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Highlights 

 

• Perceptual decision-making can be assessed with stimuli elicit either spontaneous or 
trained responses. 

• Spontaneous behavior can be leveraged to study sensory processing and decision-
making by leveraging pre-existing stimulus-response associations. 

• Trained behaviors offer a way to investigate the acquisition and implementation of 
abstract decision rules. 

• The discovery of features that lead to fast learning and generalizable task knowledge will 
greatly improve trained decision-making tasks.  

Abstract 
Understanding how sensory stimuli are processed to guide appropriate actions is a major 
challenge in neuroscience. To study perceptual decision-making in animals, researchers use 
tasks that either probe spontaneous responses to stimuli (often described as “naturalistic”) or 
instruct animals to associate stimuli with experimenter-defined responses. While spontaneous 
decisions rely on animals’ pre-existing knowledge, the versatility of instructed tasks often comes 
at the cost of extensive training. Here, we review emerging approaches to investigate perceptual 
decision-making using both spontaneous and trained behaviors, discussing their strengths and 
limitations. Additionally, we propose that instructed decision-making tasks could be improved by 
seeking to facilitate faster learning and a more generalizable understanding of task rules. 
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Introduction 

Animals interact in complex ways with their environment when making perceptual decisions. 
They integrate sensory signals from diverse sources, trade off competing needs, assess potential 
risks and benefits arising from their choices, and accordingly decide on the best action. In some 
situations, animals can make use of brain circuits that have formed during development to 
support automatic, and often very fast, decisions. Many researchers have emphasized that 
studying the neural correlates of such spontaneously expressed behaviors yields insights into 
how brains compute decisions under more naturalistic conditions, as opposed to many highly 
trained laboratory tasks [1]. Indeed, the study of spontaneous behavior is regaining popularity 
thanks to technological developments in behavioral tracking, image segmentation, and high yield 
neural recordings in freely behaving animals. Some have even argued that the recent success of 
this growing field suggests we should “step away” from more trained paradigms, such as training 
an animal to use a lever or a joystick [2]. 

However, although properly executing innate behaviors is a vital job of the animal’s brain, it is 
clearly not the only job. Many state-of-the-art experiments in perceptual decision-making take 
advantage of animals’ ability to learn complex task structures by training them to associate 
abstract sensory stimuli with specific actions to receive rewards to study for example abstract 
sensory comparisons [3••,4], evidence accumulation [5,6] or changes in the beliefs about the 
frequency of stimuli in an environment [7]. Although animals can learn these abstract tasks, they 
do so rather slowly and only after extensive repetition. Furthermore, abstract tasks suffer from a 
high inter-individual variability in learning speed and success. Finally, critics have raised 
concerns as to how general and flexible decision-making is in these highly repetitive tasks.  

Here, we highlight how new approaches in both spontaneous and trained behavior have 
expanded our understanding of perceptual decision-making and we discuss the strengths and 
weaknesses of both. We argue that trained tasks may be improved if researchers not only 
consider desired stimulus parameters when designing a task but also take the learning process 
itself into account and identify task features that might lead to faster learning and a more general 
understanding of the instructed decision rules. Discovering such task features could allow for 
more intuitive learning that might act as a bridge between current spontaneous and trained 
behaviors.  

The promises of spontaneous behavior in perception and decision-making 

Over the past few years, neuroscience has witnessed key advances through the study of 
behavior to understand brain function, with many neuroscientists particularly highlighting the 
promise of natural behaviors in understanding fundamental computations [1,8,9]. However, the 
term “natural behavior” is oftentimes not well-defined – after all, the laboratory is a far cry from 
most animals’ ethological niche. We will therefore refer to "spontaneous” behaviors as those that 
do not require training and contrast them with “trained” behaviors. It is important to note that 
both spontaneous and trained behaviors can be studied in either restrained or freely behaving 
animals (see for instance [10]). 

Two major technological advances have fueled the interest in spontaneous behavior. First, the 
miniaturization of sensors originally designed for human wearables has been used to design a 
broad variety of animal tracking devices. These devices include accelerometers and head-
mounted cameras to sample the position of an animal’s head and both eyes [11–13], cameras to 
record the surrounding environment from an animal’s perspective [14••] or miniaturized 
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fluorescence microscopes to record neural activity in freely behaving animals [15–18]. Second, 
new machine learning tools and deep neural networks allow for unprecedented precision when 
tracking body parts in video data [19,20] and help researchers parse out distinct constituents of 
ongoing spontaneous movement [21–23]. 

The power of combining advanced sensors, machine learning tools, and electrophysiological 
recordings to study perception during spontaneous behavior was recently demonstrated. Parker 
and Abe recorded the neural activity in mouse primary visual cortex (V1), eye/head position and 
video of the mouse’s perspective [14••], Fig. 1A. The authors used the head and eye angles to 
shift the simultaneously acquired video and then reconstructed the visual input to the retina at 
any given moment. Using these inputs, the authors accurately measured receptive fields of V1 
neurons in freely moving mice. Another important study using a similar approach demonstrated 
that the receptive fields of V1 neurons can be accurately recovered in freely gazing marmosets 
[24••]. Although not directly probing decision-making, these studies offer a way to precisely 
quantify visual input to an animal that might be used in future studies investigating visual 
decision-making in spontaneously behaving subjects. 

Spontaneous behaviors also have begun to change the conventional wisdom regarding which 
sensory computations animals can perform. For example, the wide-set eyes and limited 
binocular regions of mouse V1 seem to suggest that mice largely forgo stereo vision. This 
assumption was tested in recent work in which mice climbed down a pole onto a transparent 
platform [25], Fig. 1B. Beneath each quadrant of the platform, a checkerboard pattern was 
presented at different depths. Mice with both eyes open tended to climb down to the quadrant 
where the checkerboard was closest to the platform. That is, mice selected the platform where 
they would not fall when leaving the pole. However, mice with one eye closed mostly failed to 
find the closest quadrant. Other examples leveraging spontaneous behaviors to study perception 
include continuous visual tracking of a focus of expansion in a visual flow-field in human and 
non-human primates [26], pursuit of prey [11,12,27] or prey-like stimuli [28], jumping over a gap 
[29], acoustic startle responses [30], and visual or auditory looming assays [10,31–33]. 

 

Figure 1. (A) Receptive field mapping in freely behaving mice. Schematic of the recording setup 
to track eye and head movements and subject-perspective visual scenery while recording from 
V1 neurons (left). Equipped with these recording devices, researchers can expose mice to an 
open field with a variety of different visual stimuli and reconstruct incoming visual information to 
probe V1 neural responses and receptive fields (right). Adapted from [14••]. (B) Illustration of the 
pole descent task assessing depth-perception in spontaneously behaving mice. Adapted from 
[25]. 
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Although the examples above illustrate how spontaneous behavior can be leveraged to 
investigate perception and decision-making, it still suffers from a few limitations. First, one of the 
major behavioral achievements of animals is their ability to not only respond spontaneously, but 
also to learn new responses and associations. When focusing exclusively on spontaneous and 
untrained behaviors, researchers miss the chance to study a large part of an animal’s behavioral 
capacity. Second, testing key hypotheses about perception and decision-making, such as 
changes in perceptual sensitivity for instance, requires dense sampling around the 
psychophysical threshold, where stimulus intensity is typically weak. Although the use of weak 
stimuli is technically possible for spontaneous behaviors, the tools to extract the critical 
parameters from these behaviors are still emerging [34]. Third, in many cases, a particular 
spontaneous behavior can only be elicited a few times for each subject before the animal stops 
responding due to satiation or the extinction of the behavioral response [17]. This imposes 
severe restrictions on the analysis of, for example, neural recordings obtained alongside 
behavioral data because only a few responses can be collected for each condition [35].  

 
Trained behaviors are useful to study the discovery and behavioral implementation of 
defined decision rules  

In contrast to spontaneous behaviors, in which one is limited to the innate (or at least extant) 
stimulus-response associations, behavioral training can drive entirely novel stimulus-response 
associations. For instance, experimenters can teach stimulus-response associations that probe 
specific aspects of perception and even alter those associations as needed [36–39]. 
Experimenters can introduce delays between the sampling of information and the reporting of a 
choice to disentangle the formation of evidence-driven decisions from the motor preparation and 
execution of the reporting action. Thanks to the freedom in designing trained tasks, it is also 
often possible to modify small task parameters in order to translate findings to another animal or 
even a human [5,40].  

Critically, trained behaviors offer far more than the convenience of psychophysical tasks; trained 
behaviors also allow researchers to study learning and the discovery of abstract decision rules. 
Abstract rules are outside the realm of spontaneous behavior because such rules require the 
animal to make connections between two previously non-associated stimuli. For instance, it was 
recently demonstrated that mice can learn abstract decision rules based on the relative 
differences in visual stimuli by presenting pairs of visual gratings with different orientations [3••]. 
Mice then had to compare the orientation of the two gratings and select the one with the greater 
vertical orientation. Using this approach, the authors showed that mice can generally perceive 
relative angular differences of as little as 9°. Together, this work illustrates that mice can not only 
perform tasks requiring high visual acuity but that they are even capable of making perceptual 
judgments with respect to an abstract rule.  

Furthermore, recent work has led to a rapid expansion of our understanding of how internal 
states influence perceptual decision-making. For instance, Ashwood and colleagues used a 
probabilistic modeling approach to determine how different states of engagement altered an 
animal’s decision-making strategy [41]. The authors show that task engagement can rapidly 
fluctuate on short timescales (tens of trials) leading to markedly different task performance and 
weighing of sensory evidence. For example, when mice are in a state of high task engagement, 
their decisions are stimulus-driven and more accurate. In contrast, during states of lower task 
engagement, mice often employ stimulus-independent strategies, such as side biases, resulting 
in poor performance. This work also offers a potential explanation for previous findings regarding 
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lapses, or errors that occur even on the easiest stimuli. The study by Ashwood and colleagues 
suggests that lapses may be driven by periods of task disengagement where sensory-
independent strategies dominate animal’s decision-making (for an alternative account of lapses, 
also dependent on internal state, see [42]). 

Performance on trained perceptual decision-making tasks requires animals to form new 
associations but open questions remain about how these associations are learned. A challenge 
here is the variability in learning rates across subjects. Reinert and colleagues highlight this 
variability by first training head-restrained mice to lick when presented with gratings with high 
spatial frequency but withhold licking when shown grating of low spatial frequency (e.g. “go/no-
go task”), ignoring the orientation of the gratings [43••], Fig. 2. However, the authors note that 
mice showed highly variable learning rates, anywhere from ~10 sessions to almost 40 sessions 
to reach a defined expert performance criterion. The authors then made two clever adaptations 
to their task to probe the source of such variability in decision-making. First, they took mice 
trained on this spatial version of the task and instead had them classify stimuli based on their 
orientation (this time ignoring spatial frequency), without changing the reporting action. In this 
version of the task, all mice reached expert performance in less than 10 sessions. Second, the 
authors had the same subjects classify stimuli according to the same rule but respond by licking 
left or right to report their choice, as opposed to the previously learned go/no-go version of the 
task. In this variation, all animals took more than 20 sessions to perform at expert levels. This 
study not only highlights the variability in trained behaviors but hints that learning might occur on 
different timescales for acquiring stimulus-action associations given specific stimulus-action 
combinations and prior knowledge about the task structure. 

These and other related findings about the slow and highly variable learning of trained tasks [44•] 
have compelled critics to question whether behavioral neuroscience should focus on these 
highly trained behaviors to study perception and decision-making [45]. One of the main concerns 
is that the extended training time might allow for plasticity mechanisms in sensory systems such 
that the neural activity of expert animals cannot be compared to a naïve subject. Another 
drawback is that perceptual tasks are often only learned through extensive repetition, possibly 
leading to the formation of a rigid stimulus-action association that prevents animals from 
generalizing their knowledge to other contexts. The findings by Reinert and colleagues that 
animals failed to quickly transfer the learned stimulus categories from a go/no-go to a two-
alternative forced choice situation point to such rigid associations [43••]. Finally, because not 
only the stimulus contingencies but also the reporting actions are learned through reinforcement, 
it can be unclear when the perceptual rule is acquired versus behaviorally implemented [46]. 

 

Figure 2. A single set of stimuli can be associated with different decision rules. Mice are trained 
to distinguish visual patches with high- versus low-frequency gratings or different grating 
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orientations (left). It is possible to select a stimulus set such that experimenters can flip the rule 
from a spatial frequency rule (green separating line) to an orthogonal orientation rule (orange 
line) to study sensory learning (right). Adapted from [43••].  

It thus becomes clear that trained tasks are often ill-suited for studying learning that is quick or 
that can flexibly extend to new contexts. Could researchers learn from tasks that animals learn 
quickly and with no explicit training to improve current psychophysical tasks? Alternatively, are 
there learned tasks that better balance an experimenter’s need for control with an animal’s 
innate ability to learn general principles of a task? 

Identifying task features that invite fast learning and a generalizable understanding of 
perceptual decision-making tasks 

The long training times with high subject-to-subject variability and rigid stimulus-response 
associations might seem at first an inevitable consequence of psychophysical tasks. After waiting 
weeks for the gradual learning that is typical of some tasks, one might be tempted to wonder 
whether rapid insight and a general understanding of perceptual decision rules are simply 
absent in animals. Here, we argue instead that innovations in the design and the training pipeline 
of instructed tasks may improve the learning speed and generality of instructed behaviors. 

A first piece of evidence that animals can quickly learn general rules about their environment 
comes from navigation. Rodents tend to have well-developed internal maps, presumably 
because they must navigate circuitous and serpentine routes to acquire food and then return to 
the safety of their nest, avoiding predators all the while. Laboratory mazes, while not at all 
ethological, tap into this ability to learn a representation of paths through an environment. For 
instance, recent work demonstrated that mice in mazes learn many bits of information in far less 
time than a typical 2-choice laboratory task [47]. Further, observations of “sudden insight” 
suggest that rodents sometimes gain an understanding of the principles by which the system (in 
this case, the maze) operates [48].  

Foraging is a second example of fast learning of the structure of a particular environment. 
Foraging decisions seek to maximize the payoff of actions based on an understanding of the 
reward structure of the environment. The computations needed to inform such decisions are 
non-trivial: one must estimate and compare the value of multiple uncertain options. Sophisticated 
foraging behavior is observed in many animals [49–51]. Features of foraging can be replicated in 
a laboratory setting by, for instance, manipulating the size and probability of rewards associated 
with particular decisions. Rats, mice and monkeys are often keenly sensitive to reward 
manipulations, even when head-fixed [42,44•,52,53]. Animals’ ability to track foraging parameters 
with ease stands in contrast to animal’s ability to learn other parameters of trained tasks, like 
abstract associations between stimulus and reward. Such associations can take months to learn 
and are often easily disrupted [42].  

Maze-learning and foraging, though interesting behaviors in and of themselves, are of limited 
usefulness for perceptual decision-making studies, which often rely on systematically varying 
carefully parameterized stimuli. Still, they do serve to demonstrate that animals are capable of 
fast, robust learning of the sort that would benefit sensory processing as well. What features of 
those tasks nurture fast learning? Might we, as a field, identify these features and then port them 
to other behaviors? Some pertinent examples hint that we might.  
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Head-restrained, visual psychophysics tasks were once thought to be beyond the capabilities of 
mice. One modification that improves learning of such tasks substantially is the coupling 
between a subject’s actions and stimulus motion [44•,54], Fig. 3A. The modification was to 
provide mice with a small steering wheel coupled to movement of the stimulus. Mice are 
rewarded for detecting the stimulus on the right or left side of a screen and moving it to the 
center using the wheel. Using this task and a detailed training protocol for it, many laboratories 
have reported high training success rates and relatively fast task learning [44•].  

Researchers might also tackle the high inter-individual variability of learning trajectories and 
speeds by designing tasks that can be acquired in multiple steps [55•] or through the 
combination of sub-tasks [56••]. Recent work shows that mice can combine knowledge that was 
independently acquired for two different tasks to solve a new composite task [56••]. In this study 
head-restrained mice separately learned to move an illuminated spout holder to center of a 
surface in front of them using a joystick or to simply lick when the LED on a spout was switched 
on. Despite rather slow learning and high inter-individual variability at the acquisition of the 
joystick subtask the mice were able to combine the knowledge of the two tasks to quickly learn 
to move the holder now equipped with the spout close to their snout and to lick for water 
rewards. 

Why might coupling the movement of a stimulus to the turning of a wheel to report a choice lead 
to fast learning while, i.e., reporting a choice with a saccade or licking movement leads to slower 
learning? Is it possible that animals may better leverage “structural knowledge” about the 
connection between their actions and sensory stimuli when learning to turn the wheel than when 
licking to the right or left as might be suggested by the sub-task learning? Could there be a 
neural basis for this difference in learning? One possibility is that easily learnt tasks recruit neural 
activity that is within the subset of naturally occurring covariance patterns. This subset of 
patterns is called the intrinsic neural manifold (Fig. 3B). In two recent studies, macaques were 
trained to move a virtual cursor via a Brain Computer Interface (BCI) by producing a specific 
neural activity pattern in M1 [57,58•]. After the initial association, the authors changed the 
mapping between the neural activity and the cursor. Surprisingly, the monkeys learned certain 
new mappings very quickly while taking a very long time for other mappings. It turns out that the 
macaques can relatively easily re-associate neural activity patterns and thus learn fast if the new 
mapping falls within their intrinsic manifold [57]. In contrast, when the new mapping is outside 
the animal’s intrinsic manifold, the monkey has to learn how to produce the new activity patterns 
leading to a slower increase in their performance [58•]. What neural covariance patterns are 
readily available to the animal may be largely shaped by evolutionary constraints [59]. 
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Figure 3. (A) Mice rotate a steering wheel that causes simultaneous movement of a visual 
stimulus. Mice learn with experience that centering the stimulus (left) will yield a drop of water as 
a reward, while sending the stimulus in the opposite direction (right) will not. Adapted from [44•]. 
(B) Conceptual schematic of neural activity patterns. Each point shows the joint firing rate (FR) of 
3 neurons. These points are largely confined to the intrinsic manifold (gray plane). The black 
arrow indicates an “intuitive” mapping between the monkeys’ neural activity and the position of a 
BCI cursor. Green points: activity patterns that would move the cursor to the right; purple points: 
activity patterns that would move the cursor to the left. The blue arrow indicates a new mapping. 
This mapping requires “off manifold activity” (activity patterns not on the intrinsic manifold) 
These off-manifold perturbations were much slower for the monkey to learn. Adapted from [58•].  

Currently, our ability as experimenters to design tasks that recruit within- vs. outside-manifold 
activity patterns can feel a bit like grasping in the dark. It will be critical to obtain neural 
recordings during task learning to uncover which tasks generate entirely new activity patterns 
and which ones repurpose existing patterns. In-depth analysis of animal movements might 
likewise assist the discovery of better training regimes for instructed behaviors, since animal 
movement patterns might indicate when animals’ engagement waxes and wanes [60,61]. Finally, 
we call on researchers to share detailed reports about all the used training techniques and 
interventions as well as training times including summaries of animals excluded from further 
training. Sharing more nuanced training procedures will be transformative for instructed 
behaviors. 

Concluding remarks 

Here, we have reviewed recent innovations and novel approaches to studying perceptual 
decision-making using animals’ spontaneous behaviors or instructed tasks, both of which have 
contributed invaluable new insights into how animals use sensory information to guide their 
choices. We have argued that trained behaviors could greatly be improved if researchers more 
deeply considered an animal’s learning process and would select task features that invite fast 
learning of generalizable knowledge for their tasks. To achieve this goal, it is key to investigate 
animal learning on the behavioral and neural level and to provide detailed accounts of training 
procedures and task learning progress even if learning is not the focus of the study. Although for 
the purpose of the review we have mainly focused on visual decision-making in mice, we 
hypothesize that incorporating learning considerations into task design may be transformative for 
other decision tasks and animal species. 
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