has
become the primary method used to infer the timing, nature, and number of character state
transitions along the branches of a phylogeny. The method is widely employed for standard
substitution models of character evolution. However, current approaches cannot be used
for models that specifically test the association of character state transitions with shifts in
diversification rates such as state-dependent speciation and extinction (SSE) models. Here
we introduce a new stochastic character mapping algorithm that overcomes these limita-
tions, and apply it to study mating system evolution over a densely sampled fossil-calibrated
phylogeny of the plant family Onagraceae. Utilizing a hidden state SSE model we tested
the association of the loss of self-incompatibility with shifts in diversification rates. Con-
firming long standing theory, we found that self-compatible lineages have higher extinction
rates and lower net diversification rates compared to self-incompatible lineages. Further,
our mapped character histories show that the loss of self-incompatibility is followed by a
short-term spike in speciation rates, which declines after a time lag of several million years
resulting in negative net diversification. Lineages that have long been self-compatible such
as Fuchsia and Clarkia are in a previously unrecognized and ongoing evolutionary decline.
Our results demonstrate that stochastic character mapping of SSE models is a powerful
tool for examining the timing and nature of both character state transitions and shifts in
diversification rates over the phylogeny.

3.1 Introduction

Evolutionary biologists have long sought to identify key evolutionary transitions that drive
the diversification of life (Szathmary and Smith 1995; Sanderson and Donoghue 1996). One
frequently used method to test hypotheses about evolutionary transitions is stochastic char-
acter mapping on a phylogeny (Nielsen 2002; Huelsenbeck et al. 2003). While most ancestral
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state reconstruction methods estimate states only at the nodes of a phylogeny, stochastic
character mapping explicitly infers the timing and nature of each evolutionary transition
along the branches of a phylogeny. However, current approaches to stochastic character
mapping have two major limitations: the commonly used rejection sampling approach pro-
posed by Nielsen (2002) is inefficient for characters with large state spaces (Huelsenbeck
et al. 2003; Hobolth and Stone 2009), and more importantly current methods only apply to
models of character evolution that are finite state substitution processes. While the first lim-
itation has been partially overcome through uniformization techniques (Rodrigue et al. 2008;
Irvahn and Minin 2014), a novel approach is needed for models with infinite state spaces,
such as models to specifically test the association of character state transitions with shifts in
diversification rates. These models describe the joint evolution of both a character and the
phylogeny itself, and define a class of widely used models called state-dependent speciation
and extinction models (SSE models; Maddison et al. 2007; FitzJohn 2012; Goldberg and Igić
2012; Freyman and Höhna 2017a).

In this work we introduce a method to sample character histories directly from their joint
distribution, conditional on the observed tip data and the parameters of the model of charac-
ter evolution. The method is applicable to standard finite state Markov processes of character
evolution and also more complex SSE models that are infinite state Markov processes. The
method does not rely on rejection sampling and does not require complex data augmenta-
tion (Van Dyk and Meng 2001) schemes to handle unobserved speciation/extinction events.
Our implementation directly simulates the number, type, and timing of diversification rate
shifts and character state transitions on each branch of the phylogeny. Thus, when applying
our method together with a Markov chain Monte Carlo (MCMC; Metropolis et al. 1953)
algorithm we can sample efficiently from the posterior distribution of both character state
transitions and shifts in diversification rates over the phylogeny.

To illustrate the usefulness of our method to sample stochastic character maps from
SSE models, we applied the method to study the association of diversification rate shifts
with mating system transitions in the plant family Onagraceae. The majority of flowering
plants are hermaphrodites, and the loss of self-incompatibility (SI), the genetic system that
encourages outcrossing and prevents self-fertilization, is a common evolutionary transition
(Stebbins 1974; Grant 1981; Barrett 2002). Independent transitions to self-compatibility
(SC) have occurred repeatedly across the angiosperm phylogeny (Igic et al. 2008) and within
Onagraceae (Raven 1979). Despite the repeated loss of SI, outcrossing is widespread and
prevalent in plants, an observation that led Stebbins to hypothesize that SC was an evolu-
tionary dead-end (Stebbins 1957). Stebbins proposed that over evolutionary time SC lineages
will have higher extinction rates due to reduced genetic variation and an inability to adapt to
changing conditions. However, Stebbins also speculated that SC is maintained by providing
a short-term advantage in the form of reproductive assurance. The ability of SC lineages to
self reproduce has long been understood to be potentially beneficial in droughts and other
conditions where pollinators are rare (Darwin 1876) or after long distance dispersal when a
single individual can establish a new population (Baker 1955).

Recent studies have reported higher net diversification rates for SI lineages, supporting
Stebbins’ dead-end hypothesis (Goldberg et al. 2010; Ferrer and Good 2012). However,
explicit phylogenetic tests for increased extinction rates in SC lineages are limited to the plant
family Solanaceae, where increased rates of speciation in SC lineages were offset by higher
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extinction rates, leading to lower overall rates of net diversification in SC lineages compared
to SI lineages (Goldberg et al. 2010). In the study by Goldberg et al., the association of
mating system transitions with shifts in extinction and speciation rates was tested using
the Binary State Speciation and Extinction model (BiSSE; Maddison et al. 2007). More
recently, BiSSE has been shown to be prone to falsely identifying a positive association
when diversification rate shifts are associated with another character not included in the
model (Maddison and FitzJohn 2015; Rabosky and Goldberg 2015). One approach to reduce
the possibility of falsely associating a character with diversification rate heterogeneity is to
incorporate a second, unobserved character into the model (i.e., a Hidden State Speciation
and Extinction (HiSSE) model; Beaulieu and OMeara 2016). The changes in the unobserved
character’s state represent background diversification rate changes that are not correlated
with the observed character. Our work here is the first to apply a HiSSE-type model to test
Stebbins’ dead-end hypothesis. We also use simulations and Bayes factors (Kass and Raftery
1995) to evaluate the false positive error rate of our model. Additionally, we employ our novel
stochastic character mapping method to reconstruct the timing of both diversification rate
shifts and transitions in mating system over a densely sampled fossil calibrated phylogeny
of Onagraceae. Finally, we test the hypothesis that SC lineages have higher extinction and
speciation rates yet lower net diversification rates compared to SI lineages.

3.2 Methods

3.2.1 Stochastic Character Mapping Method

The primary steps of the novel stochastic character mapping algorithm introduced here
are illustrated in Fig. 3.1. A pseudocode formulation of the algorithm is provided in the
Supporting Information (Alg. 1). Additionally, Supporting Information Fig. 3.6 gives a side
by side comparison of the standard stochastic character mapping algorithm as originally
described by Nielsen (2002) and the approach introduced in this work. In standard stochastic
character mapping the first step is to traverse the tree post-order (tip to root) calculating the
conditional likelihood of the character being in each state at each node using Felsenstein’s
pruning algorithm (Felsenstein 1981). Transition probabilities are computed along each
branch using matrix exponentiation. Ancestral states are then sampled at each node during
a pre-order (root to tip) traversal. Finally, character histories are repeatedly simulated using
rejection sampling for each branch of the tree.

In our new stochastic character mapping algorithm we begin similarly by traversing the
tree post-order and calculating conditional likelihoods. However, instead of using matrix
exponentiation we calculate the likelihood using a set of ordinary differential equations. We
numerically integrate these equations for every arbitrarily small time interval along each
branch and store a vector of conditional likelihoods for the character being in each state for
every small time interval. The two functions we must numerically integrate are DN,i(t) which
is defined as the probability that a lineage in state i at time t evolves into the observed clade
N , and Ei(t) which is the probability that a lineage in state i at time t goes extinct before the
present, or is not sampled at the present. The equations for these two probabilities are given
as Supporting Information Eq.3.6 and Eq. 3.5. Note these equations are identical to the ones
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Figure 3.1: Schematic of the new stochastic character mapping method introduced in this
work. The first step in the stochastic character mapping method introduced in this work is (a) traversing
the tree post-order (tip to root) calculating conditional likelihoods for every arbitrarily small time interval
along each branch and at nodes. Next, during a pre-order traversal (root to tip) ancestral states are sampled
for each time interval (b), resulting in a full character history (c) without the need for a rejection sampling
step. See Supporting Information Fig. 3.6 for a side by side comparison of the standard stochastic character
mapping algorithm as originally described by Nielsen (2002) and the approach introduced in this work.

describing the Cladogenetic State Speciation and Extinction model (ClaSSE; Goldberg and
Igić 2012), which all other discrete SSE models are nested within.

At the tips of the phylogeny (time t = 0) the extinction probabilities are Ei(0) = 1 − ρ
for all i where ρ is the sampling probability of including that lineage. For lineages with
the observed state i, the initial condition is DN,i(0) = ρ. The initial condition for all other
states j is DN,j(0) = 0. When a node L is reached, the probability of it being in state i is
calculated by combining the probabilities of its descendant nodes M and N as such:

DL,i(t) =
∑
j

∑
k

λijkDM,j(t)DN,k(t), (3.1)
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where the rate of a lineage in state i splitting into two lineages in states j and k is λijk.
Letting X represent the observed tip data, Ψ an observed phylogeny, and θq a particular set
of character evolution model parameters, then the likelihood is given by:

P (X ,Ψ|θq) =
∑
i

πiDR,i(t), (3.2)

where πi is the root frequency of state i and DR,i(t) is the likelihood of the root node being
in state i conditional on having given rise to the observed tree Ψ and the observed tip data
X (Maddison et al. 2007; FitzJohn 2012).

We then sample a complete character history during a pre-order tree traversal in which
the root state is first drawn from the marginal likelihoods at the root, and then states are
drawn for each small time interval moving towards the tip of the tree conditioned on the
state of the previous small time interval. We must again numerically integrate over a set
differential equations during this root-to-tip tree traversal. This integration, however, is
performed in forward-time, thus a different and new set of differential equations must be
used. Letting the rate of anagenetic change from state i to j to be Qij and the rate of
extinction in state i to be µi:

Ei(t−∆t) ≈ Ei(t)−

[
µi −

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
Ei(t)

+
∑
j 6=i

QijEj(t) +
∑
j

∑
k

λijkEj(t)Ek(t)

]
∆t, (3.3)

DN,i(t−∆t) ≈ DN,i(t)+

[
−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
DN,i(t)

+
∑
j 6=i

QjiDN,j(t) +DN,j(t)Ek(t)

(∑
j

∑
k

λjik +
∑
j

∑
k

λjki

)]
∆t.

(3.4)

In the Supporting Information we derive these forward-time differential equations. We
demonstrate how the forward-time equations correctly handle non-reversible models of char-
acter evolution and validate the forward-time computation of DN,i(t) and Ei(t). With this
approach we can directly sample character histories from an SSE process in forward-time,
resulting in a complete stochastic character map sample without the need for rejection sam-
pling or uniformization, see Figure 3.1.

Implementation

The stochastic character mapping method described here is implemented in C++ in the
software RevBayes (Höhna et al. 2014b, 2016). The RevGadgets R package (available at
https://github.com/revbayes/RevGadgets) can be used to generate plots from RevBayes

output. Scripts to run all RevBayes analyses presented here can be found in the repository
at https://github.com/wf8/onagraceae.
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3.2.2 Onagraceae Phylogenetic Analyses

DNA sequences for Onagraceae and Lythraceae were mined from GenBank using SUMAC

(Freyman 2015). Lythraceae was selected as an outgroup since previous molecular phy-
logenetic analyses place it sister to Onagraceae (Sytsma et al. 2004). Information about
the alignments and GenBank accessions used can be found in the Supporting Information.
Phylogeny and divergence times were inferred using RevBayes (Höhna et al. 2016). De-
tails regarding the fossil and secondary calibrations, the model of molecular evolution, and
MCMC analyses are given in the Supporting Information.

3.2.3 Analyses of Mating System Evolution

The mating system of Onagraceae species were scored as either self-compatible or self-
incompatible following Wagner et al. (Wagner et al. 2007).

HiSSE Model

To test whether diversification rate heterogeneity is associated with shifts in mating system
or changes in other unmeasured traits, we used a model with 4 states that describes the
joint evolution of mating system as well as an unobserved character with hidden states a
and b (Fig. 3.2). Since the RNase-based gametophytic system of self-incompatibility found
in Onagraceae is ancestral for all eudicots (Steinbachs and Holsinger 2002), we used an
irreversible model that only allowed transitions from self-incompatible to self-compatible. For
each of the 4 states we estimated speciation (λ) and extinction (µ) rates. While estimating
diversification rates, we accounted for uncertainty in phylogeny and divergence times by
sampling 200 trees from the posterior distribution of trees. For details on priors used and
the MCMC analyses see the Supporting Information.

Model Comparisons and Error Rates

To test whether diversification rate heterogeneity was not associated with shifts in mat-
ing system, we calculated a Bayes factor (Kass and Raftery 1995) to compare the mating
system dependent diversification model described above with a mating system independent
diversification model. The independent model had 4 states and the same parameters as the
dependent model, except that the speciation and extinction rates were fixed so they only
varied between the hidden states a and b. Hence, λca was fixed to equal λia, λcb was fixed to
λib, µca was fixed to µia, and µcb was fixed to µib.

To evaluate the false positive error rate we performed a series of simulations that tested
the power of our models to reject false associations between shifts in mating system and di-
versification rate shifts. Trees were simulated under a BiSSE model, and then diversification
independent binary characters representing mating system were simulated over the trees.
For each simulation replicate Bayes factors were calculated to compare the fit of the mat-
ing system dependent diversification model and mating system independent diversification
model. Details on the simulations are provided in the Supporting Information.

All Bayes factors were calculated using the stepping stone method (Xie et al. 2011; Höhna
et al. 2017) as implemented in RevBayes. Marginal likelihood estimates were run for 50 path
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Figure 3.2: SSE model depicting states and rate parameters used to infer mating system
evolution. The states are labeled ca, cb, ia, and ib, representing self-compatible hidden state a, self-
compatible hidden state b, self-incompatible hidden state a, and self-incompatible hidden state b, respectively.
Independent extinction µ and speciation λ rates were estimated for each of the 4 states, as well as the rate of
transitioning from self-incompatible to self-compatible Qic and the rates of transitioning between the hidden
states Qab and Qba.

steps and 19000 generations within each step. The Bayes factor was then calculated as twice
the difference in the natural log marginal likelihoods (Kass and Raftery 1995).

3.3 Results

3.3.1 Onagraceae Phylogeny

In our estimated phylogeny, all currently recognized Onagraceae genera (Wagner et al. 2007)
were strongly supported to be monophyletic with posterior probabilities > 0.98. The crown
age of Onagraceae was estimated to be 98.8 Ma (94.0 Ma – 107.3 Ma 95% HPD; Fig. 3.3),
and a summary of the divergence times of major clades within Onagraceae can be found in
Supporting Information Table 3.3.

3.3.2 Model Comparisons and Error Rates

The state-dependent diversification model of mating system evolution (Fig. 3.2) was “de-
cisively” supported over the state-independent diversification model with a Bayes factor
(2lnBF) of 19.9 (Jeffreys 1961). Bayes factors calculated using simulated datasets showed
that the false positive error rate was low. The false positive rate for “strong” support (2lnBF
> 6; Kass and Raftery 1995) was 0.05, and the false positive rate for “very strong” support
(2lnBF > 10; Kass and Raftery 1995) was 0.0.
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Figure 3.3: Maximum a posteriori reconstruction of mating system evolution and shifts in
diversification rates in Onagraceae. Divergence times in millions of years are indicated by the axis
at the top. The inset panels show posterior densities of net diversification (λ − µ), speciation (λ), and
extinction (µ) rates in millions of years. Changes in mating system and an unobserved character (hidden
states a and b) are both associated with diversification rate heterogeneity. Within either hidden state (a
or b) self-compatible lineages have higher extinction and speciation rates yet lower net diversification rates
compared to self-incompatible lineages.

61



3.3.3 Stochastic Character Maps

Under the state-dependent diversification model, repeated independent losses of SI across
the Onagraceae phylogeny were found to be associated with shifts in diversification rates
(Fig. 3.3). Additionally, transitions between the unobserved character states a and b were
also associated with diversification rate heterogeneity. Uncertainty in the timing of diversifi-
cation rate shifts and character state transitions was generally low, but increased along long
branches where there was relatively little information regarding the exact timing of transi-
tions (Fig. 3.4). Following the loss of self-incompatibility, there was an evolutionary time
lag (mean 18.3 My) until net diversification (speciation minus extinction) turned negative
(Fig. 3.5).

Figure 3.4: Posterior probabilities of the maximum a posteriori reconstruction of mating
system evolution and shifts in diversification rates in Onagraceae. Marginal posterior probabilities
of the character states shown in Fig. 3.3. Uncertainty was highest along long branches where there was
relatively little information regarding the timing of transitions.

3.3.4 Diversification Rate Estimates

Within either hidden state (a or b) SC lineages had generally higher speciation and extinction
rates compared to SI lineages (Fig. 3.3). SC lineages in state a had a speciation rate of 0.12
(0.02 – 0.23 95% HPD) compared to 0.16 (0.09 – 0.24 95% HPD) in SI lineages in state a.
For SC lineages in state b the speciation rate was 1.66 (0.98 – 2.41 95% HPD) compared to
0.65 (0.45 – 0.85 95% HPD) in SI lineages in state b. Similarly, SC lineages in state a had
an extinction rate of 0.35 (0.25 – 0.48 95% HPD) compared to 0.04 (0.00 – 0.09 95% HPD)
in SI lineages in state a. For SC lineages in state b the extinction rate was 1.36 (0.65 – 2.19
95% HPD) compared to 0.10 (0.00 – 0.29 95% HPD) in SI lineages in state b.

Despite higher speciation and extinction rates, SC lineages had lower net diversification
compared to SI lineages. Net diversification was found to be negative for most but not all
extant SC lineages. The net diversification rate for SC lineages in state a was -0.23 (-0.32 –
-0.14 95% HPD), compared to 0.13 (0.05 – 0.19 95% HPD) in SI lineages in state a. For SC
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Figure 3.5: The time lag from the loss of self-incompatibility until the onset of evolutionary
decline. The time in millions of years after the loss of self-incompatibility until the net diversification
rate became negative measured over 10000 stochastic character map samples. The mean time lag until
evolutionary decline was 18.3 million years.

lineages in state b the net diversification rate was 0.30 (0.15 – 0.46 95% HPD), compared to
0.55 (0.39 – 0.71 95% HPD) in SI lineages in state b.

3.4 Discussion

The stochastic character map results reveal that the loss of SI has different short term and
long term macroevolutionary consequences. Lineages with relatively recent losses of SI like
Epilobium are undergoing a burst in both speciation and extinction rates with a positive
net diversification rate. However, lineages that have long been SC such as Fuchsia (Tribe
Circaeeae) and Clarkia are in a previously unrecognized evolutionary decline. These lineages
went through an increase in both speciation and extinction rates a long time ago —after the
loss of SI— but now only the extinction rates remain elevated and the speciation rates have
declined, resulting in negative net diversification. The stochastic character maps quantify
the speed of this evolutionary decline in SC lineages; while the mean time until evolutionary
decline was 18.3 My, there was a large amount of variation in time estimates (Fig. 3.5). This
variation could be due to differences in realized selfing/outcrossing rates of different lineages.
Lineages with higher selfing rates likely build up inbreeding depression more quickly, which
could lead to a more rapid evolutionary decline. Furthermore, even if inbreeding depression
is low, the loss of genetic variation in highly selfing lineages will reduce the probability that
such lineages can respond adequately to natural selection, such as imposed by a changing or
new environment, thus increasing potential for extinction.

These results confirm long-standing theory about the macroevolutionary consequences of
SC (Darwin 1876; Stebbins 1957). These consequences include the increased probability of
going extinct due to inbreeding (Charlesworth and Charlesworth 1987) and an increased rate
of speciation which may be driven by higher among-population differentiation and reproduc-
tive assurance that facilitates colonization of new habitats (Baker 1955; Hartfield 2016). The
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advantages of reproductive assurance may explain why transitions to SC occur repeatedly
(Igic et al. 2008; Lande and Schemske 1985). However, our results reveal that this advantage
is short-lived; the burst of increased speciation following the loss of SI eventually declines,
possibly due to decreased variation resulting from inbreeding. The overall macroevolutionary
pattern is one in which SC lineages undergo rapid bursts of increased speciation that even-
tually decline, doomed by intensified extinction and thus supporting Stebbins’ hypothesis of
SC as an evolutionary dead-end (Stebbins 1957).

Our findings corroborate previous analyses performed in the plant family Solanceae
(Goldberg et al. 2010), where SC lineages were also found to have higher speciation and
extinction rates yet lower net diversification. Our results, however, are the first to show
that this pattern is supported even when other unmeasured factors affect diversification rate
heterogeneity. Intuitively it is clear that no single factor drives all diversfication rate het-
erogeneity in diverse and complex clades such as Onagraceae. Indeed, in some lineages of
Oenothera the loss of sexual recombination and segregation due to extensive chromosome
translocations (a condition called Permanent Translocation Heterozygosity) is associated
with increased diversification rates (Johnson et al. 2011). Furthermore, other factors such as
polyploidy and shifts in habitat, growth form, or life cycle may impact diversification rates
(Mayrose et al. 2011; Donoghue 2005; Eriksson and Bremer 1992).

Stochastic character mapping of state-dependent diversification can be a powerful tool
for examining the timing and nature of both shifts in diversification rates and character
state transitions on a phylogeny. Character mapping reveals which stages of the unobserved
character a lineage goes through; e.g. after the loss of self-incompatibility transitions are
predominantly from hidden state b to a, representing shifts from positive net diversification to
negative net diversification. Furthermore, character mapping infers the state of the lineages
in the present and so reveals which tips of the phylogeny are currently undergoing positive
or negative net diversification. Distributions of character map samples could be used for
posterior predictive assessments of model fit (Nielsen 2002; Bollback 2006; Höhna et al. 2017)
and for testing whether multiple characters coevolve (Huelsenbeck et al. 2003; Bollback 2006).
Our hope is that these approaches enable researchers to examine the macroevolutionary
impacts of the diverse processes shaping the tree of life with increasing quantitative rigor.

3.5 Supporting Information

3.5.1 Stochastic Character Mapping Method

Comparison of Algorithms

Our novel stochastic character mapping method is formulated as Algorithm (1). A side by
side illustration comparing the primary steps of the standard stochastic character mapping
algorithm originally described by Nielsen (2002) and Algorithm (1) is provided in Figure 3.6.
There are three primary differences in the two algorithms. First, in the original algorithm
likelihoods are calculated using matrix exponentiation whereas in the new algorithm likeli-
hoods are calculated using numerical integration of ordinary differential equations. Second,
during the post-order tree traversal the original algorithm stores conditional likelihoods of
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the process being in each state only at the nodes, whereas in the new algorithm they are
stored for every very small time interval between which we apply a numerical integration
algorithm. Third, during a pre-order tree traversal the original algorithm estimates ancestral
states at all nodes and then uses rejection sampling to simulate branch histories, whereas
the new method simulates branch histories by sampling directly from the process in for-
ward time using numerical integration. The central challenge in developing our new method
was deriving and validating the forward time differential equations necessary for this last
pre-order tree traversal step.

Derivation of our differential equations

In the following section we will derive the differential equations for our algorithm to compute
the probability of the observed lineages and the extinction probabilities both backwards and
forwards in time. We additionally show how the forward-time equations must be modified
to handle non-reversible models of character evolution when sampling ancestral states or
stochastic character maps.

Differential equations backwards in time

The original derivation of the differential equations for the state-dependent speciation and
extinction (SSE) process look backward in time (Maddison et al. 2007). Here we present a
generalization of the SSE process to allow for cladogenetic events where daughter lineages
may inherit different states (Goldberg and Igić 2012; Ng and Smith 2014). We repeat this
known derivation of the backwards process to show the similarities to our forward in time
derivation. We present an overview of the possible scenarios of what can happen in a small
time interval ∆t in Figure 3.7. We need to consider all these scenarios in our differential
equations.

First, let us start with the computation of the extinction probability. That is, we want
to compute the probability of a lineage going extinct at time t+ ∆t, denoted by E(t+ ∆t),
before the present time t = 0. We assume that we know the extinction probability of a lineage
at time t, denoted by E(t), which is provided by our initial condition that E(t = 0) = 0
because the probability of a lineage alive at the present cannot go extinct before the present,
or E(t = 0) = 1 − ρ in the case of incomplete taxon sampling. We have five different cases
(top row in Figure 3.7): (1) the lineage goes extinct within the interval ∆t; (2) nothing
happens in the interval ∆t but the lineage eventually goes extinct before the present; (3) a
state-change to state j occurs and the lineage now in state j goes extinct before the present;
(4) the lineage speciates, giving birth to a left daughter lineage in state j and a right daughter
lineage in state k and both lineages eventually go extinct before the present, or; (5) the lineage
speciates, giving birth to a left daughter lineage in state k and a right daughter lineage in
state j and both lineages eventually go extinct before the present. With this description of
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Algorithm 1 Stochastic character mapping algorithm. DNi(t) is the probability that a lineage in state
i at time t evolves into the observed clade N . Ei(t) is the probability that a lineage in state i at time t goes
extinct or is not sampled before the present.

1: Inputs:
X : the vector of observed tip states.
tr: the starting time of the process.
π: the vector of root state frequencies.
λ: the vector of speciation rates.
µ: the vector of extinction rates.
ρ: the probability of sampling a lineage in the present.
Q: The matrix of transition rates between states.

2: Initialize:
t← 0 // start at the present
Ei(t = 0)← 1− ρ // extinction probability at present time
if i = Xobserved then

DN,i(t = 0)← ρ // probability of observed character
else

DN,i(t = 0)← 0

3: while t ≤ tr do // post-order tree traversal
4: if node L is reached then
5: DL,i(t)←

∑
j

∑
k λijkDM,j(t)DN,k(t) // combine descendant probabilities

6: else
7: LN,i(t)← DN,i(t) // store the conditional likelihoods for this time interval
8: Ei(t+ ∆t)← Ei(t)+ // compute conditional likelihoods for next time interval[

µi −
(∑

j

∑
k λijk +

∑
j 6=iQij + µi

)
Ei(t)

+
∑

j 6=iQijEj(t) +
∑

j

∑
k λijkEj(t)Ek(t)

]
∆t // backward-time Equation (3.5)

9: DN,i(t+ ∆t)← DN,i(t)+[
−
(∑

j

∑
k λijk +

∑
j 6=iQij + µi

)
DN,i(t) +

∑
j 6=iQijDN,j(t)

+
∑

j

∑
k λijk

(
DN,k(t)Ej(t) +DN,j(t)Ek(t)

)]
∆t // backward-time Equation (3.6)

10: t← t+ ∆t // increment the current t
11: end if
12: end while
13: while t ≥ 0 do // pre-order tree traversal
14: if t = tr then
15: st ∼ Multinomial

(
n = 1, DN (tr)× π

)
// draw character state at the root

16: else
17: st ∼ Multinomial

(
n = 1, DN (t)× LN (t)

)
// draw character state for time t

18: end if
19: DN,st ← 1 // condition on the sampled character state
20: DN,i 6=st ← 0
21: Ei(t−∆t)← Ei(t)−[

µi −
(∑

j

∑
k λijk +

∑
j 6=iQij + µi

)
Ei(t)

+
∑

j 6=iQijEj(t) +
∑

j

∑
k λijkEj(t)Ek(t)

]
∆t // forward-time Equation (3.8)

22: DN,i(t−∆t)← DN,i(t)+[
−
(∑

j

∑
k λijk +

∑
j 6=iQij + µi

)
DN,i(t)

+
∑

j 6=iQjiDN,j(t) +DN,j(t)Ek(t)

(∑
j

∑
k λjik +

∑
j

∑
k λjki

)
// forward-time Equation (3.10)

23: t← t−∆t // decrement the current t
24: end while
25: return vector of all sampled character states s
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Figure 3.6: Comparison of stochastic character mapping methods. On the left (a, b, c, d) is an
illustration of the standard stochastic character mapping algorithm as originally described by Nielsen (2002).
On the right (e, f, g) is the approach introduced in this work. The first step in standard stochastic character
mapping is (a) traversing the tree post-order (tip to root) calculating conditional likelihoods for each node.
Next, ancestral states are sampled at each node during a pre-order (root to tip) traversal (b). Branch by
branch, character histories are then repeatedly simulated using rejection sampling (c), resulting in a full
character history (d). The first step in the stochastic character mapping method introduced in this work is
(e) traversing the tree post-order calculating conditional likelihoods for every arbitrarily small time interval
along each branch and at nodes. Next, during a pre-order traversal ancestral states are sampled for each
time interval (f), resulting in a full character history (g) without the need for a rejection sampling step. See
the main text for more details.
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Figure 3.7: Alternative scenarios of events in a small time interval ∆t looking backwards in
time. The top row shows the different scenarios for a lineage that goes extinct before the present. Case
1: The lineage goes extinct in the time interval ∆t. Case 2: There is no event in the time interval ∆t and
the lineage goes extinct before the present. Case 3: The lineage undergoes a state-shift event to state j
in the time interval ∆t and the lineage goes extinct before the present. Case 4: The lineage speciates and
leaves a left daughter lineage in state j and a right daughter lineage in state k and both daughter lineages
go extinct before the present. Case 5: The lineage speciates and leaves a left daughter lineage in state k and
a right daughter lineage in state j and both daughter lineages go extinct before the present. The bottom
row shows the different scenarios for an observed lineage. Case 1: There is no event in the time interval ∆t.
Case 2: The lineage undergoes a state-shift event to state j in the time interval ∆t. Case 3: The lineage
speciates and leaves a left daughter lineage in state j and a right daughter lineage in state k and only the
left daughter lineage survives. Case 4: The lineage speciates and leaves a left daughter lineage in state j and
a right daughter lineage in state k and only the right daughter lineage survives.

all possible scenarios we can derive the differential equation.

Ei(t+ ∆t) = Ei(t) + (3.5)[
µi Case (1)

−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
Ei(t) Case (2)

+
∑
j 6=i

QijEj(t) Case (3)

+
∑
j

∑
k

λijkEj(t)Ek(t)

]
∆t Case (4) and (5)
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Similarly, we can consider all possible scenarios for an observed lineage. We have four
different cases (bottom row in Figure 3.7): (1) nothing happens in the interval ∆t; (2) a
state-change to state j occurs; (3) the lineage speciates, giving birth to a left daughter lineage
in state j and a right daughter lineage in state k and only the left daughter lineage survives
until the present, or; (4) the lineage speciates, giving birth to a left daughter lineage in state
j and a right daughter lineage in state k and only the right daughter lineage survives until
the present. Again, these scenarios are sufficient to derive the differential equation for the
probability of an observed lineage, denoted D(t).

DN,i(t+ ∆t) = DN,i(t) + (3.6)[
−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
DN,i(t) Case (1)

+
∑
j 6=i

QijDN,j(t) Case (2)

+
∑
j

∑
k

λijk

(
DN,k(t)Ej(t) +DN,j(t)Ek(t)

)]
∆t Case (3) and (4)

Differential equations forward in time

Next, we want to compute the probability of extinction and the probability of an observed
lineage forward in time. For the probability of extinction this is, in principle, almost identical
to the backward in time equations. However, now we assume that we know E(t) and want
to compute E(t − ∆t). We already computed E(troot) and D(troot) in our post-order tree
traversal (from the tips to root). We use E(troot) as the initial conditions to approximate
E(t − ∆t). Again, we have the same five different cases (top row in Figure 3.7): (1) the
lineage goes extinct within the interval ∆t; (2) nothing happens in the interval ∆t but the
lineage eventually goes extinct before the present; (3) a state-change to state j occurs and
the lineage now in state j goes extinct before the present; (4) the lineage speciates, giving
birth to a left daughter lineage in state j and a right daughter lineage in state k and both
lineages eventually go extinct before the present, or; (5) the lineage speciates, giving birth
to a left daughter lineage in state k and a right daughter lineage in state j and both lineages
eventually go extinct before the present. However, these are the events that can happen in
the future and we included the probabilities of these events already in E(t). Thus, we need
to subtract instead of adding all possible scenarios that lead to the extinction of the lineage
in the time interval ∆t from E(t) to obtain E(t−∆t). This gives us the differential equation
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for the extinction probability as

Ei(t−∆t) = Ei(t)− (3.7)[
µi Case (1)

−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
Ei(t) Case (2)

+
∑
j 6=i

QijEj(t−∆t) Case (3)

+
∑
j

∑
k

λijkEj(t−∆t)Ek(t−∆t)

]
∆t Case (4) and (5)

Unfortunately, we cannot solve Equation (3.7) directly because we do not know Ej(t−∆t)
and Ek(t − ∆t). Instead, we will approximate Equation (3.7) by using Ej(t) instead of
Ej(t−∆t), and Ek(t) instead of Ek(t−∆t), respectively. Our approximation yields the new
differential equation of the extinction probability by

Ei(t−∆t) ≈ Ei(t)− (3.8)[
µi Case (1)

−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
Ei(t) Case (2)

+
∑
j 6=i

QijEj(t) Case (3)

+
∑
j

∑
k

λijkEj(t)Ek(t)

]
∆t Case (4) and (5)

The derivation of the probability of an observed lineage in forward time is slightly dif-
ferent. When sampling a character history from the process we must compute D(t − ∆t)
conditioned upon the character state sampled at time t. This does not effect the probability
of a lineage going extinct before the present, so we can use E(troot) as the initial conditions
to approximate E(t−∆t). The initial conditions for the probability of an observed lineage,
on the other hand, must account for the sampled character state. For example, if we sample
the state a at time t our initial conditions to compute D(t −∆t) must be Da(t) = 1.0 and
Db(t) = 0.0 for all other character states b. Additionally, we must consider the process in
forward time with all possible scenarios instead of backwards in time and subtracting the
possible scenarios. We have four different cases that are similar to the cases for the backward
in time computation (bottom row in Figure 3.7), however here the character state transitions
are reversed since we are looking forward in time: (1) nothing happens in the interval ∆t;
(2) with probability DN,j(t) the lineage was in state j and then a state-change to state i
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occurs; (3) with probability DN,j(t) the lineage was in state j and then speciates, giving
birth to a left daughter lineage in state i and a right daughter lineage in state k and only
the left daughter lineage survives until the present (the probability of extinction of the right
daughter lineage is given by Ek(t − ∆t)), or; (4) with probability DN,j(t) the lineage was
in state j and then speciates, giving birth to a left daughter lineage in state k and a right
daughter lineage in state i and only the right daughter lineage survives until the present (the
probability of extinction of the left daughter lineage is given by Ek(t − ∆t)). From these
four scenarios we derive the differential equation.

DN,i(t−∆t) = DN,i(t) + (3.9)[
−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
DN,i(t) Case (1)

+
∑
j 6=i

QjiDN,j(t) Case (2)

+DN,j(t)Ek(t−∆t)

(∑
j

∑
k

λjik +
∑
j

∑
k

λjki

)]
∆t Case (3) and (4)

As before, we cannot solve Equation (3.9) directly because we do not know Ek(t − ∆t).
Thus, we use the same approximation as before and substitute Ek(t) for Ek(t − ∆t). This
substitution gives our approximated differential equation.

DN,i(t−∆t) ≈ DN,i(t) + (3.10)[
−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
DN,i(t) Case (1)

+
∑
j 6=i

QjiDN,j(t) Case (2)

+DN,j(t)Ek(t)

(∑
j

∑
k

λjik +
∑
j

∑
k

λjki

)]
∆t Case (3) and (4)

To sample character histories from an SSE process in forward-time during Algorithm (1)
we calculate E(t−∆t) using the approximation given by Equation (3.8) and D(t−∆t) using
Equation (3.10).

Correctness of the forward time equations

For the purpose of demonstrating our forward time equations, we will use a non-symmetrical
BiSSE model with states 0 and 1 which have the speciation rates λ0 = 1 and λ1 = 2, the
extinction rates µ0 = 0.5 and µ1 = 1.5, and the transition rates Q01 = 0.2 and Q10 = 2.0. For
simplicity we assume that there are no state changes at speciation events. We will first show
that the approximations given by Equation (3.8) actually converge to the true probability
of extinction if the time interval ∆t is very small (goes to zero). Note that we cannot
show the same behavior for the forward in time probabilities of the observed lineage, D(t),
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because when conditioning on a sampled character state the forward in time probabilities
will be different than the backward in time probabilities. For these probabilities we provide
a different type of validation in Section 3.5.1.
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Figure 3.8: The probability of extinction computed backward and forward in time. Here we
compute the extinction probabilities E0(t) and E1(t) for a BiSSE model backward and forward in time.
Details about the parameters of the BiSSE model are given in the text. We varied the step-size ∆t for the
numerical integration between 0.1, 0.01, and 0.001 to show that both computations give the same probabilities
once ∆t is small enough.

We start by computing the probability of extinction and the probability of an observed
lineage backward in time for a total time interval of 1.0. We initialize the computation
with Ei(t = 0) = 0 and then compute E0(t) and E1(t) backward in time. Then, we use the
computed values of Ei(t = 1) as the initial values for our forward in time computation. If our
approximation is correct, then we should get identical values for the extinction probabilities
Ei(t) for any value of t.

Figure 3.8 shows our computation using three different values for ∆t: 0.1, 0.01 and 0.001.
We observe that our approximation of the forward in time computation of the probabilities
converges to the backward in time computation when ∆t ≤ 0.001, which confirms our
expectation. An explanation for the convergence is that E0(t) will be approximately equal to
E0(t−∆t), (and E1(t) to E1(t−∆t)) the smaller ∆t becomes. In our actual implementation
in RevBayes we use an initial step-size of ∆t = 10−7 but apply an adaptive numerical
integration routine to minimize the error in the integrated function.

Validation of the forward time equations against diversitree

Finally, we validate our method of sampling character histories from an SSE process in
forward-time by testing it against the analytical marginal ancestral state estimation imple-
mented in the R package diversitree (FitzJohn 2012). Our method as implemented in
RevBayes works for sampling both ancestral states and stochastic character maps, however
diversitree can not sample stochastic character maps. Thus we limit our comparison to
ancestral states estimated at the nodes of a phylogeny. Though our method works for all
SSE models nested within ClaSSE, ancestral state estimation for ClaSSE is not implemented
in diversitree, so we further limit our comparison to ancestral state estimates for a BiSSE
model. Note that as implemented in RevBayes the BiSSE, ClaSSE, MuSSE (FitzJohn 2012),
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Figure 3.9: Comparing marginal posterior ancestral state estimates from diversitree to those
calculated in RevBayes. Each point represents the posterior probability of a given node having the ancestral
state 0. On the y-axis are the posterior probabilities as analytically calculated by diversitree. On the x-
axis are the posterior probabilities as calculated by RevBayes using Algorithm (1). Our approximation given
in Equation (3.10) yields the same posterior probabilities of the ancestral states as diversitree. Scripts
to repeat this test with various parameter settings are provided in https://github.com/wf8/anc_state_

validation.

HiSSE (Beaulieu and OMeara 2016), ChromoSSE (Freyman and Höhna 2017a), and GeoSSE
(Goldberg et al. 2011) models use the same C++ classes and algorithms for parameter and
ancestral state estimation, so validating under BiSSE should provide confidence in estimates
made by RevBayes for all these SSE models.

Our method samples character histories from SSE models from their joint distribu-
tion conditioned on the tip states and the model parameters during MCMC. In contrast,
diversitree computes marginal ancestral states analytically. Thus to directly compare
results from these two approaches we calculated the marginal posterior probability of each
node being in each state from a set of 10000 samples drawn by our Monte Carlo method.
Figure 3.9 compares these estimates under a non-reversible BiSSE model where the tree
and tip data were simulated in diversitree with the following parameters: λ0 = 0.2, λ1 =
0.4, µ0 = 0.01, µ1 = 0.1, and q01 = 0.1, q10 = 0.4. Figure 3.9 shows that using the approxi-
mation of E(t−∆t) given by Equation (3.8) and the approximation to compute D(t−∆t)
in Equation (3.10) during Algorithm (1) results in marginal posterior estimates for the an-
cestral states that are nearly identical (up to some expected numerical and sampling errors)
to those calculated analytically by diversitree. Scripts to perform this test with various
parameter settings are provided in https://github.com/wf8/anc_state_validation.

MCMC Sampling and Computational Efficiency

Our method approximates the posterior distribution of the timing and nature of all char-
acter transitions and diversification rate shifts by sampling a large number of stochastically
mapped character histories using MCMC. Uncertainty in the phylogeny and other parame-
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ters is incorporated by integrating over all possible phylogenetic trees and other parameters
jointly. From these sampled character histories the maximum a posteriori character history
can be summarized in a number of ways. The approach presented here is to calculate the
marginal probabilities of character states for every small time interval along each branch,
however one could also calculate the joint posterior probability of an entire character history.

During Algorithm (1) the rate-limiting step is writing conditional likelihood vectors for
every small time interval along every branch on the tree, particularly when the state space
of the model is large. The time required is of order O(n×m× r), where n is the number of
taxa in the tree, m is the number of character states, and r is the number of time intervals.
This is reduced by only storing conditional likelihood vectors for all time intervals during
the MCMC iterations that are sampled. During unsampled (i.e., thinned) MCMC iterations
the likelihood is calculated in the standard way storing conditional likelihood vectors only at
the nodes, thus the use of the stochastic mapping algorithm has little impact on the overall
computation time.

3.5.2 Onagraceae Phylogenetic Analyses

Methods

Supermatrix Assembly

DNA sequences for Onagraceae and Lythraceae were mined from GenBank using SUMAC

(Freyman 2015). Lythraceae was selected as an outgroup since previous molecular phyloge-
netic analyses place it sister to Onagraceae (Sytsma et al. 2004). SUMAC assembled an 8 gene
supermatrix (7 chloroplast loci plus the nuclear ribosomal internal transcribed spacer region)
representing a total of 340 taxa. Table 3.1 summarizes the genes used, their length, and the
percent of missing data. Sequences were aligned using MAFFT v7.123b (Katoh and Standley
2013). The default settings in MAFFT were used except that proper sequence polarity was
ensured by using the direction adjustment option. Alignments were then concatenated re-
sulting in chimeric operational taxonomic units (OTUs) that do not necessarily represent a
single individual.

Table 3.1: DNA regions mined from GenBank. A total of 340 taxa were included.

DNA Region # Taxa Aligned Length # Variable Sites Missing data (%) Taxon Coverage Density

ITS 250 904 481 26.5 0.735
matK 42 895 276 87.6 0.124
ndhF 39 1085 429 88.5 0.115
pgiC 66 7664 3828 80.6 0.194
rbcL 108 1427 388 68.2 0.318
rpl16 54 1139 343 84.1 0.159
rps16 78 1056 335 77.1 0.229
trnL-trnF 261 1434 644 23.2 0.768
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Table 3.2: Fossil and secondary calibrations used as priors in the Bayesian divergence time analysis. Units
are in millions of years.

Group Calibration Type Placement Prior Distribution Mean SD Offset Reference

Circaea fossil stem lognormal 10 2 12 (Gŕımsson et al. 2012)
Tribe Epilobieae fossil stem lognormal 10 2 12 (Gŕımsson et al. 2012)
Fuchsia section Skinnera fossil stem lognormal 10 2 23 (Lee et al. 2013)
Lythraceae fossil crown lognormal 20 2 81.5 (Graham 2013)
Ludwigia fossil stem lognormal 10 2 57.6 (Zhi-Chen et al. 2004)
Onagraceae + Lythraceae secondary crown normal 93 5 0 (Sytsma et al. 2004)

Phylogenetic Analyses

Divergence times and phylogeny were jointly estimated using RevBayes (Höhna et al. 2014a,
2016). Estimates were time calibrated using six node calibrations: four stem fossil calibra-
tions, one crown fossil calibration, and a secondary calibration for the root split between
Onagraceae and Lythraceae (Table 3.2). An uncorrelated lognormal relaxed clock model
was used, and each of the eight gene partitions were assigned independent GTR substitution
models (Tavaré 1986; Rodriguez et al. 1990). Rate variation across sites was modeled under
a gamma distribution approximated by four discrete rate categories (Yang 1994). The con-
stant rate birth-death-sampling tree prior (Nee et al. 1994b; Yang and Rannala 1997) was
used with the probability of sampling species at the present (ρ) set to 0.27. ρ was calculated
by dividing the number of extant species sampled in the supermatrix (340) by the sum of
the number of species recognized in Onagraceae (~650) and in Lythraceae (~620).

Four independent MCMC analyses were performed. Each MCMC ran for 15000 gen-
erations, where each generation consisted of 837 randomly scheduled Metropolis-Hastings
moves. This resulted in four chains that each performed a total of 12,555,000 MCMC steps.
Samples of the posterior distribution were drawn every 10 generations, and the first 50% of
samples from each chain were discarded as burnin resulting in 750 trees sampled from each of
the 4 independent chains. Convergence was assessed by ensuring the effective sample size of
each parameter was over 200 for each independent chain. The maximum a posteriori (MAP)
tree was then calculated from the combined 3000 tree samples of all 4 chains.

Results

All Onagraceae genera described in Wagner et al. (2007) were recovered as monophyletic
clades in the MAP summary tree with posterior probabilities > 0.95 (Figure 3.10). Ona-
graceae was found to diverge from Lythraceae at 111.3 My (95% HPD interval 106.0 - 116.6
My). Divergence time estimates of other major clades and 95% HPD intervals can be seen
in Table 3.3.

3.5.3 Mating System Evolution Analyses

Model Priors

Model parameter priors are listed in Table 3.4. The rate of loss of self-incompatibility (qic),
and the rates of switching between hidden states a and b (qab and qba) were each given an
exponential distribution with a mean of n/Ψl, where Ψl is the length of the tree Ψ and n is
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Table 3.3: Divergence time estimates of major clades.

Clade Age Type Mean Age (Ma) 95% HPD Min 95% HPD Max

Onagraceae + Lythraceae crown 111.3 106.0 116.6
Onagraceae crown 98.8 94.0 107.3
Ludwigia crown 32.1 31.3 50.6
Tribe Circaeeae stem 58.7 42.3 65.0
Tribe Circaeeae crown 27.0 24.6 29.8
Fuchshia crown 23.7 23.0 24.1
Lopezia crown 29.5 25.3 36.7
Tribe Epilobieae stem 40.8 39.3 47.0
Tribe Epilobieae crown 31.2 31.2 40.6
Chamerion crown 14.9 12.6 25.2
Epilobium crown 18.9 15.7 22.9
Tribe Onagreae stem 40.8 39.3 47.0
Tribe Onagreae crown 36.4 31.6 40.5
Taraxia crown 17.0 9.9 19.5
Gayophytum crown 3.1 1.8 6.1
Clarkia crown 25.4 24.6 31.2
Eremothera crown 10.4 8.1 15.1
Camissonia crown 9.7 6.4 14.6
Eulobus crown 4.7 2.6 8.1
Chylismia crown 14.4 10.8 19.0
Oenothera crown 14.2 13.0 17.6

the expected number of transitions. n was given an exponential hyperprior with a mean of
20.

The speciation and extinction rates were drawn from exponential priors with a mean
equal to an estimate of the net diversification rate d̂. Under a constant rate birth-death
process not conditioning on survival of the process, the expected number of lineages at time
t is given by:

E(Nt) = N0e
td, (3.11)

where N0 is the number of lineages at time 0 and d is the net diversification rate λ−µ (Nee
et al. 1994b; Höhna 2015). Therefore, we estimate d̂ as:

d̂ = (lnNt − lnN0)/t, (3.12)

where Nt is the number of lineages in the clade that survived to the present, t is the age of
the root, and N0 = 2. The root state probabilities π were set to start the process equally in
either self-incompatible hidden state a or self-incompatible hidden state b.

MCMC Analyses

To account for uncertainty in phylogeny and divergence times 200 independent MCMC anal-
yses were performed, each sampling a tree from the posterior distribution of trees generated
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Table 3.4: Model parameter names and prior distributions. See the main text for complete descrip-
tion of model parameters and prior distributions. Ψl represents the length of tree Ψ and d̂ is the expected
diversification rate under a constant rate birth-death process.

Parameter X f(X)

Speciation self-incompatible a λia Exponential(λ = 1/d̂)

Speciation self-incompatible b λib Exponential(λ = 1/d̂)

Speciation self-compatible a λca Exponential(λ = 1/d̂)

Speciation self-compatible b λcb Exponential(λ = 1/d̂)

Extinction self-incompatible a µia Exponential(λ = 1/d̂)

Extinction self-incompatible b µib Exponential(λ = 1/d̂)

Extinction self-compatible a µca Exponential(λ = 1/d̂)

Extinction self-compatible b µcb Exponential(λ = 1/d̂)
Rate of loss of self-incompatibility qic Exponential(λ = Ψl/n)
Rate of a→ b qab Exponential(λ = Ψl/n)
Rate of b→ a qba Exponential(λ = Ψl/n)
Expected number of transitions n Exponential(λ = 1/20)

during the phylogenetic analyses. All outgroup (Lythraceae) lineages were pruned off. Each
MCMC run drew 10000 samples from the posterior distribution, with 190 randomly sched-
uled Metropolis-Hastings moves per sample. The first 10% of samples from each run were
discarded as burnin. For each run, all parameters had effective sample sizes greater than
200, and the mean effective sample size of the posterior across all 200 tree samples was
1161.6. Estimates of the diversification rates were made by combining samples from all 200
independent runs.

3.5.4 Simulations

Simulated Datasets

100 datasets were simulated under a model where the observed binary character was diversifi-
cation rate independent yet an unobserved binary character drove background diversification
rate heterogeneity. First trees were simulated under BiSSE (Maddison et al. 2007) as imple-
mented in the R package diversitree (FitzJohn 2012). The binary character represented
hidden states a and b with diversification rates λa = 1.0, λb = 2.0, µa = 0.4, and µb = 0.1.
The rate of change between hidden states a and b was set to qab = qba = 0.1. This resulted in
trees that were qualitatively similar in shape to the empirically estimated Onagraceae tree,
with a mix of early diverging depauperate clades and more rapidly radiating recent clades
(Figure 3.12). To simulate incomplete sampling, 55% of the extant tips were randomly
pruned off the tree. After pruning, tree samples were discarded unless they had between
100 and 200 sampled lineages that survived to the present. This restriction ensured that
the simulated datasets were not too small for reliable inference and yet not so large to be
computationally infeasible. Furthermore, we discarded datasets that had fewer than 20% of
the tips in either hidden state to ensure that the trees were generated under a sufficiently
heterogenous process.

Once the trees were simulated, diversification independent binary characters were simu-
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lated over the trees. These characters represented the observed character (mating system)
and so were simulated under an irreversible model where the allowed transition occurred with
the rate 10/Ψs, where Ψs is the length of the simulated tree. This represents an expected 10
irreversible transitions over the length of the tree, and resulted in simulated datasets with
a proportion of either state similar to the proportion of self-compatible/self-incompatible in
the empirical Onagraceae dataset. These diversification independent characters were then
used to calculate Bayes factors that compared the fit of the diversification dependent model
to the diversification independent model of mating system. For details on how Bayes factors
were calculated see Section 3.2.3. The false positive error rate was calculated as the percent
of simulation replicates in which the Bayes factor supported the false dependent model over
the true independent model.

Simulation Results

Bayes factors calculated using simulated datasets showed that the false positive error rate
was low (Figure 3.11). The false positive rate for “strong” support (2lnBF > 6; Kass and
Raftery 1995) was 0.05, and the false positive rate for “very strong” support (2lnBF > 10;
Kass and Raftery 1995) was 0.0.
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Figure 3.11: Bayes factors (2lnBF) comparing the fit of the state-dependent diversification
model of mating system evolution with the state-independent diversification model. The red
arrow indicates the “decisive” support found for the empirical Onagraceae data (2lnBF = 19.9; Jeffreys 1961).
The dark grey bars represent Bayes factors calculated for 100 datasets simulated under a state-independent
diversification model. The dotted light grey line indicates “strong” support (2lnBF > 6; Kass and Raftery
1995), and the dashed light grey line indicates “very strong” support (2lnBF > 10; Kass and Raftery 1995).
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Freyman, W. A. and S. Höhna. 2017a. Cladogenetic and anagenetic models of chromosome
number evolution: a Bayesian model averaging approach. Systematic Biology syx065.
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Höhna, S. 2015. The time-dependent reconstructed evolutionary process with a key-role for
mass-extinction events. Journal of Theoretical Biology 380:321–331.
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