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Search for new phenomena in pp collisions in final states with tau leptons,
b-jets, and missing transverse momentum with the ATLAS detector

G. Aad et al.
*

(ATLAS Collaboration)

(Received 18 August 2021; accepted 8 September 2021; published 21 December 2021)

A search for new phenomena in final states with hadronically decaying tau leptons, b-jets, and missing
transverse momentum is presented. The analyzed dataset comprises pp collision data at a center-of-mass
energy of

ffiffiffi
s

p ¼ 13 TeV with an integrated luminosity of 139 fb−1, delivered by the Large Hadron Collider
and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the
expected Standard Model background. The results are interpreted in simplified models for two different
scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of
which decays into a b-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton
and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the
95% confidence level over a wide range of tau-slepton masses. The second model considers pair production
of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction
into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the
95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector
leptoquarks in a Yang–Mills (minimal-coupling) scenario. In addition, model-independent upper limits are
set on the cross section of processes beyond the Standard Model.

DOI: 10.1103/PhysRevD.104.112005

I. INTRODUCTION

The Standard Model (SM) of particle physics has been
verified to high precision. Despite its success, several
observations have been made which have exposed the
theory’s shortcomings in various aspects and fostered new
theoretical ideas. Supersymmetry (SUSY) [1–7] is a
framework for models that extend the symmetries under-
lying the SM by introducing superpartners of the known
bosons and fermions with the same quantum numbers but a
spin difference of half a unit. These models can address the
gauge hierarchy problem [8–11]. When conservation of
R-parity [12] is assumed, the lightest supersymmetric
particle is stable and may provide a candidate particle
for the cold dark matter component of the Universe [13,14].
The introduction of supersymmetric partner particles can
also modify the renormalization group equations in such a
way that the coupling constants of the SM electromagnetic,
weak and strong interactions meet at one point at some high
energy scale as expected in a grand unified theory [15].
Another possible way to extend the SM is to embed the SM

symmetry group in an overarching symmetry group, such
as SU(5) [16] in grand unification, which gives rise to a
new class of bosons that carry nonzero baryon and lepton
quantum numbers and are charged under all SM gauge
groups. These leptoquarks (LQ), which can be either scalar
or vector bosons, appear in a variety of SM extensions
[17–21] and would provide an explanation for the structural
similarities of the quark and lepton sectors in the SM.
Processes mediated by the exchange of leptoquarks can
violate lepton-flavor universality and have been proposed
as an explanation [22–28] for the deviations from the SM
predictions seen by many experiments in measurements of
B-meson decays [29–37]. Contributions arising from lep-
toquarks with additional couplings to the muon could also
bridge the gap [38,39] between the theoretical prediction
for the anomalous magnetic moment of the muon ðg − 2Þμ
within the SM and the experimentally measured value,
which is higher by 4.2σ [40].
In this paper, a search for physics beyond that described

in the Standard Model is conducted using events with final
states with one or more hadronically decaying tau leptons,
one or more b-tagged jets and large missing transverse
momentum. This is a signature that is sensitive to models
in which the new particles preferentially decay into third-
generation SM particles. Two benchmark signal models
are studied. The first model considers the production
of supersymmetric partner states of the third-generation
SM particles, while the second model foresees scalar
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leptoquarks that decay into third-generation SM particles.
An additional interpretation, for which the analysis was not
explicitly optimized, is provided for vector leptoquarks that
decay into third-generation SM particles. The full run-2
dataset of proton–proton (pp) collisions recorded with the
ATLAS detector at the Large Hadron Collider (LHC) is
analyzed. This dataset corresponds to an integrated lumi-
nosity of 139 fb−1, taken from 2015 through 2018, at a
center-of-mass energy of

ffiffiffi
s

p ¼ 13 TeV.
The investigated SUSY signal model is motivated by

gauge-mediated SUSY breaking (GMSB) [41–43] and
natural gauge mediation [44]. In this R-parity-conserving
scenario, only three SUSY particles are assumed to be
sufficiently light to be relevant: the lighter scalar partner of
the top quark t̃ (top squark or stop), the lighter scalar
partner of the tau lepton τ̃ (tau slepton or stau), and the
spin-3=2 partner of the graviton, the gravitino G̃. The top
squark is assumed to be the lightest squark [45,46] and to
be directly pair-produced through the strong interaction.
The gravitino is assumed to be almost massless, making it
the lightest SUSY particle (LSP) in this scenario. The
search strategy is optimized using a simplified model
[47–49] with this limited SUSY particle content, the model
parameters being the scalar-fermion massesmðt̃Þ andmðτ̃Þ.
The decay chain is illustrated in the left diagram of Fig. 1: a
three-body decay proceeding through an off shell chargino
t̃ → bτ̃ντ followed by τ̃ → τG̃. This model is referred to as
the “stop-stau” signal model in the following. When the
LSP is the gravitino, direct decays of SUSY particles into
the gravitino LSP (plus a SM particle) are very unlikely due
to its weak coupling, except for the next-to-lightest super-
symmetric particle, which in R-parity-conserving scenarios
has no other option than to decay into the gravitino LSP.
Other SUSY models which instead assume the lightest
neutralino χ̃01 to be the LSP are not studied here, as this
would favor a high branching fraction of t̃ → tχ̃01; this case
has been studied elsewhere by the ATLAS Collaboration
[50–52] and by the CMS Collaboration [53–56].
Previous searches by the ATLAS Collaboration for

signals in this model used 20 fb−1 of
ffiffiffi
s

p ¼ 8 TeV data
taken in run 1 [57] and 36.1 fb−1 of

ffiffiffi
s

p ¼ 13 TeV data
taken in run 2 of the LHC [58]. No significant excess was
observed in either of these searches, and thus limits were set
on the masses of the top squark and tau slepton. These

limits exclude top-squark masses of up to 1.16 TeVand tau-
slepton masses of up to 1.0 TeVat the 95% confidence level.
The CMS Collaboration has published a related search in a
simplified model with pair production of top squarks, which
are also assumed to decay via tau sleptons or tau sneutrinos,
but where the LSP is the lightest neutralino χ̃01 instead of the
gravitino [59]. This search is based on an integrated
luminosity of 77.2 fb−1 and sets exclusion limits at the
95% confidence level on the top-squark mass of up to
1.1 TeV for a nearly massless neutralino.
The previous ATLAS run-2 search in Ref. [58] made use

of two event categories: events where one of the two tau
leptons decays leptonically and the other hadronically were
considered in addition to events where both tau leptons
decay hadronically. While the branching fractions are
almost the same for both categories, the leptonic decay
of the tau lepton yields one neutrino more, which washes
out the kinematic distributions and on average leads to a
lower energy fraction carried by the lepton compared to the
visible decay products from a hadronic tau-lepton decay.
Taken together, the two effects significantly reduce the
discriminative power of the selection requirements. As the
sensitivity of the search is thus dominated by the category
where both tau leptons decay hadronically, this paper
considers only events with hadronically decaying tau
leptons. These events are separated in two event categories
(channels). One category selects events with at least two
hadronically decaying tau leptons but no lighter leptons, at
least one b-jet and large missing transverse momentum
Emiss
T (di-tau channel). The other category selects events

with exactly one hadronically decaying tau lepton, no
electrons or muons, at least two b-jets and large Emiss

T
(single-tau channel). The latter channel extends the sensi-
tivity by covering the signal parameter space where the tau
slepton is relatively light and one of the soft tau leptons
easily escapes detection. Importantly, it also provides good
sensitivity to events with pair-produced leptoquarks that
decay into third-generation particles, which correspond to
the second benchmark model.
The second benchmark model used in the design of the

analysis considers pair production of scalar leptoquarks. It
assumes that these only couple to third-generation quark-
lepton pairs, following the minimal Buchmüller–Rückl–
Wyler (BRW) model [60]. In addition to the coupling to the

FIG. 1. Diagrams illustrating the production and decay of particles considered in the simplified models for the supersymmetric “stop-
stau” scenario (left) and for scalar leptoquarks of charge þ 2

3
e (middle) and − 1

3
e (right).
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third fermion generation that is probed in this analysis,
leptoquarks would need to have cross-generational cou-
plings in order to explain the anomalies observed in B-
meson decays. The search is carried out for both up-type
scalar leptoquarks with fractional charge QðLQu

3Þ ¼ þ 2
3
e

and decays LQu
3 → tντ=bτ, and down-type scalar lepto-

quarks with QðLQd
3Þ ¼ − 1

3
e and decays LQd

3 → bντ=tτ.
The production and decay of the leptoquarks are illus-
trated in Fig. 1. The model parameters are the leptoquark
mass mðLQu=d

3 Þ and the branching fraction BðLQu=d
3 →

qlÞ into a quark and a charged lepton. For a branching
fraction BðLQu=d

3 → qlÞ ∼ 0.5, most of the decays of the
pair of third-generation leptoquarks yield a final state
with one tau lepton, two b-jets and large Emiss

T from the
tau neutrino. This signature matches that of the single-tau
channel, which presents unique coverage of leptoquark
masses at BðLQu=d

3 → qlÞ ∼ 0.5, but also has good sen-
sitivity to a wide range of smaller or larger branching
fractions.
The scalar-LQ model is the same as was used in a

previous ATLAS paper [61] detailing a search for third-
generation leptoquarks based on 36.1 fb−1 of data taken atffiffiffi
s

p ¼ 13 TeV. This earlier paper comprises a dedicated
reoptimization of the ATLAS search for pair-produced
Higgs bosons and four reinterpretations of ATLAS SUSY
searches, one of which is the previous iteration of the stop-
stau search [58]. Leptoquark masses below at least 0.8 TeV
are excluded at intermediate values of the branching
fraction BðLQu=d

3 → qlÞ, with the lower limit increasing

at both small and large BðLQu=d
3 → qlÞ, e.g., to 0.96

(1.02) TeV at BðLQu=d
3 → qlÞ ¼ 0 (1) for down-type

(up-type) leptoquarks. Two recent ATLAS searches for
top or bottom squark pair production have been reinter-
preted in the same up-type or down-type leptoquark model,
respectively [50,62]. Another recent dedicated ATLAS
search for pair-produced leptoquarks combines several
event categories which all require at least one hadronically
decaying tau lepton plus at least one electron or muon [63]
and are complementary to the final states considered in
this paper. It targets the down-type leptoquark model
and excludes leptoquark masses up to 1.43 TeV assuming
BðLQu=d

3 → qlÞ ¼ 1 and up to 1.22 TeV assuming

BðLQu=d
3 → qlÞ ¼ 0.5. The CMS Collaboration has pub-

lished a search of the full run-2 dataset for single or pair
production of scalar or vector leptoquarks coupling to third-
generation fermions, considering final-state signatures
consisting of a top quark, a tau lepton, a neutrino, and
either no or at least one additional b-tagged jet. This search
excludes scalar leptoquarks with masses up to about
1.0 TeV [64]. CMS has also reported several searches
for third-generation leptoquarks based on 35.9 fb−1 of run-
2 data [65–69], which typically set lower limits on the mass
of scalar leptoquarks in the range of 0.9 to 1.1 TeV.

An additional interpretation of the search results is
provided for pair production of vector leptoquarks LQv

3.
Again, it is assumed that the vector leptoquarks can only
decay into third-generation SM particles. The electric
charge of the vector leptoquarks and their decay modes
are the same as those of the up-type scalar leptoquarks in
the middle diagram of Fig. 1. The signal selection criteria
were not explicitly optimized for this model, but the
kinematic distributions of the decay products are similar
for scalar and vector leptoquarks, except when the branch-
ing fraction of the leptoquarks into a quark and a charged
lepton is small, where tau leptons and b-jets predominantly
arise from the leptoquarks decaying into top quarks and
neutrinos rather than directly from the leptoquark decays.
The signal selection developed for scalar leptoquarks can
thus be expected to also perform very well for the case of
vector leptoquarks, although the relevant energy scales are
slightly higher in this case due to the larger production
cross sections at the same mass. As in the signal model with
scalar leptoquarks, the parameters for the vector-leptoquark
model are the leptoquark mass mðLQv

3Þ and the branching
fraction BðLQv

3 → bτÞ into a quark and a charged lepton.
This is the first time this model is used in a search for
leptoquarks by the ATLAS Collaboration. Models with
vector leptoquarks have been considered in several analy-
ses by the CMS Collaboration, including the one in
Ref. [64], which excludes vector leptoquarks decaying
into tν̄τ=bτþ with masses up to 1.65 TeV for pair produc-
tion in the most favorable coupling scenario.

II. ATLAS DETECTOR

The ATLAS experiment [70–72] at the LHC is a multi-
purpose particle detector with a forward–backward sym-
metric cylindrical geometry and a near 4π coverage in solid
angle.1 It consists of an inner tracking detector surrounded by
a thin superconducting solenoid providing a 2 T axial
magnetic field, electromagnetic and hadronic calorimeters,
and a muon spectrometer. The inner tracking detector covers
the pseudorapidity range jηj < 2.5. It consists of silicon
pixel, silicon microstrip, and transition radiation tracking
detectors. Lead/liquid-argon (LAr) sampling calorimeters
provide electromagnetic (EM) energy measurements with
high granularity. A steel/scintillator-tile hadronic calorimeter
covers the central pseudorapidity range (jηj < 1.7). The end
cap and forward regions are instrumented with LAr calo-
rimeters for EM and hadronic energy measurements up to

1ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP
to the center of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates ðr;ϕÞ are used in the transverse plane, ϕ
being the azimuthal angle around the z-axis. The pseudorapidity
is defined in terms of the polar angle θ as η≡ − ln tanðθ=2Þ and is
an approximation of the rapidity y≡ 0.5 ln ½ðEþ pzÞ=ðE − pzÞ�
in the high-energy limit.
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jηj ¼ 4.9. The muon spectrometer surrounds the calorime-
ters and is based on three large superconducting air-core
toroidal magnets with eight coils each. The muon spectrom-
eter includes a system of precision tracking chambers and
fast detectors for triggering. A two-level trigger system is
used to select events [73]. The first-level trigger is imple-
mented in hardware and uses a subset of the detector
information to accept events at a rate below 100 kHz.
This is followed by a software-based high-level trigger that
reduces the accepted event rate to 1 kHz on average
depending on the data-taking conditions. An extensive
software suite [74] is used for real and simulated data
reconstruction and analysis, for operation and in the trigger
and data acquisition systems of the experiment.

III. DATA AND SIMULATED EVENT SAMPLES

The dataset used in this analysis was collected with the
ATLAS detector in proton–proton collisions provided by
the LHC during its second run from 2015 to 2018. The data
was taken at a center-of-mass energy of

ffiffiffi
s

p ¼ 13 TeV with
a minimum separation of 25 ns between consecutive
crossings of proton bunches from the two beams. Events
are selected with triggers on missing transverse momentum
[75], and data-quality requirements are applied to ensure
that all elements of the detectors were operational during
data-taking [76]. The total integrated luminosity amounts
to 139 fb−1 with an uncertainty of 1.7% [77], obtained
using the LUCID-2 detector [78] for the primary luminos-
ity measurements.
Monte Carlo (MC) simulation was used to generate

samples of collision events, which model the expected
kinematics of the investigated signal and SM background
processes. Table I gives a detailed summary of the gen-
eration of the different MC samples used in the analysis. It
lists the generators, the order of the cross section compu-
tation, the parton distribution function (PDF) sets, and the
sets of tuned parameters (tunes) for the parton shower (PS).
For background processes, the detector response was
simulated [79] using the full modeling of the ATLAS
detector in GEANT4 [80], while for the signal samples a
faster variant of the simulation was used that relies on a
parametrized response of the calorimeters [81]. Except for
samples produced with SHERPA [82], which uses a dedi-
cated parton-shower modeling and parameter tune devel-
oped by the SHERPA authors, the parton shower and
hadronization simulation for all samples used the A14
tune [83], and the EVTGEN program [84] was used to model
the decays of b- and c-hadrons in signal samples and
background events. The effect of multiple concurrent
interactions in the same and neighboring bunch crossings
(pileup) was modeled by overlaying the hard-scattering
events with simulated inelastic pp events generated with
PYTHIA8.186 [85] using the NNPDF2.3LO set of PDFs [86]
and the A3 tune [87]. All simulated events are processed
with the same trigger, reconstruction and identification TA
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algorithms as the data, and are weighted to match the
observed distribution of the pileup in data. Dedicated
correction factors are applied to simulation to account
for differences in efficiencies and energy calibrations
between recorded data and simulations. In this analysis,
data-driven methods are applied that improve the modeling
of the dominant SM background processes by normalizing
their contributions to data. These are described in Sec. VI.
The production of top-quark pairs, with or without an

associatedHiggs boson, and of single top quarks in the s- or t-
channel or associated with W bosons was simulated with
POWHEG BOX [88–91], while associated production of top-
quark pairs and a vector boson V ¼ W or Z, as well as top-
quark production in other processes (later called “other top”)
giving smaller contributions (tt̄þWW, tt̄þWZ, tWZ, tZ,
tt̄t and tt̄tt̄), was simulated with MADGRAPH5_aMC@NLO
[104]. The events were interfaced to PYTHIA [92] to model
the parton shower, hadronization, and underlying event,
using the NNPDF2.3LO set of PDFs [86]. The production
of single vector boson (V þ jets), diboson (VV) and triboson
(VVV) events was simulated with SHERPA using the
NNPDF3.0NLO PDF set [94].
Stop-stau signal samples were produced for various

values of mðt̃Þ and mðτ̃Þ. The pair production of top
squarks was simulated at leading order with up to two
additional partons in MADGRAPH5_aMC@NLO. For the
decays of the SUSY particles, the top squark and the tau
slepton, MADSPIN [111] was used to preserve spin corre-
lation and finite-width effects. Both decays are assumed to
be prompt; i.e., the SUSY particles have a negligible
lifetime. The subsequent decays as well as the hadroniza-
tion were simulated in PYTHIA. Cross sections are calcu-
lated including approximate next-to-next-to-leading-order
(NNLO) supersymmetric quantum chromodynamics
(QCD) corrections, with resummation of next-to-next-to-
leading logarithmic (NNLL) soft gluon terms [107–110].
The matching of matrix element and parton shower was
done with the CKKW-L prescription [112,113], with the
matching scale set to one quarter of the top-squark mass.
Simulated events with pair production of up- or down-

type scalar third-generation leptoquarks LQu=d
3 were gen-

erated at next-to-leading order (NLO) in QCD with
MADGRAPH5_aMC@NLO, using the LQ model of
Ref. [114] that adds parton showers to previous fixed-order
NLO QCD calculations [115,116], and the NNPDF3.0NLO
parton distribution function set with αsðmZÞ ¼ 0.118.
MADSPIN was used for the prompt decays of the leptoquarks
into spin-entangled quark-lepton pairs of the third
generation. Parton showering and hadronization were simu-
lated in PYTHIA with the NNPDF2.3LO PDF set with
αsðmZÞ ¼ 0.130. The couplings in the Yukawa-type inter-
action of the leptoquarks with the quark-lepton pair are
determined by two parameters: a common coupling strength
λ and an additional parameter β, with the coupling to a quark
and a charged lepton given by

ffiffiffi
β

p
λ, and the coupling to a

quark and a neutrino by
ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p
λ. The branching fraction

BðLQu=d
3 → qlÞ into a quark and a charged lepton is, except

for kinematic effects arising from the mass differences of the
decay products, equal to β. The leptoquark signal samples
were generated for various leptoquark masses mðLQu=d

3 Þ
and with a fixed parameter value of β ¼ 0.5, so that both
decays of the leptoquarks, either into a quark and a neutrino
or into a quark and a charged lepton, were possible. These
events can be reweighted to arbitrary branching fractions
BðLQu=d

3 → qlÞ to derive the interpretation of the analysis

results in the plane of mðLQu=d
3 Þ vs BðLQu=d

3 → qlÞ. The
coupling parameter λ was set to 0.3, close to the numeric
value of the electromagnetic coupling e ¼ ffiffiffiffiffiffiffiffi

4πα
p

, resulting
in a LQu=d

3 width equal to about 0.2% of its mass [60,117].
The cross sections for direct top-squark pair production are
used for LQu=d

3 pair production, as both involve massive,
scalar, color-charged particles and the production modes are
the same. These cross sections do not include the lepton
t-channel contributions possible for LQ pair production,
which are also neglected in Ref. [114] and may lead to
corrections at the percent level [118].
Simulated events with pair production of third-

generation vector leptoquarks LQv
3 were generated at

leading order in QCD with MADGRAPH5_aMC@NLO,
using the LQ model of Ref. [119] and the NNPDF3.0NLO
parton distribution function set with αsðmZÞ ¼ 0.118.
MADSPIN was used for the prompt decays of the lepto-
quarks, and parton showering and hadronization were
simulated in PYTHIA with the NNPDF2.3LO PDF set with
αsðmZÞ ¼ 0.130. The LQv

3 in this model corresponds to the
U1 state in the BRW classification [60] and carries an
electric charge ofQðLQv

3Þ ¼ þ 2
3
e. The model includes two

additional vector states that are needed to obtain a realistic
extension of the SM, a color singlet Z0 and a color octet G0.
However, the Z0 and G0 do not appear in the Feynman
diagrams considered for pair production of vector lepto-
quarks, as their interactions with the vector leptoquarks are
not included in the model. All β parameters are set to zero
except for β33L , such that only decays to left-chiral fermion
fields are allowed, for which the coupling strength is set
to gU ¼ 3.0. The large value of gU is motivated by a
suppression of the production cross section for additional
mediators in a ultraviolet completion of the model, which
might otherwise be in tension with LHC limits if these
mediators are as light as needed to be consistent with the
range of LQ masses considered here. As no higher-order
computations of the cross sections are available for this
vector-leptoquark model, the leading-order cross sections
computed by the event generator are used. Two different
scenarios are considered: the minimal-coupling scenario
with κU ¼ κ̃U ¼ 1, where the LQ couples to the SM gauge
bosons purely through the covariant derivative, and the
Yang–Mills scenario with κU ¼ κ̃U ¼ 0, where the LQ is
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a massive gauge boson and has additional couplings to the
SM gauge bosons [120]. The two scenarios differ mainly in
the pair-production cross section, which is roughly 5 times as
large in the Yang–Mills scenario atmðLQv

3Þ ¼ 1.5 TeV as in
the minimal-coupling scenario, which in turn is roughly
4 times as large as the pair-production cross section for the
scalar LQu=d

3 at the same mass.

IV. EVENT RECONSTRUCTION

All events are required to have at least one reconstructed
interaction vertex with a minimum of two associated tracks
with pT > 500 MeV. In events with multiple vertices, the
one with the highest sum of squared transverse momenta of
associated tracks is chosen as the primary vertex [121].
Events that contain jets that do not satisfy the set of quality
criteria described in Ref. [122] are rejected in order to
reduce noncollision backgrounds and backgrounds induced
by calorimeter noise.
Jets are reconstructed from particle-flow objects [123]

calibrated at the EM scale using the anti-kt algorithm with a
radius parameter of R ¼ 0.4 [124,125]. Since both signal
models predict the production of particles with large
masses, only jets in the central region within jηj < 2.8
are used. The jets are calibrated following the procedure
described in Ref. [126] and are required to have
pT > 20 GeV. To suppress jets from pileup interactions,
jet candidates with pT < 60 GeV and jηj < 2.4 are required
to pass the tight working point of the jet vertex tagger [127].
Selected jets that are likely to originate from the hadroniza-
tion of a bottom quark are flagged as b-jets if they lie within
jηj < 2.5 and are tagged by the DL1r algorithm, a multi-
variate discriminant based on various inputs such as track
impact parameters and displaced secondary vertices
[128,129]. The b-tagging algorithm uses a working point
with an efficiency of 77%, with an approximate misidenti-
fication probability of 20% for jets arising from charm
quarks, 6.7% for hadronically decaying τ-leptons, and 0.9%
for light-flavor jets in simulated tt̄ events.
Tau leptons which decay leptonically are not identified

as such, but are instead reconstructed as a candidate for
a prompt electron or muon. Therefore, in the context of
reconstructed analysis objects, “tau lepton” will always
refer to a hadronic tau lepton, i.e., a tau lepton that decays
hadronically. The visible component of hadronically
decaying tau leptons is reconstructed from anti-kt jets
(R ¼ 0.4) built from locally calibrated topological clusters
[130], with a distance parameter R ¼ 0.4 and requiring
pT > 10 GeV and jηj < 2.5 [131,132]. The energy cali-
bration applies a pileup subtraction and a correction to the
detector response. Information from the tracking system
improves the energy resolution at low pT [132,133]. Tau-
lepton candidates are required to have pT > 20 GeV and
lie outside the transition region 1.37 < jηj < 1.52 between
the barrel and end cap calorimeters. Furthermore, they must
have either one or three charged tracks (“prongs”) with a

charge sum of �1 in units of the elementary charge.
A recurrent neural network algorithm [134] distinguishes
hadronically decaying tau leptons from quark- and gluon-
initiated jets by using a combination of high-level dis-
criminating variables as well as tracking and calorimeter
measurements. Itsmediumworking point is used to identify
hadronic tau leptons, with efficiencies of 75% and 60% in
simulated Drell-Yan events, and background-rejection fac-
tors of 35 and 240 in simulated dijet events, for one-prong
and three-prong decays, respectively. Electrons misidenti-
fied as hadronic tau-lepton candidates are rejected using a
dedicated boosted decision tree algorithm. Reconstructed
tau leptons in simulated events are called “real” tau leptons
if they can be geometrically matched to a tau lepton in the
MC “truth” record; otherwise they are referred to as “fake”
tau leptons.
As described in Sec. V, events with prompt electrons or

muons are rejected in the analysis selections, so these only
enter in the computation of missing transverse momentum
and in the overlap-removal procedure, and are not consid-
ered otherwise. Electron candidates are reconstructed from
energy deposits in the electromagnetic calorimeter that are
matched to tracks in the inner detector (ID) [135,136]. They
are required to have pT > 10 GeV and jηj < 2.47 and pass
the LooseAndBLayer identification requirement. Muon
candidates are reconstructed by combining information
from the ID and the muon spectrometer [137]. They are
required to have pT > 10 GeV and jηj < 2.7 and satisfy the
medium identification criteria. The absolute value of the
longitudinal impact parameter z0 of each prompt electron or
muon candidate is required to be less than 0.5 mm.
An overlap-removal procedure is applied to all selected

objects to resolve ambiguities in the reconstruction in
several consecutive steps. First, if two electrons share
the same track, the electron with lower transverse momen-
tum is discarded. Next, tau leptons overlapping with
an electron or a muon within ΔRy < 0.2 are removed,
where the angular distance is measured in units of ΔRy ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔyÞ2 þ ðΔϕÞ2

p
with the rapidity y instead of the pseu-

dorapidity η to account for cases where particle masses
cannot be neglected. If an electron shares an ID track with a
muon, the electron is discarded unless the muon is tagged
as a minimum-ionizing particle in the calorimeter, in which
case the muon is discarded. Jets within ΔRy ¼ 0.2 of
an electron are removed. In order to suppress electrons
from semileptonic heavy-flavor decays, electrons within
ΔRy ¼ 0.4 of a jet are removed. Any jet with fewer than
three associated tracks is discarded if a muon is within
ΔRy ¼ 0.2 of the jet or if a muon can be matched to a track
associated with the jet. For the same reason as for electrons,
muons within ΔRy ¼ 0.4 of a jet are removed. Lastly, jets
within ΔRy ¼ 0.4 of a tau lepton are removed.
The missing transverse momentum Emiss

T is defined as
the negative vector sum of the transverse momenta of all
calibrated objects mentioned above, photons [136], and an

G. AAD et al. PHYS. REV. D 104, 112005 (2021)

112005-6



additional soft term including all tracks associated with the
primary vertex but not matched to any reconstructed object
[138,139]. The magnitude of Emiss

T is denoted by Emiss
T .

V. EVENT SELECTION

The analysis covers two different channels: the single-
tau channel and the di-tau channel. In both channels, object
multiplicities and kinematic variables are used to define
several different event selections (analysis regions). All of
these event selections start from a common preselection
described below. The preselections in the single-tau and di-
tau channels are identical except for the number of tau
leptons and b-tagged jets. The sets of events selected in the
two channels are thus mutually exclusive and can therefore
be statistically combined, as is done in the interpretation of
the results.

A. Preselection

The preselection requirements for the two channels are
summarized in Table II. Events are selected using an Emiss

T
trigger [75]. In combination with the requirement of
Emiss
T > 250 GeV, this trigger is fully efficient in the phase

space that the analysis targets. As no light leptons are
expected from the benchmark signal models when only
hadronically decaying tau leptons are considered, events
with light leptons are rejected. Events are required to have
at least two jets, at least one (two) of which must be
b-tagged in the di-tau (single-tau) channel. Additionally,
events in the di-tau channel are required to have at least two
reconstructed tau leptons, whereas exactly one tau lepton
is required in the single-tau channel. The tight Emiss

T and
b-tagging requirements efficiently suppress multijet events
such that their contribution to the analysis regions is
negligible. This was verified with dedicated data-driven
estimates for both channels.

B. Signal regions

Dedicated signal-enriched regions are defined for each
channel, having been optimized individually by maximiz-
ing the estimated discovery significance [140] for bench-
mark signal models close to the previous exclusion
contours. The selection requirements for the signal regions
are explained in the following, and a summary is included

in the overview of the analysis regions in Table III for the
di-tau channel and Table IV for the single-tau channel. The
signal region (SR) in the di-tau channel targets stop-stau
signal models with a low to modest mass difference
between the top squark and the tau slepton. This SR is
not used for the leptoquark models, as the final states for
that model at β ¼ 0.5 have only one tau lepton on average.
The case of β ¼ 1.0, which would yield two tau leptons, is
not within the scope of this paper, and the requirements
on Emiss

T and that no leptons be present in the final state
strongly reduce the sensitivity to this scenario. The single-
tau channel employs two signal regions: a one-bin SR for
the model-independent fit, and a multibin SR for the model-
dependent fit, as is discussed in Sec. VIII. Each of the two
signal regions in this channel is optimized simultaneously
for the scalar-leptoquark signal models and the stop-stau
signal models that have a large mass difference between the
top squark and the tau slepton.

1. Di-tau channel

The most discriminating variable in the di-tau channel is
the “stransverse” mass variable [141,142], which by itself
already provides good separation between the signal and
the background. The stransverse mass mT2 is a generali-
zation of the transverse mass mT, which is computed as
mT

2ðpT;Emiss
T Þ ¼ 2pTEmiss

T ð1 − cosΔϕðpT;Emiss
T ÞÞ from

the transverse momentum of some given particle and the
missing transverse momentum. It generalizes the transverse
mass for symmetric event topologies where two identical
particles each decay into a visible and an invisible product.
In this case the individual transverse momenta of the
invisible particles can no longer be directly approximated
by the measured missing transverse momentum, as the
information about their individual contributions to the
missing transverse momentum is lost. Using subscripts
to refer to the physics objects reconstructed in a collision
event in order of decreasing transverse momentum, for the
two leading tau leptons, i.e., the two tau leptons with the
largest (τ1) and second-largest (τ2) transverse momentum,
mT2ðτ1; τ2Þ is computed as

mT2ðτ1;τ2Þ¼ min
qaTþqbT¼Emiss

T

�
max ½mTðpτ1

T ;q
a
TÞ;mTðpτ2

T ;q
b
TÞ�

�
;

where a and b refer to two invisible particles assumed to be
produced with transverse momentum qa;b

T . The minimum is
taken over all possible assignments to qa;b

T that sum to the
measured Emiss

T . The masses of the invisible particles are
free parameters and are set to zero. For the dominant top-
quark-related backgrounds, the mT2ðτ1; τ2Þ distribution
features an end point near the W-boson mass. By placing
a lower bound at 70 GeV most of this background can be
removed, while efficiently selecting stop-stau signal events,
for which themT2ðτ1; τ2Þ distribution exhibits a tail towards

TABLE II. Preselection of the di-tau and single-tau channels.

Di-tau preselection Single-tau preselection

Emiss
T -trigger fired and Emiss

T > 250 GeV
No light leptons (e=μ)

At least two jets
At least two hadronic
tau leptons

Exactly one hadronic tau lepton

At least one b-tagged jet At least two b-tagged jets
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much higher values. The sensitivity is further enhanced by
raising the lower bound on Emiss

T to 280 GeV and requiring
the two leading tau leptons to carry electric charges with
opposite signs, a criterion later denoted by OSðτ1; τ2Þ ¼ 1.

2. Single-tau channel

Both signal regions in the single-tau channel have a lower
bound on Emiss

T at 280 GeVand on the sum of the transverse
masses of the b-jets,

P
mTðb1;2Þ ¼ mTðb1Þ þmTðb2Þ, at

700 GeV. In this expression and the following, mTðAÞ for a
given particle A should be read as mTðAÞ≡mTðpA

T;E
miss
T Þ.

The one-bin SR requires mTðτÞ > 300 GeV and sT >
800 GeV, where sT is defined as the scalar sum of the
transversemomenta of the tau lepton and the two leading jets,
sT ¼ pTðτÞ þ pTðjet1Þ þ pTðjet2Þ. While both the stop-stau
and LQu=d

3 signals show fairly similar behavior in most
kinematic variables, their pTðτÞ distributions differ. This is
due to the large mass difference in the stop-stau target
scenario, so that the tau leptons are softer than thoseproduced
in the LQu=d

3 decay. To account for the different shapes of the
transverse momentum distributions of the tau leptons, the
second SR is defined with three bins in pTðτÞ. The first two
pTðτÞ bins cover 50 to 100 GeVand 100 to 200 GeV, and the
last bin all values beyond 200 GeV. To reduce the statistical
uncertainty in the three pTðτÞ bins, two selection require-
ments are loosened relative to the one-bin SR: the minimum
mTðτÞ requirement is lowered to 150 GeV, and the minimum
sT requirement to 600 GeV. As the one-bin SR is a subset of
the multibin SR, they cannot be combined in the statistical
interpretation of the results discussed in Sec.VIII. Amultibin
SR based on sT instead of pTðτÞ was also tested but was
found to have lower sensitivity.

VI. BACKGROUND ESTIMATION

The background in the signal regions is dominated by tt̄
and single-top production, which can yield events with a
final state similar to the signal processes. Dedicated control
regions are defined for these background processes. Top-
quark production can contribute to the background in
different ways. Events with tt̄ production, where both W
bosons arising from the top-quark decay into a hadronic tau
lepton, have two real tau leptons. This process, denoted by

tt̄ (2 real τ), contributes to the di-tau channel if both
hadronic tau leptons are correctly identified. If instead only
one of theW bosons from the tt̄ system gives a hadronic tau
lepton which is correctly identified, and the second W
boson decays hadronically, the resulting jet from the second
W-boson decay can be misidentified as a tau lepton, and
such an event can then still satisfy the di-tau channel
selection criteria. While the misidentification probability is
of the order of a few percent, the larger branching fraction
of hadronicW decays and the less pronounced end point in
the mT2ðτ1; τ2Þ distribution for tt̄ events with one real and
one fake tau lepton still leads to a significant contribution in
the di-tau channel. This type of event can also enter the
single-tau channel selection, if the jet from the second W
boson is not misidentified as a tau lepton. Di-tau tt̄ events in
which only one of the two identified tau leptons is real, and
single-tau tt̄ events with one real tau lepton, are referred to
as tt̄ (1 real τ) events. Lastly, fully hadronic tt̄ decays,
without any real tau leptons that pass the selections in either
the single-tau or di-tau channel, are referred to as tt̄-fake
events. Due to their different kinematics, the simulated tt̄

TABLE III. Definitions of the tt̄ control and validation regions and the signal region in the di-tau channel. Centered dots (� � �) signify
that no requirement on the given variable is applied, while brackets indicate an allowed range for the variable. These requirements extend
those of the di-tau preselection from Table II.

Variable CR tt̄ (2 real τ) CR tt̄ (1 real τ) VR tt̄ (2 real τ) VR tt̄ (1 real τ) SR

Emiss
T � � � � � � � � � � � � > 280 GeV

OSðτ1; τ2Þ 1 � � � 1 � � � 1
mT2ðτ1; τ2Þ < 35 GeV < 35 GeV ½35; 70� GeV ½35; 70� GeV > 70 GeV
mvisðτ1; τ2Þ > 50 GeV > 50 GeV � � � � � � � � �
mTðτ1Þ > 50 GeV < 50 GeV > 70 GeV < 70 GeV � � �

FIG. 2. Overview of the selections defining the control,
validation and signal regions in the di-tau channel in the
phase-space spanned by the variables mT2ðτ1; τ2Þ, mTðτ1Þ, and
OSðτ1; τ2Þ, where OSðτ1; τ2Þ ¼ 1 means that the reconstructed
charges of the two leading tau leptons have opposite signs. In
addition to these variables, Emiss

T > 280 GeV is required for the
signal region, and mvisðτ1; τ2Þ > 50 GeV for the control regions.
The complete definitions are summarized in Table III.
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events are separated into these three event types, tt̄ (2
real τ), tt̄ (1 real τ), and tt̄-fake, and treated as separate
background components in the following.
Subdominant contributions to the SM background arise

from singly produced vector bosons (W þ jets and Z þ jets
events) and production of vector bosons in association with
top-quark pairs (tt̄þ V). In addition, multiboson produc-
tion, tt̄ production in association with a Higgs boson
(tt̄þH) and other top-related processes yield small con-
tributions. These subdominant processes are normalized
according to the theory cross section predictions and the
integrated luminosity measured in data.
The normalization factors for the MC predictions for tt̄

and single-top production are extracted in a simultaneous
binned maximum-likelihood fit to the observed data in the

control regions (CRs). This fit, where no signal contribu-
tions are included, is referred to as the background-only fit.
The CRs are designed to be enriched in a given background
process and to be kinematically as similar to the SRs
as possible, while maintaining sufficient purity and a high
enough event yield with negligible contamination from
signal. In addition to the data yields in the CRs, the
expected yields and statistical and systematic uncertainties
from MC simulation, described in Sec. VII, are input to the
background-only fit. The yields obtained from the back-
ground-only fit can then be extrapolated to dedicated
validation regions (VRs) to assess the accuracy of the
background estimate. All CR, VR and SR selections are
mutually exclusive so that they are statistically independent
as required for the fit. The CR and VR selections are
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FIG. 3. Distributions of mT2ðτ1; τ2Þ and Emiss
T in the di-tau channel. The left-hand plots show the control regions and the right-hand

plots the validation regions, with mT2ðτ1; τ2Þ in the tt̄ (2 real τ) CR and VR in the top row and Emiss
T in the tt̄ (1 real τ) CR and VR in the

bottom row. The CRs and VRs have different requirements on the transverse massmTðτ1Þ. The stacked histograms show the various SM
background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The tt̄
(2 real τ) and tt̄ (1 real τ) contributions and the single-top background contributions are scaled with the normalization factors obtained
from the background-only fit. Minor backgrounds are grouped together and denoted by “Other”. This includes tt̄-fake, tt̄þ X,
multiboson, and other top. The rightmost bin includes the overflow.
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introduced in Secs. VI A and VI B for the di-tau and single-
tau channel, respectively. In addition to the background-
only fit, model-dependent and model-independent fit
setups [143] which include the signal regions are used
for the interpretation of the results as further detailed in
Sec. VIII.

A. Di-tau channel

Table III summarizes the selections that define the
control, validation and signal regions in the di-tau channel.
One control region and one validation region are defined in
this channel for each of the tt̄ (2 real τ) and tt̄ (1 real τ)
processes. Their location in the phase-space spanned by
mT2ðτ1; τ2Þ, mTðτ1Þ, and OSðτ1; τ2Þ is illustrated in Fig. 2.
The CRs and VRs sit in the mT2ðτ1; τ2Þ sideband below
70 GeV, above which the SR is located, and are separated
at 35 GeV.
Top-quark pair-production events in which only one of

the W bosons decays leptonically, with one real tau lepton
and one fake tau lepton, feature an end point in the mT

distribution of the real tau lepton near the W mass. The
reason is that the dominant source of Emiss

T is the tau
neutrino from the W decay. By contrast, for tt̄ events with
two real tau leptons, two tau neutrinos contribute to the
Emiss
T and there is no distinct end point in mT. This

difference in the shapes of the mT distributions is exploited
in the selection of tt̄ (2 real τ) and tt̄ (1 real τ) events. In the
majority of tt̄ (1 real τ) events in the di-tau channel, the
real tau lepton corresponds to the leading reconstructed
tau lepton. A requirement on mTðτ1Þ at 50 (70) GeV is
thus used to separate the tt̄ (2 real τ) CR (VR) from the
tt̄ (1 real τ) CR (VR). By requiring the leading and
subleading tau lepton in the tt̄ (2 real τ) CR and VR
selections to carry electric charges of opposite sign,
OSðτ1; τ2Þ ¼ 1, the purity is further increased. In addition,
a lower bound on the invariant mass of the two tau leptons
computed from the visible decay products, mvisðτ1; τ2Þ,
at 50 GeV is applied to reduce the contribution from
Z þ jets events.
Distributions of the main discriminating variables

mT2ðτ1; τ2Þ and Emiss
T in the control and validation regions

of the di-tau channel are shown in Fig. 3. The predictions
for the top-quark backgrounds are scaled with the nor-
malization factors obtained from the background-only fit.
Their values are given in Sec. VIII. From the plots it can
be seen that the background model describes the data
very well.

B. Single-tau channel

For the two dominant processes in the single-tau
channel, tt̄ production with one real tau lepton and
single-top production, again two pairs of control and
validation regions are defined. The definitions are illus-
trated in Fig. 4 and summarized in Table IV. In contrast to
the di-tau CRs and VRs, the larger available number of
events in the single-tau channel allows the lower bound on
Emiss
T used in the CR and VR selections to be the same as for

the SR. The tt̄ (1 real τ) control and validation regions in the
single-tau channel are placed in the

P
mTðb1;2Þ sideband

between 600 and 700 GeV. The control region is located in
the sT window from 500 to 600 GeV, and the validation

TABLE IV. Definitions of the tt̄ (1 real τ) and single-top control and validation regions and the signal region in the single-tau channel.
Centered dots (� � �) signify that no requirement on the given variable is applied, while brackets indicate an allowed range for the variable.
In the last column, parentheses enclose the values and ranges used for the multibin SR. The binning in pTðτÞ of the multibin SR,
abbreviated with “binned,” is [50, 100], [100, 200], and >200 GeV. These requirements extend those of the single-tau preselection
from Table II.

Variable CR tt̄ (1 real τ) CR single top VR tt̄ (1 real τ) VR single top SR

Emiss
T > 280 GeV > 280 GeV > 280 GeV > 280 GeV > 280 GeV

sT ½500; 600� GeV � � � > 600 GeV � � � > 800ð600Þ GeVP
mTðb1;2Þ ½600; 700� GeV > 800 GeV ½600; 700� GeV > 800 GeV > 700 GeV

mTðτÞ � � � < 50 GeV � � � ½50; 150� GeV > 300ð150Þ GeV
pTðτÞ � � � > 80 GeV � � � > 80 GeV � � � (binned)

FIG. 4. Overview of the selections defining the control and
validation regions and the multibin signal region in the single-tau
channel in the phase-space spanned by the variables

P
mTðb1;2Þ,

mTðτÞ and sT. In addition to these variables, Emiss
T > 280 GeV is

required for the signal region, and pTðτ1Þ > 80 GeV for the
single-top control and validation regions. The complete defini-
tions are summarized in Table IV.
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region covers the range above 600 GeV. The normalization
of the tt̄ (1 real τ) process is obtained from a simultaneous
fit of both control regions for this process, one from each
channel. The CR and VR for the single-top background sit
in the mTðτÞ window from 0 to 50 GeVand 50 to 150 GeV,
respectively. Additionally, lower bounds on

P
mTðb1;2Þ at

800 GeVand on pTðτÞ at 80 GeV increase the purity of both
the single-top CR and VR. Events from tt̄ (1 real τ) are less
likely to fulfill the pTðτÞ requirement, which favors high-
energy decay products. They also tend to have lowerP

mTðb1;2Þ, as the transverse mass computed for the
subleading b-jet has a quite distinct end point near the
top-quark mass.
Figure 5 shows the distribution of sT and mTðτÞ in the tt̄

(1 real τ) CR and VR and in the single-top CR and VR of
the single-tau channel. The predictions for the top-quark

backgrounds are scaled with the normalization factors
obtained from the background-only fit. These are consistent
with one for the tt̄ (2 real τ) and tt̄ (1 real τ) backgrounds, but
much smaller than one for the single-top background as
discussed further in Section VIII. Therefore, the contribution
of scaled single-top events to the single-top CR and VR in
the figure is very low, whereas it is 43% before applying the
normalization factors. From the plots it can be seen that
the background model describes the data very well.

VII. SYSTEMATIC UNCERTAINTIES

The expected yields for signal and background processes
are subject to experimental and theoretical systematic
uncertainties. These uncertainties are implemented as
variations which are parametrized as functions of nuisance

0

10

20

30

40

50

60

70

80

90

E
nt

rie
s 

/ 2
0 

G
eV

Single-tau channel

)τ (1 real tCR t

ATLAS
-1 = 13 TeV, 139 fbs

 Data  Total SM

)τ (1 real t t  Other

 V+jets  Single top

500 510 520 530 540 550 560 570 580 590 600
 [GeV]Ts

0.5
1

1.5

D
at

a 
/ S

M

0

20

40

60

80

100

120

140

160

180

200

E
nt

rie
s 

/ 3
00

 G
eV

Single-tau channel

)τ (1 real tVR t

ATLAS
-1 = 13 TeV, 139 fbs

 Data  Total SM

)τ (1 real t t  V+jets

 Other  Single top

600 800 1000 1200 1400 1600 1800
 [GeV]Ts

0.5
1

1.5

D
at

a 
/ S

M

0

20

40

60

80

100

120

140

E
nt

rie
s 

/ 1
0 

G
eV

Single-tau channel

CR single-top

ATLAS
-1 = 13 TeV, 139 fbs

 Data  Total SM

)τ (1 real t t  V+jets

 Single top  Other

0 5 10 15 20 25 30 35 40 45 50
) [GeV]τ(Tm

0.5
1

1.5

D
at

a 
/ S

M

0

20

40

60

80

100

120

140

160

180

E
nt

rie
s 

/ 3
3.

3 
G

eV

Single-tau channel

VR single-top

ATLAS
-1 = 13 TeV, 139 fbs

 Data  Total SM

)τ (1 real t t  V+jets

 Single top  Other

50 60 70 80 90 100 110 120 130 140 150
) [GeV]τ(Tm

0.5
1

1.5

D
at

a 
/ S

M

FIG. 5. Distributions of sT andmTðτÞ in the control regions and the validation regions of the single-tau channel. The top row shows sT
in the tt̄ (1 real τ) CR (left) and tt̄ (1 real τ) VR (right), the bottom row showsmTðτÞ in the single-top CR (left) and single-top VR (right).
The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic
uncertainty of the SM background. The tt̄ (1 real τ) and single-top background contributions are scaled with the normalization factors
obtained from the background-only fit. Minor backgrounds are grouped together and denoted by “Other”. This includes tt̄-fake, tt̄þ X,
multiboson, and other top. The rightmost bin includes the overflow in the upper right plot.

SEARCH FOR NEW PHENOMENA IN PP COLLISIONS IN … PHYS. REV. D 104, 112005 (2021)

112005-11



parameters with Gaussian probability densities in the
likelihood fits.
Experimental uncertainties comprise systematic uncer-

tainties in the reconstruction, identification, calibration and
corrections performed for the physics objects used in the
analysis. Energy resolution and calibration uncertainties
apply to all objects. For tau leptons, additional experimen-
tal systematic uncertainties arise from the reconstruction
and identification efficiencies. Since events with prompt
electrons and muons are rejected at preselection level, the
related uncertainties in the reconstruction and identification
are negligible in the analysis regions. For jets, additional
uncertainties from the pileup subtraction, pseudorapidity
intercalibration, flavor composition, and punch-through
effects, as well as uncertainties in the flavor-tagging and
jet-vertex tagging efficiencies, are considered. Systematic
uncertainties affecting the energy or momentum of cali-
brated objects are propagated to the Emiss

T calculation, and
an additional uncertainty due to the contribution of the
soft-track term is considered. To test the robustness of the
analysis against a potential mismodeling of events with two
fake tau leptons, it was verified that an additional uncer-
tainty of 100% in the tt̄-fake background leads to a
negligible decrease in the exclusion reach for the stop-stau
signal model. Common sources of experimental uncer-
tainty are assumed to be correlated across all regions and
between the background processes and the signal.
Uncertainties in the renormalization and factorization

scales are considered for all major background processes
by separately varying the scales μr and μf up and down
by a factor of 2. Additionally, PDF and αs uncertainties are
considered by following the PDF4LHC15 prescription
[144]. The PDF uncertainty is evaluated as the root mean
square of a set of 100 variations, and the effect of the αs
uncertainty is derived by taking the average difference
between the up and down variations. Additional initial-state
and final-state radiation uncertainties are considered for
the tt̄ and single-top processes by varying generator
settings, such as the simultaneous μr and μf variation
and eigenvariations of the A14 tune [83]. Furthermore,
theoretical uncertainties due to the hard-scatter and parton-
shower simulation are estimated by comparing the corre-
sponding nominal yields against those predicted with
alternative generators, i.e., POWHEG versus aMC@NLO
and PYTHIA8 versus HERWIG7, respectively. The impact of
the interference between the single-top Wt and tt̄ produc-
tion processes is estimated by comparing samples produced
with the nominal diagram-removal scheme with alternative
samples generated with the diagram-subtraction scheme
[145]. For V þ jets, additional uncertainties related to
the resummation and CKKW matching scales [146,147]
are considered. Uncertainties in the cross section and in
the integrated luminosity of the data are applied for all
simulated processes except for tt̄ with one or two real
tau leptons and single top-quark production, which are

normalized to data. The theoretical systematic uncertainties
are assumed to be correlated across analysis regions and
uncorrelated between all simulated processes.
Table V summarizes the total systematic uncertainties in

the backgroundexpectation in the signal regions. In thedi-tau
SR the largest sources of experimental uncertainty are the
uncertainties in the jet energy resolution, whereas hard-
scatter and parton-shower uncertainties dominate the uncer-
tainty in the theoretical modeling. For the one-bin and
multibin SRs in the single-tau channel, the theoretical
uncertainties in tt̄ event final-state radiation and in interfer-
ence between the tt̄ and Wt processes take the leading role.
For the theoretical uncertainties in the signal acceptance

an estimate of 20% is used, which is derived from a study of
the impact of varying the renormalization and factorization
scales, the radiation and merging scales, the PDF, and the αs
value for several stop-stau, LQu=d

3 , and LQv
3 signal points.

Uncertainties in the signal production cross section are
considered separately in the interpretation of the results
discussed in Sec. VIII.

VIII. RESULTS

The predictions of the event yields from SM background
processes obtained from the background-only fit to the
control regions, as described in Sec. VI, and the observed
data are shown in Table VI for the signal regions in the di-tau
and single-tau channels. Events with pair-produced top
quarks make up the largest contribution in all signal regions.
The normalization factors obtained from the background-
only fit are 0.93þ0.32

−0.23 for the tt̄ (2 real τ) background,
0.84þ0.21

−0.17 for tt̄ (1 real τ), and 0.18þ0.19
−0.16 for single-top

production. The normalization factor for single-top produc-
tion is significantly smaller than one and strongly depends
on how the interference between single-top production at

TABLE V. Relative systematic uncertainties in the estimated
number of background events in the signal regions. In the lower
part of the table, a breakdown of the total uncertainty into
different categories is given. For the multibin SR, the breakdown
refers to the integral over all three pTðτÞ bins. Since the individual
uncertainties are correlated, they do not sum in quadrature to
equal the total background uncertainty.

Systematic uncertainty Di-tau SR Single-tau

one-bin SR multibin SR

Total 25% 17% 17%
Jet-related 19% 4.2% 3.9%
Tau-related 4.7% 5.5% 4.3%
Other experimental 3.7% 1.0% 0.8%
Theoretical modeling 13% 17% 19%
MC statistics 12% 7.5% 4.4%
Normalization factors 8.8% 15% 16%
Luminosity 0.8% 0.5% 0.4%
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next-to-leading order and leading-order tt̄ production is
handled [145,148,149]. The value 0.18 is obtained from
the samples generated with the nominal diagram-removal
scheme. The alternative diagram-subtraction scheme gives a
normalization factor larger than 1 with very large uncer-
tainties due to the much smaller yields and thus insufficient
purity in the control region. The difference between the CR
yields can be attributed to the much softer b-jet distribution
for the diagram-subtraction scheme. However, the distribu-
tion shape of mTðτ1Þ, the variable used in the extrapolation
from the control region to the signal region in the single-tau
channel, agrees very well between the two schemes, giving
confidence in the validity of the extrapolation. Furthermore,
the predicted yields in the signal regions after the fit do not
differ significantly between the two interference schemes,
and the difference is taken into account as a systematic
uncertainty.
No significant excess of data events above the SM

expectation is observed in any of the signal regions. The
largest excursions from the expected yields are a deficit
with a significance of 1.0σ in the signal region of the di-tau
channel and an excess with a significance of 1.3σ in the
one-bin signal region of the single-tau channel, computed
with the approximate formulas from Ref. [140]. The excess
is not present, however, in the binned signal region of the
single-tau channel. Figure 6 compares the observed data
yields with the expected backgrounds for all event selec-
tions of the analysis. The entries in the rightmost column of
the plot are the sum of the three bins of the multibin signal
region in the single-tau channel, labeled “SR (multibin).”
Figure 7 shows distributions of several kinematic variables
for the expected SM background, and compares them with

the distributions expected for several benchmark signal
models and the observed data in the di-tau and single-tau
signal regions.
In the absence of a significant excess, the analysis results

are interpreted in terms of exclusion limits on the param-
eters of the stop-stau and leptoquark signal models. The
limits are derived from a model-dependent fit, which
includes the relevant signal regions in addition to the
control regions, and signal contributions are taken into
account in all analysis regions. The signal contamination of
the control and validation regions does not exceed 10%
(12%) for model parameters that were not excluded by
previous searches for the stop-stau (scalar leptoquark)
signal. As there are no previous results for the vector-
leptoquark model, the low mðLQv

3Þ range is included in the
interpretation, where sizable signal contributions to the
control and validation regions can be present, exceeding
10% below 1100 (900) GeV for the Yang–Mills (minimal-
coupling) scenario. However, as any signal contamination
of the control regions is accounted for in the model-
dependent fit, and none of the normalization factors are
found to be larger than one, the signal contamination is not
expected to weaken the interpretation for these cases either.
Whether the signal-plus-background hypothesis is compat-
ible with the observed event yields is assessed using the
CLs prescription [150], for which the p-values are com-
puted with asymptotic formulas obtained for a profile-
likelihood ratio as the test statistic [140]. The validity of the
asymptotic formulas has been checked through a compari-
son with the results from pseudoexperiments in the case of
the model-independent limits. The likelihood is the product
of Poisson terms modeling the joint probability of the event

TABLE VI. Observed event yields in data (“observed”) and expected event yields for SM background processes obtained from the
background-only fit (“total bkg.” and rows below) in the signal regions of the di-tau and single-tau channels. The quoted uncertainties
include both the statistical and systematic uncertainties and are truncated at zero yield. By construction, no tt̄ (2 real τ) events can pass
the selections in the single-tau channel. Since the individual uncertainties are correlated, they do not sum in quadrature to equal the total
background uncertainty.

Di-tau SR Single-tau SR (one-bin) Single-tau SR (binned in pTðτÞ)
½50; 100� GeV ½100; 200� GeV > 200 GeV

Observed 2 6 8 6 2

Total bkg. 4.1� 1.0 3.23� 0.55 10.1� 1.8 5.1� 1.1 2.05� 0.64

tt̄ (2 real τ) 0.81� 0.71 � � � � � � � � � � � �
tt̄ (1 real τ) 0.82� 0.27 1.20� 0.30 4.8� 1.2 2.69� 0.88 0.64� 0.29
tt̄-fake 0.51� 0.15 0.69� 0.15 2.83� 0.87 0.66� 0.17 0.185� 0.072
Single top 0.03þ0.10

−0.03 0.39þ0.45
−0.39 0.85þ0.86

−0.85 0.54� 0.54 0.57� 0.56
W þ jets 0.08þ0.11

−0.08 0.35� 0.16 0.34� 0.12 0.64� 0.24 0.37� 0.12
Z þ jets 0.35� 0.14 0.187� 0.054 0.275� 0.081 0.043� 0.022 0.123� 0.048
Multiboson 0.48� 0.21 0.085� 0.037 0.163� 0.037 0.111� 0.030 0.030þ0.032

−0.030
tt̄þ V 0.60� 0.15 0.242� 0.064 0.65� 0.16 0.31� 0.12 0.092� 0.035
tt̄þH 0.28þ0.29

−0.28 0.039þ0.040
−0.039 0.10� 0.10 0.060þ0.061

−0.060 0.028þ0.029
−0.028

Other top 0.122� 0.067 0.043� 0.022 0.096� 0.074 0.091� 0.049 0.0120� 0.0084
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yields for all analysis regions considered in the fit and
Gaussian probability terms that constrain the nuisance
parameters related to the systematic uncertainties. Figure 8
shows the expected and observed exclusion contours at the
95% confidence level for the stop-stau signal computed from
the model-dependent fit that includes both the di-tau and
single-tau multibin SR. All systematic uncertainties are
included in the fit with the exception of the signal cross-
section uncertainty, for which a separate band around the
observed limit contour is drawn instead. The expected
exclusion reach of the analysis extends to top-squark masses
around1.35TeVover awide range of tau-sleptonmasses, and
to tau-slepton masses around 1.15 TeV.With decreasing tau-
sleptonmass, most noticeably below 400 GeV, the exclusion
reach in top-squark mass becomes lower, because the
fraction of Emiss

T that is due to the neutrinos from the top-
squark decay increases, and thus the discrimination power of
mT2 is reduced. The observed exclusion reach slightly
exceeds the expected exclusion reach, as the sensitivity to
the stop-stau signal model for tau-slepton masses larger than
200 GeV is dominated by the di-tau SR with an observed
deficit. Top-squark masses of up to 1.4 TeVand tau-slepton
masses of up to 1.2 TeVare excluded at the 95% confidence
level in this specific model. These are the strongest mass
limits for these two supersymmetric particles in a simplified
model from run 2 of the LHC to date. They extend

significantly beyond the limits from the previous ATLAS
analysis, which are shown in the plot for comparison. The
gain in sensitivity is partly due to the larger dataset used in
the analysis, but also due to improved reconstruction and
identification algorithms for tau leptons and b-jets, and an
improved signal-region strategy with reoptimized selection
requirements and the added single-tau signal region targeting
low tau-slepton masses.
Exclusion limits for the scalar-leptoquark signal are

shown in the two plots in Fig. 9, where the upper plot
considers pair production of up-type leptoquarks LQu

3 and
the bottom plot pair production of down-type leptoquarks
LQd

3. To derive these exclusion limits, the model-dependent
fit includes, besides the four CRs, only the single-tau
multibin SR. The di-tau SR has not been optimized for
the leptoquarkmodels, as final states with two tau leptons are
covered by a previous search [63]. It has been checked that
as a consequence this SR does not significantly contribute to
the exclusion sensitivity, and it is thus not included in the
interpretation for the leptoquark models. For both types of
scalar leptoquarks, the expected and observed exclusion
contours extend to masses around 1.25 TeVat the 95% con-
fidence level for intermediatevalues of the branching fraction
BðLQu=d

3 → qlÞ. WhenBðLQu=d
3 → qlÞ approaches zero or

one, the fraction of events with exactly one tau lepton
decreases accordingly, leading to a reduction of the
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signal acceptance and thus a lower mass reach. At
BðLQu=d

3 → qlÞ ¼ 0 the leptoquark decays do not directly
produce any tau leptons. The signal events only pass the
signal-region selection if a top quark from an up-type
leptoquark decay produces a tau lepton or if a fake tau lepton

is present in the event. This leads to a large decrease in mass
reach. The reduction of the probability of signal events to pass
the SR selection when approaching BðLQu=d

3 → qlÞ ¼ 0 is
compensated by the cross section. For mðLQÞ ¼ 750 GeV,
corresponding to the mass reach at BðLQu=d

3 → qlÞ ¼ 0, the

FIG. 7. Distributions of mT2ðτ1; τ2Þ and Emiss
T in the di-tau SR (top), of sT and mTðτÞ in the single-tau one-bin SR (middle) and ofP

mTðb1;2Þ and pTðτÞ in the single-tau pTðτÞ-binned SR (bottom). The stacked histograms show the various SM background
contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The tt̄ (2 real τ) and tt̄ (1
real τ) contributions and the single-top background contributions are scaled with the normalization factors obtained from the
background-only fit. Minor backgrounds are grouped together and denoted by “Other”. This includes tt̄-fake, single top, and other top
(di-tau channel) or tt̄-fake, tt̄þH, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional
contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and β parameters for the
simplified models indicated in the legend. For the leptoquark signal model, the shapes of the distributions for LQd

3 and LQ
v
3 (not shown)

are similar to that of LQu
3. The rightmost bin includes the overflow.
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cross section is larger by a factor of about 40 compared to
the cross section at mðLQÞ ¼ 1250 GeV, corresponding to
the excluded LQ mass at BðLQu=d

3 → qlÞ ¼ 0.5.
The exclusion contours from the interpretation of the

analysis results for the vector-leptoquark models are shown
in the two plots in Fig. 10. As in the scalar-leptoquark case,
the model-dependent fit includes, besides the four CRs,
only the single-tau multibin SR. For intermediate values of
the branching fraction BðLQv

3 → bτÞ, the expected and
observed exclusion contours at the 95% confidence level
extend to masses around 1.5 TeV in the minimal-coupling
scenario and to masses around 1.8 TeV in the Yang–Mills
scenario. As expected, the shape of the contours as a
function of BðLQv

3 → bτÞ is very similar to that for the
scalar-leptoquark models, and the larger cross sections for
the pair production of vector leptoquarks lead to a larger
mass reach.
In addition to the model-dependent interpretations for

the signal models shown above, model-independent state-
ments about the presence of physics that is not included in
the background expectation for SM processes can also be
derived from the analysis results. The model-independent
fit is performed for each of the one-bin SRs of the two
analysis channels separately. As no specific model is
assumed, the contamination of the CRs by a potential
signal is neglected, and a generic signal of variable strength
is included in the SR. Table VII states the observed and
expected upper limits, S95obs and S95exp, on the number of
signal events at the 95% confidence level based on the CLs

prescription, where the test statistic is evaluated using
pseudoexperiments. These upper limits are also expressed
as upper limits on the visible signal cross section hAϵσi95obs,
which is defined as the product of acceptance A,
reconstruction efficiency ϵ and signal cross section σ.
The table also reports the CLb value, i.e., the confidence
level observed for the background-only hypothesis, the
discovery p-value, defined as the probability to find
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95% confidence level (C.L.) for the third-generation scalar-
leptoquark signal model, as a function of the mass mðLQu=d

3 Þ
and the branching fraction BðLQu=d

3 → qlÞ into a quark and a
charged lepton. The top plot shows the exclusion contour for up-
type leptoquarks LQu

3 with charge þ 2
3
e, the bottom plot the

exclusion contour for down-type leptoquarks LQd
3 with charge

− 1
3
e. The limits are derived from the binned single-tau signal

region. Shown in gray for comparison are the observed exclusion-
limit contours from the previous ATLAS publication that targets
the same leptoquark models but is based on a subset of the run-2
data [61]. In that publication, five different analyses were
considered that target not only the final state studied here but
also the final states that correspond to a branching fraction
BðLQu=d

3 → qlÞ of 0 or 1, leading to the concave shapes of the
gray exclusion contours.
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the observed number of events or more under the
background-only hypothesis, and the equivalent signifi-
cance for each of the two channels.

IX. CONCLUSION

In this paper, a search for new phenomena in final states
with hadronically decaying tau leptons, b-jets and large
missing transverse momentum is presented. This signature
provides sensitivity to models in which the new particles
preferentially decay into third-generation Standard Model
particles. The analysis exploits the full dataset recorded with
the ATLAS detector in run 2 of the LHC, corresponding to
139 fb−1 of proton–proton collisions at

ffiffiffi
s

p ¼ 13 TeV. No
significant excess of events is observed over the Standard
Model expectation. The results are thus interpreted in terms
of exclusion limits at 95%confidence level for two simplified
models with pair production of supersymmetric top squarks
or leptoquarks which are assumed to only decay into third-
generation fermions. In the case of the supersymmetric
model, masses up to 1.4 TeV are excluded for top squarks
decaying via tau sleptons into nearly massless gravitinos
across a wide range of tau-slepton masses. For both up-type
and down-type scalar leptoquarks, masses up to about
1.25 TeV can be excluded. For vector leptoquarks with
minimal couplings, masses up to about 1.5 TeV can be
excluded, and up to about 1.8 TeV for vector leptoquarks
with additional couplings to gauge bosons. The larger
dataset, updated reconstruction and identification algorithms
for tau leptons and b-jets, and the optimized analysis strategy
yield significantly better sensitivity than in earlier LHC
studies. Based on the considered benchmark models, the
search yields the strongest mass limits to date on pair-
produced top squarks and on pair-produced third-generation
scalar and vector leptoquarks at intermediate values of the
branching fraction into a quark and a charged lepton.
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72aINFN Sezione di Roma Tre, Italy

72bDipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
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73bUniversità degli Studi di Trento, Trento, Italy
74Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

75University of Iowa, Iowa City Iowa, USA
76Department of Physics and Astronomy, Iowa State University, Ames Iowa, USA

77Joint Institute for Nuclear Research, Dubna, Russia
78aDepartamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF),

Juiz de Fora, Brazil
78bUniversidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil

78cInstituto de Física, Universidade de São Paulo, São Paulo, Brazil
79KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

80Graduate School of Science, Kobe University, Kobe, Japan
81aAGH University of Science and Technology, Faculty of Physics and Applied Computer Science,

Krakow, Poland
81bMarian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

82Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
83Faculty of Science, Kyoto University, Kyoto, Japan

84Kyoto University of Education, Kyoto, Japan

G. AAD et al. PHYS. REV. D 104, 112005 (2021)

112005-32



85Research Center for Advanced Particle Physics and Department of Physics, Kyushu University,
Fukuoka, Japan

86Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
87Physics Department, Lancaster University, Lancaster, United Kingdom

88Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
89Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics,

University of Ljubljana, Ljubljana, Slovenia
90School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

91Department of Physics, Royal Holloway University of London, Egham, United Kingdom
92Department of Physics and Astronomy, University College London, London, United Kingdom

93Louisiana Tech University, Ruston Louisiana, USA
94Fysiska institutionen, Lunds universitet, Lund, Sweden

95Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3),
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