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EPIGRAPH

There is a theory which states that if ever anyone discovers exactly what the Universe is for

and why it is here, it will instantly disappear and be replaced by something even more bizarre

and inexplicable.There is another theory which states that this has already happened.

—Douglas Adams
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ABSTRACT OF THE DISSERTATION

The Role of Hematocrit and Nitric Oxide in Regulation in the Microcirculation

by

Krishna Sriram

Doctor of Philosophy in Engineering Science (Mechanical Engineering)

University of California, San Diego, 2014

Professor Daniel M. Tartakovsky, Chair

Nitric oxide is a critical signaling molecule in the microcirculatory control of vascular

resistance. It enables the maintenance of blood pressure and cardiac output at optimal levels, via

flow mediated endothelial nitric oxide production which serves to modulate vascular tone. Un-

derstanding nitric oxide production and bioavailability in the vasculature facilitates a number of

theoretical models and clinical applications. Hematocrit influences the vaso-active role of nitric

oxide, since both blood viscosity and shear stress increase with red blood cell concentrations.

Moreover, increases in hematocrit cause cell free layer thickness to decrease and hemoglobin

scavenging of nitric oxide in red blood cells to increase.
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To capture this behavior at the scale of an individual blood vessel, we construct a model

of the autoregulatory response of blood vessels. The model incorporates coupled models of

blood flow and nitric oxide transport, thereby explaining how changes in hematocrit influence

vascular response. We also develop a model that captures the effects of changing hematocrit on

blood rheology, velocity profiles and wall shear stress measurements. This model accounts for

the non-Newtonian, shear-thinning properties of blood. A clinical application of these ideas is

demonstrated by showing how changes in the blood rheology via plasma expanders can result

in the restoration of cardiac performance. These individual-vessel models inform our analysis

of the structure of microvascular networks. Specifically, we examine how hematocrit, pressure

and shear stress are distributed in optimally configured model networks. Our approach allows

for simulation of vascular networks which exhibit the broad characteristics of networks observed

in-vivo.

At the cellular level, we examine the biochemistry of nitric oxide production inside

endothelial cells. We construct a model which simulates the endothelial nitric oxide production

cycle, following application of shear stress. Our model predictions for both steady and transient

shear induced nitric oxide production are shown to be in broad agreement with experimental

data. Collectively, this dissertation significantly enhances our understanding of the dual and

often competing roles of nitric oxide and hematocrit in the microcirculation.
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Chapter 1

Introduction

1.1 Motivation for this study

The bulk of the pressure drop encountered in the circulatory system is encountered in

the microcirculation, specifically in the arteriolar portion of the vascular network [34]. Hence,

the majority of vascular resistance is encountered in these ‘resistance’ vessels. Understanding

how arterioles both individually and as a network act to control vascular resistance is thus central

to analyzing how blood pressure is regulated in a variety of physiological contexts.

Central to the problem of arteriolar control of vascular resistance is the means by which

arterioles maintain their radius in response to changes in intra-luminal blood flow. Exposure

to intra-luminal fluid pressure causes a mechanical response in arterioles due to the passive,

elastic properties of the blood vessel, as well as the active, myogenic response [181, 82]. The

combination of these mechanical responses leads to the constriction of arterioles on exposure to

elevated levels of blood pressure, resulting in increased vascular resistance [181].

The active, constricting response of arterioles is modulated by Nitric Oxide (NO) [44, 8];
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as discussed in chapter 6 of this dissertation, NO is produced in endothelial cells on exposure to

shear stress. The NO thus produced diffuses both into the blood stream and the adjacent smooth

muscle tissue [103]; the NO in smooth muscles stimulates cGMP production [204, 38], which

in turn stimulates vasodilation. Thus, NO serves as a critical regulator of blood pressure, by

modulating vascular resistance [75, 44] via shear-induced endothelial NO production.

The bioavailability of NO is in turn impacted by hematocrit in the following respects:

RBCs consume NO very rapidly [7, 30, 182, 103, 193] and increased hematocrit leads to higher

blood viscosity and shear stress, along with reduced cell free layer thickness [195]. Increases in

hematocrit would normally be expected to increase blood pressure and vascular resistance due

to this increase in blood viscosity [195, 181, 116, 117], however, increased NO production due

to the associated elevation of shear stress is hypothesized to offset this effect [195].

In developing tools for modeling vascular resistance across the microcirculation, we

must therefore account for the dual (and coupled) roles of hematocrit and NO in regulation

of the microvasculature. Specifically, we require a number of individual modeling components

(each addressing specific aspects of roles of NO and hematocrit) that can eventually be combined

to develop an integrated model of the microcirculation.

In addition to theoretical considerations, our study was also motivated by a range of

experimental studies seeking to examine the response of the physiology to acute changes in

hematocrit. These studies included a) experiments involving modest levels of hemoconcentration

and/or hemodilution [116, 117, 195] and b) experiments involving the use of plasma expanders to

modify blood viscosity, thereby facilitating restoration of cardiac performance, following severe

hemorrhagic shock [26, 27, 190, 192]. These experimental studies serve to highlight the need

for modeling tools to help shed light on the coupled roles of NO and hematocrit in maintaining
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vascular resistance.

1.1.1 A Question of Scales

Understanding (and modeling) how the microcirculation responds to changes in state

(such as variations of pressure or of hematocrit) involves understanding a series of mechanisms

occurring at different scales of organization. At the scale of an organ system, there are as yet

many open questions about how best to model the structure of vascular networks and stemming

from this, how to appropriately model the distributions of pressure, shear stress, hematocrit etc

[145, 173, 134, 40, 86, 198].

The response of individual vessels comprising these network involves a complex behav-

ior, whereby vessel respond to intraluminal pressure via a passive, elastic response [82] and an

active, myogenic response. The net effect of these responses is that blood vessels constrict on

exposure to increased pressure [181]. This solid mechanics response is coupled to fluid flow of

blood through the vessel, since the myogenic response is offset by shear induced endothelial NO

production, leading to dilation when NO concentrations are increased [91, 181]. Variations of

hematocrit are then coupled to this fluid-solid problem, due to the coupling between hematocrit

and NO concentrations discussed above. Hence, models that describe the response of individual

vessels must account for a) the solid mechanics of a blood vessel b) NO transport and c) blood

flow in microvessels.

Models of NO transport [30, 182, 103, 102, 66] rely on assumptions regarding the na-

ture of endothelial NO production; specifically, whether any negative feedback exists and how

NO production is related to variables such as shear stress, oxygen availability, the presence of

metabolic substrates etc. An exploration of the sensitivity of these transport models to these
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variables requires a model for the biochemistry of Nitric Oxide at the scale of the individual

endothelial cell. Models of the biochemistry of NO production have to date [142, 141, 37] been

very limited, as discussed in chapter 6, highlighting the need for models that better represent the

biochemistry associated with shear-induced NO production.

Hence, modeling vascular networks relies on models of multiple physiological processes

occurring over a range of scales of organization. This is illustrated in figure 1.1.

Figure 1.1: The multi-scale nature of the problem of modeling the microcirculation.

1.2 Objectives of this Dissertation

1) To develop a mechanical model of a blood vessel that can be coupled with a model

of blood flow in a vessel and a model of NO transport, enabling is to develop a comprehensive

picture of the response of an individual blood vessel to changes in hematocrit.

2) To account for the means by which plasma expanders such as PEG-Alb help to restore

cardiac function following severe hemorrhagic shock, in the process accounting for the strong

shear-thinning non-Newtonian rheology of blood in the presence of PEG-Alb.
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3) To develop a model of blood flow in an arteriole, so as to account for both the non-

homogeneous and non-Newtonian nature of blood flow in microvessels. To then leverage this

model to develop a correction factor for calculation of wall shear stress in experimental setups

that rely on the application of the Hagen-Poiseuille law for shear stress estimation.

4) To develop a model for a microvascular network, so as to account for hematocrit dis-

tributions in asymmetric networks, as well as to overcome many of the commonly encountered

difficulties associated with using Murray’s 1/3rd law [145] to model such networks.

5) To develop a biochemical model of the process of NO production within endothelial

cells, following exposure to shear stress. Such a model may be leveraged to study a number

of aspects of endothelial NO production, especially the transient behavior of shear induced NO

production.To then apply this model to evaluate the functional relationship of NO production vs

shear stress and the importance of negative feedback.

1.3 The Components of this Dissertation

1.3.1 Modeling autoregulatory response of an arteriole

In chapter 2 of this dissertation, we develop a model for the solid mechanics of an

arteriole, so as to describe the deformation of an arteriole due to small changes in intraluminal

pressure. By coupling this model of vessel mechanics to a multiphase model of blood, we arrive

at a mathematical description of arteriolar response to pressure variations that suitably describes

auto-regulation by arterioles. The resulting model describes both the passive, elastic response

and the active, myogenic response of arterioles, with the myogenic response being modulated

by shear stress. Coupled to this model, is a model for NO transport; for calculated deformations
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due to variations in pressure, our model allows us to relate NO concentrations in smooth muscle

with the extent of vessel dilation.

We then apply this model to analyze the variation of flow rate with hematocrit, given an

experimentally determined variation of blood pressure with hematocrit [116, 117, 195]. Using

this analysis, we were able to show that the dependence of flow rate (and hence cardiac output)

with hematocrit depends on the balance of myogenic (active) vessel response vs passive (elastic)

vessel response. The paradoxical behavior thus reported in [116, 117, 195] was found to arise

as a result of the offsetting of the autoregulatory response of arterioles, a phenomenon also

observed in [132]. We also showed that the reductions of vascular resistance were accompanied

by significant increases in vascular NO concentrations.

1.3.2 Analysis of PEG-Albumin plasma expansion

In chapter 3, we utilize the Quemada rheological model [157], to develop a model of the

non-Newtonian flow of blood through a microvessel. We leverage the work of [144] to develop

a numerical solution for the velocity profiles of non-Newtonian blood flow, while assuming a

non-uniform, sigmoid distribution of hematocrit across the vessel cross section. The model thus

produced predicts blunted velocity profiles and elevated shear rates near the vessel walls.

We then applied this flow model to analyze the flow of various plasma expanders (Dex-

tran 70, Dextran 500 and PEG-Albumin) in animals suffering hemorrhagic shock, thus demon-

strating very low hematocrits (11 %). The rheology of hemodiluted blood with each plasma

expander was measured, with PEG-Alb found to exhibit very strong shear-thinning character-

istics. As a result, PEG-Alb was found to be associated with sharply elevated shear stresses in

microvessels, leading to the restoration of cardiac performance. We thus show that PEG-Alb



7

is efficacious as a plasma expander due to it’s shear-thinning properties, which lead to elevated

apparent viscosities in arterioles.

1.3.3 Development of non-Newtonian blood flow models in arterioles and deriva-

tion of Wall shear stress correction factors

In chapter 4, we develop a model for the non-Newtonian, non-homogeneous flow of

human blood through a microvessel. We model blood flow in a microvessel as consisting of two

immiscible, homogeneous layers; a cell free layer (CFL) near the vessel walls and an RBC rich

core layer near the vessel centerline. The rheology of of the core region was described using

the Quemada model [157, 114], while the CFL was assumed to be Newtonian. Using previously

published data [151] for the variation of apparent viscosity of blood flow vs hematocrit and

vessel radius, we derived an expression for CFL thickness as a function of hematocrit.

The resulting flow model was validated by comparing our model predictions for velocity

profiles, CFL thicknesses, core hematocrit and tube hematocrit at different discharge hematocrits

and vessel radii vs published experimental data for these quantities. We thus demonstrate that

our model satisfies a broad range of experimental data points to a greater degree than previous

models of blood flow in arterioles [172, 182, 130].

We then apply our model to develop a correction factor to improve the experimental es-

timation of wall shear stress (WSS). Typically, WSS is estimated by measuring vessel centerline

velocity and radius, followed by application of the Hagen-Poiseuille law to obtain a value of

shear stress [160]. Due to the non-homogeneous and non-Newtonian nature of blood, this ap-

proach results in considerable errors [160]. We leverage our model to derive a correction factor

that can be applied to the Hagen-Poiseuille law, so as to accurately determine WSS, given a mea-
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sured centerline velocity and vessel radius. By this method, we reduce the need for expensive

experimental techniques such as micro-PIV for the accurate estimation of WSS.

1.3.4 Optimal branching in vascular networks

In Chapter 5, we discuss the development of a model to describe the branching and

hematocrit distribution in asymmetric vascular networks. Our analysis builds on previous work

in [2] to modify Murray’s 1/3rd law [129] so as to account for the deviations from Murray’s law

observed in the microcirculation [145, 86]. We demonstrate that the resulting modification to

Murray’s law is able to account for the non-uniform WSS observed in vascular networks [106]

and predicts realistic pressure distributions [34] as well.

We then apply this modified Murray’s law to evaluate the distribution of hematocrit at

vascular bifurcations. We show that RBC flux fractions vary linearly with blood flow fractions at

bifurcations, in agreement with several previous studies [57, 47, 92, 174, 10, 11] but contradicted

by others [150, 154, 77]. Using this analysis across successive vessel generations in a vascular

network, we calculate distributions of vessel radii and hematocrit that indicate large degrees

of scatter in the values of hematocrit across all vessels of any given vessel generation. We

demonstrate that our modeled ‘optimal’ networks demonstrate a range of characteristics seen in

vascular networks studied in-vivo, thereby providing us with a ‘realistic’ model for simulating

vascular networks.
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1.3.5 Modeling the biochemical cascade of shear induced endothelial NO produc-

tion

In chapter 6, we present a model for the series of biochemical reactions that result in the

production of NO by endothelial cells following the application of shear stress. We describe the

set of biochemical reactions using a system of coupled ODEs, triggered by the application of

shear stress, which activates mechanotransducers in endothelial cells. The mechanotransducers

considered in our model are Mechanosensing Ion Channels (MSICs), Integrins and G-Protein

Coupled Receptors (GPCRS). The activation of these mechanotransducers by shear stress is

modeled using constitutive relations based on previous modeling and experimental studies.

Subsequent to activation of mechanotransducers, our model describes the influx of cal-

cium into the cell cytosol, as well as the activation of protein kinases. We then model the for-

mation of complexes of the endothelial Nitric Oxide Synthase (eNOS) enzyme with calmodulin,

followed by activation via phosphoryaltion. We then accounted for the production of cGMP

stemming from elevated NO concentrations and account for the hypothesized negative feedback

provided by cGMP due to the inhibition of calcium influx into the cytosol.

With this model constructed, we demonstrate agreement with experimental data for both

transient and steady state NO production, as well as a number of other quantitative and empirical

comparisons with published experimental data. We also evaluate the importance of the negative

feedback cGMP loop, and demonstrate that negative feedback is relatively unimportant in this

reaction cascade, under normal, physiological conditions.



Chapter 2

Autoregulation and

mechanotransduction control the

arteriolar response to small changes in

hematocrit

2.1 Introduction

The existence of a direct relationship between blood viscosity (and hematocrit, Hct) and

blood pressure is a widely held assumption, also supported by epidemiological studies [48, 111].

However, this finding may be more applicable to the older population where endothelial dysfunc-

tion mitigates the vasodilatory response of increased vessel wall shear stress (WSS), or when the

induced hemoconcentration exceeds the variability of Hct found in the normal population [163].

10
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The influence of changes in Hct on blood pressure and cardiac output (CO) within the range

of changes found in the normal population has been studied experimentally [116, 117, 195]

showing a counterintuitive behavior, wherein small Hct increases are associated with decreased

blood pressure and increased CO. An explanation for this behavior is that increased Hct and

fluid viscosity increases WSS [195] in arterioles, thus increasing nitric oxide (NO) production

by the endothelium [118, 122]. This increased NO production promotes vasodilation (2), caus-

ing blood pressure to decrease and CO to increase [195]. The existence of this mechanism was

confirmed by experiments, in which the administration of L-NAME blocked NO production by

the endothelium, negating this effect.

The administration of L-NAME causes general vasoconstriction of the vasculature, which

may overcome additional vasodilator mechanisms induced by the increase in Hct and blood vis-

cosity [195, 182]. Furthermore, the effects on blood pressure, CO and peripheral vascular re-

sistance are comparatively large relative to the magnitude of the WSS stimulus, suggesting the

existence of additional non-NO dependent mechanisms.

The behavior of the circulation (and corresponding regulation) is influenced by coupled

physical and biochemical phenomena, including the myogenic response, stimulation by the sym-

pathetic nervous system, effects of shear stress, etc. [45, 82]. In addition, blood oxygen carrying

capacity increases with Hct, thereby reducing the blood flow required to maintain a constant

level of oxygen delivery [17].

Several previous studies [8, 21, 91, 170] have focused on development of mathematical

models of the blood flow regulation by the vasculature. These models describe the mechanics of

the vascular wall exposed to internal pressure and the corresponding effects on vessel tone. They

also provide mathematical descriptions of the myogenic response and WSS-induced effects, and
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of the coupled behavior of blood flow and the mechanics of the vessel wall. These studies model

the behavior of vessel walls by relying on LaplaceâĂŹs law, which is rigorously valid for thin

elastic cylinders [170] and remains accurate as long as the ratio of a vesselâĂŹs wall thickness to

its diameter exceeds 10 (ideally 20 or more) [95]. While this condition is applicable to arteries,

it breaks down for arterioles where this ratio can be as small as 2 or even less [143]. Finally,

these models describe the effects of WSS on vascular tone by employing simple constitutive laws

relating WSS with vessel wall tension, without accounting for the variation of NO bioavailability

in the vascular wall due to WSS changes.

Motivated by the experimentally observed changes in blood pressure with Hct, we model

the dependence of blood flow (and CO) on systemic Hct by treating arterioles as thick, elastic

cylinders [189, 199] and coupling hemodynamics and vessel mechanics. The model enables us

to investigate the effects of this coupling on autoregulation and to describe changes in the wall

thickness with changing intraluminal pressure. The latter is a crucial factor for calculating NO

transport in the vasculature. We evaluate the concentration profiles of NO in the vessel wall

[182] in order to account for vasodilation due to WSS-induced NO production.

Experimental studies to describe the mechanical properties of arteries and arterioles typ-

ically quantify elastic moduli [15] or develop length-tension curves for individual blood vessels.

The observed mechanical behavior is reported as a constitutive law [91, 170], comprising of

active and passive (elastic/viscoelastic) components. Our model accounts for both active and

passive stresses. The passive stress is determined by intraluminal pressure; the active stress

(the myogenic response) is a function of tension in the vessel wall [20, 82, 170]. We account

for the relationship between pressure and radius of arterioles for small changes in pressure and

then describe the effect of varying Hct on flow rate through the blood vessel (and hence cardiac
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output).

2.1.1 Symbols and Acronyms used

ν Poisson’s Ratio
R, R0, r Inner and outer vessel wall radii, radial distance from centerline
P Intraluminal Pressure
τ WSS (Wall Shear Stress)
λ Plasma layer thickness
Q Flow rate of blood in arteriole
µc, µp Core blood viscosity and plasma viscosity
Hc, Hd Core and systemic hematocrit
J Pressure Gradient
Req Equilibrium inner radius at baseline pressure
CO Cardiac Output
V R Vascular Resistance
rg, ren Radial distance to outer edge of glycocalyx and endothelium, respectively
rw, rm Radial distance to outer edge of vascular wall and smooth muscle, respectively

2.2 Mathematical Model

2.2.1 Simulation domain

We consider an arteriole with vascular wall tethered to adjoining connective tissue,

which prevents axial motion of the blood vessel [139]. The arteriole is modeled as a thick

cylinder composed of an isotropic, elastic material [20, 189]. We describe both the passive ra-

dial deformation of the vessel under internal pressure (i.e., the passive response of the arteriole

to intraluminal blood pressure) and the myogenic response of the vessel walls to this pressure,

which acts to reduce vessel diameter as intraluminal pressure increases [82]. Blood flow within

the arteriole is assumed to be a two-layer flow, consisting of an RBC rich core and a plasma layer

devoid of RBCs [172, 182, 199]. The arteriole is assumed to be surrounded by easily deformable

tissue, which exerts negligible compressive stress on the vessel walls.
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2.2.2 Blood flow

We consider steady one-dimensional flow in a cylinder (arteriole) of radius R. Blood is

modelled as a two-layer fluid, consisting of an RBC-rich core and a plasma layer (Fig. 2.1).

Following [102, 182], we assume a linear relationship between the plasma layer thickness δ and

systemic hematocrit Hd ,

δ = a3Hd +a4 (2.1)

where a3 and a4 are fitting parameters. Data relating CFL thickness with Hd is plotted

in appendix A.

Figure 2.1: Two-layer flow of blood in a cross section of an arteriole with a cell free layer and
RBC rich core, resulting in a blunted velocity profile.

Assuming steady-state fully developed flow in the inertial regime for the two-layer flow

of blood through the arteriole, the Stokes equations yield velocities of the core, uc, and plasma,

up, as [172], [182]:

uc(ξ ) =
JR2

4µp

{
1−λ

2 +
µp

µc
(λ 2−ξ

2)

}
for 0≤ ξ ≤ λ (2.2)
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uc(ξ ) =
JR2

4µp

{
1−ξ

2} for λ ≤ ξ ≤ 1 (2.3)

Velocity profiles 2.2 and 2.3 are written in the dimensionless coordinate system ξ = r/R

with λ = rh/R ; and J = ∆P/L is the pressure gradient along the arteriole of length L and

with pressures drop ∆P respectively. µc and µp are the viscosities of core blood and plasma,

respectively. We make use of an experimentally obtained linear relationship for blood viscosity

in the RBC-rich core as a function of Hc (30,51): µc = a1Hc +a2, where the constants are set to

a1 = 0.1678 and a2 =−4.4348 cp. λ , is given as:

λ = 1−δ/R. (2.4)

Flow rate Q is obtained by integrating the velocity profile given by expressions 2.2 and

2.3 over the cross-section of the arteriole with dimensionless radius ξ = 1 [172, 182],

Q =
πJR2

8µp

{
1−λ

4 +
µp

µc
λ

4
}

(2.5)

The corresponding WSS τ is given by

τ = JR/2. (2.6)

The systemic (Hc) and core (Hd) hematocrits are related by mass conservation as [102],

[182]:

Hc

∫
λ

0
uc(ξ )ξ dξ = Hd

[∫
λ

0
uc(ξ )ξ dξ +

∫ 1

λ

up(ξ )ξ dξ

]
. (2.7)
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For the velocity profile given by expressions 2.2 and 2.3, this gives

Hd = 2Hcλ
2(1−λ

2 +λ
2 µp

2µc
)(1−λ

2 +λ
2 µp

µc
)−1. (2.8)

The positive root of equation [2] yields a relationship between Hc and Hd which is approximately

linear over a physiologically relevant range of Hd [182]. For a constant flow rate of blood Q,

WSS τ was shown to be linearly related to systemic hematocrit Hd , with R2 = 0.997 in a previous

study [182].

2.2.3 Vessel mechanics

Following [20, 21, 170], we assume the vessel to be elastic and to exhibit both active and

passive responses to blood flow. The elastic model treats the blood vessel as a tethered cylinder,

i.e., neglects strain in the axial direction [167], and postulates a linear relationship between the

radial strain u and the radial (σr) and circumferential ( σθ ) components of the stress tensor on

the vessel walls [189, 199]:

u(r) =
r
E
[σθ (1−ν

2)−νσr(1+ν)]. (2.9)

Here r ∈ [R,Ro] is the radial distance from the vesselâĂŹs centreline, which varies between the

inner (R) and outer (Ro) radii of the vesselâĂŹs walls; E is the elastic modulus of the blood

vessel; and ν is the Poisson ratio. We assume that E is constant [20] and that the vessel wall

is incompressible. The latter assumption is justified by the high water content of the tissue

[189, 199] and allows us to set ν = 0.5 in all simulations reported below.

The vessel’s active and passive responses to blood flow are modelled by representing
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the radial and circumferential components of shear stress, σr = σrp +σra and σθ = σθ p +σθa,

as the sums of their respective passive (denoted by the subscript p) and active (denoted by the

subscript a) components. The passive response represents the stress induced by blood flow on

the vesselâĂŹs wall. The corresponding components of the mechanical stress are derived from

LameâĂŹs equations as [189]

σrp =
R2P

R2
0−R2 (1−

R2
0

r2 ). (2.10)

σθ p =
R2P

R2
0−R2 (1+

R2
0

r2 ). (2.11)

where P is the intraluminal blood pressure. The active (myogenic) response accounts for the

Bayliss effect, which acts to reduce the vesselâĂŹs radius in response to increasing pressure

[39, 82]. It is assumed to be linearly proportional to the tension at the surface of the vessel wall,

PR/2, such that [39, 82]

σra =
R2P

R2
0−R2 (1−

R2
0

r2 )
−φCPR

Req
. (2.12)

σθa =
R2P

R2
0−R2 (1+

R2
0

r2 )
−φCPR

Req
. (2.13)

where Req is the vessel radius at equilibrium at baseline pressure, C is a fitting parameter, and

φ = tanh(
α

τ
). (2.14)

represents the modulation of the myogenic response by the WSS (which is normalized with a

fitting parameter α) [91]. Expressions 2.11 and 2.14 account for experimental observations [85],

according to which large values of WSS reduce the strength of the myogenic response.
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2.2.4 Model closure

To close the system of equations 2.1 - 2.14, we employ the experimental observations

[62] and the modelling assumption in [21], according to which changes in pressure gradient J in

the arteriole are directly proportional to changes in intraluminal pressure P,

∆J ∝ ∆P. (2.15)

This assumption is also justified by the role of autoregulation in ensuring a relatively constant

hydrostatic capillary pressure [82, 45], which implies that larger MAPs (and hence larger intra-

luminal pressures) necessitate larger blood pressure gradients in arterioles.

Figure 2.2: Experimental measurement of variation of MAP with small changes in hematocrit
from baseline [116, 117, 195]. The same result was obtained for CD-1 mice, but not in eNOS-
knockout mice [116].

Finally, we allow for variation of the intraluminal pressure P with Hd . We adapt a rela-

tionship in Figure 2.2 that mirrors the experimentally observed [21, 116] response of MAP (and,

hence, intraluminal pressure) to small but acute changes in Hct during both hemoconcentration

and hemodilution. The change in MAP (and, consequently, in intraluminal pressure P) from
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baseline with systemic hematocrit, Hd is given by

∆P = 0.01996H3
d −2.7048H2

d +120.32Hd−1758.8. (2.16)

2.2.5 NO Production

Shear-induced NO production: The experimental data [118, 122] suggest that, for phys-

iological levels of shear stress, the endothelial NO production varies approximately linearly with

the WSS τ . We model this phenomenon by assuming that NO production follows Michaelis-

Menten kinetics [23], so that the corresponding reaction rate Re is given by

Re =
RNOmPO2

PO2 +Km
. (2.17)

Here the maximum rate of NO production RNOm increases linearly with τ , PO2 is the partial

pressure of oxygen, and the value of the Michaelis-Menten constant Km is given in Table A.1.

Stretch-induced NO production: The data reported in [8, 98] show that not only WSS τ

but also mechanical stretch of the endothelium affects NO production. Furthermore, the experi-

mental evidence [101] suggests that circumferential stretch increases NO production even when

the WSS is kept constant. In the absence of detailed quantitative studies of this phenomenon, we

assume that RNOm is proportional to small variations of the vessel radius.

Combining these two mechanisms of NO production, we postulate that RNOm responds

to mechanical forces according to

RNOm = RNOmax τ

(
1+

∆R
Req

)L

. (2.18)
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where L is a fitting parameter and the constant RNOmax is given in Table A.1. The simulation

results presented below suggest that the stretch-induced mechanism is crucial to the vasodilatory

activity of NO.

Figure 2.3: Cross-section of an arteriole. A version of the Krogh tissue cylinder model used in
our analysis consists of RBC-rich core, RBC-free plasma layer, glycocalyx, endothelium, and
vascular wall.

2.2.6 NO transport

We rely on the Krogh tissue model (Figure 2.3) to describe the various layers comprising

vessel tissue and lumen, and on a system of reaction-diffusion equations [102, 182] to model

radial (one-dimensional) transport of NO across these layers. Parameters for NO transport are

given in table A.1. RBC-rich core (0 < r < R−δ ). Partial pressure of oxygen PO2 is assumed to

be constant [102], and NO concentration CNO satisfies a steady-state reaction-diffusion equation

DNO

r
∂

∂ r
(r

∂CNO

∂ r
)−λbCNO = 0 (2.19)
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where DNO is the diffusion coefficient of NO in the RBC-rich core, and λb is the reaction rate

constant of NO scavenging by RBCs. For the value of membrane permeability determined in

(58), λb is almost constant over the range of physiological Hct [194, 193]. We therefore set λb

to be constant, specified in Table A.1.

Plasma layer (R−δ < r < R ) and glycocalyx (R < r < rg). The absence of RBCs in the

plasma layer and the glycocalyx allows us to describe transport of CNO and PO2 using steady-state

diffusion equations:

DNO

r
∂

∂ r
(r

∂CNO

∂ r
) = 0 (2.20)

α
DO2

r
∂

∂ r
(r

∂PO2

∂ r
) = 0 (2.21)

respectively. Here α denotes the O2 solubility, and the diffusion coefficients of NO DNO and

O2 DO2 in the plasma layer are larger than their counterparts in the glycocalyx and tissue layers

[58, 113].

Endothelium (rg < r < re): The rate of oxygen consumption is assumed to be twice

the rate of NO production [182, 30, 102]; CNO and PO2 satisfy a coupled system of steady-state

reaction-diffusion equations

DNO

r
∂

∂ r
(r

∂CNO

∂ r
)+Re = 0 (2.22)

α
DO2

r
∂

∂ r
(r

∂PO2

∂ r
)−2Re = 0 (2.23)

Vascular wall (re < r < rw) and smooth muscle tissue (rw < r < rm): Following [23, 30],

we assume that NO undergoes a pseudo-first-order reaction with reaction rate constant λt , and

that O2 consumption is inhibited by NO and follows Michaelis-Menten kinetics. The corre-
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sponding transport equations take the form

DNO

r
∂

∂ r
(r

∂CNO

∂ r
)−λtCNO = 0 (2.24)

α
DO2

r
∂

∂ r
(r

∂PO2

∂ r
)−Rm = 0 (2.25)

where peak O2 consumption rate RO2max is lower in the vascular wall than in the muscle tissue,

and [23, 30]

Rm =
RO2maxPO2

PO2 +KMO2
(2.26)

KMO2 = 1+
CNO

27nM
(2.27)

2.2.7 Boundary Conditions

Transport equations 2.19 - 2.25 are subject to the following boundary conditions. NO

concentration CNO is symmetric about the arteriole center , r = 0

∂CNO

∂ r
(r = 0) = 0 (2.28)

We assume that both CNO and PO2 reach their respective asymptotic concentrations in the vicinity

of the outer boundary of the muscle tissue, r = rm, so that [102]:

∂CNO

∂ r
(r = rm) =

∂PO2

∂ r
(r = rm) = 0 (2.29)
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Mass conservation across the interfaces between adjascent layers requires that:

C+
NO =C−NO; P+

O2 = P−O2; (DNO
∂CNO

∂ r
)+ = (DNO

∂CNO

∂ r
)−; (DO2

∂PO2

∂ r
)+ = (DO2

∂PO2

∂ r
)− (2.30)

where the superscripts minus and plus indicate that the corresponding quantities are computed

respectively inside and outside of each interface shown in Figure 2.1.

2.3 Numerical implementation

2.3.1 Autoregulation

Step 1. For a given value of Hct and ignoring the shear term φ in equations 2.12 and

2.13, we determine the constant C from the experimental data for myogenic response in vessels

either with denuded endothelium [55] or in the absence of flow [85, 170]. The iterative procedure

to determine the constant C in equations 2.12 and 2.13 is as follows.

1. Assume an initial value for the parameter C. We used an initial guess C = 0, which

corresponds to purely elastic, passive behavior.

2. Use equations 2.9 and 2.13 to calculate the deformation of the vessel for each of the

incremental increases in pressure from 50 mmHg to 60 mmHg. We used the increment

∆P = 0.001 mmHg

3. Compute the slope of the resulting (approximately) linear relationship between vessel ra-

dius and pressure.

4. Compare the calculated slope with that estimated from experimental data, in this study

âĂŞ the data from (22, 46). If the absolute difference between the calculated and exper-
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imentally observed slopes exceeds a prescribed tolerance ε1, increase C by ∆1. We used

ε1 = 10−3 and ∆1 = 0.01 .

5. Repeat steps b) - d) until the convergence criterion is met.

Step 2. Once the value of C is computed, we account for shear stress. Specifically,

we determine the constant α in equation 2.14 by enforcing autoregulation, i.e., the condition

that flow rate Q in equation 2.5 remains constant with small changes in pressure. The iterative

procedure to determine the constant α in equation 2.14 is as follows.

1. Assume an initial value for the parameter α . We used a initial guess of α = 0, which

corresponds to a situation wherein WSS completely eliminates myogenic response.

2. Use equations 2.9 - 2.14 to calculate the deformation of the vessel for each of the incre-

mental increases in pressure from 50 mmHg to 60 mmHg.

3. Compute the flow rate Q corresponding to each value of pressure by using equations 2.1 -

2.5 and 2.10 - 2.13. Plot the resulting flow rate vs pressure curve.

4. If the curve has a non-zero (up to a prescribed tolerance ε2) slope, increase α by ∆2. We

used ε2 = 10−4 and ∆2 = 0.0001.

5. Repeat steps b) - d) until the slope is zero (up to a prescribed tolerance ε2), i.e., until flow

rate does not change with pressure.

2.3.2 Effect of varying Hct

We prescribe a functional dependence of intraluminal pressure on systemic Hct based

on the experimental data [116, 117, 195]. For the parameters C and α computed in Steps 1
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and 2, we calculate the vesselâĂŹs response to changes in systemic Hct by using the following

algorithm.

1. Increase systemic hematocrit Hd by a small increment ∆H = 0.001%.

2. Use equation 2.16 to compute the new pressure for the new value of Hd .

3. Use equation 2.14 and 2.15 to calculate J and φ .

4. Use equations 2.9 - 2.13 to calculate the new vessel radius and thickness.

5. Use equations 2.1 - 2.5 to calculate the new flow rate, Q.

6. Repeat steps a) - e) to obtain a relationship between the flow rate and Hd

Figure 2.4: a) Variation of vessel radius with pressure, and, b) Variation of vessel thickness with
pressure for different mechanical responses.

2.4 Results

Changes of vessel diameter with pressure. Figure 2.4a shows the variation of the arteri-

ole inner radius with increasing intraluminal pressure. When the myogenic response is ignored

(i.e., when only the passive response is considered) the vessel radius increases linearly with
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pressure. Conversely, including the myogenic response causes the arteriole radius to decrease.

Ignoring the shear effects (and hence the endothelial NO production) enhances the strength of the

myogenic response modulated by WSS [85, 131]. Setting C = 8 in equations 2.10 - 2.13 yields

an active (no flow) response that matches well with the experimental data [110, 137, 169]. Fig-

ure 2.4b exhibits the corresponding variation in the vessel wall thickness. The passive and active

mechanical responses to the small changes in pressure lead to a linear relation between the ves-

sel radius and pressure. This finding is in agreement with the experimental data [110, 137, 169],

providing a justification for the assumption that the vessel behaves like a linear, elastic material

for small variations in intraluminal pressure.

Figure 2.5 illustrates the dependence of flow rate on intraluminal pressure, for several

values of the parameter α in equation 2.14. For α = 0.1434, the flow rate remains constant with

small changes in pressure. This establishes autoregulation, which results from a balance be-

tween the relative strengths of the passive (elastic) and active (myogenic) responses in the blood

vessel, with shear stress modulating active response. In this autoregulatory regime, the vessel

radius decreases marginally as pressure increases; small reductions in the vessel radius offset the

increase in both pressure gradient and, according to equation 2.15, pressure; this process results

in the approximately constant flow rate.

2.4.1 The effect of varying Hct

Figures 2.6a and 2.6b demonstrate the dependence of both vessel radius and flow rate

on systemic Hct, for pressure varying with Hct in a manner described in [116, 117, 195]. When

all parameters are selected to ensure autoregulation (corresponding to constant Hct), we find

that flow rate decreases significantly with Hct. This finding is supported by the experimentally
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Figure 2.5: Effect of varying the parameter α on the dependence of flow rate with intraluminal
pressure.

Figure 2.6: a) Variation of vessel radius, and, b) Flow rate with hematocrit for different strengths
of myogenic response, governed by the parameter C in eq. 7.
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observed variation of cardiac output with Hct [163], but is at odds with the experimental results

in [116, 117, 195]. The predicted reduction in flow rate can be attributed to the increase in blood

viscosity with Hct while vessel dilation remains negligible. For larger values of C in equations

2.10 - 2.13, i.e., for stronger myogenic response, the variation in flow rate with Hct resembles

the behavior reported in [116, 117]. Stronger myogenic response offsets autoregulatory control

by changing the balance between the active and passive components of mechanical stress in the

vessel walls. This suggests that during acute hemoconcentration and hemodilution, the ability

to autoregulate was offset; similar to previously reported data for cerebral tissue exposed to

hemodilution [132, 175].

Figure 2.7 exhibits the corresponding variation in vascular resistance (cardiac index di-

vided by blood pressure) (Figure 2.7a) and WSS (Figure 2.7b) with increasing Hct. For values

of C, which predict variations in flow rate similar to those in [116, 117, 195], our model predicts

a large reduction in vascular resistance and significant increases in WSS. This increases NO

production and contributes to vasodilation. The predicted U-shaped curve for variations in vas-

cular resistance is in agreement with calculations from experimental data [116, 117, 195]. Figure

2.8 presents experimental measurements of the dependence of vascular resistance on systemic

hematocrit, accompanied by the model predictions for C = 32 in equations 2.10 - 2.13.

2.4.2 Analysis of NO concentration

Figure 2.9 illustrates the variation in NO concentration for different values of L in equa-

tion 2.18. This parameter controls the extent of stretch-induced NO production. For L = 0,

i.e., in the absence of stretch-induced NO production, NO concentration in the vessel wall falls

marginally as radius increases. This decrease in NO concentration occurs because the increasing
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Figure 2.7: Variation of a) Vascular resistance, and, b) WSS with Hct for different strengths of
myogenic response, governed by the parameter C in eqs 2.10 - 2.13.

vessel radius increases the surface area across which NO diffuses into the blood-stream and is

scavenged by RBCs. This causes NO bioavailability to fall, since the blood-stream scavenges

NO at a high rate [102] and because NO has higher diffusivity in blood than in tissue [58].

In other words, the increasing radius enhances diffusion of NO produced by the endothe-

lium into the blood-stream where it is consumed by RBCâĂŹs, as opposed to its diffusion into

surrounding tissue. The net effect is to reduce NO bioavailability in the vessel walls. Higher val-

ues of L, i.e., higher stretch-induced NO production, result in an increase of NO concentration

with stretch [98]. Clearly, for NO to have a role as a vasodilator in this system, stretch-induced

NO production must be significant. For this study we take L = 1 as a representative value quan-

tifying stretch-induced NO production.

Figure 2.10a exhibits the variation of average NO concentration with Hct for different

values of C in equations 2.10 - 2.13. This parameter represents the strengths of active response,

as seen in Figure 2.6a; C = 48 results in a flow vs. Hct relation that closely matches the results

of [116, 117]. Figure 2.10a illustrates the action of NO as a vasodilator in this system, with

larger vessel radii corresponding to larger NO concentrations. To illustrate the importance of

stretch-induced NO production on the vasodilatory role of NO, we plot the variation of NO
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concentration with Hct for C = 48 and different values of the parameter L in equation 2.18. In

the absence of stretch-induced NO production, NO bioavailability in the vessel wall actually

drops, reinforcing the idea that stretch-induced NO production is necessary for endothelial NO

production to stimulate vasodilation in this system (Figure 2.10b).

Figure 2.8: Change in Vascular Resistance (VR) with systemic Hct for C = 32 (solid line) and
experimental data [116, 117, 195] (dashed line).

Table 2.1: Model Parameters for Vessel Mechanics

Parameter Symbol Value Reference
Unstressed Arteriole diameter R 20 µm [102, 30, 182]
Elastic Modulus of Vessel Wall E 10000 N/m2 [15]
Stretch Induced NO Exponent L 1 (refer text)
Myogenic Parameter C 8 - 48 (refer text)
WSS autoregulation fitting parameter α 0.1434 (refer text)

2.5 Discussion

We present a model for vessel mechanics that incorporates elastic response and myo-

genic response modulated by shear effects, for small changes in pressure and Hct. Comparison
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Figure 2.9: Effect of the parameter L in equation 2.18 on variation of NO concentration with
vessel radius.

Figure 2.10: a) Fractional change of average [NO] vs Hd in the vessel wall for different values
of C in eqs 2.10 - 2.13 (and hence different strengths of myogenic response) with L = 1 in eq
2.18.; b) Fractional change of [NO] vs Hd for different values of L in eq. 2.18 with C = 32.
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with the experimental data [116, 117, 195, 163] demonstrates that our model is capable of repro-

ducing both active and passive responses of the arteriole over the range of pressure used in these

experiments.

Our model assumes that the primary contributing factor to NO bioavailability in the

vasculature is endothelial NO production stimulated by WSS and stretch [8] due to increased

activation of eNOS, and focuses on the effects of coupled of shear and myogenic responses on

the autoregulation of blood flow. Figures 2.6 and 2.9 demonstrate that our model accounts for

the effect of this change in NO concentration (produced by the WSS-stimulated endothelium)

on the myogenic response [85, 101, 131], and show how NO concentration varies with WSS and

vessel stretch.

Our results suggest that, in the range of pressure studied, a simple Hookean model for

arteriolar mechanics is adequate to describe the passive and active responses of blood vessels,

with myogenic response modelled by equations 2.10 - 2.13 as a function of tension in the vessel

wall. Leveraging the thick-cylinder theory; our model accounts for variations in wall thickness

as well as changes in the vesselâĂŹs inner radius. Employing the existing models of blood flow

in arterioles [172, 182], the model couples the solid mechanics governing vessel deformation

with the hemodynamics of arteriolar blood flow and relates changes in pressure to changes in

flow rate. The two-layer fluid flow model used in this study accounts for the presence of a

discrete plasma layer. An area of interest for future study is to understand how variations in

plasma layer thickness and viscosity [190] influence this autoregulatory behavior. As shown in

appendix B, our results for variations of flow rate with Hct are relatively insensitive to the choice

of rheological model, justifying the selection of a simple 2-layer Newtonian model for blood

flow used in this study.
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Combined with the experimentally determined dependence of pressure on Hct [116,

117, 195], our model sheds new light on how variations in Hct affect the flow rate in an arteriole

(and hence CO). We find that this variation is heavily dependent on the balance between active

(myogenic) and passive (elastic) responses (controlled by the parameter C in equations 2.10 -

2.13). When these active and passive responses are balanced and achieve autoregulation (for

constant Hct), the blood flow rate drops significantly as Hct increases. This behavior is due to

the sharp increase in blood viscosity with increasing Hct [152]; it is in agreement with earlier

studies [163], which report a linear decrease in cardiac output with increasing Hct. We also

demonstrate that the nonlinear behavior reported in [116, 117, 195] is likely due to an offset

in the balance between the active and passive responses, with the active (myogenic) response

dominating (see Figure 2.6). This sharper active response results in arteriolar dilatation (for

reductions in pressure) and hence in increased flow rate. Previous studies [132] suggest a similar

change in autoregulatory behavior in cerebral tissue for mild hemodilution.

The origin of this increased active response is a matter for future study. Possible ex-

planations include this being a transient effect, since the mechanical response of blood vessels

[15, 14, 52] and NO production [118, 122] vary with time; other aspects of the experimental

procedure, such as the effect of anesthesia on muscle tone; or other stimuli, such as increased

activation of the sympathetic nervous system, which has been associated with hemoconcentra-

tion [3]. Understanding this unexpected response to acute hemoconcentration is important, as

the underlying physiology may be crucial for predicting responses to blood transfusion which are

accompanied by acute fluctuations in Hct [69]. Future study in this area (both experimental and

theoretical) is needed to better understand cardiac response due to RBC concentration/dilution

and the underlying physiology.
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We show mathematically that stretch-induced NO production is crucial to the role of NO

as a vasodilator (see Figures 2.9 and 2.10). Without this stretch-induced mechanism, increasing

vessel radius would cause NO levels in the vessel wall to drop; thereby eliminating the vasodila-

tory effect of NO. However, with stretch stimulating NO production by the endothelium, it is

possible for NO levels to rise and be maintained at a higher level (relative to some baseline)

as vessel radius is increased. This suggests the need for further study of stretch-induced NO

production, especially in order to obtain more rigorous mathematical models of changes in NO

production in response to changes in stretch. The importance of shear-induced NO production

is qualitatively illustrated by the resulting NO bioavailability (Figure 2.6b). Figures 2.6a and

2.10a show a relationship between NO bioavailability and vasodilation. It suggests that, in the

range of physiological concentrations, there exists a simple constitutive relationship between NO

concentrations in the vascular wall and the extent of modulation of myogenic responses.

The curves for NO concentration, flow rate and vascular resistance lead us to conclude

that the physiological response to Hct variations occurs as a result of the combination of mechan-

ical (i.e., fluid mechanics of blood flow and solid mechanics of vessel walls) and biochemical

(i.e., metabolic factors and the vasodilatory effect of NO) effects. Each aspect influences the

other since mechanical changes cause WSS variations, which in turn influence the biochemistry

within the vessel wall (by increasing NO concentrations), which in turn influences the mechan-

ical side of the problem by altering the strength of the Bayliss effect and hence changing vessel

mechanics and blood flow. The result is a complex balance between various, often competing

mechanical and biochemical processes.

A hamster experimental study [195], in which the increase in Hct was induced by trans-

fusing RBCs whose Hb was converted to metHb and therefore did not scavenge NO, elucidates
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the role of changes in NO bioavailability due to the increased WSS. Increasing blood viscosity

with metHb RBCs significantly extended the range of Hct increase before causing hypotension,

since the increase of volume (concentration) of RBCs did not increase the rate of NO scavenging

by Hb. In addition to these data, the paradoxical response of cardiac function to acute Hct varia-

tions was not observed in eNOS knockout mice [116, 117]. This finding further strengthens the

hypothesis that the physiological response to Hct variations discussed in this study is strongly

influenced by endothelial NO production and its increase due to increased WSS.

These results serve to explain in part the perception that the transfusion of a single unit

blood could be of benefit, even though in general it is of little significance in terms of changes

of oxygen carrying capacity. Furthermore, in restrictive transfusion practice it could help decide

whether to transfuse a single unit or two units. This is because transfusion of a unit of blood

increases hemoglobin (i.e., Hct) by 1 g/dl or 7 %, which is the range of the maximal reduction

of VR, while two units or 14 % place the circulation in the range where VR increases above

baseline [111]. These simplified calculations are based on Hct 45 % (Hemoglobin 14 g/dl),

which would not justify a blood transfusion and assumes an isovolemic change in Hct that does

not occur in blood transfusions. Moreover, they are derived for our experimental model where a

scaling between experimental and human conditions has not been established.

In conclusion, our study establishes a mathematical model for the pressure response

of arterioles by extending previous models [82, 169] and coupling this mechanical response

with fluid flow within an arteriole that treats blood as a two layer fluid with the presence of

a distinct plasma layer. Applying this framework to model the regulatory response of arteri-

oles with changes in Hct resulted in calculated variations in CO that match experimental data,

depending on model parameterization. We find that the reported anomalous variations in CO
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[116, 117, 195] are due to the combination of increased NO production and bioavailability by

the increased WSS and a shift in the balance between passive and active mechanical responses of

the arteriole affecting the autoregulatory response. These results have considerable implications

for understanding physiological response to acute Hct variations associated with blood transfu-

sion and blood losses, since they suggest a significant increase in perfusion following a modest

increase in Hct associated with the infusion of a unit of packed RBCs that is independent of the

change in oxygen carrying capacity.

2.5.1 Model limitations and scope for future work

1) Our model neglects transient effects in both viscoelastic response of arteriole walls

[21] and NO production in response to changes in WSS [118, 122]. These mechanical and

biochemical phenomena suggest that modulation of the myogenic response by shear effects is

time dependent.

2) Shear-induced NO production has steady and transient components; acute changes

in WSS induce gradual changes in NO production, until a new steady state is reached [118,

122]. This effect can be analyzed by including a time dependent decay function for the transient

element of shear induced NO production in equation 2.18, which relates NO production with

WSS. Incorporation of these transient effects will establish the time scales needed for the system

to reach the steady state examined in this study.

3) The arteriole has been modeled as an isotropic material with constant elastic mod-

ulus. However, arterioleâĂŹs elastic modulus in the longitudinal direction is higher than its

counterpart in the circumferential direction [52]. Future studies will account for this anisotropy.

Furthermore, arterioleâĂŹs elastic modulus is not constant, but varies with radius. For small
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deformations, this is not a significant problem, however for larger deformations (and variations

in pressure), this variation of elastic modulus with radius might become important.

The thick-cylinder theory employed in our analysis can be used in follow-up studies to

better understand the mechanical behavior of the vessel wall, such as the effects of PoissonâĂŹs

ratio of the vascular wall on vessel deformation [167].

4) Our study deals with a single arteriole rather than a network of blood vessels. Future

studies of autoregulation in networks of blood vessels would provide a more realistic picture of

autoregulation in a whole organ [156]. Completion of the description of the autoregulatory be-

havior of an entire network requires accounting for long-range “conducted” responses, whereby

signals from individual blood vessels are conducted to neighboring vessels ultimately coupling

the responses of most vessels. Thus, dilation/constriction of upstream large vessels results in

corresponding dilation/constriction of vessels downstream. This effect can be accounted for by

introducing an additional component into the active response component of our model, so that

active stresses are also a function of signals conducted from other points in the network.

5) Future refinements of our model will also account for the action of vasoactive sub-

stances other than NO, e.g., the release of endothelin (a powerful vasoconstrictor which coun-

teracts the dilatory effects of NO) from the endothelium and the release of prostacyclin (another

potent vasodilator).

6) To make these studies relevant to conditions of transfusion medicine, it will be im-

portant to repeat the analysis and experimental program to deal with changes of Hct in animals

that are at lower Hct baseline, as would be the case in medical practice.
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Chapter 3

PEG-albumin supra plasma expansion

is due to increased vessel wall shear

stress induced by blood viscosity shear

thinning

3.1 Introduction

Hemodilution with conventional plasma expanders (including colloids) beyond a hema-

tocrit (Hct) reduction of about 60 % decreases functional capillary density and blood flow. This

problem can be avoided by using high viscosity plasma expanders, such as high molecular weight

dextrans and alginates, which elevate plasma viscosity to about 2 cP [192]. This effect is due

to increased vessel-wall shear stress (WSS) and NO bioavailability [26, 192]. Plasma expan-

39
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sion with polyethylene glycol conjugated albumin (PEG-Alb) shows the same effects as high-

viscosity plasma expanders. This is despite the fact that (in hamsters) the plasma viscosity of

about 1.3 cP - measured after hemodilution with 4 % PEG-Alb by weight (about 1

The low plasma viscosity attained with PEG-Alb hemodilution indicates a low WSS. It

also suggests that PEG-Alb may operate via a mechanism other than the WSS-based biochemi-

cal mechano-transduction, which causes flow-dependent vasodilatation in high-viscosity plasma

expansion [124, 177]. The latter mechanism would be possible if plasma containing PEG-Alb

behaved like a Newtonian fluid whose rheology were independent of shear rate. However, both

PEG-Alb and PEG-Alb blood mixtures exhibit high viscosity at low shear rates and vice versa, a

property that is known as shear thinning. Transfer of shear stress from the red blood cell (RBC)

blood column core to the periphery of the flowing blood can increase WSS. A blood velocity

profile that is blunted relative the parabolic (Poiseuille) profile typical of Newtonian fluids is a

manifestation of such an effect.

To explore the influence of shear thinning on WSS during hemodilution with PEG-Alb,

we develop a mathematical model that relies on the rheological properties of blood diluted with

4 % PEG-Alb determined in vitro Our analysis leads to a power-law relationship between WSS

and both Hct and the rheological properties of blood/plasma expander mixtures. The latter were

measured in blood samples obtained after hemodilution with PEG-Alb, dextran 70 kDa, and

dextran 500 kDa of low and high viscosity, respectively. The rationale for this study is to explore

the mechanisms of circulatory regulation in anemia and hemodilution. These mechanisms are

not apparent in Hct reductions usually encountered under physiological and/or clinical condi-

tions [27, 26]. These studies demonstrate the physiologically beneficial state of supra-perfusion

caused by this new form of plasma expansion. They also advance a hypothesis that this condi-
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tion is a physiological consequence of augmented NO bioavailability. Therefore we relate our

findings to perivascular measurements and calculations of the vessel-wall NO concentration and

cardiac output.

3.2 Materials

Albumin was conjugated with polyethylene glycol according to the Extension Arm Fa-

cilitated protocol (EAF PEGylation) described in [191]. Briefly, lyophilized preparations of

albumin (Sigma Aldrich, St. Louis, MO) were subjected to cold (4◦C) EAF PEGylation for

overnight at a protein concentration of 0.5 mM in the presence of 5 mM 2-IT (for thiolation

of the protein) using 10 mM maleimidophenyl PEG 5 kDa (custom synthesized). Under these

experimental conditions, on average six-to-seven copies of PEG 5 kDa chains are conjugated to

the protein. The hexaPEGylated albumin thus generated was purified through tangential flow

filtration and concentrated to a 4 gm % solution with respect to albumin (2 gm % solution with

respect to PEG; it is a 6 gm % solution with respect to EAF PEG albumin calculated based on

the molecular mass of EAF PEG albumin to be 95 to 100 kDa) and stored at −80◦C. Dextran

solutions were obtained from Pharmacia, Uppsala, Sweden.

3.3 Measurement of hemodiluted blood viscosity

The rheological behavior of blood hemodiluted with plasma expanders was studied ex-

perimentally to characterize changes of fluid viscosity with shear rate. The plasma expanders

used were: a) 4 % PEG-albumin solution, b) 6 % Dextran 70 kDa solution (a low viscosity

plasma expander, or LVPE), and c) 6 % Dextran 500 kDa solution (a high viscosity plasma
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expander, or HVPE). These fluids were mixed with hamster blood to reproduce the plasma com-

position after hemodilution to 11 % Hct in previous experiments [192]. In these experiments,

plasma was obtained from hamster blood collected in heparinized tubes and centrifuged.

A special protocol was followed in order to compare with in vivo data on extreme

hemodilution that included NO measurements [192]. Progressive stepwise hemodilution to a

final systemic Hct of 25 % of baseline was implemented with three exchange steps. Level 1

consisted of exchanging 40 % of the blood volume with 6

To measure rheological properties of the suspension, we employed a computerized cone-

plate rheometer, AR-G2, (TA Instruments, New Castle, DE) with a 4 cm diameter and 2◦ angle

cone cells. The rheometer was calibrated with the viscosity standards for fluids of low viscosity

at 37◦C. The measurements were carried out under standardized temperature conditions (37◦C)

and shear rates between 0.18 and 450 s−1 in two steps, first the ascending shear rate and second

the descending shear rate.

Plasma viscosities were measured after centrifugation of the suspension only using clean

supernatant solution. The measurements were made with a cone-plate LVDV-II (Brookfield

Engineering Labs., Middleboro, MA) using a CP-40 spindle. The measurements were carried

out at 37◦C and shear rates between 50 and 450 s−1 in two steps, first the ascending shear rate

and second the descending shear rate.

Table 3.1: Fitting parameters for the Quemada model for 11 % Hct blood diluted with Dextran
70, Dextran 500 and PEG-Alb plasma expanders to 11 % Hct. Also shown is data for 48 % Hct
blood without any plasma expanders present.

Fluid Plasma Viscosity (cP) k0 k∞ γc (s−1)
Whole Blood (48 % Hct) 1.2 4.3 2.05 2.8
Blood diluted with Dextran70 1.2 7.1 2.4 6
Blood diluted with Dextran500 2.2 6.2 0.5 1.9
Blood diluted with PEG-Alb 1.3 11.9 0.3 7.3
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Figure 3.1: Viscosity vs shear rate for PEG-albumin, Dextran 70 (LVPE, Dex 70) and Dextran
500 (HVPE, Dex500) solutions mixed with blood, at 11 % Hct, with fitted curves using the
Quemada model. Also shown are curves for whole blood without plasma expanders present, at
48 % Hct.

3.4 Results

Results are shown in Figure 3.1 for blood diluted with the three plasma expanders under

consideration. At shear rates below 20 s−1, the blood diluted with PEG-Alb exhibits more pro-

nounced shear-thinning behavior than the blood diluted with either Dextran 70 or Dextran 500.

The PEG-Alb diluted blood has greater viscosities than the blood diluted with Dextran based

plasma expanders up to a shear rate of 10 s−1. At high shear rates, the viscosity of the PEG-Alb

diluted blood is significantly lower. The Quemada rheological model (see equations 3.3 and 3.4

below) was fitted to these data, leading to the viscosity-shear rate curves shown in Figure 3.1.

The corresponding fitting parameters are tabulated in Table 4.1.
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3.5 Mathematical model of blood flow in arterioles

The mathematical model presented below allows one to compute flow velocity profiles

in arterioles, WSS, and core Hct for a given value of systemic Hct. Our model qualitatively

captures the blunted blood-velocity profiles observed in experiments [32, 109, 147, 188, 18],

predicts the impact of various plasma expanders on WSS, and verifies the hypothesis that the

introduction of either Dextran 500 kDa or PEG-albumin increases WSS.

Empirical power laws, which are often used to describe velocity profiles in arterioles

[18, 94, 109], do not account for changes in the rheological properties of blood caused by Hct

variations. To accommodate this phenomenon, we model blood as an inhomogeneous multi-

phase fluid [182, 172] that exhibits both a non-uniform radial distribution of Hct in the vessel

lumen [109, 147, 203] and a cell-depleted layer near the blood-vessel wall [90]. Non-Newtonian

rheology of the RBC-rich core is described with the Quemada constitutive law [114, 157, 144],

a three-parameter expression that captures the variation of blood viscosity with shear rate and

Hct. Blood plasma is modeled as a Newtonian fluid. We consider pseudo-steady flow regimes,

which are typical for arteriole flows characterized by low Womersley numbers [12].

Consider blood flow in an arteriole of fixed radius R. The flow is driven by an externally

imposed pressure gradient ,with no-slip boundary and no-flow conditions imposed at the arteriole

wall. Blood is modeled as a multi-phase fluid consisting of an inner region densely packed by

RBCs and an outer plasma layer with fewer RBCs [30, 109, 147, 203]. The nominal plasma layer

thickness δ (normalized with the arteriole radius R) varies linearly with systemic hematocrit Hd

[182],

δ = mHd + c. (3.1)
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where m = −7.55; c = 6.91/R for Hd up to 0.65. We assume that the localized hematocrit H

decreases smoothly from its maximum value H = Hc (the core hematocrit) at the arterioleâĂŹs

center to H = 0 at the arterioleâĂŹs wall according to a sigmoidal curve

H(ξ ) = Hctanh(
1−ξ

aδ
π). (3.2)

where 0≤ ξ < 1 is the radial distance from the centerline (normalized with R) and a is a fitting

parameter. Based on the data reported in [203], we set a = 4.

The Quemada rheological model [157, 114] postulates that the effective blood viscosity

η varies with the localized hematocrit H and the shear rate γ as

η =
ηp

(1− kHc/2)2 , k =
k0 + k∞

√
γ/γc

1+
√

γ/γc
. (3.3)

Here ηp is the plasma viscosity, and the fitting parameters k0, k∞, and γc vary with H according

to the experimental observations reported in [32, 114, 133]. For small shear rates (γ → 0 ),

equation 3.3 reduces to η = ηp(1− k0H/2)−2. At low Hct (H → 0), this equation yields the

Einstein model for a dilute suspension of rigid spheres, η = ηp(1−k0H) with k0 = 2.5. Further,

at low hematocrits, (less than 20 %), the parameters k0, k∞, and γc all become constant [133, 32].

Recalling that shear stress τ = ηγ , equation 3.3 can be rewritten as [144]

τ

γ
= (
√

η∞ +

√
τ0√

λ +
√

γ
)2 (3.4)

where

τ0 = ηp
γcH(k0− k∞)

2(1− k∞H/2)4 (3.5)
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η∞ = ηp(1− k∞H/2)−2 (3.6)

λ = γc(
2− k0H
2− k∞H

)2 (3.7)

The radial distribution of the shear stress τ(ξ ) in the non-Newtonian fluid, whose vis-

cosity η(ξ ) varies with the normalized radius ξ in accordance with equation 3.3, satisfies the

steady-state axisymmetric Cauchy equations of motion,

0 =−J+
1

Rξ

∂ (τξ )

∂ξ
, 0≤ ξ ≤ 1 (3.8)

The resulting blood velocity profiles v(ξ ) must be symmetric with respect to the arteri-

oleâĂŹs center ( ξ = 0), i.e., dv/dξ = 0 at ξ = 0. Recalling the definition of the shear stress τ ,

this yields a boundary condition for equation 3.8, τ(0) = 0. A solution of this boundary-value

problem gives the distribution of shear stress across the arteriole,

τ = JRξ/2 (3.9)

Combining equations 3.9 and 3.4 yields the shear rate distribution across the arteriole [144]

(from 0≤ ξ ≤ 1)

γ =
JR

4η∞

(ξ −α(1+q)
√

ξ +(
√

ξ −α)

√
ξ −2αq

√
ξ +α2) (3.10)

where

α =

√
τ0 +
√

η∞γ

τw
(3.11)

q =

√
τ0−
√

η∞γ√
τ0 +
√

η∞γ
(3.12)
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and τw = JR/2 is the shear stress at the arteriole wall ξ = 1.

To compute the blood velocity distribution v(ξ ), we recall the definition of the shear

stress τ in equation 3.9 and enforce the no-slip boundary condition at the arteriole wall (ξ = 1),

v
ξ
=

JRξ

2ηH(ξ )
; v(ξ = 1) = 0. (3.13)

The interdependence between the parameters entering the relationship 2ηH(ξ ) given by equa-

tions 3.1 - 3.3 introduces an additional constraint. Specifically, mass conservation of RBCs

inside the arteriole imposes the following relationship between the localized (H) and systemic

(Hd) hematoctrits [102, 182]:

∫ 1

0
H(ξ )v(ξ )ξ dξ = Hd

∫ 1

0
(ξ )v(ξ )ξ dξ . (3.14)

For a given value of the systemic hematocrit Hd , we use the iterative procedure in [182]

to compute the blood velocity distribution v(ξ ) from the boundary-values problem 3.13 subject

to the integral constraint 3.14.

1. Guess a value of the core hematocrit Hc (e.g., by adopting a linear relationship between

the systemic and core hematocrits).

2. Use equations 3.1 and 3.2 to compute the localized hematocrit H(ξ ) .

3. Use equation 3.3 to compute the blood viscosity 2ηH(ξ ) .

4. Solve the boundary-value problem 3.13 to compute the blood velocity distribution v(ξ ).

5. Use equation 3.14 to verify if the resulting velocity profile v(ξ ) yields Hd consistent with

the given value of the systemic hematocrit (with prescribed tolerance ε ). If yes, the
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simulation is completed. If not, set Hc = Hc +∆ (where ∆ is a prescribed constant) and go

back to step 2.

In the simulations reported below, we set ε = 10−6 and ∆ = 10−4.

The resulting velocity profiles v(ξ ) are shown in Figure 3.2a for several values of the

systemic hematocrit . These profiles are qualitatively similar to the observed velocity profiles

[18, 109, 94] in that they are continuous across the arteriole. This is in contrast with models that

treat blood as a two-phase liquid, e.g., [172], yielding velocity jumps at the interface between the

RBC-rich core and the plasma layer. As Hd increases, the non-Newtonian nature of blood flow

becomes more pronounced, with the velocity profiles becoming blunter. Figure 3.3 compares

the velocity profile predicted with our model and the experimentally observed velocity profile

for R = 27.1µm, Hd = 0.335, J = 3726dynes/cm3.

Higher Hd values imply higher WSS, as larger pressure gradients are required to drive

the flow and hence. Figure 3.2b demonstrates the rapid increase of WSS with Hd . Figures 3.2c

and 3.2d show the spatial variability of flow velocity and shear rate near the arteriole walls for

different values of systemic hematocrit Hd . As Hd increases, both velocity and shear-rate profiles

become steeper near the arteriole wall and blunter near the arteriole centerline. This phenomenon

is a manifestation of the non-Newtonian behavior of blood that increases with Hd .

It is worthwhile emphasizing that the model presented above is valid for both steady

(constant J) and quasi-steady (pulsating J) flows in small arterioles, for which the Womersley

number is small. (The arterioles considered in this study have R = 20µm, resulting in the Wom-

ersley numbers on the order of 10−2.) This is because this flow regime allows one to neglect the

inertial term in the Navier-Stokes equations even if J = J(t) [12].
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Figure 3.2: (clockwise from top left): a) Calculated velocity profiles, for fixed vessel radius
R = 27.1µm and several values of systemic Hct Hd and constant flow rate; b) Corresponding
variation in WSS; c) Velocity profiles near vessel wall; d) Variation of shear rate near vessel
wall.
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Figure 3.3: Observed velocity profile for human blood at Hd = 33.5% in 54.2µm diameter glass
tube at pressure gradient of 3736 dyn/cm3, from [109] (dotted line) compared with modeled
velocity profile using the Quemada model (solid line) under same conditions.
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3.6 Flow in presence of plasma expanders

We employed our mathematical model of blood flow to assess the effectiveness of

plasma expanders (PEG-Alb, Dextran 70, and Dextran 500) by analyzing their impacts of WSS.

Experimental data was used to parameterize the flow model as follows. First, we used the data

presented in Figure 3.1 to parameterize the Quemada model for the mixtures of blood and plasma

expanders. Second, we used data from [27] which measured how vessel radius and centerline

velocity vary from baseline upon hemodilution with each plasma expander. For a prescribed

vessel radius and centerline velocity at baseline we used this data to fix the vessel radius and

centerline velocity associated with hemodilution using each of the three plasma expanders.

With these inputs, we applied our flow model to determine the pressure gradients needed

to maintain the experimentally determined (centerline) flow velocities associated with each plasma

expander. Using the calculated pressure gradients, we computed the shear-rate and velocity pro-

files that are shown in Figures 3.4 and 3.5, respectively. Finally, we used both the calculated

value of pressure gradient and the experimentally determined variation of vessel radius to pre-

dict variation of WSS associated with each plasma expander (Figure 3.6). All the calculations

were carried out for arterioles with two baseline diameters: 40 µm and 60 µm.

To elucidate the importance of shear thinning, Figures 3.4 and 3.5 also present the

shear rates and velocities computed by treating blood as a Newtonian fluid, i.e., by relying on

PoiseuilleâĂŹs law. Our non-Newtonian model predicts a sharp increase in shear rate near the

arteriole wall (Figure 3.4), which implies that the reliance on PoiseuilleâĂŹs law would sig-

nificantly underestimate WSS. This effect, and the underlying blunting of the velocity profiles

(Figure 3.5), is more significant in a baseline 40 µm diameter arteriole than in a baseline 60 µm

diameter arteriole, as smaller vessel have lower shear rates and hence more pronounced shear-
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thinning behavior. Both PEG-Alb and Dextran 500 lead to appreciable increases in WSS relative

to Dextran 70.

Viscosity values measured at high shear rates (at which viscosity becomes independent

of shear rate and rheological behavior becomes Newtonian) were assumed for calculation of the

Poiseuille flows, with the same pressure gradients and vessel radii as the corresponding non-

Newtonian flows.

Hemodilution with Dextran 500 and PEG-Alb increased vessel diameters and flow rates

above the baseline. The pressure gradients required to produce the flow rates for each plasma

expander (and vessel radius) were then calculated using equations 3.1 - 3.14.

Model results are under the assumption of steady flow, with the oscillatory component of

the flow neglected. The resulting calculations for WSS are hence equivalent to a time-averaged

value, with the average of the oscillatory component of flow equal to zero.

3.7 Measurement of perivascular NO

We used the experimental technique [192] to measure the concentration of nitric oxide

(NO) in the vessel wall. The experimental procedure relies on carbon electrodes coated with

Nafion to measure the current produced by the application of a +0.8 volts potential relative to a

silver-silver chloride reference electrode. It was used to measure NO concentrations in arterioles

and venules of the hamster window chamber model; detailed descriptions of the 3-step procedure

used to study perivascular NO levels for HV and LV in extreme hemodilution can be found in

[19]. The present study followed the same procedure, except the finial hemodilution step was

performed using 4 % PEG-Alb.

In brief, the method consists in removing the cover glass of the window chamber after
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Figure 3.4: Radial variation of shear rate for flow of blood diluted with three plasma expanders
in a) Arteriole of 40 µm diameter. b) Arteriole of 60 µm diameter (solid lines). Corresponding
velocity profiles for equivalent Poiseuille flows at the same pressure gradients are also shown
(dashed lines).
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Figure 3.5: Velocity profiles for flow of blood diluted with three plasma expanders in: a) Arteri-
ole of baseline 40 µm diameter; b) Arteriole of 60 µm diameter (solid lines). Corresponding ve-
locity profiles for equivalent Poiseuille flows at same pressure gradients are also shown (dashed
lines)
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Figure 3.6: WSS calculated for Dextran 500kDa and PEG-albumin plasma expanders relative to
WSS for Dextran 70kDa plasma expander. Arterioles of baseline diameter a) 40 µm and b) 60
µm .Values of WSS (in dyne/cm2) calculated for:

a) Dex70: 2; Dex500: 2.73; PEGAlb: 2.67 b) Dex70: 5.175; Dex500: 6.95; PEGAlb: 6.68.
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the third exchange, and superfusing the tissue with a physiological Krebs salt solution (33-34

Celcius). Perivascular measurements are made by penetrating the perivascular tissue with the

micropipette so that the tip is close to the microvessel without visibly touching and deforming

the wall [19]. The electrode current was measured with a potentiostat and electrometer (Keithley

model 619C, Cleveland, OH).

3.8 Results of perivascular NO measurements

Six animals were entered into this study for the measurement of NO, and all animals

tolerated the hemodilution protocol without visible signs of discomfort. Two animals were used

as controls to insure that the system calibration and animal preparation was the same as pre-

vious control measurements [191]. However, PEG-Alb perivascular NO levels have not been

previously published.

Physiological conditions and the rheological properties of blood after level 3 exchange

are presented in Table 2. For comparison, data on low viscosity hemodilution using Dextran 70,

and high viscosity hemodilution using Dextran 500 from the previous study by Tsai et al. [190]

is also included. NO measurements in all experiments were performed during a period of 1 - 2

hr after hemodilution.

Figure 3.7 presents the principal finding from these measurements: increased perfusion

found in extreme hemodilution using PEG-Alb is associated with increased arteriolar and venular

perivascular NO. These NO concentrations were significantly greater than in control and when

extreme hemodilution was performed using Dextran 70. NO concentrations were the same as

those found using Dextran 500.
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Figure 3.7: Perivascular microelectrode NO measurements during hemodilution at 11 % Hct
using a 3 steps protocol that starts with hemodilution with 6 % Dex70, resulting in final concen-
tration = 1 % by weight of either Dex70, Dex500 or PEG-Alb at time of measurement.

Comparison with cardiac output measured at the same time point by thermodilution. All
measurements are statistically different from baseline, p < 0.05.
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Table 3.2: Hemodilution with low viscosity Dextran 70, high viscosity Dextran 500 and PEG-
Alb.

Parameter Control (*) Dextran 70 (*) Dextran 500 (**) PEG-Alb (*)
Hct (%) 49.3 ± 1.8 11.1 ± 0.9 11.0 ± 0.6 11.2 ± 0.7
MAP, mmHg 103.6 ± 6 64 ± 8 87 ± 6 79 ± 7
Heart rate, bpm 414 ± 35 418 ± 41 453 ± 38 460 ± 31
Cardiac Output, ml/min 17.8 ± 1.6 14.2 ± 1.9 19.6 ± 3.5 24.2 ± 1.6
Plasma Viscosity, cP 1.2 ± 0.1 1.4 ± 0.2 2.2 ± 0.2 1.3 ± 0.1
Blood Viscosity, cP 4.1 ± 0.4 2.1 ± 0.2 2.8 ± 0.2 1.8 ± 0.1
Data is from (*): [26] and (**): [27]

3.9 Effect of NO synthase inhibition

In order to further support the hypothesis that enhanced NO production is the primary

cause for the observed increase of perfusion, we performed hemodilution with PEG-Alb fol-

lowed by treatment with the NO synthase inhibitor L-NAME. This allowed us to determine the

extent of the dependence of supra-perfusion on enhanced NO production. In these experiments,

it was not possible to apply L-NAME after extreme hemodilution to 11 % since the combination

of significant decrease in intrinsic oxygen carrying capacity due to hemodilution and perfusion

due to L-NAME administration caused all animals to succumb. Therefore we hemodiluted the

animals to 35 % Hct with Dextran 70 kDa and then carried a second hemodilution to Hct 18

3.10 Discussion

This study shows that the supra-perfusion condition established during extreme hemod-

ilution with PEG-Alb is directly associated with increased WSS and related increased NO vessel

wall concentration. The increase in WSS is shown by mathematical modeling to be a conse-

quence of the shear thinning properties that PEG-Alb confers to Dextran 70 diluted blood. The

significance of these findings is that extreme hemodilution with PEG-Alb results in a greater
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Figure 3.8: Vessel diameter, centerline velocity, and blood flow in arterioles of the hamster
widow model. Animals were first hemodiluted with 6 % Dex70 to 35 % Hct and subsequently to
18 % Hct using 4 % PEG-Alb (n= 5, 25 arterioles, 40-60 µm diameter) and finally treated with
(L-NAME).

Data normalized relative to baseline.
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than 40 % reduction of peripheral vascular resistance and a corresponding increase in blood flow

and perfusion, a condition that we term supra-perfusion (Table 3.2 and Figure 3.7).

The increase in WSS increases NO production by the endothelium as evidenced by

its direct measurement in the vessel wall with microelectrodes. In principle, increased WSS

requires increased plasma viscosity and/or flow, of the fluid component directly in contact with

the endothelium. This is the case of high viscosity plasma expanders such as Dextran 500, whose

rheology is nearly Newtonian at the low value of Hct down to which hemodilution is performed.

By contrast, blood diluted with PEG-Alb is strongly shear thinning, even at 11 % Hct. This

effect redistributes shear rate energy expenditure from the bulk of the flow to the periphery and

also increases the apparent viscosity of the fluid, accounting for the increase in WSS.

The increase of NO production with shear stress is consistent with previous experimental

studies of endothelial response to WSS conducted in flow chambers [118, 122]. While these

experiments do not exactly reproduce in-vivo conditions due to the absence of pulsatility, they

show that NO production increases with increasing WSS in steady (and slowly varying) flow

regimes. Flow in arterioles is pulsatile [12] in synchrony with the heart, and has a random

variability in the region of the cell free plasma layer due to the continuous realignment of the

RBCs that limit the cell free plasma layer on the blood side [9] and the spatial variability of the

endothelial surface layer [138].

The increase of WSS in microvessels associated with PEG-Alb is a property of laminar

flow at low shear rates; in the heart, where most fluid volumes have significant velocity gradients

(and high shear rates), the viscosity of blood mixed with PEG-Alb is low. Conversely, if blood is

diluted with a high viscosity plasma expander, the fluid in the heart has the corresponding higher

viscosity. This leads to a different mechanical expenditure by the heart in pumping blood diluted
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with these different plasma expanders.

Table 3.2 and Figure 3.7 show that these effects are important, with perivascular NO

concentrations being higher with dilution with PEG-Alb and Dextran 500 than with Dextran 70

or baseline conditions. Simply lowering blood viscosity by hemodilution with a conventional

colloidal plasma expander such as Dextran 70 significantly lowers blood viscosity and blood

pressure, but not peripheral vascular resistance. This occurs because microcirculatory WSS is

not sufficient to sustain NO production and maintain normal vasodilation. Increasing plasma vis-

cosity with a Newtonian fluid pressurizes the circulation, and improves flow and WSS, lowering

peripheral vascular resistance; however the effect on peripheral vascular resistance is partially

negated by the increased blood viscosity throughout the circulation. PEG-Alb increases viscos-

ity in the blood vessel core, and lowers blood viscosity in the high shear rate regions of the

circulation, synergistically increasing perfusion. In accounting for this synergistic mechanism

by which PEG-albumin increases perfusion, we ruled out hypoxic vasodilation by RBCâĂŹs as

a contributing factor since the hemodilution achieved in these experiments corresponds to pO2

levels in the range of 23.5 - 48.0 mmHg (vs. 45.0 - 58.8 mmHg for normal baseline) [192]

which is above the range of pO2 levels where the phenomenon of RBC facilitated vasodilation

is expected to occur [49].

Our model of blood flow in an arteriole treated blood as a non-Newtonian fluid with the

Quemada constitutive model. The model yields velocity profiles and radial variations of shear

rate that are in qualitative agreement with the experimental data reported in [109, 18, 188, 94].

Since our model is suitable for a wide range of hematocrit, it can be used to analyze data from

blood flow experiments in vivo and in vitro.

The shear thinning effect is expected to be due to PEG-Alb inducing an increase in the
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interaction between RBCs, although by a mechanism different to the one causing aggregation by

Dextran 500 kDa. Aggregation due to Dextran 500 kDa causes large RBC aggregates at higher

Hcts but not in extreme hemodilution. Aggregation due to the presence of PEG-proteins was

not evident in our experiments, even at higher Hcts. The increase in WSS evidenced by our

modeling study of the effect of shear thinning is primarily due to the increase in shear rate in

the proximity of the vessel wall due to a combination of factors including the increased flow, the

blunting of the velocity profile and the small increase in plasma viscosity (from 1.2 to 1.3 cP).

The potential beneficial effect of increased blood aggregability has been reviewed and discussed

in [12].

This study shows that treating blood as a non-Newtonian shear-thinning fluid predicts

significantly higher shear rates (and hence shear stresses) at the vessel walls relative to shear

rate estimates obtained from PoiseuilleâĂŹs law. Hence, previous studies of plasma expanders

[26, 27, 192] probably underestimated the relative increase of WSS with the introduction of

Dextran 500 and PEG-Alb plasma expanders.

3.11 Alternative mechanisms for supra-perfusion

A host of other mechanisms may play a role in enhancing perfusion.

Extreme hemodilution and changes in blood viscosity significantly change the distribu-

tion of pressure in the circulation, interacting with the mechanical properties of blood vessels

and the Bayliss effect. In previous studies we modeled the effects of a 10

Increased NO bioavailability is a factor in hemodilution, because it increases the cell

free layer (CFL) width. Our analytically study [182, 181] shows that in hemodilution the effect

due to WSS dominates the effect of NO-scavenging by RBC hemoglobin. Both blood viscosity
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and RBC aggregability influence the CFL width. Since RBC aggregability causes shear thinning,

it is likely that PEG-Alb increases NO bioavailability relative to colloids that induce low or no

aggregability.

Acidosis due to massive dilution with sodium chloride causes dilatation and could be a

factor, however this was not observed in our studies as shown in Table 3.2.

In order to verify that increased perfusion associated with PEG-Alb was due to in-

creased NO production we carried out hemodilution with PEG-Alb, followed by treatment with

L-NAME. The introduction of L-NAME (which serves to inhibit NO production) effectively

eliminated improvements in perfusion achieved with the use of PEG-Alb as a plasma expander.

This helps to justify our claim that the introduction of PEG-Alb induces higher WSS in the

microcirculation, thereby stimulating NO production and increasing perfusion.

In summary, Dextran 70, Dextran 500 and PEG-Alb mixed with blood in conditions of

extreme hemodilution exhibit the behavior of non-Newtonian shear thinning fluids. Previous

hemodilution experiments using the plasma expanders studied [26, 27, 192] indicated that Dex-

tran 500 and PEG-Alb increased blood flow and diameter to a significantly greater extent than

Dextran 70. It was hypothesized that both Dextran 500 and PEG-Alb used as plasma expanders

improved cardiac performance by elevating WSS, thereby increasing NO bioavailability and in-

ducing vasodilation. We tested this hypothesis by developing a mathematical to calculate WSS

in arterioles under hemodilution with each plasma expander. Results (Figure 3.6) show that

both Dextran 500 and PEG-Alb significantly increase WSS. This leads to significant increases

in perivascular NO concentration relative to Dextran 70 hemodilution and baseline conditions.

The significance of these findings is that they explain why PEG-Alb hemodilution pro-

duces a state of supra-perfusion. This occurs because blood is diluted, lowering blood viscosity
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in high shear rate zones of the circulation, like the heart and major vessels; while apparent

viscosity and WSS increase in the microcirculation promoting the production of NO by the en-

dothelium and vasodilatation. An extreme case of this effect is the conversion of the fluid in

the blood vessel core into a solid piston (maximum viscosity at zero shear rate), with a thin pe-

ripheral lubricating layer between the piston and cylinder. This synergy of such mechanisms,

including a possible contribution from the Bayliss mechanism not explored in the present study,

should also be operational in the heart muscle, allowing the heart to maintain blood pressure

and to increase cardiac output, leading to the beneficial effect found in using PEG-Alb plasma

expander.

The clinical significance of our findings is expressed by the recent meta-analysis [67] of

the hemodynamic factors that determine survival of high-risk surgical patients. This study found

that “for most high-risk patients, the main cause of death is more often related to tissue perfusion

dysfunction than to a cardiac problem” and concluded that in “high-risk surgical patients with no

evident organ dysfunction before surgery, maintaining tissue perfusion preoperatively according

to a specific protocol reduces postoperative mortality and morbidity”.
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Chapter 4

Calculating Velocity Profiles and Shear

Stress in Arterioles

4.1 Introduction

Velocity profiles of blood flowing in glass tubes [109, 59, 4] and in vivo [18, 94, 188]

are observed to be blunted, rather than the parabolic velocity profiles characteristic of Newtonian

fluids. Both the CFL [90, 109] and non-Newtonian behavior of blood [114, 133, 157, 180] in

the microcirculation have been used to explain the experimentally observed bluntness of blood

velocity profiles in narrow glass tubes [109, 59, 4] and in-vivo micro-vessels [109, 18, 94, 188].

Blunting of the parabolic (Newtonian) velocity profiles observed in microvessels is in-

dicative of changes in blood viscosity within the blood vessel cross section. This redistribution

affects the overall rate of energy dissipation by the flow and the distribution of shear stress

within the profile. Of particular physiological significance is the shear stress developed at the

microvessel vessel wall that modulates the production of shear stress dependent materials by

66
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the endothelium, a significant effect due to the large endothelialized surface of the microcircula-

tion [145, 95, 12]. The bluntness of blood velocity profiles also has significant implications on

indirect measurements of wall shear stress (WSS), which are typically inferred from direct mea-

surements of centerline velocity and vessel radius by invoking the Poiseuille law [160, 25, 87].

The mismatch between the experimentally observed blunt velocity profiles and their parabolic

counterparts predicted by the Poiseuille law introduces interpretive errors in WSS measurement

[87, 160].

A typical CFL thickness is on the order of 1 µm [90, 149, 159, 186]. It is relatively insen-

sitive to vessel radius, but decreases significantly with hematocrit [56, 164, 186]. While plasma

in the CFL can be treated as a Newtonian fluid, the RBC-rich core displays non-Newtonian shear-

thinning properties. In this study, we assume a general functional dependence of CFL thickness

on hematocrit and then calculate velocity profiles of blood flow through a tube, comprising two

discrete fluid layers: the non-Newtonian RBC core and the CFL (which is assumed Newtonian).

Experimental work on blood rheology has demonstrated the dependence of blood vis-

cosity on shear rate and hematocrit, showing that the relationship between shear stress and shear

rate for blood is non-linear (and non-Newtonian), with shear thinning properties [32, 114, 133]

which are enhanced by increasing hematocrit. This shear-thinning rheology of blood in the RBC

core was mathematically represented in our flow model via the Quemada rheological model. The

Quemada model is a three-parameter constitutive rheological model that accurately describes

shear thinning blood rheology over a wide range of shear rates and hematocrit [114, 133, 157].

Due to this robustness, the Quemada model is superior to other blood rheological models of

comparable complexity [114] and was hence utilized in our flow model.

Previous mathematical models of blood flow in microvessels have typically treated both
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fluid layers (the CFL and RBC core) as Newtonian fluids, with the viscosity of the RBC core

being larger than the viscosity of the CFL [130, 172, 179]. Our model builds upon these previous

studies; we compare results for our non-Newtonian model with the 2-layer Newtonian model and

demonstrate that significant differences between the two models exist. We demonstrate that our

model is a significant improvement over previous Newtonian models, more accurately predicting

CFL thickness, velocity profiles and apparent viscosities.

We then leverage our flow model to develop a general method for correcting experimen-

tal estimation of WSS. Typically, WSS in a blood vessel is estimated in experimental studies by

measuring the centerline velocity and the vessel radius; with these values the WSS is then calcu-

lated using the Poiseuille law [25, 87, 160]. The problem with this approach is that blood flow in

microvessels does not follow the Poiseuille law (due to the inhomogeneous and non-Newtonian

behaviors discussed above). This introduces errors in the measurement of WSS [87, 160].

These errors may be avoided by direct measurement of velocity profiles, using methods

such as in [109]. This allows precise estimation of shear rate at the vessel wall; for a known

plasma viscosity, WSS can then be calculated once wall shear rate is known. The difficulty

with this alternative is that direct measurement of velocity profiles is a difficult and complicated

task; repeatedly measuring velocity profiles every time WSS estimates are needed is relatively

impractical (and expensive) with current technology and experimental techniques [87].

In this study, we compute the magnitude of these WSS estimation errors arising from

the use of the Poiseuille law and demonstrate that these errors are significant. We propose two

methods to eliminate these errors: an iterative numerical algorithm which leverages our flow

model, and the use of a simple correction factor that can be incorporated into the Poiseuille law.

Given a rheological model of the RBC-rich core, both approaches allow one to infer WSS from
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measurements of vessel radius, centerline velocity and discharge hematocrit.

4.2 Mathematical model of blood flow in arterioles

Symbols Used
R, r Vessel radius and radial coordinate
µp Plasma viscosity
γc, k0 and k∞ Parameters in the Quemada rheological model
µ , µeff, µrel Medium, Effective medium and Relative medium viscosity
τ , τw Shear stress and Wall shear stress (WSS)
δ CFL thickness
Q Flow rate of blood in blood vessel
γ Shear rate
H, Hc, Hd , Ht Localized, core, discharge and tube hematocrit
J Pressure gradient
vz Axial velocity
vmax Centerline (maximum) velocity
φ WSS correction factor

Figure 4.1: Cell-free layer (CFL) and red-blood-cell (RBC) rich core in an arteriole. The CFL is
occupied by plasma, a Newtonian fluid whose viscosity is lower than that of the non-Newtonian
fluid comprising the RBC-rich core.

We consider steady-state blood flow in an arteriole of fixed radius R. The flow is driven

by an externally imposed pressure gradient J, with no-slip boundary conditions prescribed at the

(non-deformable) vessel walls. Blood is treated as a two-layer inhomogeneous fluid: an RBC-

rich core region near the vessel centerline [172, 179] occupies the cylinder of radius (R− δ )
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and a CFL of thickness δ occupies the rest of the vessel (Figure 4.1). Plasma in the CFL is

modeled as a Newtonian fluid with a constant viscosity µp, independent of both hematocrit

H and shear rate γ . Hematocrit distribution in the RBC-rich core is assumed to be uniform.

The Quemada rheological model [114, 133, 157] is used to describe the non-Newtonian, shear-

thinning behavior of the RBC-rich core.

The Quemada constitutive law postulates a nonlinear relationship between shear stress

τ and shear rate γ in the RBC-rich core,

τ =
γµp

(1− kHc/2)2 , k =
k0 + k∞

√
γ/γc

1+
√

γ/γc
. (4.1)

The model parameters γc, k0 and k∞ vary with core hematocrit Hc (the value of hematocrit H in

the RBC-rich core) [32, 133]. We fit the parameter data reported in [133] with second-degree

polynomials in Hc. Figure 4.2 exhibits both the data and the fitted curves (with the goodness-

of-the-fit R2 exceeding 0.99 for all three curves). The Quemada model (4.1) reduces to a linear

(Newtonian) relationship between τ and γ when either Hc is small or γ is large.

The normalized effective viscosity µeff of blood is defined from Eq (4.1) as

µeff =
τ

γµp
=

1
(1− kHc/2)2 . (4.2)

According to this expression, the normalized effective viscosity µeff decreases with the shear rate

γ and increases with the core hematocrit Hc increases (Figure 4.3). At large values of γ (above

200 s−1), the viscosity is approximately constant and the fluid is essentially Newtonian.

Regardless of the fluid properties, the Cauchy equations of motion for steady (or pseudo-



71

k0

k1

�c

k0 = 25.608H2
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c � 2.3001Hc + 2.6884

(R2 = 1.0)

�c = 30.443H2
c � 13.528Hc + 1.49

(R2 = 0.995)

M
o
d
el

p
ar

a
m

et
er

s,
k
0
,
k
1

a
n
d
�

c

Core hematocrit, Hc

Figure 4.2: The data reported in [133] show the dependence of the Quemada model parameters
γc, k0 and k∞ on the core hematocrit Hc. These data are fitted with second-degree polynomials in
Hc.
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steady for low Womersley numbers), axisymmetric laminar flow have the form

0 =−J+
1
r

∂

∂ r
(rτ). (4.3)

Integrating this equation across the RBC-rich core (from 0 to R− δ ) and across the CFL (from

R−δ to R) yields the following equations

τ(r) =
Jr
2
+

C1

r
, 0≤ r ≤ R−δ (4.4)

τ(r) =
Jr
2
+

C2

r
, R−δ ≤ r ≤ R (4.5)

where C1 and C2 are constants of integration. Since the shear stress τ(r) must remain finite

throughout the blood vessel, including its centerline r = 0, we set C1 = 0. The continuity of the

shear stress at the interface between the two fluids (at r = R−δ ) requires C2 = 0. Therefore, the

shear stress τ(r) is given by

τ(r) =
Jr
2
, 0≤ r ≤ R (4.6)

throughout the blood vessel (0≤ r ≤ R).

Combining Eqs (4.6) and (4.1) yields an implicit expression for the radial distribution

of shear rate γ(r) within the RBC-rich core,

γ =
Jr

2µp

(
1− Hc

2
k0 + kinf

√
γ/γc

1+
√

γ/γc

)2

, 0≤ r ≤ R−δ . (4.7)

Since the CFL is occupied by plasma (a Newtonian fluid with viscosity µp), τ = µpγ for R−δ ≤
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r ≤ R and Eq (4.6) yields

γ =
Jr

2µp
, R−δ ≤ r ≤ R. (4.8)

Equations (4.7) and (4.8) are coupled by the continuity of flow velocity at the interface

r = R−δ separating the RBC-rich core and the CFL,

v+z = v−z (4.9)

where vz(r) is the flow velocity, and the superscripts + and− indicate the core and plasma veloc-

ities on either side of the interface, respectively. The flow velocity is related to the corresponding

shear rate by γ = dvz/dr. At the vessel wall (r = R) we impose a no-slip boundary condition,

vz(R) = 0.

Given a value of the CFL thickness δ , both the shear rate γ(r) and the flow velocity

vz(r) are calculated by solving Eqs (4.7)–(4.9). The data reported in [56, 164] suggest that δ is

relatively insensitive to the blood vessels radius R, but decreases appreciably with the discharge

hematocrit Hd . The latter is related to the core hematocrit Hc by mass conservation [179],

Hc

∫ R−δ

0
vz(r)rdr = Hd

∫ R

0
vz(r)rdr. (4.10)

While one can choose any functional relation between δ and Hd , for the sake of concreteness we

adopt a polynomial relationship

δ = a2H2
d +a1Hd +a0. (4.11)

The parameters a0, a1 and a2 are determined by fitting our model predictions to the measure-
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ments of apparent viscosity [151]. An initial guess for δ (a2 = 0, a1 = 0 and a0 = 1 µm, which

gives δ = 1 µm) is refined by using the procedure outlined in Section 4.4.

4.3 Numerical algorithm for calculating velocity profiles

For given values of the discharge hematocrit Hd and the pressure gradient J, we use the

following algorithm to compute the shear rate γ(r) and the flow velocity vz(r).

1. Make an initial guess for Hc. (In the simulation reported below, the linear relationship

Hc = 0.9797Hd +0.0404 [179] is used as an initial guess.)

2. Calculate the value of δ by using Eq (4.11).

3. Compute the shear rate γ(r) in the RBC rich core and the CFL by using Eqs (4.7) and (4.8),

respectively.

4. Compute the flow velocity vz(r) =
∫ r

0 γ(r′)dr′.

5. Refine the previous guess for Hc by using Eq (C.4).

6. Repeat steps 3–5 until the absolute difference between the values of Hc obtained from two

sequential iterations is smaller than prescribed tolerance ε (in the simulations reported

below we set ε = 10−6).

4.4 Model calibration

Pries et al. [151] compiled a number of measurements of human blood viscosity con-

ducted in tubes of various radii R for several values of discharge hematocrit Hd . We use these
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data to calibrate our model, i.e., to determine the values of parameters a0, a1 and a2 in Eq (4.11).

That is accomplished in three steps as follows.

The first step is to evaluate the relative (dimensionless) apparent viscosity µrel that is

defined as [151]

µrel =
πJR4

8Qµp
. (4.12)

This quantity is routinely inferred from experiments by measuring Q and invoking the Poiseuille

law. Instead, for a given value of the CFL thickness δ , we compute Q from the flow velocity vz

determined in Section 4.7.1 as

Q = 2π

∫ R

0
vz(r)rdr. (4.13)

This calculation of Q is then used in Eq (4.12) to obtain the value of µrel associated with an

assumed value of δ . Figure 4.4 exhibits the resulting dimensionless apparent viscosity µrel as a

function of vessel radius R for discharge hematocrit Hd = 0.45 and several values of the CFL

thickness δ .
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Figure 4.4: Dependence of relative apparent viscosity µrel on vessel radius R, for discharge hema-
tocrit Hd = 0.45 and several values of the CFL thickness δ . Also shown is the dimensionless
apparent viscosity obtained with the data-fitted curve (4.14) of Pries et al. [151].
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The second step is to compare the relative apparent viscosity curves µrel = µrel(R) in

Figure 4.4 with their counterparts predicted by the data-fitted curve of Pries et al. [151], µPr =

µPr(R). The latter is given by

µPr = 1+(µPr,0.45−1)
(1−Hd)

α −1
(1−0.45)α −1

, (4.14a)

where µPr,0.45 is the dimensionless apparent viscosity at reference discharge hematocrit Hd =

0.45 fitted with a curve

µPr,0.45 = 220e−1.3(2R)+3.2−2.44e−0.06(2R)0.645
, (4.14b)

and α defined as a function of vessel radius given as

α = (0.8+ e−0.075(2R))

[
−1+

1
1+10−11(2R)12

]
+

1
1+10−11(2R)12 . (4.14c)

In the relations above, R is reported in µm and α is dimensionless. The value of the CFL thick-

ness δ that provides the best agreement between the two approaches is selected. For discharge

hematocrit Hd = 0.45 used in Figure 4.4 this value is δ = 2.1 µm. The fact that agreement

between our model (Steps 1 and 2) and the Pries et al. [151] curves persists over a wide range

of vessel radii R serves to validate our assumption that the CFL thickness δ is a function of

discharge hematocrit Hd alone.

The final step consists of repeating the above procedure for multiple values of discharge

hematocrit Hd , tabulating the δ vs. Hd values, and fitting the second-degree polynomial (4.11)
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to the resulting dataset. This step results in

δ =−2.265H2
d −1.4377Hd +3.2131. (4.15)

where values of δ are in µm. The use of the parameterized constitutive law (4.15) in our model

yields predictions of apparent viscosity µrel(R) that are in close agreement with their counterparts

based on the Pries et al. [151] calculations over a physiologically relevant range of discharge

hematocrit Hd and micro-vessel radii R (Figure 4.5).
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Figure 4.5: Relative apparent viscosity µrel calculated with our model and the data-fitted curve
of Pries et al. [151] over physiologically relevant ranges of micro-vessel radii R and discharge
hematocrit Hd .

We used the data reported in [151] for blood vessels of radius R ≥ 20 µm to calibrate

the constitutive law δ = δ (Hd) in Equation (4.15). We chose R = 20 µm as the lower range of

the vessel radius because a continuum description of blood flow in smaller vessels might not be

reliable [12] due to the finite diameter of RBCs (around 6 µm for human RBCs). However, the

smallest radius below which continuum models of blood flow become invalid is still in dispute;
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for example, the limit of R = 10 µm was suggested in [172]. Figure 4.6 shows the predictions

of the relative effective viscosity µdel over an expanded range of the vessel radius, starting with

R = 10 µm. Since the predictions of our model and those due to Pries et al. [151] begin to

diverge at about R = 10 µm, we suggest this value as the minimum vessel diameter at which our

model may be applicable.

Figure 4.6: Relative apparent viscosity µrel calculated with our model and the data-fitted curve
of Pries et al. [151] over physiologically relevant ranges of micro-vessel radii R and discharge
hematocrit Hd .

4.5 Model validation

To validate our model, we compare its predictions of the CFL width, blood velocity

profiles, and tube hematocrit (defined below) with their experimentally observed counterparts.

These comparisons are carried out on the experimental data that were not used to parameterize

our model.
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4.5.1 CFL thickness

The values of CFL thickness δ predicted with the constitutive law (4.15) fall within a

generally accepted range of around 2 to 3 µm [90, 149, 159, 186]. Figure 4.7 provides a further

confirmation of the ability of our model to predict the CFL thickness for a wide range of micro-

vessel radii. It compares the dependence of the relative CFL thickness δ/R on vessel radius R

predicted with our model and observed in the experiments [149, 159, 186], for discharge hemat-

ocrit Hd = 0.45. Our model qualitatively captures the observed decrease of the CFL thickness δ

with vessel radius R, underestimating the observed CFL thickness by 13% for R = 15 µm, 20%

for R = 30 µm and 25% for R = 47 µm. This level of agreement is significantly better than that

achieved with the earlier models [56, 172, 179].
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Figure 4.7: Predicted and experimentally observed values of relative CFL thickness δ/R as a
function of vessel radius R for discharge hematocrit Hd = 0.45. Experimental data are from
[149, 159, 186].

4.5.2 Flow velocity profiles

We compare the velocity profile vz(r) predicted with our model with its counterpart con-

structed from experimental micro-PIV (Particle Image Velocimetry) measurements of velocity
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profiles of human blood flow in glass tubes [109]. Figure 4.8 shows the predicted and observed

velocity profiles for discharge hematocrit Hd = 0.335, pressure gradient J = 3732 dyn/cm3 and

tube radius R = 27.1 µm used in the experiment [109]. The mean square-root error between the

data and predictions is 0.068.

A location of the kink in the experimentally measured velocity profile (r/R ≈ 0.92 in

Figure 4.8) indicates a position of the core/CFL interface r =R−δ ). Applied to the experimental

data in [109] (see Figure 4.8), this yields δ ≈ 2.2 µm. This estimate of the CFL thickness δ is

much closer to that predicted by our model (δ = 2.48 µm) than values for δ reported in earlier

models [56, 172].
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Figure 4.8: Predicted and observed velocity profiles, plotted against normalized radial distance
from centerline r/R, for discharge hematocrit Hd = 0.335, pressure gradient J = 3732 dyn/cm3

and tube radius R = 27.1 µm used in the experiment [109].

4.5.3 Tube hematocrit

As a final validation test, we investigate the ability of our model to reproduce mea-

surements of tube hematocrit Ht , which is defined as the average (over a vessel’s cross-section)
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hematocrit [172],

Ht ≡
2

R2

∫ R

0
H(r)rdr. (4.16)

In the two-phase fluid model under consideration, H(r) = Hc inside the RBC-rich core (0≤ r ≤

R−δ ) and H(r) = 0 inside the CFL (R−δ < r ≤ R). Therefore, this equation predicts a linear

relationship between tube hematocrit Ht and core hematocrit Hc [172],

Ht =
(R−δ )2

R2 Hc. (4.17)

Measurements of tube hematocrit Ht are typically reported relative to discharge hemat-

ocrit Hd , i.e., as the ratio Ht/Hd . This ratio is observed to be smaller than unity, a phenomenon

that is referred to as the Fahraeus effect [54]. The disparity between values of tube hematocrit

Ht and discharge hematocrit Hd is due to the presence of the CFL; the difference between the

three types of hematocrit diminishes, Ht ≈ Hc ≈ Hd , as δ/R→ 0.

Figure 4.9 shows the observed [56, 72, 78, 149] and computed dependence of Ht/Hd

on vessel diameter D for Hd = 0.405. While the mean root-mean-square error (RMSE) between

the data and predictions is relatively large (RMSE = 0.052), our model captures the key features

of this dependence. The ratio Ht/Hd increases as with vessel radius R, approaching its limiting

value of 1 at large R (δ/R→ 0). Moreover, the absolute difference between our calculations and

the experimental data does not exceed 11 % and is significantly smaller (less than 4 %) for many

data points over a wide range of vessel diameters.
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Figure 4.9: Calculated and measured values of Ht/Hd as a function of vessel radius R, for Hd =
0.405. Experimental data are from [56, 72, 78, 149].

4.6 Simulation results

The results presented in this section are for pressure gradient J = 40,000 dyn/cm3. The

latter corresponds to wall shear stress of 40 dyn/cm2 at R = 20 µm, a value consistent with

in-vivo WSS measurements [106] typically observed in the microcirculation.

4.6.1 Flow velocity profiles

The velocity profiles vz(r) computed with our model are blunted, rather than parabolic

(Figure 4.10). Each profile is normalized with the corresponding maximum (centerline) velocity

vmax. In a blood vessel of radius R = 20 µm, vmax = 14.9, 11.0 and 7.4 mm/s for discharge

hematocrit Hd = 0.35, 0.45 and 0.55, respectively. In a blood vessel of radius R = 40 µm, these

increase to vmax = 25.1, 39.0 and 55.0 mm/s for the respective values of discharge hematocrit

Hd . Figure 4.10 also shows the parabolic velocity profiles that arise from the Poiseuille solution

for pipe flow.

The bluntness of the velocity profiles increases with the discharge hematocrit Hd due to
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Figure 4.10: Velocity profiles vz(r/R), normalized with corresponding maximum (centerline)
velocities vmax, for vessel radii R = 20 µm (left) and 40 µm (right) and several values of dis-
charge hematocrit Hd . Also shown is the (normalized) parabolic velocity profile predicted by the
Poiseuille law.

two reasons. First, the non-Newtonian behavior of blood becomes more pronounced as hema-

tocrit increases. Second, higher levels of hematocrit lead to higher viscosities of the RBC-rich

core, increasing the contrast between the viscosities of the core and the CFL.

Figure 4.10 also reveals that the non-Newtonian behavior of blood is less pronounced,

i.e., the deviation from the Poiseuille’s parabolic velocity profile is less significant, in larger

vessels. This observation is in line with the standard modeling practice of modeling blood in

large vessels as a Newtonian fluid.

4.6.2 Relationship between core and discharge hematocrits

Mass conservation of RBCs, as expressed by Eq (C.4), establishes a linear relationship

between the core (Hc) and discharge (Hd) hematocrits (see, also, [179]). Additionally, it defines

the (nonlinear) dependence of the hematocrit ratio Hc/Hd on the blood vessel radius R. This

dependence, computed with the algorithm of Section 4.7.1, is displayed in Figure 4.11 for several

values of the discharge hematocrit Hd . As vessel radii become larger, the difference between the

core and discharge hematocrits becomes less significant, i.e., the ratio Hc/Hd → 1.
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Figure 4.11: Hematocrit ratio Hc/Hd as a function of blood vessel radius R for several values of
discharge hematocrit Hd .

4.6.3 Comparison with the two-layer Newtonian model

Several studies, e.g., [130, 172, 179], treated blood as a two-phase fluid (as we do) but

assumed that both the RBC-rich core and the CFL exhibit Newtonian behavior. Comparison of

these models with ours sheds light on the impact of the non-Newtonian effects on predictions of

both the flow velocity vz and the relative apparent viscosity µrel.

Figure 4.12 shows the velocity profiles vz(r) in a vessel of radius R = 20 µm, com-

puted with the two-phase Newtonian model [130, 172, 179] (see Appendix C) and our two-phase

Quemada model. Each of these velocity profiles is normalized with its maximum (centerline)

velocity vmax (= 1.845 and 1.286 mm/s for the Newtonian and Quemada and models, respec-

tively). Both profiles differ significantly from the parabolic profile predicted by the Poiseuille

law. The Newtonian assumption significantly overestimates flow velocity (vmax by about 50%)

and underestimates the degree of bluntness of the velocity profile. This is despite the fact that the

CFL thickness δ predicted with our model is smaller than that suggested in [172]. It is worth-
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Figure 4.12: Normalized velocity profiles computed with two-phase [130, 172, 179] Newtonian
model, two-phase Quemada model, and the Poiseuille law. Each velocity vz(r/R) is normalized
by its centerline velocity vmax. Vessel radius is R= 20 µm and discharge hematocrit is Hd = 0.45.

while emphasizing that the values of δ predicted with our model fall within the experimentally

observed range (1.5 - 3.0 µm), while the estimates of δ in [172] (3.5 - 4.0 µm) do not.

Figure 4.13 exhibits the dependence of relative apparent viscosity µrel on vessel radius

R predicted with the two-phase Newtonian model [130, 172, 179], our two-phase Quemada

model, and the data-fitted curve (4.14) of Pries et al. [151]. The Newtonian model [130, 172,

179] underestimates the apparent viscosity, as compared to both our Quemada model and the

experimental data in [151]. This demonstrates the importance of accounting for non-Newtonian

shear-thinning behavior of the RBC-rich core.

4.7 Consequences for WSS measurements in blood vessels

Measurements of WSS in arterioles are typically done (e.g., [87, 160]) by employing the

Poiseuille law, Q= πJR4/(8µ), to express WSS τw = τ(R) in terms of observable quantities such

as flow rate Q, average flow velocity vave ≡ Q/(πR2) = JR2/(8µ) or centerline velocity vmax =

2vave. This is accomplished by combining Eq (4.6) with τ = µγ , the Newtonian relationship
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Figure 4.13: Dependence of relative apparent viscosity µrel on vessel radius R, computed with
the two-phase Newtonian model [130, 172, 179], our two-layer Quemada model, and the data-
fitted curve of Pries et al. [151]. Discharge hematocrit is Hd = 0.45.

between shear stress τ and shear rate γ = dvz/dr. Since for a Poiseuille flow the shear rate at the

wall is given by γw ≡ γ(R) = 2vmax/R, one obtains

τw,P =
2µpvmax

R
. (4.18)

While Eq (4.18) is routinely used to estimate the WSS τw from experiments [87, 160], it is impor-

tant to recognize that it is based on the assumption that blood can be treated as a homogeneous

Newtonian fluid.

Many theoretical and experimental studies, including our analysis in Section 4.6, demon-

strate the importance of accounting for the non-Newtonian behavior of blood flow in micro-

vessels. Experimental techniques, such as microparticle image velocimetry [109], enable one to

obviate the need for this assumption by inferring the WSS τw from measurements of the entire

velocity profile vz(r). However they are expensive and operationally challenging, which hinders

their in-vivo use [87, 160]. We propose an efficient alternative that utilizes standard experimental
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procedures to determine the discharge hematocrit Hd and a flow characteristic (Q, vave or vmax),

relies on the modeling algorithm in Section 4.7.1 to compute the wall shear rate γw = γ(R), and

makes use of the Quemada constitutive law (4.1) to relate the wall shear rate γw to the WSS τw.

4.7.1 Algorithm for inference of WSS from blood flow measurements

Given measurements of the vessel radius R, centerline velocity vmax and discharge hema-

tocrit Hd , we employ the following algorithm to determine the WSS τw.

1. Set the counter to n = 0, the algorithm tolerance to ε = 10−4, and the iteration factor to

κ = 0.9.

2. Compute an initial guess for the WSS τ
(n)
w by using the Poiseuille relation (4.18).

3. Compute the corresponding values of the pressure gradient J(n) = 2τ
(n)
w /R from Eq (4.6).

4. Calculate the velocity profile v(n)(r) by using the algorithm in Section 3 with given J(n).

5. Compare the resulting centerline velocity v(n)max with its measured value vmax. If

∣∣∣∣∣vmax− v(n)max

vmax

∣∣∣∣∣≤ ε

then go to Step 7. Otherwise, modify the value of the pressure gradient according to

J(n+1) =

[
1+κ

vmax− v(n)max

vmax

]
J(n).

6. Set n = n+1. Go to Step 4.

7. Compute the WSS τw = J(n)R/2 from Eq (4.6).
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For κ = 0.90 and ε = 0.0001, this algorithm converged in fewer than 20 iterations in all the cases

we examined.
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Figure 4.14: Relative error εWSS = (τw− τw,P)/τw in estimation of the WSS τw introduced by
relying on the Poiseuille relation (4.18) to infer the WSS (τw,P), for several values of vessel radius
R.

We use the relative error εWSS = (τw−τw,P)/τw to quantify the errors introduced by rely-

ing on the Poiseuille relation (4.18) to infer the WSS (τw,P), i.e., by ignoring the inhomogeneity

and non-Newtonian properties of blood flow in micro-vessels. Figure 4.14 reveals that the error

εWSS is significant over wide ranges of the discharge hematocrit Hd and the blood vessel radius

R. This demonstrates that the Poiseuille-law-based experimental inference of the WSS systemat-

ically underestimates the WSS in microcirculatory flows. The bias increases with the discharge

hematocrit Hd and decreases with the vessel radius R. Both phenomena are to be expected, since

they amplify the non-Newtonian behavior of the blood flow in microcirculation (see Section 6).
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4.7.2 Empirical WSS correction factor

The numerical algorithm described in Section 4.7.1 provides a rigorous means for infer-

ring the WSS from measurements of R, Hd and vmax. Here we use it to pre-compute a correction

factor φ(R,Hd), which would allow us to determine the WSS without resorting to numerical sim-

ulations. This correction factor allows one to determine the actual WSS τw from its Poiseuille-

law estimate τw,P given by Eq (4.18) by simple multiplication, τw = φ(R,Hd)τw,P, i.e.,

τw =
2µpvmax

R
φ(R,Hd). (4.19)

The correction factor φ(R,Hd) = τw/τw,P is calculated as follows. First, we employ

the iterative algorithm of Section 4.7.1 to compute the WSS τw(R,Hs) for multiple values of

R∈ [15 µm,70 µm] and discharge hematocrit Hd ∈ [0.25,0.55]. Then, for each of these computed

values of the WSS, we obtain the correction factor as φ(R,Hd) = τw/τw,P. Finally, we interpolate

this φ = φ(R,Hd) data set with the curve (with the goodness-of-the-fit exceeding 0.99)

φ(R,Hd) = c1 lnR+ c0 where c1 = 0.0515e4.732Hd , c0 = 0.6134Hd +1.0548. (4.20)

Figure 4.15 exhibits the dependence of the WSS correction factor φ on the vessel ra-

dius R and discharge hematocrit Hd . Equation (4.20) and its graphical representation in Figure

4.15 show that the correction factor φ (and, hence, the errors introduced by the reliance of the

Poiseuille law) grows exponentially with the discharge hematocrit Hd . Its dependence on the

vessel radius R becomes more pronounced as the discharge hematocrit Hd increases.

We compared the WSS values computed with Eq (4.19), the iterative algorithm of Sec-

tion 4.7.1 and the correction factor in Eq (4.20) for a physiologically relevant ranges of R and
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Figure 4.15: WSS correction factor φ as a function of vessel radius R, for several values of
discharge hematocrit Hd .

Hd . This comparison reveals that the iterative algorithm and the correction factor yield the nearly

identical (within 3 %) estimates of WSS. Both sets of estimates are significantly higher than their

counterparts predicted with the Poiseuille relation (4.18).

The results presented in this study are obtained for parameter values typical of human

blood. Therefore, they are applicable both for in-vitro experiments in glass tubes [109] and

tissue cultures [118], and for in-vivo observations such as retinal [165] or MRI [31] studies.

For experiments that involve blood from other species, the approach used in this study may be

replicated with suitable rheological data for the type of blood under consideration as an input.

This would require the measurements of the dependence of the CFL thickness δ on Hd and R,

and blood rheology data (which is readily available in the literature for a number of species).
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4.8 Discussion

We presented a two-layer fluid mechanics model in this study, with a non-Newtonian

RBC core layer and a Newtonian cell free layer near the vessel wall. The rheology of the RBC

core was modeled using the Quemada model [114, 133, 157] which accurately describes the

shear thinning properties of blood over a large range of shear rates and hematocrits. Each fluid

layer was assumed homogeneous and immiscible, with the resulting flow assumed to be laminar

and axisymmetric.

In order to calculate velocity profiles using this model, we assumed a general functional

form of the CFL thickness, δ as a function of discharge hematocrit Hd . We then used Eqs (4.7)–

(4.11) to calculate flow velocities, flow rates and relative apparent viscosity µrel. We calibrated

our expression for δ , given by Eq (4.11), so that our predictions for apparent viscosity at different

hematocrits and radii were in agreement with the work of Pries et al. [151]. Figure 4.5 shows

that our model was successfully able to match the predictions of Pries et al., providing validation

to the assumption that δ is an almost linear function of discharge hematocrit and is independent

of tube radius.

We were further able to validate our model by comparing i) the predicted velocity pro-

files with experimental data [109], ii) the predicted hematocrit ratio Ht/Hd vs values reported

in the literature (both experimental data and numerical models), and iii) δ/R values with those

estimated in experimental studies [159, 149, 186].

Agreement between our calculated and measured velocity profiles [109] is shown in

Figure 4.8. The calculated values of velocity, shape of velocity profile and CFL thickness are

in reasonable agreement with the experiment (see Section 5). Furthermore, our predictions for

Ht/Hd fall within the broad range of values suggested in the literature (Figure 4.9). The scatter
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in the range of values reported is unfortunately rather large, with very few experiments being

carried out in recent years with modern experimental techniques. New experiments to measure

tube vs discharge hematocrit would be very useful to help better calibrate flow models of blood

flow in microvessels.

Our predictions of CFL thickness δ also seem to be in reasonable agreement with the

experiments [90, 149, 159, 186]. Our estimates of δ are closer to the experimentally observed

values than those reported in other theoretical studies [172, 56, 179]. The range of δ predicted

for physiological levels of hematocrit (in the vicinity of 0.45) falls between 1.5 µm and 3 µm

in most experimental studies. Our predictions of δ in the range of 2.5-1.8 µm over a range of

hematocrits from 0.35 to 0.55 are within this range of experimentally measured values. Figure

4.7 shows that our estimates of δ/R vs R for Hd = 0.45 are in general agreement with the

experimental observations [149, 159, 186].

We also demonstrated the resulting dependence of core hematocrit Hc on discharge

hematocrit Hd in small to intermediate sized arterioles, as shown in Figure 4.11. As the ves-

sel size increases, the importance of the Fahraeus effect [54] reduces and core and systemic

hematocrit become essentially indistinguishable, due to the fact that the width of the cell de-

pleted layer becomes negligible compared to vessel radius. Hence, we expect core hematocrit to

be almost the same as discharge hematocrit in large blood vessels (where the core is essentially

the entirety of the vessel cross section), but in smaller blood vessels the core hematocrit should

be significantly elevated over systemic (or discharge) hematocrit.

We examined whether our model makes predictions that are different from the Newto-

nian model of blood flow used previously in [172, 179, 130]. Figure 4.12 provides a comparison

of our predictions of the velocity profiles with those computed with the two-layer Newtonian
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model, for the vessel radius R = 20 µm and the pressure gradient J = 40,000 dyn/cm3. Our

two-layer non-Newtonian model predicts significantly smaller axial velocities and blunter ve-

locity profiles than the two-layer Newtonian model does. Sharply blunted velocity profiles are

commonly reported in the experimental literature [109, 59, 4, 18, 94, 188].

We also analyzed the dependence of the relative apparent viscosity on the vessel radius

(see Figure 4.13, for Hd = 0.45). The Newtonian model significantly underestimates the relative

apparent viscosities both predicted with our model and observed experimentally (see the data

in [151]). Since, with a single optimized set of parameters our model is able to simultaneously

predict realistic values of apparent viscosity, CFL thickness, tube hematocrit and velocity profiles

that are in broad agreement with the experimental literature, we submit that our model is a

significant improvement over prior Newtonian flow models.

The blunting of velocity profiles discussed in this study has a number of consequences.

Typical in vivo measurements of WSS in the microcirculation are based on the Poiseuille re-

lation (4.18), which assumes the Newtonian behavior and results in parabolic velocity pro-

files [160, 87]. The errors introduced by this assumption lead to a significant underestimation

of WSS. We proposed two methods to eliminate these errors: an iterative numerical algorithm

which leverages our flow model, and the use of a simple correction factor that can be incorporated

into the Poiseuille law. Given a rheological model of the RBC-rich core, both approaches allow

the inference of WSS from measurements of vessel radius, centerline velocity and discharge

hematocrit. Since the WSS values calculated with these two methods differ by approximately

3 %, one can rely on the correction factor without sacrificing the measurement accuracy. This

correction factor varies with the discharge hematocrit Hd and vessel radius R, as shown in Fig-

ure 4.15. The proposed approach is also useful in models where WSS is an input for calculations
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of quantities such as shear-induced NO production [179, 178].

This analysis and the proposed correction factors should aid in evaluating the changes

in shears stress induced by the changes of the composition of blood due to the application of

plasma expanders that affect the blood’s shear thinning properties [178]. The effects of this type

of transfusional intervention appear to be significantly dependent on the rheological changes

induced in diluted blood and are becoming the focus of research and development in designing

new transfusion strategies [24].
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Chapter 5

On Optimal Branching of Vascular

Networks

5.1 Introduction

Quantitative modeling of physiological processes in vasculatures requires an accurate

representation of network topology, including vessel branching. The standard conceptualization

of a vascular network assumes both that each blood vessel bifurcates at successive levels of the

network and that each bifurcation follows Murray’s law [129, 128] or its empirical modifications

that are usually based on morphometric data [134, 86, 153]. In its general form, Murray’s law

states that a parent blood vessel of radius Rp branches into N daughter vessels of (possibly

different) radii Rdi (i = 1, . . . ,N) such that R3
p = R3

d1
+ . . .+R3

dN
; bifurcating networks correspond

to N = 2. A fundamental consequence of Murray’s law is the predicted uniformity of wall shear

stress (WSS) throughout the vasculature [173, 145, 86]. While Murray’s law generally holds

in the macrocirculation [100, 121], a number of in-vivo studies demonstrate its breakdown in

95
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microcirculatory networks.

Of particular physiological significance are observations, e.g., [153, 145, 86] among

many others, of the WSS variability between various generations of the blood vessels in vascular

networks. While the WSS remains relatively constant over much of the vascular network, it

increases significantly in the microcirculation, particularly in the smallest segments of the pre-

capillary arteriolar network [153, 107, 86]. This deviation from Murray’s law has been attributed

to the non-Newtonian shear-thinning behavior of blood in the vessels of small radii [2, 161].

Murray’s law fails to capture such a behavior, since it is derived by assuming blood to be a

Newtonian fluid, whose flow within each vessel obeys Poiseuille law [129].

The rheology of blood and, therefore, its non-Newtonian behavior depends on hema-

tocrit. Specifically, both the blood viscosity and the shear-thinning rate increase with hemat-

ocrit [168, 145, 152, 155]. This phenomenon was ignored by Revellin et al. [161], who modified

Murray’s law by treating blood as an Ostwald de Waele fluid whose rheology and apparent vis-

cosity are independent of either hematocrit or vessel radius. The latter assumptions contradict

in vitro [152] and in vivo [155] observations that revealed the strong dependence of apparent

viscosity on both hematocrit and vessel radius. Alarcon et al. [2] accounted for these effects by

employing the Pries et al. [155] constitutive relation, according to which apparent blood viscos-

ity varies with vessel radius and hematocrit. This generalization of Murray’s law rests on the

assumption that hematocrits in the parent and daughter vessels are given by the ratio of average

velocities in each daughter vessel. It leads to predictions of hematocrit values in the terminal

regions of the network, which are unrealistically low [2].

The question of how hematocrit is partitioned between the parent and daughter vessels

remains open. In-vivo and in-vitro experimental data on hematocrit partition at bifurcations typ-
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ically relate the flux fraction FRBC, i.e., the fraction of RBCs flowing from the parent vessel into

the larger daughter vessel, to the flow fraction Fblood, i.e, the fraction of total fluid flow from the

parent vessel that enters the larger daughter vessel (see [12] and the references therein). Mathe-

matical models [10, 11] of hematocrit partitioning at bifurcations are limited to two-dimensional

channel flows. They suggest an approximately linear dependence of FRBC on Fblood over a wide

range of Fblood. While some experimental studies [57, 47, 92, 174] observed a linear relation be-

tween FRBC and Fblood, the others [150, 154, 77] found this relationship to be highly non-linear.

Even when the linear behavior is observed, the corresponding slopes and intercepts tend to be

different.

We propose a mathematical framework for construction of vascular networks, which

possess both an optimal vessel bifurcation and an optimal partition of hematocrit between daugh-

ter vessels. These two goals are achieved by postulating that healthy vasculatures are constructed

in a way that optimizes oxygen delivery to the surrounding tissue. Our model builds upon the

analysis of Alarcon et al. [2] in the sense that it generalizes Murray’s law by accounting for both

the non-Newtonian nature of blood flow in microcirculation and the dependence of blood rheol-

ogy on hematocrit. Unlike Alarcon et al. [2], we impose no prior restrictions on the hematocrit

partition between daughter vessels. Instead it is determined by solving an optimization problem.

The outcome of our model is a vascular network in which both the bifurcation asymmetry and

WSS vary from one generation of the network to the next. We demonstrate that the resulting

vascular networks satisfy a number of properties of vascular networks identified from in-vivo

studies, such as non-uniform shear stress and capillary hematocrit, branching exponents, and

sharply amplified pressure gradients at the terminal vessels.
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Important Symbols used

Q, Qn, Qn1, Qn2 Flow rate, Flow rate in parent vessel, in daughter vessel 1 and 2
H, Hn, Hn1, Hn2 Discharge hematocrit, in parent vessel, daughter vessel 1 and 2
R, Rn, Rn1, Rn2 Vessel radius, radius of parent vessel, daughter vessel 1 and 2
µ Viscosity
µp Plasma viscosity
φox Oxygen flux
a Flux asymmetry parameter
W Cost function
l vessel length
τ Wall Shear Stress (WSS)
J Pressure gradient
P Intraluminal Pressure

5.2 Problem Formulation

We consider blood flow in a regular vascular network composed of branching (bifur-

cating) vessels. Blood is treated as a non-Newtonian fluid whose apparent dynamic viscosity µ

varies with a vessel radius R and hematocrit H in accordance with an empirical rheological law

of Pries et al. [155],

µ(R,H) = µp

[
1+(µ0.45−1)

(1−H)θ −1
(1−0.45)θ −1

(
2R

2R−1.1

)2
](

2R
2R−1.1

)2

. (5.1)

Here µp is the dynamic viscosity of plasma, the dynamic viscosity of blood at hematocrit H =

0.45 is related to the vessel radius R by

µ0.45(R) = 3.2+6e−0.17R−2.44e−0.06(2R)0.645
, (5.2)
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and the exponent θ varies with the vessel radius R according to

θ(R) = (0.8+ e−0.15R)

(
−1+

1
1+10−11(2R)12

)
+

1

1+10−11 (2R)12 . (5.3)

This dependence of the blood viscosity µ on vessel radius R and hematocrit H is shown in

Figure 5.1.
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Figure 5.1: Dependence of the normalized apparent blood viscosity, µ/µp, on the vessel radius
R and hematocrit H predicted with the rheological law of Pries et al. [155].

Following [12] we assume flow within each vessel to be steady, laminar, and fully de-

veloped, i.e., to obey a Poiseuille-like relationship between Q (the volumetric flow rate) and J

(the pressure drop over the vessel’s length L),

Q =
JR4

8πµ(R,H)
. (5.4)

In the n-th generation of the network, a parent vessel of radius Rn bifurcates into smaller daughter

vessels with radii Rn,1 and Rn,2. The discharge hematocrit Hn in the parent vessel partitions into

the discharge hematocrits Hn,1 and Hn,2 in the corresponding daughter vessels. If the oxygen flux
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in a parent vessel is QO2 , then the mass conservation requires the oxygen fluxes in its daughter

vessels to be aQO2 and (1−a)QO2 ; the flux-asymmetry parameter a is a number between 0 and

1. In the following sections, we compute the daughter vessel radii and hematocrits by postulating

that the daughter vessels bifurcate in a way that minimizes the total cost associated with oxygen

delivery to the tissue downstream of the bifurcation.

5.3 State-of-the-Art in Vasculature Representation

5.3.1 Optimal vessel radius

The starting point of our analysis is the Murray cost function [128],

W = QJL+απR2L, (5.5)

which combines the mechanical work (QJL) necessary to drive blood through a blood vessel of

radius R and length L with the “metabolic cost” (απR2L). The latter is linearly proportional to

the vessel’s volume πR2L with the coefficient of proportionality α . According to Murray’s law,

blood vessels have radii that minimize the cost function W for given flow rate Q and pressure

gradient J, i.e., satisfy an equation dW/dR = 0. Combined with Eq. (5.4) this defines the optimal

vessel radius R? as a solution of

d
dR

(
8µQ2

πR4 +απR2
)
= 0. (5.6)

If the blood viscosity µ were independent of the vessel radius R, this equation would yield

Murray’s law, according to which Q is proportional to R3 [128]. For the blood viscosity µ(R,H)
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that varies with the vessel radius R in accordance with Eq. (5.1), the optimal radius R? is a

solution of [2]

Q =
π
√

α

2
R3

Λ
, Λ(R,H) =

√
4µ−R

dµ

dR
. (5.7)

For small H and large R (larger than 200 µm), the correction factor Λ is approximately constant

(Figure 5.2) and Murray’s law is recovered. For physiological values of hematocrit and vessel

radii typically seen in the microcirculation (less than 100 µm), Λ has a strong dependence on R

that is not captured by Murray’s law.

Substituting the optimal Q and R? into Eq. (5.5) gives the optimal (minimum) cost of

supplying a volume of blood to a block of tissue,

W ? = απLR?2
[

2µ(R?,H)

Λ2(R?,H)
+1
]
. (5.8)

This analysis enables one to determine the optimal radius of a single blood vessel, if the discharge

hematocrit H and the flow rate Q are known. The identification of the radii of daughter vessels

of a bifurcating parent vessel requires additional assumptions.

5.3.2 Models of vessel bifurcation

The bifurcation of a parent vessel of radius Rn into daughter vessels with radii Rn,1 and

Rn,2 is accompanied by the partitioning of the discharge hematocrit Hn in the parent vessel into

the discharge hematocrits Hn,1 and Hn,2. The volumetric flow rates of blood in the parent (Qn)

and daughter (Qn,1 and Qn,2) vessels satisfy mass conservation,

Qn = Qn,1 +Qn,2. (5.9)
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Figure 5.2: Dependence of the normalized correction factor, Λ/
√

µp, in the modified version [2]
of Murray’s law on vessel radius R and hematocrit H. For vessel radii R ≥ 200 µm and small
values of hematocrit H, Λ is approximately constant and Murray’s law is recovered.

Mass conservation of red blood cells imposes a constraint on the discharge hematocrits in the

parent (Qn) and daughter (Qn,1 and Qn,2) vessels,

QnHn = Qn,1Hn,1 +Qn,2Hn,2. (5.10)

The volumetric flow rates in each vessel are given by the modified Murray’s law (Eq. 5.7),

Qn =
π
√

α

2
R3

n

Λ(Rn,Hn)
; Qn,1 =

π
√

α

2

R3
n,1

Λ(Rn,1,Hn,1)
; Qn,2 =

π
√

α

2

R3
n,2

Λ(Rn,2,Hn,2)
.

(5.11)

Substituting Eq. (5.11) into Eqs. (5.9) and (5.10) yields

R3
n

Λ(Rn,Hn)
=

R3
n,1

Λ(Rn,1,Hn,1)
+

R3
n,2

Λ(Rn,2,Hn,2)
(5.12a)
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and

HnR3
n

Λ(Rn,Hn)
=

Hn,1R3
n,1

Λ(Rn,1,Hn,1)
+

Hn,2R3
n,2

Λ(Rn,2,Hn,2)
. (5.12b)

Since these two equations contain four unknowns (Rn,1, Rn,2, Hn,1, and Hn,2), the deter-

mination of the optimal bifurcation radii requires additional assumptions. For example, one can

postulate that the daughter vessels have identical radii, Rn,1 = Rn,2 ≡ Rn,d (i.e., Qn,1 = Qn,2 =

Qn/2), and assume that the discharge hematocrit in all the vessels is the same, Hn =Hn,1 =Hn,2≡

H. This model implies that the discharge hematocrit remains constant throughout the vascular

network and relates the daughter-vessel radius to the radius of its parent by an implicit relation

2R3
n,d/Λ(Rn,d ,H) = R3

n/Λ(Rn,H). Unfortunately the symmetrically bifurcating networks are not

representative of typical vasculatures.

The construction of asymmetrically bifurcating vascular networks relies on Eqs. (5.12)

supplemented with the following two assumptions. First, one assumes the ratio of the two

daughter-vessel radii, Rn,1/Rn,2, to be known [134, 2, 86]. Second, one postulates a constitutive

relation that governs the partition of discharge hematocrit between the two daughter vessels [2].

The shortcomings of the latter assumption are discussed the Introduction.

5.4 Bifurcations Optimal for Oxygen Delivery

We posit that biological vascular networks are structured in a way that maximizes its

ability to deliver oxygen. Specifically, we postulate that

1. asymmetric bifurcations occur because the volumes of tissue downstream of each daughter

vessel have different oxygen needs;
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2. these needs are quantified by a known constant a (0 < a < 1), which serves to partition the

oxygen flux QO2 in any given parent vessel into the oxygen fluxes aQO2 and (1−a)QO2 in

its two daughter vessels;

3. an optimal bifurcation is one in which the oxygen demands of each downstream tissue

volume are supplied at a “minimal total cost”; and

4. the amount of oxygen transported through a blood vessel is proportional to the number

of red blood cells flowing through that vessel [183], i.e., the oxygen flux is given by

QO2 = QnHn.

The value of a depends on the physiology of the downstream volumes of tissue supplied by each

daughter vessel (symmetric bifurcations imply that these volumes are identical, so that a = 0.5).

If the oxygen flux in the n-th vessel is QO2 , then the oxygen fluxes in the two daughter

vessels are aQO2 = Qn,1Hn,1 and (1− a)QO2 = Qn,2Hn,2. It follows from Eq. (5.11) that the

oxygen flux in the n-th vessel,

QO2 =
π
√

α

2
R3

nHn

Λ(Rn,Hn)
, (5.13)

partitions into the oxygen fluxes in its two daughter vessels, aQO2 and (1−a)QO2 , according to

aQO2 =
π
√

α

2

R3
n,1Hn,1

Λ(Rn,1,Hn,1)
and (1−a)QO2 =

π
√

α

2

R3
n,2Hn,2

Λ(Rn,2,Hn,2)
. (5.14)

A constraint on the hematocrit partitioning between the two daughter vessels is obtained by

substituting Qn = QO2/Hn, Qn,1 = aQO2/Hn,1 and Qn,2 = (1−a)QO2/Hn,2 into Eq. (5.9), which
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yields

1
Hn

=
a

Hn,1
+

1−a
Hn,2

. (5.15)

Three Eqs. (5.14) and (5.15) contain four unknowns (Rn,1, Rn,2, Hn,1, and Hn,2). The fourth

equation needed to close this system is obtained by assuming that vascular networks are formed

in a way that minimizes the work necessary to distribute oxygen throughout the vasculature. The

cumulative work of forcing the blood through the two daughter vessels of the n-th parent vessel

is computed from Eq. (5.5) as W = (Qn,1Jn,1Ln,1 +απR2
n,1Ln,1)+ (Qn,2Jn,2Ln,2 +απR2

n,2Ln,2),

where Ln,1 and Ln,2 are the (yet unknown) lengths of the daughter vessels. In analogy with

Eq. (5.8), for any given partitioning of the hematocrit the minimum Murray’s work has the form

W ? = απLn,1R2
n,1

[
2µ(Rn,1,Hn,1)

Λ2(Rn,1,Hn,1)
+1
]
+απLn,2R2

n,2

[
2µ(Rn,2,Hn,2)

Λ2(Rn,2,Hn,2)
+1
]
. (5.16)

The optimal hematocrit partitioning minimizes the total work in Eq. (5.16), giving rise to the

fourth equation,

dW ?

dHn,1
= 0, (5.17)

where Eq. (5.15) is used to express Hn,2 in terms of Hn,1.

The system of Eqs. (5.14), (5.15) and (5.17) remains unclosed due to the presence of two

additional unknowns: the daughter vessel lengths Ln,1 and Ln,2. These are often related to the

corresponding vessel radii Rn,1 and Rn,2, e.g., by assuming the radius-to-length ratio Rn,1/Ln,1 =

Rn,2/Ln,2 to be constant throughout the vascular network (i.e., for any n) [134, 86, 40, 41]. This
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assumption is supported by in-vivo morphological studies of arterial trees [68, 119]. Rather then

forcing the radius-to-length ratio to be constant, we supplement the four postulates listed above

with the following hypothesis:

5. A blood vessel’s volume, πR2L, is linearly proportional to the volume of tissue it oxy-

genates.

We show in the Appendix that this assumption leads to a radius-to-length relationship,

L =
κ HR

Λ(R,H)
, (5.18)

where κ is a constant model parameter. Setting κ = 650√µp in Eq. (5.18) results in the L/R

ratios between 50 and 100 depending on the value of discharge hematocrit H (Figure 5.3), which

falls within the range of the reported length-to-radius ratios [134, 40, 86, 68]. Figure 5.3 reveals

that in blood vessels with R > 150 µm the length-radius ratios do become constant, with their

value decreasing with hematocrit H. This leads us to conclude that the length-to-radius ratio

(L/R) may be assumed constant over the bulk of a vascular tree, with deviations from its constant

value occurring in small, pre-capillary arterioles.

Given values of the discharge hematocrit Hn and the oxygen flux QO2 in the n parent

vessel and its radius Rn, the radii (Rn,1 and Rn,2) and lengths (Ln,1 and Ln,2) of, and the hematocrits

(Hn,1 and Hn,2) in, the bifurcating daughter vessels are uniquely determined by the system of

nonlinear Eqs. (5.14), (5.15), (5.17) and (5.18).

The radii of the daughter vessels, Rn,1 and Rn,2, predicted with our model are reported in

Figure 5.4 in terms of their ratio Rn,1/Rn,2. The symmetric bifurcation (Rn,1 = Rn,2) occurs when

the bifurcation parameter a = 0.5. The values 0.5 < a < 1 result in Rn,1 > Rn,2, while values
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Figure 5.3: Variation of length-radius ratio, L/R with vessel radius R for several values of dis-
charge hematocrit H. The length-to-radius ratio L/R may be assumed constant over the bulk of a
vascular tree, with deviations from its constant value occurring in small, pre-capillary arterioles.

0 < a < 0.5 (not shown in Figure 5.4) yield Rn,1 < Rn,2. The bifurcation asymmetry increases

with the parent vessel’s radius Rn, as long as Rn ≤ 80 µm. After that threshold the ratio Rn,1/Rn,2

is independent of Rn, so that the curves Rn,1/Rn,2 vs a overlap with that for Rn = 80 µm.

R
ad

ii
ra

ti
o,

R
n

,1
/R

n
,2

Bifurcation parameter, a

Rn = 20 µm

Rn = 40 µm

Rn = 80 µm

Figure 5.4: Ratio Rn,1/Rn,2 of the radii of the two daughter vessels as a function of the bifurcation
parameter a for several values of the parent vessel radius Rn and hematocrit Hn = 0.45. The
symmetric bifurcation (Rn,1 = Rn,2) occurs when the bifurcation parameter a = 0.5.

Figure 5.5 shows the partitioning of hematocrit Hn = 0.45 in the parent vessel into hema-

tocrits Hn,1 and Hn,2 in the daughter vessels for several values of the parent vessel radius Rn and
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the bifurcation parameter a. While hematocrit in the larger daughter vessel (Hn,1) is nearly the

same as hematocrit in the parent vessel (Hn), hematocrit in the smaller daughter vessel (Hn,2) is

significantly different from Hn. This is consistent with the observations reported in [57, 77, 47]

and supports the idea that discharge hematocrit at the bifurcation partitions in a way that mini-

mizes the work necessary to induce blood flow in microcirculation.

Bifurcation parameter, a Bifurcation parameter, a Bifurcation parameter, a

Hn,1 Hn,2 Hn,1 Hn,2 Hn,1 Hn,2

(a) Rn = 20 µm (b) Rn = 40 µm (c) Rn = 80 µm
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Figure 5.5: Partitioning of hematocrit Hn = 0.45 in the parent vessel into hematocrits Hn,1 and
Hn,2 in the daughter vessels as a function of a, for parent vessel radius Rn = 20 µm, Rn = 40 µm
and Rn = 80 µm. A symmetric bifurcation (a = 0.5) results in uniform hematocrit in all three
vessels.
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Figure 5.6: Ratio Hn,1/Hn,2 of the hematocrits the two daughter vessels as a function of the parent
vessel radius Rn for several values of the bifurcation parameter a and hematocrit Hn = 0.45.
Bifurcations of large vessels (Rn > 200 µm) preserves the hematocrit Hn, i.e., Hn = Hn,1 = Hn,2.

Dependence of the hematocrit ratio Hn,1/Hn,2 on the parent vessel radius Rn is elucidated

further in Figure 5.6. Bifurcations of parent vessels with Rn < 40 µm result in the hematocrit
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ratios Hn,1/Hn,2 > 1, i.e., hematocrit in the larger daughter vessel exceeds hematocrit in the

smaller daughter vessel. The situation is reversed in parent vessels with Rn > 40 µm, which

yield Hn,1/Hn,2 < 1. As Rn increases, the hematocrit ratio Hn,1/Hn,2 asymptotically tends to

1. The inflection point of the Hn,1/Hn,2 vs Rn curves corresponds to the inflection point in the

relationship between the apparent viscosity and vessel radius in Figure 5.1.

Figure 5.7: Dependence of the RBC flux fraction FRBC on the blood flow fraction Fblood for
several values of the parent vessel radius Rn and hematocrit Hn.

Experimental data on flow behavior at vessel bifurcations are typically reported in terms

of the RBC flux fraction FRBC and the blood flow fraction Fblood [174, 150, 57, 47]. These are

defined as

FRBC =
Qn,1Hn,1

QnHn
, Fblood =

Qn,1

Qn
. (5.19)

Our model predicts the RBC flux fraction FRBC to vary linearly with the flow fraction Fblood

(Figure 5.7), in agreement with the results reported in [57, 47, 174] but disputed by others [77,

154, 150]. Our model also indicates that the relationship between FRBC and Fblood is relatively

insensitive to Rn and Hn. Moreover, Figure 5.7 suggests that FRBC ≈ Fblood for all cases which,

combined with Eq. (5.19), implies that Hn,1 is within a few percent of Hn (see also Figures 5.5

and 5.6). However, the analysis in the section below demonstrates that these small differences

in hematocrit cannot be neglected since they accumulate from one generation of vessels to the
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next, resulting in large intra-vessel variability of hematocrit in terminal sections of the vascular

network.

5.5 Results

5.5.1 Comparison with Murray’s Law

The radii of the daughter vessels are but one metric by which to compare the vascular

networks predicted with our model and that given by Murray’s law; while the former requires

one to solve a system of nonlinear Eqs. (5.14), (5.15), (5.17) and (5.18) in order to obtain these

radii, the latter is given by a closed-form relation R3
n = R3

n,1 +R3
n,2. Other metrics include the

distributions of pressure P and WSS τ throughout the vascular network.

According to our model, the WSS τn ≡ JnRn/2 in an n-th generation vessel is computed

from Eqs. (5.4) and (5.7) as

τn = 2π
2√

α
µ(Rn,Hn)

Λ(Rn,Hn)
. (5.20)

Since J ≡ ∆P/L, it follows from Eqs. (5.4), (5.7) and (5.18) that the pressure drop ∆P across a

vessel of length L is given by ∆P = 4κ π2√α Hµ/Λ2. Let us suppose that a vascular network

consists of N generations of vessels, and ends in the capillary bed where the blood pressure is

Pcap. Then intraluminal pressure Pn at the start of an n-th generation vessel is

Pn = Pcap +
n−1

∑
i=0

∆PN−i, ∆Pm = 4κ π
2√

α
Hmµ(Rm,Hm)

Λ(Rm,Hm)2 . (5.21)

A vascular network that obeys Murray’s law has the constant length-to-radius ratio

ε = Ln/Rn and the bifurcation relation R3
n = R3

n,1 +R3
n,2 for all n ≤ N. Murray [129, 128] and
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subsequent studies [173] treat the viscosity of blood, µM, flowing through such a network as

constant. Under these assumptions, Eqs. (5.4) and (5.7) predict the WSS τM that is constant

throughout the vasculature,

τ
M = π

2
√

αµM, (5.22)

and the intraluminal pressure PM
n in an n-th generation vessel that is given by

PM
n = Pcap +2nπ

2
ε

√
αµM(N−n+1). (5.23)

In the simulations reported in Figure 5.8, we consider a symmetrically bifurcating net-

work (a = 0.5 or Rn,1 = Rn,2 for all n≤ N) that consists of N = 22 generations, terminating with

capillaries of radius RN = 3 µm. The capillary pressure is set to Pcap = 30 mmHg [33]. To facil-

itate the comparison between the two models, we chose the value of the constant blood viscosity

µM in the Murray model to coincide with the asymptotic value of µ(R,H), which corresponds

to large vessel radii. Setting H = 0.45 and R = 1000 µm this gives µM = 3.198 cP.
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Figure 5.8: Distributions of (a) vessel radii R and (b) intraluminal pressure P and WSS τ pre-
dicted with our model and the model based on Murray’s law.

The vessel radii of the vascular networks reconstructed with the two models are shown in
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Figure 5.8a. The difference between the two predictions exceeds 20% for the larger vessels (early

generations of the network). The predicted distributions of the WSS τ (Figure 5.8b) highlight the

physiological differences between the two models. While Murray’s law implies a constant WSS

τM across the entire network [145], our model captures the experimentally observed variability in

the WSS τ between the vessels of different generations. Specifically, it predicts the amplification

of the WSS in the microcirculation (vessel radii R < 25 µm), wherein the WSS appreciably

increases as the vessel radii R become smaller (the vessel generation n becomes larger), reaching

its maximum in the terminal, pre-capillary arterioles. This behavior is in agreement with the

observed amplification of WSS in the microcirculation [107, 153, 86, 108]. In larger vessels

(R > 25 µm), the WSS increases by a small amount with R, reaching a constant value in large

arterioles. This is in general agreement with the observations reported in [184, 153].

Both models predict that the intraluminal blood pressure P increases with vessel radius

R, with the bulk of the pressure drop occurring in the smaller vessels (Figure 5.8b). As R ap-

proaches the values typical of large arterioles and small arteries, blood pressure in these vessels

becomes almost equal to systemic arterial pressure. This indicates that the smaller arterioles

contribute most to vascular resistance. These small vessels are often referred to as “resistance

vessels”. The predicted dependence of intraluminal pressure P on vessel radius R is in qualitative

agreement with the observations [33, 107, 153].

5.5.2 Impact of branching asymmetry

The results presented in Figure 5.8 are obtained for a symmetric vascular network (the

bifurcation parameter a = 0.5). Figure 5.9 demonstrates the effect of network asymmetry on

the distributions of vessel radii and hematocrit throughout the networks with a = 0.7 and a =
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0.9. The largest vessel in these simulations has radius R1 = 500 µm and hematocrit H1 = 0.45.

Since each branch of the network terminates once the daughter vessel radius reaches R = 3 µm,

the network asymmetry (a 6= 0.5) causes the number of vessels in each branch to vary. This

implies that asymmetric vascular networks defy idealized fractal descriptions, which is in line

with several in-vivo studies [134, 86, 92, 73, 148]. Only the first seven generations of the vessels

(i.e., before any branch reaches the R = 3 µm threshold) are shown in Figure 5.9, with each

circle representing a blood vessel with the radius R or hematocrit H at a given vessel generation

n. Note that the number of bifurcating vessels in each generation increases as 2n−1, which might

not be apparent in Figure 5.9 since many of the data points overlap.
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(a) Bifurcation parameter a = 0.7
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Figure 5.9: Variation of vessel radii R and discharge hematocrit H within the first n = 7 genera-
tions of asymmetric vascular networks with bifurcation parameters a = 0.7 and a = 0.9.

Our model predicts a large variability of hematocrit values across the vessels of the same

generation (Figure 5.9), including at the terminal regions of the network and in the capillary beds
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supplied by these terminal branches. This finding is supported by the in-vivo measurements in

capillary beds [92, 73, 148] that show large variations of observed hematocrit values across

capillary beds, even among vessels of similar diameters. Our model accounts for this effect by

allowing for the asymmetric partitioning of hematocrit at every bifurcating vessel.

A measure of the deviation a vascular network from its Murray’s representation is pro-

vided by a network branching exponent ξ in

2n−1

∑
i=1

Rξ

i ≈
2n−1

∑
i=1

(Rξ

i,1 +Rξ

i,2). (5.24)

Murray’s law states that the sum of powers of all the vessel radii in the n-th generation must

equal the sum of powers of all the vessel radii in the (n+1)-th generation, and sets the power to

ξ = 3. Reported values of ξ range from 2.7 to 3 [134, 40, 121, 166, 100, 93], which suggests

small but meaningful deviations from Murray’s law. For the networks presented in Figure 5.9,

Eq. (5.24) holds across all generations with ξ = 2.96 for a = 0.7 and ξ = 2.97 for a = 0.9. These

values are within 1% of the values reported in [121, 93].

5.5.3 Model validation

The vascular networks constructed with our model exhibit the following physiological

characteristics observed in in-vivo studies.

a) The RBC flux fraction FRBC at bifurcations varies approximately linear with the blood flow

fraction Fblood over a broad range of hematocrits and vessel radii. This is in agreement with

the data reported in [57, 47, 11, 174].

b) The asymmetry in discharge hematocrit at asymmetric bifurcations increases with the degree

of asymmetry. This is in agreement with the data reported in [57, 77, 47].
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c) The WSS is non-uniform in the microcirculation, significantly increasing in the terminal

sections of the network. This is in agreement with the data reported in [107, 153, 86, 108,

145].

d) Pressure gradients increase sharply in the terminal sections of the network. This is in agree-

ment with the data reported in [33, 107].

e) Bothe hematocrit partitioning at vessel bifurcations and hematocrit across the capillary bed

in asymmetric networks is non-uniform. This is in agreement with the data reported in [92,

73, 148].

f) Predicted values of the branching exponent ξ fall within the range of their measured coun-

terparts [121, 166, 100, 93].

5.5.4 Inverse modeling of vascular networks

The modeling framework described above treated the bifurcation parameter a as an input

in order to construct a vascular network, e.g., to identify the ratio of the radii of daughter vessels

Rn,1/Rn,2. A problem with such “forward modeling” is that the model parameter a, which de-

termines the hematocrit partitioning at bifurcations, is harder to measure than the model output

Rn,1/Rn,2, which is more readily measured in morphometric studies [40, 74, 86, 119, 121, 134].

The goal of “inverse modeling” is to infer the bifurcation parameter a from measurements of the

parent vessel radius Rn, the ratio of the daughter vessel radii Rn,1/Rn,2 and the hematocrit Hn in

the n-th parent vessel.

This goal is facilitated by the one-to-one relationship between the bifurcation parameter

a and the daughter vessel radii Rn,1/Rn,2, for any given value of Rn and Hn (Figure 5.10). This

figure is constructed by running our forward model for multiple values of a, while keeping the



116

B
if
u
rc

at
io

n
p
ar

am
et

er
,
a

Ratio of daughter vessel radii, Rn,1/Rn,2

Rn = 20 µm

Rn = 30 µm

Rn = 40 µm

Rn = 50 µm

Figure 5.10: Variation of the bifurcation parameter a with the ratio of daughter vessel radii
Rn,1/Rn,2 for several values of the parent vessel radius Rn.

values of Rn and Hn fixed. The four curves in Figure 5.10 correspond to Hn = 0.45 and four

values of the parent vessel radius Rn. We found these curves to be essentially independent of

Hn over a physiologically relevant range of its values. The dependence of a on the radii ratio

Rn,1/Rn,2 in Figure 5.10 is fitted with a second-degree polynomial

a = ca2

(
Rn,1

Rn,2

)2

+ ca1

Rn,1

Rn,2
+ ca0 . (5.25a)

The fitting coefficients ca0 , ca1 and ca2 vary with the parent vessel radius Rn, such that

ca0 =−0.58, ca1 = 1.43, ca2 =−0.36, for Rn > 50 µm (5.25b)

and

ca0 =−3.1 ·10−4R2
n +0.03Rn−1.31, ca1 = 4.9 ·10−4R2

n−0.05Rn +2.55,

ca2 =−1.7 ·10−4R2
n +0.02Rn−0.74, for Rn ≤ 50 µm. (5.25c)
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Figure 5.10 enables one to infer a value of the bifurcation parameter a from a measure-

ment (or the average of multiple measurements) of the ratio of daughter vessel radii Rn,1/Rn,2.

Then one can use our model to reconstruct the whole vascular network. Examples of such re-

constructions are shown in Figure 5.11. Large degrees of asymmetry imply large spreads of

discharge hematocrits and vessel radii across a given generation of vessels.
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Figure 5.11: Variation of vessel radii and discharge hematocrit from one generation to the next
for Rn1/Rn2 = 1.5 (top panels) and Rn1/Rn2 = 2 (bottom panels)

5.6 Discussion and Conclusions

We proposed a new approach for reconstruction of vascular networks. Our method fol-

lows the foundation premise of Murray’s law in postulating the existence of functional optimality

of such networks. The optimality criterion adopted in our approach is the physiological cost of
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supplying oxygen to the tissue surrounding a blood vessel. Bifurcation asymmetry is expressed

in terms of the amount of oxygen consumption associated with the respective tissue volumes

being supplied by each daughter vessel. Similar to [2], our approach accounts for the non-

Newtonian behavior of blood by allowing the apparent blood viscosity to vary with discharge

hematocrit and vessel radius in accordance with [155].

Our approach to network reconstruction offers significant advantages over Murray’s law.

Chief among them is its ability to capture the observed variability of WSS in the microcircula-

tion. Our model predicts the sharp amplification of WSS in the smallest vessels of a network

(R < 50 µm), which is consistent with in-vivo observations [153, 107, 86, 145]. WSS in in-

termediate vessels gradually increases with vessel radius, before reaching a constant value at

large vessel radii (R > 200 µm). This WSS variability is absent in networks reconstructed with

Murray’s law, which exhibit constant WSS throughout the vasculature.

The proposed approach captures both the asymmetric partitioning of hematocrit at vessel

bifurcations and its effects on hematocrit variability in the terminal vessels of vascular networks.

It provides theoretical support for the experimentally observed linear relationship between the

RBC flux fraction and the blood flow fraction [57, 47, 174, 11], and for the in-vivo observations

of pronounced variability of hematocrit in capillary beds [92, 73, 148].
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Chapter 6

Modeling the Biochemial Reaction

Cascade of Endothelial NO Production

6.1 Introduction

Endothelial cells produce Nitric Oxide (NO) on exposure to mechanical forces, such as

hemodynamic shear stress and intraluminal pressure [8]. NO plays a crucial biological role in

the vasculature, most importantly by stimulating relaxation of vascular smooth muscle [75] and

hence the regulation of vascular resistance and blood pressure. NO also has various secondary

roles in the vasculature such as elimination of free radicals [46] and prevention of plaque buildup

[44]. NO production in endothelial cells occurs as a result of the oxidation of L-Arginine; a

chemical reaction which results in the production of NO, catalyzed by the endothelial Nitric

Oxide Synthase (eNOS) enzyme [8], [75] [158]. The mechanical stimulation of endothelial cells

triggers a complex reaction cascade, involving multiple cellular mechanosensors and enzymes.

The ultimate target of this complex and delicately fine tuned system is the activation of eNOS as a

119
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result of mechanical stimulation of the endothelium, thus increasing endothelial NO production.

Under basal, inactive conditions eNOS is stored in caveolae (small pouch-like invagina-

tions along the EC cell membrane), bound to caveolin (Cav), which keeps eNOS in an inactivated

state. The eNOS enzyme is typically described in the literature as being calcium dependant [8],

[16], [53], [84]; influxes of calcium ions into the cytosol activate eNOS by forming a calcium-

calmodulin complex, which then binds with eNOS, liberating it from the inactive eNOS-Cav

complex. The eNOS-Ca/CaM complex is stabilized by binding with Hsp90 (heat shock protein,

90kDa), which prevents eNOS from recombining with Cav and returning to its inactive state [8]

[187]. Within this stable complex, eNOS is phosphorylated by various protein kinases (PKA,

AKT, PKC, MAPK, PKG etc). The most prominent (and widely studied) sites for phosphoryla-

tion are the Serine-1197 and Threonine-495 amino acid residues (for human eNOS, for bovine

eNOS the sites are Ser-1195 and Thr-497 respectively) [8], [16], [158], [127], [53]. Ser-1197 is

primarily phosphorylated by AKT (with PKA and MAPK also contributing), while the Thr-495

residue is primarily a target for PKC (with AMPK and PKA also contributing) [16] [158] [127],

[53]. The traditional view in the literature has been of a ’yin-yang’ relationship between phos-

phorylation at Ser and Thr, with phosphorylation at Ser-1197 upregulating eNOS activity and

phosphorylation at Thr-495 reducing eNOS activity. Phosphorylation at Thr-495 is believed to

reduce eNOS activity by blocking the binding of eNOS with calmodulin [8], [88], [53], [127],

[71], [120].

Once in a stable complex with CaM and Hsp90, eNOS then catalyzes the oxidation of

L-Arginine (L-Arg) to L-Citruline (L-Cit), resulting in NO production. The NO thus produced

diffuses out of the endothelial cell, into the blood stream (on the luminal side) and into the sur-

rounding vascular smooth muscle [182]. NO in the blood stream is scavenged by RBCs, whereas
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NO diffusing to smooth muscle stimulates formation of cGMP (cyclic Guanosine monophos-

phate) and vasodilation. Within enothelial cells, the increased NO concentrations result in in-

creased levels of cGMP formation, by combining with sGC (soluble guanylate cyclase) which

then catalyzes the formation of cGMP from GTP (Guanosine tri-phosphate) [38] [142]. cGMP

is observed to reduce the influx of calcium, thereby providing negative feedback to the system

and limiting the rate of eNOS activation and NO production [99], [141], [37], a potentially vital

limiting factor since NO is highly toxic at high concentrations.

Figure 6.1: Reaction cascade for shear induced NO production

The mechanosensitive triggers which serve to initiate this reaction cascade have been the

subject of intense study in recent years [115], [28], [5], [176], [185], [36], [81]. Deformation of

the endothelial cell on exposure to shear stress (or other mechanical stimulation) activates eNOS

(and hence NO production) first and foremost via the influx of calcium ions from extracellular
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fluid. This influx of calcium into the cytosol is mediated via the opening of mechano-sensing ion

channels (MSICs) [115]. Calcium ions are also released from internal stores due to increased ex-

pression of IP3; this IP3 activation occurs due to increased activity of heterotrimeric G-proteins

[104]. G-Proteins are activated by GPCRs (G-protein coupled receptors) which are mechanically

coupled to the cell membrane and are activated following conformational changes following cell

deformation [185] [28]. The increased activity of G-proteins is also coupled with the activation

of protein kinases, such as AKT and PKC [127], [53], [16]. The activity of AKT and PKC

is also modulated by the activation of PI3K [50], [51], [126] which is associated with a third

major mechanosensor: integrins, anchoring ECs to the ECM. Stimulation of integrins results in

tyrosine phosphorylation of FAKs (Focal adhesion Kinases), leading to activation of PI3K [88],

[63], [126]. Hence, we have three major mechanosensors that we consider in this model: MSICs,

GPCRs and integrins.

Mathematical modeling of the mechanically triggered reaction cascade in ECs is very

useful for numerous reasons. First, a mathematical analysis of the existing conceptual model

for NO production helps evaluate whether this model is in principle able to account for experi-

mental data. A failure to replicate experimental observations would suggest gaps in our present

understanding of how NO is produced in response to mechanical forces, as well as highlight-

ing where such gaps may lie. Second, should our understanding of the process of mechanically

stimulated endothelial NO production prove to be sound, mathematical analysis should help us

develop a better understanding of the sensitivity of endothelial NO production to the various

chemical species and mechano-sensors present in endothelial cells. Such an understanding pro-

vides us with a guide for designing experiments that focus on the effects of inhibition of reactants

and mechano-sensors involved in NO production. Such experiments are especially important in
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fields of research such as cancer treatment [196], diabetes [42] and heart disease [44] where the

regulation of endothelial NO production has significant clinical applications.

The majority of previous models of the endothelial response to mechanical stimula-

tion have focused primarily on the influx of calcium ions into endothelial cells on exposure

to shear stress [142], [141], [37], [201], [200], [43]. The primary mechanosensors considered

were mechano-sensing ion channels (MSICs), with the role of other potential mechanosensors

such as integrins and GPCRs not considered. Further, the details of phosphorylation of eNOS

and corresponding activation of protein kinases responsible for this phosphorylation were also

largely absent in these previous models. A mathematical model that describes the biochemical

reaction cascade starting with mechanosensing components and describing the coupled behavior

of eNOS activation due to calcium signaling and phosphorylation by protein kinases has hence

been lacking, up to this point.

In this study, we develop a mathematical model for the biochemical cascade that results

in NO production in endothelial cells. The modeled cascade is triggered by mechanosensing

components (MSICs, GPCRs and integrins) which stimulate calcium influx, G-protein activation

and PI3K activation respectively, following the application of shear stress. The details of the

mechanosensing machinery are not considered in the present study; instead calcium influx via

MSICs, GPCR activation and PI3K activation are represented as functions of the applied shear

stress, based on previous experimental and modeling studies. Following this initial stimulus, we

then model the resulting calcium influx into the cell (both from internal storage as well as from

the extracellular space), developing upon previous models in [142] [37] [104] to account for the

contribution of G-protein activation as well as opening of MSICs due to shear stress. We then

model the formation of calcium-CaM complexes, leading to the recruitment of eNOS into an
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eNOS-CaM complex.

Parallel to (and coupled with) these reactions, we also modeled the phosphorylation of

AKT and PKC, which are stimulated by the activation of PI3K [171]. The phosphorylation

of eNOS by these kinases was also modeled, with AKT increasing the activity of eNOS in

the eNOS-CaM complex, while PKC reduced eNOS activity in our model by interfering with

the formation of the active eNOS-CaM complex. The activated eNOS then produces NO, via

the oxidation of L-Arg; we modeled this process using Michaelis-Menten kinetics [23]. The

resulting NO thus produced leads to the production of cGMP, due to the activation of sGC by

NO, leading to the conversion of GTP to cGMP. We used the analysis presented in [38], [204] to

model the NO dependent cGMP production; increased cGMP was modeled as reducing calcium

influx, based on the data presented in [99], thereby providing negative feedback. The complete

set of reactions was modeled as a system of coupled ODEs.

The reaction cascade described above was used to study both the steady and transient

response of an endothelial cell to the step application of shear stress; allowing us to quantify

how NO production is expected to vary with WSS. We compare our results with previous exper-

imental results, to establish whether our predictions are in keeping with the reported behavior

in the experimental literature. Further, we explore the effect of up or downregulating various

components of the biochemical pathway, allowing is to determine the sensitivity of NO pro-

duction to the up or down regulation of the individual reactants in the NO reaction pathway.

We use this sensitivity analysis to further validate our model, by testing our predictions against

corresponding experimental results.
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6.2 Problem description:

We consider a layer of adherent endothelial cells, which are continuously supplied with

the necessary metabolic substrates for maintaining NO production. Blood flows over the layer

of endothelial cells (ECs), exerting shear stress τ on the surface of the cell layer. The exposure

to shear stress triggers a cascade of chemical reactions resulting in endothelial NO production.

Given a level of shear stress exerted on the EC layer by blood flow and under the assumption

of a continuous supply of metabolic substrates, we model the entire reaction cascade that results

in shear induced NO production. The reactions are assumed to occur in the cytosol, which

is treated as being a well mixed continuum; hence, inhomogeneities and associated diffusive

transport processes are neglected. The system is modeled as a set of deterministic ODEs.

6.3 Reaction Cascade:

GPCRs mechanically coupled to the cell membrane serve as force transducers, activat-

ing G-proteins, which in turn activate Phospholipase C (PLC), followed by Phosphatidylinositol

4,5-bisphosphate (PIP2) and Inositol triphosphate (IP3), ultimately triggering the release of Cal-

cium ions and the downstream activation of eNOS. The activation of GPCRs occurs as a result

of conformational changes due to membrane deformation on exposure to external force; ex-

perimental data on GPCR and G-protein activation in endothelial cells has been quantified in

numerous studies [185], [97], [79].

The rate of activation of G-proteins by GPCRs as a function of activated GPCR levels



126

[R∗] is given by [104], [162]:

∂G
∂ t

= ka[R∗] ([Gt ]− [G])− ki [G] (6.1)

The application of WSS causes conformational changes in GPCRs, resulting in the rapid activa-

tion of receptors followed by rapid deactivation (time scales on the order of 1 ns for both activa-

tion and deactivation) when mechanical stimulation is halted [28]. Due to this extremely rapid

activation/deactivation, the kinetics of GPCR activation are not considered; [R∗] is expressed as

a function of shear stress τ alone, with the activation assumed to occur instantaneously. Based

on experimental measurements for GPCR activation vs WSS [28], we fitted [R∗] as:

[R∗] = tanh(
πτ

Λ
) (6.2)

where τ is in dynes/cm2 and Λ = 24dynes/cm2 (based on values in [28], figure 4d).

6.3.1 Calcium Signalling:

The activation of G-proteins then triggers the hydrolysis of PIP2 [104], to form IP3,

which is responsible for the release of calcium from internal stores within the smooth endo-

plasmic reticulum (ER) [142]. The rate of IP3 production is dependent on cytosolic calcium

concentrations, hence the stimulated calcium influx rapidly increases IP3 production, further

increasing calcium release from internal stores in the ER further downstream. IP3 produced

degrades to an intermediate phospholopid which is then converted back to PIP2, thus creating

an IP3 - PIP2 cycle, which is regulated by G-protein activation and calcium concentrations.

PIP2 is itself phosphorylated downstream to produce PIP3; the concentrations of PIP2 are hence
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dependent on both IP3 and PIP3 production.

Balance of IP3 is given as [104], [142]:

rh = α

(
[Ca2+]

Kc +[Ca2+]

)
[G]

[Gt ]
(6.3)

∂ [IP3]

∂ t
= rh[PIP2]− kdeg[IP3] (6.4)

PIP2 concentrations are then given as: ∂ [PIP2]
∂ t = Consumption due to IP3 production and replen-

ishment + Consumption due to PIP3 production, ie:

∂ [PIP2]

∂ t
=−(rh + rr) [PIP2]− rr[IP3]+ rr[PIP2]total− kpip2[PIP2]+ k−pip2[PIP3] (6.5)

The first three terms on the RHS represent the rate of cycling of PIP2 to IP3, back to PIP2; the

last two terms relate to the phosphorylation of PIP2 to PIP3, which subsequently participates in

the activation of protein kinases downstream.

The increased IP3 concentration, as well as opening of MSICs due to WSS causes an

increase in cytosolic calcium concentration. The opening of MSICs causes a sharp increase

in the influx of calcium ions Cc from the extracellular fluid, while increased IP3 concentration

causes stored calcium in the ER Cs to also be released into the cytosol. Further, the increase in

Cc also causes in increase in capacitative calcium entry (CCE) from the extracellular fluid into

the cytosol. The rate of CCE is reduced by increases in [cGMP]. The calcium balance in an

endothelial cell in response to shear stress has been previously modeled in [142], [201], [37];

we utilize this previous work in our present study. The equations for concentration of cytosolic

calcium Cc and stored calcium Cs are [37], [142]:
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∂Cc

∂ t
= qrel−qres−qout +qin +KleakC2

s −
∂ [Cb]

∂ t
(6.6)

∂Cs

∂ t
=−Vr

(
qrel−qres−KleakC2

s
)

(6.7)

Here, qrel represents calcium release from internal stores, qres represents calcium re-

sequestration into these internal stores, qout is the rate of calcium efflux (via the sodium-calcium

exchanger) [201] and qin is the rate of calcium influx from extracellular fluid into the cell. Cex

is the calcium concentration in extracellular fluid and is assumed to remain constant. These

calcium fluxes are described by the following equations:

qrel = krel

(
[IP3]

K2 +[IP3]

)3

Cs (6.8)

qres = kres

(
Cc

K3 +Cc

)2

(6.9)

qout = kout

(
Cc

K5 +Cc

)
(6.10)

Influx of calcium ions into the cytosol qin comes through capacitative calcium entry

(CCE) [83] qCCE as well as flux through MSIC’s (qMSIC) [37], [142]:

qin = qCCE +qMSIC (6.11)

MSICs trigger the initial stages of the reaction cascade by mediating the influx of calcium to

the EC cytosol from the extracellular fluid (the blood stream). The rate of calcium influx via

MSICs, qMSIC is modeled as the product of the maximal rate of influx qmax and the proportion of

ion channels open at a given WSS [201], [142], [37]:
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qMSIC = f0(τ)qmax =
qmax

1+α exp(−W (τ))
(6.12)

where the expression for W (τ) is given by [201], [142], [37]:

W (τ) =W0

(
τ +
√

16δ 2 + τ2−4δ

)2

τ +
√

16δ 2 + τ2
(6.13)

Where the function W (τ) indicates the extent to which mechanical force applied is converted to

gating energy for MSICs.

Capacitative calcium entry occurs as a result of the depletion of internal calcium stores,

triggering influx of calcium from the extracellular fluid [83]. The rate of this capacitative entry

is reduced by cGMP [99], [141], which thereby serves to limit the amount of calcium entering

the cytosol. Calcium flux due to CCE is given as [142], [141], [37]:

qCCE = kCCE (Cs,0−Cs)(Cex−Cc)ψ([cGMP]) (6.14)

Cs,0 is the stored calcium concentration (in internal stores in the ER) under basal conditions.

ψ([cGMP]) represents the inhibition of CCE by increasing cGMP concentrations, as observed

in [99]. The increased cGMP concentrations result from increased NO production, resulting in

a negative feedback to the NO production cascade. ψ is expressed as:

ψ([cGMP]) = 1−0.01[cGMP] (6.15)

By fitting with data from [99] for the inactivation of CCE as a function of cGMP con-

centration, expressed in µM. The relationship is linear at the concentrations (order 10 µM) of
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cGMP encountered in our model. At larger concentrations (order 1 mM), this relationship be-

comes non-linear and sigmoidal. cGMP also inhibits MSIC operation at high concentrations (1

mM and higher) [205], but at the lower concentrations typically encountered in ECs and smooth

muscle [204], this effect is small. Hence, the inhibition of MSICs due to cGMP is neglected in

this model.

The increased cytosolic calcium (Cc) combines with cytosolic proteins to form calcium

complexes, resulting in the cytosolic proteins acting as a calcium buffer. The kinetics of Ca-

Buffer formation, [Cb] are given by [142], [76]:

∂ [Cb]

∂ t
=−ko f f ([Cbtotal]− [Cab])+ konCc[Cb] (6.16)

where [Cbtotal] is the total concentration of calcium binding sites in the buffered proteins.

Calcium activates eNOS by forming a complex with Calmodulin, which then recruits

eNOS into an eNOS-CaM complex, with the rate of recruitment enhanced in the presence of

Hsp90. Of the various Calcium-CaM complexes, only Ca3CaM and Ca4CaM appear to actively

recruit eNOS, with Ca4CaM being the dominant species both in terms of cytosolic concentration

[136] and affinity for eNOS [123]. Hence, we consider only the role of Ca4CaM in the recruit-

ment of eNOS. The concentration of free Ca4CaM in the cytosol may be expressed using a Hill

function, that relates Ca4CaM concentration to cytosolic calcium concentration Cc [140], [146].

Based on data from [140] the expression for Ca4CaM concentration is modeled as:

∂ [Ca4CaM]

∂ t
= KCa4CaM(

Cnc
c

Kdc +Cnc
c

θ [CaMtotal]− [Ca4CaM]) (6.17)
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6.3.2 AKT and PKC balance equations:

The protein kinases AKT and PKC (which phopsphorylate eNOS) are themselves acti-

vated via phosphorylation mediated by PIP3 [171]. PIP3 is in turn formed by phosphorylation

of PIP2, a reaction which is catalyzed by activated PI3K (PI3K∗) [126]. The activation of PI3K

occurs as the result of integrin activation due to mechanical stimulation. This is shown graphi-

cally in figure 6.2. The total concentration of phosphorylated plus unphosphorylated AKT and

PKC remains constant.

Integrins, which serve to anchor the endothelial cells in place (to the extracellular ma-

trix or ECM) are connected to focal adhesion sites within the endothelial cell, whereby the

application of mechanical force results in the tyrosine phosphorylation of Focal Adhesion Ki-

nases (FAKs), ultimately triggering the stimulation of Phosphoinositide 3-kinase (PI3K), and

further down the reaction cascade, protein kinases which phosphorylate eNOS - thereby modify-

ing eNOS activity. This process has been studied experimentally, with the activation of intergins,

FAKs and PI3K all measured as functions of mechanical stimulation [63], [88], [126] in endothe-

lial cells in vitro.

The proportions of total activated (phosphorylated) AKT and PKC and concentrations

of PIP3 are calculated as [171]:

∂ [PIP3]

∂ t
= kpip2[PIP2]− k−pip2[PIP3] (6.18)

∂ [AKT ]
∂ t

= k−akt [AKT ∗]− kakt [AKT ] (6.19)

[AKT ]+ [AKT ∗] = [AKTtotal] = 1 (6.20)
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Figure 6.2: Activation of AKT and PKC

∂ [PKC∗]
∂ t

= kpkc[PKC]− k−pkc[PKC∗] (6.21)

[PKC]+ [PKC∗] = [PKCtotal] = 1 (6.22)

On exposure to shear stress, PI3K is phosphorylated extremely rapidly (reaching max-

imal activation on the order of 10 seconds, [105], [63]), due to the activation of the FAK/Src

complex through [65] integrins which serve as force transducers that mediate the mechanical

signal. Due to the rapidity of this process relative to the other chemical reactions in our model

(which generally occur at time scales of order 1-10 minutes), we neglect the time lag between

application of mechanical force and PI3K activation; application of force thus results in immedi-

ate activation of PI3K in our model. The active PI3K species, PI3K∗ then gradually dissociates

over time, back to basal levels of activity. The activation of PI3K above basal levels [PI3K∗] was

therefore modeled as:

[PI3K∗]
[PI3K∗]basal

= 1+api3ke−ηttanh(
πτ

δ
) (6.23)

Where the constants api3k δ and η were fitted to experimental data in [63], [88]. The magnitude
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of PI3K activation depends on the magnitude of integrin activation, which in turn is dependent

on the magnitude of τ . We hence assumed a sigmoid relationship between τ and PI3K activation

and examined how variation of the parameter δ (which governs the shear stress τ at which

maximal activation occurs) impacts our model predictions.

Data for transient PI3K activation due to mechanical stimulation in [63] suggests fairly

short time scales (of order 5 minutes) for the decay of active PI3K back to basal levels, while the

results presented in [88] cited large time scales (of order 30 minutes). We therefore considered

a range of different alternatives for η in following sections; large values of η corresponding to

rapid decay timescales, smaller values that correspond to larger timescales and η = 0, i.e. no

decay.

Increased PI3K activation increases the rate of PIP2 phosphorylation to PIP3 [171]:

kpip2 = k1p
[PI3K]∗

[PI3K∗]max
+ k2p =

k1p

(1+api3k)
+ k2p (6.24)

The rate of PKC and AKT phosphorylation increases with increasing concentrations of PIP3 as

[171]:

kakt = 0.1k−akt([PIP3]−0.31)/(3.10−0.31)min−1 (6.25)

kpkc = 0.1k−pkc([PIP3]−0.31)/(3.10−0.31)min−1 (6.26)

where k−akt , k1p, k2p, and k−pkc are all constants [171].

Hence, the activation of PI3K by application of WSS causes an increase in AKT and

PKC activity via phosphorylation. This increased PI3K activity is somewhat offset by the in-

creased hydrolysis of PIP2 to IP3 (due to the activation of GPCRs), reducing the amount of PIP2
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available for phosphorylation to PIP3, which is responsible for the activation of AKT and PKC.

Hence, G-proteins stimulate eNOS activation by triggering the release of calcium into the cytosol

and by reducing the available active PKC (which reduces eNOS activity), but this is somewhat

offset by decreased levels of active AKT.

6.3.3 eNOS complex formation and phosphorylation:

The Ca4CaM complex then forms a complex with eNOS, removing eNOS from its

bound, inactive state with Caveolin (Cav) [8]. The presence of Hsp90 helps greatly increase

the rate of eNOS - CaM binding ([187]); the eNOS-CaM complex is then a target for eNOS

phosphorylation at Ser1197, catalyzed by AKT [16], [127], [8], [53], [187]. While still bound to

Cav (and therefore prior to the formation of the complex with CaM), eNOS is also a target for

phosphorylation at Thr-495, which prevents eNOS binding with CaM. eNOS thus phosphory-

lated by PKC remains inactive, thereby accounting for the inhibitory effect of PKC. Figure 6.3

shows a graphical representation of this series of reactions.

Figure 6.3: Reactions involving eNOS

eNOS phosphorylation by PKC, is assumed to follow first order kinetics, with the for-

ward rate constant estimated from data in [22]. The dephosphorylation is mediated by various

phosphatases, such as PP2A [8], [64]. At present, little information is available on the activation

of phosphatases such as PP2A and calcineurin on application of shear stress. As a result, the rate
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of dephosphorylation was assumed constant.

∂
[
eNOS0

cav
]

∂ t
= kthr[eNOScav]

[PKC∗]
[PKC∗]max

− k−thr[eNOS0
cav] (6.27)

The rate of formation of the eNOS-CaM complex was modeled using Michelis-Menten

kinetics; rate constants were obtained from data presented in [125], [123], [84]. The formation

of eNOS - CaM is mediated by Hsp90 [8], [187]; we assume that since Hsp90 is present in large

excesses over other reactants (eNOS and CaM), the rate of eNOS - CaM formation is insensi-

tive to fluctuations in Hsp90 activation and is hence maximized with regard to the stimulatory

effect of Hsp90. The resulting complex is further stabilized by phosphorylation due to AKT; the

resulting complex (denoted as eNOS∗cam) is not only stable, but is also significantly more active

in stimulating NO production due to the catalysis of the L-Arg oxidation reaction [16], [127],

[8], [53], [187]. The activation of eNOS in its basal, inactive state to its fully active, Ser-1197

phophorylated state is therefore modeled as a 3 step process;

Step 1: The formation of the eNOS-CaM complex, mediated by Hsp90

Step 2: The formation of the AKT phosphorylated eNOS-CaM complex

Inhibitory Step: eNOS phosphorylation by PKC at thr-495, blocking CaM binding and

rendering eNOS inactive and preventing steps 1 and 2 above.

The rate of eNOS binding to CaM is expressed as:

∂ [eNOScam]

∂ t
=

Kcam[Ca4CaM]

K0.5cam +[Ca4CaM]
[eNOScav]−K−cam[eNOScam]−

∂

∂ t
([eNOS∗cam]) (6.28)

The eNOS-CaM complex thus formed is then phosphotylated by AKT; we modeled this

reaction as following first order kinetics:
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∂ [eNOS∗cam]

∂ t
= keakt [eNOScam]− k−eakt [eNOS∗cam] (6.29)

with

keakt = kmaxakt
[AKT ∗]

[AKT ∗]max
(6.30)

Rate constants were estimated using data presented in [187] (refer appendix E).

The total amount of eNOS in different complexes is conserved:

[eNOScav]+ [eNOS0
cav]+ [eNOScam]+ [eNOS∗cam] = [eNOStotal] (6.31)

Where eNOScav is eNOS bound to caveolin; eNOS0
cav is eNOS bound to caveolin, phos-

phorylated at thr495 (and hence rendered inactive); eNOScam is eNOS bound to calmodulin and

eNOS∗cam is the eNOS-CaM complex, phosphorylated at Ser1197 by AKT.

6.3.4 NO concentration equations:

eNOS in complex with CaM now catalyzes the oxidation of L-Arg, resulting in the

production of NO. Within this complex, eNOS phosphorylated at Ser1197 is approximately 9

times as active [187] as eNOS in the unphosphorylated CaM bound state. The production of NO

is modeled using Michaelis-Menten kinetics [23], with the supply of O2 assumed constant. The

NO thus produced is then consumed by two separate sinks; NO combines with sGC within the

enodthelial cell to produce sGC-NO, which cataylzes the production of cGMP from GTP [38],

[204]. In addition, NO is also metabolized rapidly by RBCs immediately adjacent to the ECs

[182].
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The equation for NO concentration is given by:

∂ [NO]

∂ t
= QNO−Qsgc−λNO[NO] (6.32)

Where QNO is the rate of production of NO, Qsgc is the rate of NO scavenged by SGC and λNO

is the rate at which NO is metabolized. The production of NO, as a result of oxidation of L-Arg

(QNO), is given by:

QNO = RNO
[O2]

KmNO +[O2]
(6.33)

The maximal rate of NO production (RNO) depends on the concentration of both phosphorylated

and unphosphorylated eNOS - CaM:

RNO = KNOe {[eNOSc]+Φ[eNOSc]
∗} (6.34)

where Φ indicates the extent to which AKT phosphorylation increases eNOS activity, in the pres-

ence of Hsp90. Assuming a constant supply of L-arg, KNOe remains constant. The consumption

of NO by sGC is given by [38]:

Qsgc = RNOmax[SGC0] ([NO]+BNO[NO]) (A0 +A1[NO]+ [NO]2)−1 (6.35)

Where BNO, A0, A1 and RNOmax are constants.

The NO consumed by SGC, leads to an activation of SGC, thereby stimulating the con-

version of GTP to cGMP. The rate of cGMP production can then be expressed as a function of
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NO concentration as [38]:

∂ [cGMP]
∂ t

= RcGMPmax[SGC0]
γ1 + γ2[NO]+ [NO]2

A0 +A1[NO]+ [NO]2
− Vdg[cGMP]2

Kmdg +[cGMP]
(6.36)

This increase in cGMP concentration then serves as a negative feedback, by reducing CCE into

the cell (equation 6.14).

6.4 Initial Conditions

The basal, resting condition for the model endothelial cells in this study is defined as the

steady-state concentrations of all reactants at zero shear stress. The initial concentrations used

were as follows:

[IP3]: 0 nM (due to zero activation of the GPCR-PIP2-IP3 cycle in the absence of mechanical

stimulus) [142], [201]

[PIP2]: Calculated as 9.87 µM

Cc: 0.1 µM [142], [201]

Cs: 2830 µM [142], [201]. At zero IP3 concentrations, the ER maintains a large reserve of stored

calcium. At steady-state, with no shear stress applied, Cs must of course remain constant and

equal to the initial value. Further, following small perturbations of the system from the initial

state, the stored calcium concentrations must return to their basal values in a finite amount of

time for the initial condition specified to be viable. This however, only occurs if the leak current

KleakC2
s in equation 6.6 is included in the expressions for calcium balance within the cell. Several

studies that built on the initial work of [142], [201] neglected this leak current [141], [37], [43] in

their expressions for calcium balance. This results in an unstable initial condition that the system
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never returns to, even after the removal of stimulus. Hence, we argue that the leak current for

stored calcium must be present in the equations for calcium concentration.

[Ca4CaM]: Calculated as 0.0198 µM at the of initial cytosolic calcium concentration, Cc =

0.1µM.

[eNOScav]: Calculated as 0.7074 µM

[PIP3]: Calculated as 0.13 µM

AKT ∗: Calculated as 0.03375 or 3.375 % of total AKT

PKC∗: Calculated as 0.03375 or 3.375 % of total PKC

[eNOS - CaM]: Calculated as 0.0485 µM

[eNOS∗]: Calculated as 0.0294 µM

[cGMP]: Calculated as 1.254 µM

[NO]: Calculated as 0.0086 µM

[eNOS0]: Calculated as 0.21 µM

These calculated initial conditions imply that over 90 % of eNOS is initially bound to

caveolin (with 21 % phosphorylated at Thr - 495 by PKC), consistent with the proportion of

inactive eNOS reported in [84]. Further, even at basal conditions, there is a finite and detectable

degree of NO production and AKT phosphorylated eNOS. This is consistent with the conclusions

in [135] where even at basal conditions and no shear stress, a measurable degree of eNOS activity

is maintained.

6.5 Results

We focus our attention on step increases of shear stress from a basal condition corre-

sponding to τ = 0 to various steady, non-zero values of τ; upon excitation from these basal
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conditions we explore the behavior of our modeled reaction cascade. Figure 6.4 shows our cal-

culated variation of NO concentrations with time, for a shear stress = 12 dynes/cm2, for different

values of the parameters η and δ . Smaller values of η correspond to a sigmoid type of behavior,

while larger values result in a peak in NO concentrations, followed by a sharp decrease as PI3K

activity gradually decays back to basal levels. Experimental measurements of NO concentra-

tions are more in keeping with the sigmoid behavior [96], [6]; hence, for all further results, we

use η = 0.003, which is in line with the time scales for decay of PI3K activity observed in [63].

For this value of η , our model is relatively insensitive to the value of δ , as shown in figure 6.4 b.

We use a value of δ = 24dynes/cm2 (analogous with equation 6.2), however any value

in this vicinity will yield similar results. This implies that when examining the evolution of NO

concentrations over large time periods following exposure to a step increase in shear stress, the

enhanced activation of AKT and PKC is likely not important, due to the rapid return of PI3K

to basal levels of excitation. AKT and PKC do still play a crucial role in eNOS regulation as

discussed in the results below.

Figure 6.4: Variation of NO concentrations over time at 12 dynes/cm2 for a) δ = 24 dynes/cm2

and different values of η and b) η = 0.003s−1 and different values of δ

Figure 6.5 shows the transient variation of cytosolic calcium Cc, Stored Calcium Cs, Cal-

cium calmodulin complex Ca4CaM and the eNOS - CaM complex at different levels of shear.
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The endothelium is treated as initially being at equilibrium at zero shear stress and is then ex-

posed to a steady, constant shear stress. This step increase in τ results in rapid discharging of

internal calcium stores within the cell as calcium rapidly enters the cytosolic volume. This re-

sults in a rapid spike in calcium levels, followed by a more gradual decline to a steady state value

of Cc which is none the less greater than in the absence of any shear stress at all. This behavior

has been reported in numerous previous studies [201], [37], [142], [70], [5]. The steady state

calcium concentration increases with τ , due to the role of the MSICs and G-proteins.

The spike in calcium concentrations causes a corresponding increase in Ca4CaM, lead-

ing to the formation of eNOS - CaM. This results in the calcium dependent part of the eNOS

activation cascade; the spike in calcium concentrations causes a spike in eNOS bound to CaM,

which then undergoes phosphorylation by AKT further downstream, maximizing eNOS activity.

The transients for this initial stage of the reaction cascade occur very rapidly (on the order of

100 s); the subsequent kinase dependent portion of the eNOS activation cascade proceeds at a

more gradual pace.

Figure 6.6 shows the ensuing AKT phosphorylation of eNOS (forming eNOS∗), once

eNOS has formed a complex with CaM. The increased concentrations of eNOS∗ form gradually,

over longer time scales than the initial calcium transients. eNOS bound to caveolin (and hence

inactivated) rapidly decreases following the initial calcium influx, before reaching a steady state.

The extent of depletion of eNOS - Cav increases with τ , as do the increased concentrations of

eNOS∗. The resulting NO concentrations due to this shear induced NO production display a

bimodal nature over time; an initial peak that corresponds to activation by calcium, followed

by a second, prolonged peak due to the role of protein kinases in eNOS activation. Hence, we

get a calcium dependent and then a calcium independent phase of eNOS activation. This is in
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Figure 6.5: Variation of Stored Calcium Cs, Cytosolic Calcium Cc, Ca4CaM and eNOS - CaM
over time at 3 different levels of shear stress: 8, 16 and 24 dynes/cm2

agreement with the current literature [8], [127], [16] which suggests that the activation of the

eNOS enzyme has a dual nature: partly calcium dependent and partly AKT dependent. Also

shown in figure 6.6, cGMP concentrations increase with NO concentrations; thereby facilitating

the vasodilatory role of NO in the physiology.

To compare the different time scales of the various components of the eNOS activa-

tion process, figure 6.7 shows the transient variation in Cc, [Ca4CaM], [eNOSCaM], [eNOSCav],

[eNOS∗] and [NO] for τ = 12dynes/cm2. The calcium dependent and kinase dependent por-

tions of the eNOS activation cycle can be readily seen, with the calcium dependent activation

occurring very rapidly.



143

Figure 6.6: Variation of AKT Phosphorylated eNOS [eNOS∗], Caveolin Bound eNOS [eNOScav]
and NO and cGMP concentrations over time at 3 different levels of shear stress: 8, 16 and 24
dynes/cm2

Figure 6.7: Variation of Cc, [Ca4CaM], [eNOSCaM], [eNOSCav], [eNOS∗] and [NO] over time,
for τ = 12dynes/cm2
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6.5.1 Comparison with Experiment

In order to verify whether our model predicts realistic values of NO production as well

as a realistic transient behavior, we compared our model predictions with a number of data points

from the experimental literature. Figure 6.8 shows the variation of the rate of NO production at

steady state vs shear stress τ in our model and a number of experimental data points. Our pre-

dicted variation reproduces the general trend represented in the data; while considerable scatter

exists in the available data, our model appears to make realistic predictions for NO production

rates at steady state that are at least broadly speaking, in agreement with the available experi-

mental data.

Figure 6.8: Variation of the normalized steady state NO production rate for different values of τ

(in dynes/cm2). The solid line is our model prediction. Solid squares: [96]; Solid circles: [122];
Solid diamond: [89]

Figure 6.9 shows the transient behavior of our predicted NO production rate at shear

stress τ = 1.8dynes/cm2 vs experimental measurements reported in [96]. NO production reaches

a steady state in around five hours, with the bulk of the transient increase occurring within one

hour (an observation also in agreement with data in [98]).

Figure 6.10 shows our predictions for the rise above basal levels in AKT Phosphorylated
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Figure 6.9: Variation of the NO production rate (normalized with respect to the steady state
value) with time for τ = 1.8dynes/cm2. The line is our model prediction. Solid squares: [96]

eNOS (eNOS∗) and cGMP 1 hour after the initiation of shear stress. Also shown are correspond-

ing experimental measurements from data published in [51]. Our predictions are in reasonably

close agreement (within 10 %) with the measured increase of both eNOS∗ and [cGMP]. Hence,

our model is able to account for the role eNOS plays in elevating cGMP levels, which is the

primary downstream role of NO and results in the dilation of vascular smooth muscle.

Figure 6.10: Model vs Experimental increase from baseline for AKT phosphorylated eNOS (at
τ = 12dynes/cm2) and cGMP concentration (at τ = 15dynes/cm2) 1 hour after initiation of shear
stress. Experimental data is from [51]
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Figure 6.11 shows our predicted values for the steady state NO concentration at 3 dif-

ferent levels of τ vs the measurements for the corresponding shear stress reported in [118]. Our

predicted values are within 5 % of the experimental data for all 3 cases. Further, over the narrow

interval of τ considered, the variation of [NO] with τ will be close to linear; this implies that

while the dependence of NO on τ is non-linear in general, for small fluctuations in shear stress,

the assumption of a linear relationship is well justified as was done in [181]. Further, figure 6.12

also shows that our predictions for the change of NO from baseline are within 10 % of data from

[6].

Figure 6.11: Model vs Experimental NO concentration at different shear stress levels (in
dynes/cm2). Experimental data is from [118]

We also tested the impact of inhibition of protein kinases on NO production, as a means

of model validation. Typically, the role of protein kinases on eNOS activation is studied by

inhibiting either the kinases individually, [120], [71] or inhibition of PI3K, which results in the

subsequent inhibition of both AKT and PKC [50], [51]. We therefore modeled the impact of

both PI3K inhibition and PKC inhibition on NO production rates and concentration. Figure

6.13 shows the impact of the complete inhibition of PI3K or PKC on our predictions for steady

state NO production and concentration at τ = 12dynes/cm2. Inhibition of PI3K results in a
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Figure 6.12: Model vs Experimental increase in NO concentration from basal levels at different
shear stress levels (in dynes/cm2). Experimental data is from [6]

significant (73 %) reduction in NO production, while the inhibition of PKC alone results in

a smaller, but still significant (18 %) increase in NO production. The predicted magnitude

of reduction in eNOS activity and NO production with PI3K inhibition is in the vicinity of

data presented in [60] (73 % predicted vs 68 % reported). This is in keeping with the general

trend in the literature where PI3K inhibition results in decreased eNOS activity [51], [60] while

PKC inhibition elevates eNOS activity [71]. Precise quantification of the extent of inhibition of

kinases vs NO production over a range of shear stresses is unavailable in the literature, however

the empirical behavior observed in the literature is none the less also found in our model.

The inhibition of PI3K results in the inhibition of both PKC (which reduces eNOS ac-

tivity ) and AKT (which increases eNOS activity), however the net effect of PI3K inhibition is

the drastic reduction of eNOS activity. This implies that AKT activation of eNOS is significantly

more important than inactivation by PKC phosphorylation; this reinforces the paradigm [8] that

AKT is by far the most important protein kinase that interacts with eNOS.
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Figure 6.13: Impact of inhibition of protein kinases on NO production at shear stress τ =
12dynes/cm2

6.5.2 Transient behavior following the removal of shear stress

We next examined the behavior of the system when shear stress is removed. Figure 6.14

shows the resulting transient variation of species concentrations from steady state at shear stress

τ = 12dynes/cm2 once the shear stress is removed. The resulting return to basal conditions

resembles the activation of the reaction cascade on application of shear stress; the calcium tran-

sients lead the protein kinase dependent transients, with NO returning to basal concentrations

and production levels after approximately 5 hours. The return of stored calcium concentrations

in the ER and calcium concentrations to basal levels occurs in around 5 minutes. These time

scales for return of reactants to basal concentrations is in broad agreement with the time scales

oberved in experiments measuring calcium transients [5], [70] and NO production [118].

6.5.3 Impact of feedback due to cGMP

As given by equation 6.14, capacitative calcium entry (CCE) is inhibited by increased

concentrations of cGMP, based on experimental data presented in [99]. At large ( mM) con-

centrations of cGMP, CCE is completely inhibited, resulting in cytosolic calcium being strongly
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Figure 6.14: Transient behavior of reactants in the eNOS reaction cascade following the removal
of shear stress τ = 12dynes/cm2 once the system reached steady state at τ = 12dynes/cm2.

restricted by cGMP. The concentrations (of order 1 - 10 µM) of cGMP found in our model corre-

spond to a much smaller degree of calcium inhibition. We hence examined whether the feedback

role of cGMP was significant in our model. Figure 6.15 shows the difference in NO concentra-

tions and eNOS - CaM concentrations at two different levels of shear stress, with and without

feedback. The results suggest that at the low concentrations of cGMP likely to be encountered in

ECs, the feedback role of cGMP is fairly minor. Hence, the NO production rate may be treated

as being essentially independent of cGMP concentrations and the negative feedback loop may

be neglected.

Figure 6.15: Transient variation of [NO] and [eNOS - CaM] with and without feedback at τ =
12dynes/cm2 and τ = 24dynes/cm2.
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6.6 Discussion

In this study we constructed a biochemical model of the reaction cascade for the activa-

tion of eNOS in endothelial cells, when stimulated by shear stress. The three key mechanotrans-

ducers identified in ECs, namely MSICs, integrins and GPCRs are all included in our model. The

reaction cascade can be thought of as consisting of two parts: a) the rapid activation of calcium

which results in the formation of calmodulin complexes, followed by the recruitment of eNOS

from caveolae and b) the phosphoryaltion of eNOS by PKC and AKT (which are both activated

by PI3K), resulting in further activation of eNOS. The two parts of the constructed model are

coupled, resulting in a highly non-linear transient behavior of NO production, following the ap-

plication of shear stress. Our model also includes a negative feedback loop due to the inhibition

of calcium influx into the cell by cGMP; increased NO levels cause a rise in cGMP levels, so

cGMP inhibition of calcium influx serves to limit the extent of NO production in principle.

We applied this model reaction cascade to study the behavior of NO production follow-

ing exposure of ECs to a step increase of shear stress, with the shear stress being maintained at

a steady value. At basal conditions, IP3 concentrations are effectively zero, resulting in stored

calcium in the ER being maintained at maximal levels. Further, even at basal incativated levels

(with no shear stress) there is a finite, non-zero level of NO production and finite, non-zero levels

of AKT and PKC phosphorylated eNOS, in empirical agreement with observations [135].

Our simulations indicate the that the transient behavior of eNOS activation and NO

production is highly non-linear, with a bi-phasic character; a rapid initial activation due to the

very rapid influx of calcium into the cytosol (occurring within 5 minutes) followed by a sustained

period of activation due to protein kinases which are in turn activated by PI3K. Hence, eNOS

is calcium dependent in the initial stages of the reaction cascade but becomes independent of



151

calcium as activation continues in the sense that even after cytosolic calcium reaches steady

state, eNOS activity continues to increase. The resulting Ca dependent and kinase dependent

phases of eNOS activation in our model agree with the existing paradigm in the literature for the

sequence of steps by which eNOS is activated [8], [16], [127]. When studying the evolution of

NO production over large time periods, the enhanced activation of PI3K and subsequently AKT

and PKC due to shear stress does not appear to be a major factor in eNOS activation. This is

due to the apparent rapid decay of PI3K activity back to basal levels. More experimental data

to clarify the behavior of PI3K following exposure to shear would be useful for fine tuning our

model.

We validated our model by comparing our model predictions with a number of experi-

mental data points reported in the literature, as well as evaluating the broad, empirical behavior

of our model and verifying whether our model mimics the generally observed behavior of eNOS

activation. Our predictions for the variation of NO concentrations and NO production with shear

stress were compared with data, as shown in figures 6.8, 6.11 and 6.12. We suggest that the

resulting agreement between model predictions and experimental data is reasonably good, espe-

cially considering the significant amount of scatter in the available experimental data reported

in the published literature. Further, our predictions for the transient evolution of NO concen-

tration following exposure to shear stress also appears to be in general agreement with reported

behavior, as shown in figure 6.9.

Additionally, as shown in figure 6.10 our predictions for both the increased levels of Akt

phosphorylated eNOS and cGMP concentrations agree fairly well with reported measurements.

In addition, the inhibition of protein kinases results in behavior that is in empirical agreement

with previous studies. The inhibition of PI3K, which results in downregulation of both AKT and
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PKC results in a drastic reduction ( over 70 %) in eNOS activity and NO production, behavior

reported in [60], [51]. This suggests that the stimulatory effect of Akt phosphorylation is signifi-

cantly more important than the inhibitory role of PKC, supporting the perspective that Akt is by

far the most important protein kinase in eNOS activation. This is further demonstrated by the

fact that inhibiting PKC alone results in a small but significant (18 %) increase in NO produc-

tion; PKC has a smaller net effect on eNOS activation than AKT. While precise numerical data

quantifying the extent of kinase inhibition vs eNOS activity at different levels of shear stress is

currently unavailable in published experimental studies, our model does agree with the follow-

ing empirical statement about eNOS interactions with PKC and AKT: AKT strongly upregulates

eNOS activity, while PKC downregulates eNOS to a lesser extent.

To sum up, our modeled reaction cascade demonstrates the following general behavior

for the activation of eNOS that is consistent with empirical conclusions reported in the experi-

mental literature:

1) The activation of eNOS has a bi-phasic nature: first, a rapid transient process that

depends on increasing levels of cytosolic calcium; second, a slower protein kinase dependent

activation phase that continues even after calcium levels reach steady state [8], [16], [127]

2) Inactivation of AKT drastically reduces eNOS activity; inhibition of PKC has a

smaller stimulatory effect on eNOS activation

3) Increasing shear stress increases NO concentrations and cGMP levels; over a broad

range of shear stresses this behavior is highly non-linear, but for smaller variations (less than 10

dynes/cm2) at physiologically relevant ranges of shear stress, a linear behavior may be used for

[NO] vs shear stress [118], [122], [181].

4) The general variation of NO production vs shear stress at steady state, as well as
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transient evolution of NO production appear in general agreement with reported values in the

literature. Refer figures 6.8, 6.11, 6.12 and 6.9.

5) The predicted increases in NO result in significant increases in cGMP concentrations,

hence we are able to account for the role of shear stress as a stimulator of vasodilation due to

NO, via shear induced NO production which in turn results in significant elevations in cGMP

levels, ultimately leading to vasodilation. Figure 6.10 shows that the increase in cGMP predicted

in our model is consistent with experimental data [51].

6) The removal of shear stress results in a return to basal levels for all reactants, with the

calcium transients occurring rapidly, while the kinase dependent transients follow more gradu-

ally. The time scales over which the system returns to basal levels of NO concentration are in

general agreement with reported behavior in [118].

Due to these facts, we suggest that our model of the eNOS activation reaction cascade

provides realistic predictions of shear induced NO concentrations. The fact that such a model

could be constructed and used to make realistic predictions (while using existing experimental

data for rate constants etc.) indicates that the existing conceptual framework for eNOS activation

is at least largely correct.

6.6.1 Model Limitations and future work:

1) The present study does not contain a mechanical model for ECs. Instead, shear stress

τ is simply an input that triggers the reaction cascade resulting in eNOS activation. The lack of a

mechanical model means we are unable to account for factors such as the role of viscoelasticity

in determining the transient behavior of the system. Hence, future extensions of this model

will focus on the incorporation of a mechanical model of ECs that can be combined with the
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biochemical model presented here. Due to this lack of a viscoelastic component, we avoided

examining response to oscillatory shear stress in the present model. Previous studies have shown

that viscoelastic properties of the cytoskeleton have a profound effect on the mechanical behavior

of the cell when exposed to oscillatory or pulsatile shear. Hence, these pulsatile and oscillatory

effects will be considered in future models, along with the implementation of a mechanical

model of an EC monolayer.

2) Localized effects are ignored. We assume that reactions occur in a well mixed cytoso-

lic medium, ignoring the effects of inhomogeneities and diffusion. However, the approach used

here is typical of modeling studies of EC’s [142], [141], [37], [201], [200], [43]. The assumption

of a well mixed medium is justifiable if we consider that diffusion time scales for proteins within

the cytosol in a cell are usually fractions of a second [112], whereas the even the rapid calcium

transients in our model occur at time scales of order 100 seconds. Hence, diffusion is expected

to occur much more rapidly than the reactions in our model, justifying the assumption of a well

mixed medium.

The assumption of a well mixed, homogeneous medium can also be problematic in

the event that concentrations of reactants are exceedingly small [35], resulting in only a small

number of molecules (order 100 or less withing the cell), thereby necessitating a stochastic

approach. However, except at initiation of shear stress, most reactants in our model are at around

order 10 nM to order 10 µM, corresponding to roughly 104 to 107 molecules per cell, a large

enough number to justify the use of a deterministic, continuous system. The use of a stochastic

approach during the initial moments of application of shear stress is an area that merits further

investigation, however.

3) Role of other protein kinases was not considered. While AKT and PKC are generally
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regarded as the most important kinases that phosphorylate eNOS, other kinases such as PKA and

MAPK also interact with eNOS. The precise role these kinases play in activating eNOS is still

unclear, hence we restricted our study to the two most important and extensively studied protein

kinases in the eNOS activation cascade. Future extensions of this model may be made to account

for the role of PKA for instance (particularly upregulation of eNOS due to phosphorylation at

Ser-633), as more information of the extent to which PKA impacts eNOS activity becomes

available.

4) The role of protein phosphatases such as PP2A and calcineurin was not accounted

for. We assumed a constant rate of dephosphorylation of eNOS with respect to both AKT and

PKC; there is as yet relatively little information about how shear stress modulates phosphatase

activity; changing levels of PP2A and calcineurin would be expected to alter the rates of dephos-

phorylation of eNOS.

5) The model reaction cascade presented in this study can be further extended to account

for the role of vasoactive molecules such as bradykinin and insulin. The same exact framework

presented in this study may be used, with added differential equations incorporated to represent

the activation of receptors by these signaling molecules.

6.6.2 Need for future experiments:

While we conclude that the broad conceptual framework of how eNOS is activated by

shear stress is largely complete, various elements of this framework are still not wholly under-

stood. Areas where more experimental data is needed include:

1) The extent to which inhibition of AKT and PKC impacts NO production and eNOS

activation at different levels of shear stress
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2) The role of Ca3CaM vs Ca4CaM in the recruitment of eNOS into an eNOS - CaM

complex. In this study, we assumed that Ca4CaM plays the primary role in recruitment of eNOS

into eNOS - CaM complexes, however more experimental data is needed to clarify this issue.

3) The extent to which PI3K and FAK are activated by mechanical stimulation, both

for transient behavior and at steady state. There is at present a paucity of data on this topic,

particularly with regards to the transient behavior of PI3K activation.

4) The inhibitory effect of cGMP on calcium influx. At present, we are aware of only one

study [99] that records the variation of CCE rates over a broad range of cGMP concentrations.

The data presented suggests that negative feedback provided by cGMP is likely not important at

normal physiological conditions in ECs. The lack of such feedback greatly simplifies the task of

modeling NO transport and coupling this model to upscaled transport models in order to simulate

vascular mechanics [181].

5) The impact of varying cytosolic ATP concentrations on the rates of phosphorylation

of eNOS by AKT and PKC. This is especially a concern since shear stress is known to increase

endothelial ATP levels [80]; however, very little data is available on the relationship between

shear induced ATP production and eNOS activation.

6) The role and kinetics of various protein phosphatases in the dephosphorylation of

eNOS. Very little information is available at present about the extent to which shear stress im-

pacts activity of phosphatases, especially PP2A and calcineurin.

6.7 Conclusions

We developed a model for eNOS activation by shear stress, building on previous models

for the variation of calcium concentrations with shear stress in ECs [201], [142]. The result-
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ing reaction cascade accounts for the calcium dependent and protein kinase dependent phases

of eNOS activation, a significant advancement over these previous models. Our predictions

for NO production vs shear stress are in broad agreement with a number of experimental data

points and empirically measured behavior; this provides support to the idea that our present un-

derstanding of eNOS activation by shear stress is adequate for the purpose of modeling eNOS

activation, despite the fact that certain gray areas exist where more experimental data is needed.

The model cascade thus constructed may also be further extended to account for the role of

signaling molecules such as insulin and Bradykinin in eNOS activation.
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Table 6.1: List of acronyms used

Symbol/Acronym Species
EC Endothelial Cell
ECM Extracellular Matrix
ER Endoplasmic Reticulum
L−Arg L-Arginine
L−Cit L-Citruline
FAK Focal Adhesion Kinase
GPCR G-protein coupled receptor
MSIC Mechano-sensing Ion Channel
G Active G-proteins
[Gt ] Total concentration of G-proteins
IP3 Inositol triphosphate
PIP2 Phosphatidylinositol 4,5-bisphosphate
PIP3 Phosphatidylinositol (3,4,5)-triphosphate
Cc Cytosolic Calcium concentration
Cs Stored Calcium concentration
Cex External Calcium concentration
CaM Calmodulin concentration
Ca3CaM Calcium-Calmodulin complex with 3 calcium ions
Ca4CaM Calcium-Calmodulin complex with 4 calcium ions
PI3K Phosphoinositide 3-kinase
AKT Protein Kinase B
PKC Protein Kinase C
eNOS Endothelial Nitric Oxide Synthase
eNOScav eNOS bound to caveolin
eNOScam eNOS bound to calmodulin, Ca4CaM complex
Hsp90 Heat Shock Protein, 90 kDa
eNOS∗ eNOS - CaM complex phosphorylated at Ser-1197
eNOS0 eNOS bound to caveolin, phosphorylated at Thr-495
NO Nitric Oxide
O2 Oxygen
RBC Red Blood Cell
sGC Soluble Guanylate Cyclase
GT P Guanosine Triphosphate
cGMP Cyclic Guanosine Monophosphate



Chapter 7

Conclusions

The conclusions reached in this dissertation in each chapter are as follows:

7.1 Modeling autoregulatory response of an arteriole

We developed a coupled model of solid and fluid mechanics in an arteriole and demon-

strated how such a model may be coupled to our previously developed model of NO transport

[182]. The resulting model was able to capture the autoregulatory response of an arteriole to

small variations in pressure, indicating that a simple, 3 parameter model for the solid mechanics

of an arteriole is adequate for modeling vascular responses to small but physiologically sig-

nificant changes in blood flow and blood pressure. The resulting model is very inexpensive

computationally and should in principle be easily extend-able to modeling entire networks of

vessels at very low cost.

We applied this model to the analysis of vascular response to small changes in hemat-

ocrit, by considering intralimunal pressure to vary with hematocrit, based on data presented on
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[116]; for this given paradoxical data we examined whether it was possible to reproduce the ob-

served variations in flow rate (and hence cardiac output). We demonstrated that the anomalous

behavior following acute changes in hematocrit reported in [116, 117, 195] is physiologically

reasonable and likely occurs due to an offsetting/impeding of autoregulatory response of blood

vessels. Such an offsetting of autoregulatory response to acute hematocrit variations has also

previously been suggested previously in [132].

7.2 Analysis of PEG-Albumin plasma expansion

Using a non-Newtonian model for blood flow through an arteriole, we provided an ex-

planation for the apparently paradoxical efficacy of PEG-Albumin as a plasma expander. The

administration of PEG-Alb following hemorrhagic shock was found to be as efficacious as high

viscosity plasma expanders, such as Dextran 500 kDa, despite the fact that blood mixed with

PEG-Alb appears to demonstrate low viscosity.

This apparent paradox was resolved by accounting for the fact that PEG-Alb demon-

strates extremely strong shear thinning behavior at low shear rates. As a result, while the vis-

cosity of PEG-Alb mixed blood appears to be drastically lower than Dextran-500 blood at large

shear rates, the viscosity of PEG-Alb is greatly elevated in resistance vessels in the microcircu-

lation. This is due to the fact that shear rates in these vessels are low enough for these shear

thinning effects to become prominent. The incorporation of a non-Newtonian flow model was

central to understanding this phenomenon, as this model allowed us to accurately estimate wall

shear rates and shear stresses, given data on vessel centerline velocity. Hence, we demonstrated

that PEG-Alb acts similar to a high viscosity plasma expander despite its low viscosity at high

shear.
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7.3 Development of non-Newtonian blood flow models in arterioles

and derivation of Wall shear stress correction factors

We developed a flow model of blood in arterioles, based on the assumption that blood

flow in arterioles consists of two distinct, homogeneous fluid layers: a Newtonian cell free layer

and a non-Newtonian RBC rich core layer. The resulting flow model allowed us to make pre-

dictions for CFL thickness, tube hematocrit , velocity profiles and core hematocrit that were

consistent with previously published results, yielding a flow model that provides a realistic pic-

ture of blood flow in arterioles. Our analysis yields a CFL thickness that depends on hematocrit,

but is independent of vessel radius.

We then used our model to develop a correction factor for the estimation of WSS, when

using the vessel radius, centerline velocity and discharge hematocrit as measured inputs. The

resulting algebraic correction factor is a function of vessel radius and discharge hematocrit and

may be multiplied by the estimate for WSS obtained from the Hagen-Poiseuille law to obtain

a corrected, accurate estimate for WSS. In this manner, errors arising from neglecting the non-

homogeneous and non-Newtonian nature of blood when estimating WSS can be readily elimi-

nated.

7.4 Optimal branching in vascular networks

We demonstrated a method for the modeling of asymmetric vascular networks, by in-

corporating modifications to Murray’s law, along with a model for the distribution of hematocrit

at a vascular bifurcation, based on an optimization analysis. Our predictions for RBC flux frac-

tion vs flow fraction at bifurcations suggest a linear relationship between these quantities. The
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modeled networks thus developed demonstrate a number of characteristics observed in vascular

networks in-vivo, indicating that our model provides the first means for successfully accounting

for both asymmetries at bifurcations and deviations from Murray’s law when constructing model

networks.

7.5 Modeling the biochemical cascade of shear induced endothelial

NO production

Our model for the network of biochemical reactions that result in the production of NO

following application of shear stress indicate that despite the existence of certain gray areas in

our understanding of the biochemistry involved, our understanding of at least the major steps in

the activation of eNOS is fairly complete.

We used a number of empirical and quantitative observations reported in the literature

to validate our model; we suggest that both the transient and steady variation of NO production

predicted in our model are in reasonably good agreement with published experimental data.

To our knowledge, our model is the first study that successfully describes both the calcium

dependent and protien kinase dependent phases of eNOS activation, while also accounting for

the existence of negative feedback.

Our analysis shows that the negative feedback provided by cGMP is relatively unimpor-

tant and can in fact be neglected. The consequence of this weak feedback is that simulations of

NO transport that assume NO production is independent of NO concentration [182, 30, 102] are

justified in this assumption. Further, for small but physiologically significant variations of shear

stress, the relationship between NO production and shear stress may be assumed linear, as was
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done in [181].

7.6 Future Work

The various components of this dissertation contribute to increasing our understanding

of the overall behavior of the microcirculation and greatly extend our ability to model a range of

phenomena across microvascular networks. Our analysis cover a range of scales of organization

across a network, highlighting the rich, multiscale properties of the network, as well as the need

for developing models of processes at small scales (at the cellular level, or for an individual

vessel) that can then be upscaled and applied to model entire networks.

The future direction of our work will focus on problems at each of these scales of organi-

zation, as well as the means of integrating these into a grand scheme, capable of comprehensively

describing the behavior of an entire network, both for steady state and transient processes.

At the cellular scale, we will look to extend our model of NO production in Endothelial

cells, to account for mechanical deformation of endothelial cells, following exposure to shear

stress. Also, we will attempt to couple our model with an analysis of the reaction cascade in

smooth muscle that leads to the relaxing of smooth muscle. In addition, our model can also be

extended to account for signalling by insulin, bradykinin, VEGF etc in the activation of eNOS.

At the scale of individual vessels, we will couple our biochemical model introduced

in chapter 6 with our model of NO transport and vessel mechanics in chapter 2, to arrive at a

comprehensive model of vessel mechanics and autoregulation that is also capable of capturing

transient behavior of these vessels.

Finally, at the scale of an entire vascular network, we will seek to explore techniques for

upscaling our cellular and single vessel models, so as to capture in detail, the steady and transient
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behavior of vascular networks. Further, we will also look to generalize our optimized network

model, to account for lower probability non-optimal configurations as well.



Appendix A

Parameters for NO Transport

Modeling

A.1 Characterization of Plasma Layer Thickness as a Function of

Systemic Hematocrit

The plasma layer thickness was measured in the rat cremaster muscle preparation [203]

according to the technique of Kim et al. [90]. Hct was varied using either plasma or packed

RBCs, from blood donors, for isovolemic hemodilution or hemoconcentration, respectively. Fig-

ure A.1 shows the data used in our simulation.
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Figure A.1: Plasma layer (cell-free layer or CFL) width as a function of systemic Hct in rat
cremaster muscles arterioles of 20 - 30 µm diameter.

Table A.1: Model Parameters used for NO transport

Parameter Symbol Value Reference
Solubility of O2 α 1.34 mM/torr [102, 30]
Diffusivity of O2 in fluid layers DO2 2800 µm2/s [103]
Diffusivity of NO in fluid layers DNO 3300 µm2/s [103]
Diffusivity of O2 in solid layers DO2 1400 µm2/s [58, 113]
Diffusivity of NO in solid layers DNO 1650 µm2/s [58, 113]
Maximum O2 consumption rate in tissue RO2max 20µM/s [30, 66]
Maximum NO production rate in endothelium RNOmax 150 µM/s [29]
Scavenging rate constant of NO in blood λb 382.5 s−1 [23, 193]
Michaelis-Menten constant KM 4.7 torr−1 [23]
Glycocalyx thickness rg−R 0.25 - 1 µm [197]
Unstressed Endothelial thickness re− rg 1 µm [30]
Unstressed Vascular Wall thickness rm− re 80 µm [30]



Appendix B

Using Alternative Rheological Models

for Blood in Modeling Autoregulation

Our treatment of blood as a Newtonian fluid is an approximation, as blood is typically

modeled as a non-Newtonian fluid [180] that exhibits shear-thinning behavior. Modeling blood

as a non-Newtonian fluid typically involves expressing blood viscosity as a function of Hct as

well as shear rate. An example of the rheological models used to describing blood as a non-

Newtonian fluid is the Quemada model, which was used to explore the behavior of plasma

expanders [180]. Using the Quemada model instead of the Newtonian model to describe the

rheology of the RBC-rich core in an arteriole, we followed the procedure outlined in [180] to

calculate velocity profiles in the arteriole and to examine how flow rate varies with hematocrit.

This enabled us to verify that our results are not simply the consequence of an incomplete rhe-

ological model for blood. We found that our results are relatively insensitive to the rheological

model chosen and that our results (and conclusions) should hold even when blood is treated as a

167



168

shear-thinning, non-Newtonian fluid. To illustrate this, Figure 11 shows the predicted variation

of flow rate with systemic hematocrit, using both the Newtonian and Quemada rheological mod-

els. The difference in predicted values between the two models is small and the same general

relationship between flow rate and systemic hematocrit is preserved.

Figure B.1: Variation of flow rate with systemic hematocrit using both the Newtonian model for
blood viscosity (eq. 2 in [182]) and the Quemada shear thinning model [157] for C = 32 in eqs.
2.12 and 2.13.



Appendix C

Two-layer Newtonian model for flow

velocity

According to the two-phase Newtonian model of blood flow [172, 182] the velocity

distribution in a microvessel of radius R is given by

vz(ξ ) =
JR2

4µp


1−λ 2 +

µp

µc
(λ 2−ξ 2) for 0≤ ξ ≤ λ

1−ξ 2 for λ < ξ ≤ 1

. (C.1)

where µc is the viscosity of the RBC-rich core, ξ = r/R and λ = 1− δ/R. When expressed in

µm, the CFL width δ is given by [182]

δ =−7.55Hd +6.91. (C.2)
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For human blood, µc is calculated as [172]

µc(Hc)

µp
= 1+2.2

(1−Hc)
−0.8−1

(1−0.45)−0.8−1
. (C.3)

Finally, the core hematocrit Hc is related to the discharge hematocrit Hd by [182, 172]

Hc

∫ R−δ

0
vz(r)rdr = Hd

∫ R

0
vz(r)rdr. (C.4)

The resulting set of equations is solved by following the procedure described in [182].



Appendix D

Length-Radius ratios for Vascular

Networks

The premise of Murray’s law is that a blood vessel’s volume is determined by a compro-

mise between minimizing the vessel’s resistance to blood flow and minimizing the total volume

of blood needed to serve the body’s metabolic needs [173, 13, 202]. The latter condition is

equivalent to positing that a blood vessel supplying a given oxygen flux QO2 = QH (i.e., blood

flow rate Q at a constant hematocrit H) to the surrounding tissue has an optimal volume at which

this compromise between minimizing resistance to flow and minimizing vessel volume is met.

This implies an “optimal” vessel volume (and since the vessel is filled with blood, an optimal

volume of blood) for a given tissue volume. (The existence of an optimal blood volume has

been suggested in [183, 17].) In other words, the volume of the tissue oxygenated by a vessel

is related to both the vessel volume πR2L and the oxygen flux QH supplied by the vessel. We
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assume the linear relationships, V ∝ πR2L and V ∝ QH, which gives

πR2L ∝ QH. (D.1)

Substituting the flow rate Q predicted by the modified Murray’s law in Eq. (5.7), we obtain

R2L ∝ R3H/Λ. This is equivalent to LΛ/(HR) = κ where κ is a constant of proportionality,

which leads to Eq. (5.18).

As an aside, we note that V ∝ πR2L implies that the ratio of the vessel volume and

the volume of the surrounding tissue it oxygenates are constant throughout a vascular network.

Since the oxygen flux QO2 = QH is conserved from one vessel generation to the next (due

to conservation of mass), the assumption that V ∝ πR2L ∝ QH for each generation of vessels

implies that the vascular network is volume preserving (i.e. each successive generation of blood

vessels has the same total volume as the preceding generation). This implies that any given

tissue volume at any length scale (larger than the length of a capillary) will have a fixed volume

fraction that is occupied by blood vessels. The assumption of a volume preserving network has

previosuly been used in studies on scaling in biological systems [198].



Appendix E

Parameter Estimation for eNOS

activation reaction cascade

GPCR activation and IP3 production: The variation of GPCR activation vs shear stress

was calculated based on measurements reported in [28] for GPCR activity vs shear stress. At

zero shear stress, there is no IP3 production [142], [200] (and hence no GPCR activity); GPCR

activity reaches a maximal value at 24 dynes/cm2 [28], at which we model GPCR activity that

stimulates IP3 production to reach 100 % (i.e. maximal levels), which corresponds to a maximal

level of IP3 production = 0.00546 µM/s [142].

CCE Inhibition: The data presented in [99] suggests small, but measureable decreases

in CCE with increases in intracellular cGMP concentrations, for the low (µM) concentrations

of cGMP typically observed in ECs [204]. At higher cGMP concentrations, cGMP almost com-

pletely inhibits CCE, however we restrict our analysis to the range of cGMP concentrations al-

low for small degrees of CCE inhibition by cGMP, with the rate of inhibition increasing linearly
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with cGMP concentration. From the data in [99] for CCE inhibition by cGMP, we estimated

ψ([cGMP]) = 1−0.01[cGMP].

PI3K activation: On exposure to mechanical deformation/shear stress, PI3K activity

reaches a maximum of around 3.5 times basal levels [63], [88], giving us api3k = 2.5 in equa-

tion 6.23. We then explored a range of values for the time constant η , ranging from 0.03 s−1

(corresponding to a very rapid decay of PI3K activity, as seen in [63]) to 0 (no decay). We also

explored a range of values of the parameter δ , which corresponds to the shear stress at which

maximal activation of PI3K occurs. As discussed in our simulation results, our model is rel-

atively insensitive to δ ; a value of δ = 24dynes/cm2 was used, analogous to equation 6.2 for

G-protein activation.

Ca4CaM binding: The rate of formation of Ca4CaM was assumed equal to the rate

of calcium buffering by cytosolic proteins suggested in [76], yielding KCa4CaM = 5s−1. The

maximum concentration of Ca4CaM at saturation levels of calcium is taken as 4.5 nM/µM of

total available CaM, based on data from [140], giving a value of θ = 0.0045 in equation 6.17.

The cooperativity coefficient nc was taken equal to 2.7 as per [140].

eNOS-CaM binding: The rate of dissociation of eNOS-CaM was taken = 0.01 s−1,

based on values reported in [123]. The maximum rate at which eNOS binds to CaM in the

presence of caveolin was estimated by assuming that at basal conditions, 90 % of eNOS is in

an inactive, non-CaM bound state. This provided us with a value of Kcam = 2.5 s−1. Further,

K0.5cam was estimated to be equal to 3 µM, based on data from [125] when Cav concentrations

are significantly in excess to Ca-CaM (and hence Ca4CaM) concentrations

eNOS-kinase kinetics: The rate of phosphorylation of eNOS by PKC was estimated

from data reported in [22], under the assumption of first order kinetics. This gave us values for
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kthr = 0.002 s−1 and k−thr = kthr/9 for a reported equilibrium constant of 9 for the eNOS - PKC

phosphorylation reaction. Similarly, the kinetics of eNOS binding with AKT (in the presence

or absence of Hsp90) were evaluated based on data in [187], giving keakt = 0.004 s−1 and k−eakt

= k−eakt/18 for an estimated equilibrium constant of 18 for the eNOS - AKT phosphorylation

reaction.

NO production: Under the assumption of a constant supply of L-Arg and Oxygen, the

rate of NO production depends solely on eNOS activity in the expression for RNO, as given

by equations 6.33 and 6.34. Hence, KNOe
[O2]

KmNO+[O2]
in these equations was assumed constant.

The value of this derived parameter was taken equal to 10.5s−1, which yields a basal rate of NO

production = 3.3 µM/s per µM of eNOS, a value consistent with a range of basal NO production

rates specified in [29]. The rate of NO metabolism, λNO was taken equal to 382 s−1, the rate at

which RBCs immediately adjacent to the ECs scavenge NO [182].

All other model parameters were taken directly from previous studies, as listed below:

Table E.1: Total reactant concentrations

Parameter Value Reference

[CAMtotal] 30 µM [76]
Cex 1500 µM [142]
[Gt ] 105 molecules/cell [162], [104]
PIP2total 10 µM [61]
eNOStotal 1 µM [37]
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Table E.2: Rate constants and Model Parameters
Parameter Value Reference
ka 2×10−7s−1 [162], [1]
ki 2×10−1s−1 [162], [1]
kdeg 1.25s−1 [142]
α 0.000546s−1 [142]
kc 0.0µM [142]
rr 0.1s−1 [104]
kpip2 0.0493s−1 [171]
k−pip2 0.046s−1 [171]
Vr 3.5 [37]
krel 6.64 s−1 [37]
kres 5 µMs−1 [37]
kout 24.7 µMs−1 [37]
kCCE 5.7×10−6 [37]
−ko f f 5 s−1 [76]
kon 5 µM−1s−1 [76]
Kleak 10−7 µM−1s−1 [142]
api3k 2.5 refer text
η 0.003 s−1 refer text
δ , Λ 24 dynes/cm2 refer text
k1p 1.26 min−1 [171]
k2p 0.13 min−1 [171]
k−akt , k−pkc 0.11s−1 [171]
kthr 0.12 min−1 [22]
k−thr 0.0133 min−1 [22]
KCa4CaM 5 s−1 [76]
nc 2.7 refer text
Kdc 1 µM [140]
Kcam0 2.5 s−1 refer text
K0.5cam 10 µM [125]
K−cam 0.01 s−1 [123]
keakt 0.004 s−1 refer text
k−eakt 0.004/18 s−1 refer text
λNO 382 s−1 [182]
Φ 9 [187]
BNO 15.15 nM [38]
A0 1200.16 nM2 [38]
A1 20.34 nM [38]
γ1 4.8 nM2 [38]
γ2 35.33 nM [38]
Vdg 0.0695 s−1 [204]
Kmdg 2 µM [204]
RcGMPmax× [SGC0] 1.26 µMs−1 [204]
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