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Article

Mathematical modeling links Wnt signaling to
emergent patterns of metabolism in colon cancer
Mary Lee1,†, George T Chen2,†, Eric Puttock1, Kehui Wang3,4, Robert A Edwards3,4,

Marian L Waterman2,4,5,* & John Lowengrub1,4,5,6,**

Abstract

Cell-intrinsic metabolic reprogramming is a hallmark of cancer
that provides anabolic support to cell proliferation. How repro-
gramming influences tumor heterogeneity or drug sensitivities is
not well understood. Here, we report a self-organizing spatial
pattern of glycolysis in xenograft colon tumors where pyruvate
dehydrogenase kinase (PDK1), a negative regulator of oxidative
phosphorylation, is highly active in clusters of cells arranged in a
spotted array. To understand this pattern, we developed a reac-
tion–diffusion model that incorporates Wnt signaling, a pathway
known to upregulate PDK1 and Warburg metabolism. Partial inter-
ference with Wnt alters the size and intensity of the spotted
pattern in tumors and in the model. The model predicts that Wnt
inhibition should trigger an increase in proteins that enhance the
range of Wnt ligand diffusion. Not only was this prediction vali-
dated in xenograft tumors but similar patterns also emerge in
radiochemotherapy-treated colorectal cancer. The model also
predicts that inhibitors that target glycolysis or Wnt signaling in
combination should synergize and be more effective than each
treatment individually. We validated this prediction in 3D colon
tumor spheroids.
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Introduction

A hallmark feature of many cancers is “aerobic glycolysis”, or the

Warburg effect, a form of metabolism whereby cells skew their

balance of cellular metabolism away from oxidative phosphorylation

(OXPHOS) to favor glycolysis, despite the availability of sufficient

levels of oxygen (Warburg, 1956). Cellular emphasis on Warburg

metabolism is intriguing since it is much less efficient than OXPHOS

in producing energy (four molecules of ATP produced by glycolysis

for each molecule of glucose consumed versus 36 molecules by

OXPHOS). Warburg metabolism has been hypothesized to be benefi-

cial because glycolytic intermediates can be used as biosynthetic

building blocks for cell growth and proliferation, suggesting that this

mode of glucose utilization is essential for actively expanding

tumors (Vander Heiden et al, 2009; Pavlova & Thompson, 2016).

There are other effects as well: The production of lactate acidifies

the tumor microenvironment, an environmental condition that can

enhance tumor invasiveness (Gatenby & Gillies, 2004), and induces

angiogenic responses for increased delivery of glucose, oxygen, and

other nutrients (Végran et al, 2011), effects that are growth promot-

ing and provide cancer cells with a fitness advantage.

Oncogenic, overactive Wnt signaling has been recently linked to

metabolic and nutrient programming in tumors. For example, in

colon cancer, Wnt signaling is proposed to increase expression of

key glycolytic factors that enhance Warburg metabolism and angio-

genesis (Pate et al, 2014). Oncogenic Wnt signaling most commonly

derives from genetic inactivation of one or more signaling compo-

nents (e.g., adenomatous polyposis coli, APC), inactivating muta-

tions that cause the pathway to become chronically activated and to

trigger overexpression of Wnt target genes. One such target gene is

pyruvate dehydrogenase kinase 1 (PDK1), a mitochondrial kinase

that inhibits the pyruvate dehydrogenase complex (PDC) via

phosphorylation of the component pyruvate dehydrogenase (PDH)

(Pate et al, 2014). Since PDC converts pyruvate to acetyl CoA for

mitochondrial respiration, phosphorylation/inhibition of PDH by

PDK1 suppresses OXPHOS modes of metabolism (ATP and CO2
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production) to favor glycolytic modes that produce lactate (Roche

et al, 2001). Thus, at least in some tissues such as colon, Wnt

signaling elevates PDK1 to suppress OXPHOS and to encourage

glycolysis and the production of lactate.

Our previous study of xenograft colon tumors established that

oncogenic Wnt signals directly activate PDK1 gene transcription as

well as other glycolysis-connected gene targets including the lactate

transporter MCT1 (SLC16A1) (Pate et al, 2014; Sprowl-Tanio et al,

2016). That Wnt signals might be directly responsible for shaping

the metabolic profile of cells is a discovery from multiple studies

focused on diseased [e.g., melanoma, breast (Sherwood, 2015)] and

normal tissues (Esen et al, 2013). At least two types of Wnt signals

have been defined. One signal utilizes canonical signaling and b-
catenin-regulated transcription to drive sustained expression of

glycolysis regulators. A second signal utilizes a novel Rac-mTORC2

pathway to increase the protein levels of glycolytic enzymes in the

cytoplasm (Esen et al, 2013). Both signals can be triggered by

secreted Wnt ligands, and these, in addition to oncogenic Wnt path-

way activities created by genetic mutations, can direct the metabolic

and proliferative capacity of colon tumors. However, because meta-

bolism is shaped by the collective activity of multiple pathways and

environmental influences—including those that enhance or diminish

Wnt signaling—there is still much to learn about how signatures of

metabolism are established.

Metabolic symbiosis has emerged as a powerful model to explain

tumor heterogeneity and survival. As a concept, metabolic symbio-

sis means that glycolysis is not a singular metabolic choice for cells

in a tumor; OXPHOS modes of metabolism may be dominant in

subpopulations. The proposed outcome of this heterogeneity is that

cooperation between two groups of cancer cells can maximize deliv-

ery and consumption of nutrients and minimize the environmental

stresses that are imposed on a tumor. Glycolytic cells are likely the

dominant consumers of glucose, and their fermentation of this

carbon source produces an acidic by-product (lactate) that must be

exported to the tumor microenvironment. Lactate can be angio-

genic, and thus, the activities of glycolytic cells can be important for

delivery of nutrients and growth factors to the tumor microenviron-

ment (Murray & Wilson, 2001; Sonveaux et al, 2012). In turn,

cancer cells with prominent modes of OXPHOS metabolism can

uptake and utilize lactate (and other metabolic by-products) from

neighboring glycolytic cells and metabolize it as a stable source of

energy over long time scales (De Saedeleer et al, 2012; Epstein et al,

2014). An important example of this is the “reverse Warburg” effect

observed in breast cancer (Martinez-Outschoorn et al, 2014). Thus,

not all cancer cells show a preference for glycolysis at all times

because microenvironmental, spatial, and temporal factors may

direct them to emphasize OXPHOS modes of metabolism (Sonveaux

et al, 2008; Pavlides et al, 2009; Obre & Rossignol, 2015). Such

back-and-forth influences on glycolysis and OXPHOS create nonge-

netic tumor heterogeneity, meaning that genetically identical cancer

cells might adopt different modes of metabolism depending on cell-

intrinsic and cell-extrinsic influences. Identifying these influences

and signals, and understanding the spatial and temporal forces that

direct their cooperation is important, as metabolic symbiosis is not

just a manifestation of tumor heterogeneity, but it is likely a funda-

mental aspect of tumor survival.

In the course of our study of Wnt signaling and glycolysis in

xenograft colon tumors, we observed heterogeneous patterns of

metabolism. Heterogeneity was observed via immunohistochemical

stain of PDK1 activity, a major inhibitor of mitochondrial activity,

and immunohistochemical stains of Wnt signaling. In particular,

these stains revealed a pattern of discrete clusters of cells, or

“spots”, indicating groups of cells with different levels of glycolysis

relative to OXPHOS, and differences in Wnt activity. We refer to

these groups of cells as “glycolytic (Pg)” and “OXPHOS (Po)” to indi-

cate that they differ in the relative balance between these two modes

of metabolism. As the spots of PDK activity and Wnt signaling

appeared as a regular array in space, we hypothesized that metabo-

lism was subject to rules of pattern formation, and we therefore

developed a mathematical model with spatial features to study the

organization of this pattern. Using reaction–diffusion equations to

describe the dynamics of Wnt signaling, nutrients, cell substrates,

and the populations of the different metabolic cell types, we eluci-

date the mechanisms that underlie this spatial pattern and find good

agreement between the model and experiments. We lastly exploit

this knowledge to identify promising therapeutic strategies.

Results

A spotted pattern of PDK activity and LEF-1 expression in
xenograft tumors

Xenograft tumors of (human) colon cancer cell line SW480 (contain-

ing homozygous loss-of-function mutations in APC and intrinsically

activated Wnt signaling) were produced by subcutaneous injection

of cells in immunocompromised mice. To investigate metabolic

changes within the tumor, 5.0- to 6.0-lm serial sections of formalin-

fixed, paraffin-embedded tumor were probed with antisera specific

for phosphorylated PDH (pPDH) as an indicator of PDK activity, and

lymphoid enhancer factor-1 (LEF-1), a Wnt signaling transcription

factor and Wnt target gene (Hovanes et al, 2001). Both stains

revealed a general, high level of pPDH and LEF-1, but also hetero-

geneity in the form of a prominent spotted pattern (Fig 1A and B,

where “mock” refers to tumors from parental SW480 cells). The

pattern appeared as discrete localized clusters of cells with

increased levels of pPDH, and these clusters, or spots, were detected

at seemingly regular intervals. Since pPDH staining is an indicator

of PDK activity, the darker stained cell clusters indicate increased

rates of glycolysis relative to neighboring cells. The lighter staining,

neighboring cells are likely utilizing greater levels of OXPHOS since

PDH is less inhibited (less phosphorylated). Since it is known that

lactate, the secreted by-product of glycolytic cells, can be imported

into neighboring cells for use as an OXPHOS metabolic fuel, this

pattern points to a potential symbiotic spatial relationship between

these two cell populations, a metabolic relationship proposed by

other groups studying cancer metabolism (Sonveaux et al, 2008;

Pavlides et al, 2009)—glycolytic cells that are localized in distinct

regions uptake glucose and produce metabolic fuel such as lactate

for surrounding oxidative cells, a mode of sharing and metabolic

distribution. In addition to the spotted metabolic pattern, an overly-

ing gradient in pPDH staining level was observed wherein the spots

were more densely arrayed toward the outer edges of the tumor,

decreasing in frequency toward the center of the tumor, suggesting

that more glycolysis occurs at the outer regions of the tumor where

there is more vasculature (Pate et al, 2014; Appendix A1.4).
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Figure 1. SW480 xenograft tumors reveal a spotted pattern of metabolic heterogeneity.

A, B SW480 cells lentivirally transduced with empty pCDH vector (mock) were subcutaneously injected into immunocompromised mice. The resulting tumors were
stained for (A) phosphorylated pyruvate dehydrogenase (pPDH) and counterstained with hematoxylin or (B) lymphoid enhancer factor-1 (LEF-1). Scale bars indicate
100 lm in the series of 4×, 20×, and 40× images. The red curves denote spot contours and the blue curves denote convex hulls, which group together spots that
are sufficiently close to one another (see Appendix A1).

C Image analysis of spot size versus distance of spot to nearest neighbor, using analyzed 20× images (third panels of A and B). The outlined data points indicate the
average distance and area for pPDH and LEF-1 spots. Results show that quantifiable features of the spotted patterns in pPDH and LEF-1 are similar.

D Colorectal carcinoma patient samples (tumors 1, 2, and 3) stained for pPDH (top) and LEF-1 (bottom) show spatial heterogeneity in expression levels. Scale bars are
100 lm (LEF-1 samples from Uhlén et al, 2015).

E Serial section of human colorectal carcinoma stained with pPDH and LEF-1 antisera. Scale bars are 100 lm.
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As we previously identified a link between Wnt signaling and

glycolysis, we used immunohistochemistry to assess the activity of

the canonical pathway. Interestingly, a spotted pattern was also

evident in immunohistochemical stains of the Wnt target gene and

effector, LEF-1 (Fig 1B), indicating that the spotted array might be

linked to a pattern of heterogeneity in Wnt signaling. Automated

image analysis was used to quantify the spatial parameters of each

of the spotted patterns (see Appendix A1.1–A1.3 and Appendix Figs

S1–S5). Figure 1C shows the quantification of each spot area and

distances to each nearest neighbor, showing that the parameters of

the spots for pPDH and LEF-1 are very similar (data on the number

of cells per spot are given in Appendix A1.15). We found that the

total area fraction of tumor covered by each set of spots in Fig 1A

and B was nearly the same (pPDH: 21.2%; LEF-1: 20.2%). To assess

the overlap between the pPDH and LEF-1 spots in the serial sections

in Fig 1A and B (see Appendix A1.2), we counted spots that

partially overlap and found that there was a significant overlap of

65–77% in the spatial arrangement of the pPDH and LEF-1 spots

(Fig EV1). We also found that the area fraction of tumor covered by

the overlapping region (pPDH spots that are contained in LEF-1

spots and LEF-1 spots that are contained in pPDH spots) is 7.4%.

To determine the significance of the association between the

spots (see Appendix A1.2 for details), we analyzed staining in pairs

of pixels, assuming that each pixel location in one section corre-

sponds to the same pixel location in the other section. We performed

a Cochran–Mantel–Haenszel test (Cochran, 1954; Mantel & Haen-

szel, 1959) and found that the pPDH and LEF-1 spots are signifi-

cantly associated with one another (P < 0.0001). While this analysis

is not definitive because it does not guarantee that the paired pixels

are in the same cell (we found it difficult to directly match cells in

the serial sections) and also does not take into account spatial varia-

tion in spot densities, it suggests that the patterned heterogeneity of

metabolism and Wnt signaling are linked.

Xenograft tumors from colon cancer cell lines are different from

primary human colon cancers, the latter of which develop in

immunocompetent patients and contain a greater variety of cell

types and stromal involvement. We asked whether PDK activity and

Wnt signaling were uniform or heterogeneous in primary human

colon tumors. In Fig 1D, pPDH and LEF-1 stains in primary human

colon tumors compared to normal colon tissue demonstrate that

there is indeed significant spatial heterogeneity in human tumors. In

addition, serial sections of a primary human colon tumor stained

with pPDH and LEF-1 antisera show a striking concordance in

expression pattern (Fig 1E). While a regular spotted array is not

apparent in primary tumors like it is in xenografts, the heteroge-

neous pattern of clusters of cells with high glycolysis and high

LEF-1 in the epithelial portion of the tumor suggests that although

xenograft tumors are artificial and have a different microenviron-

ment, understanding the mechanisms underlying the observed

spatial patterning in xenograft tumors can provide insight into the

forces that create nongenetic heterogeneity in primary human colon

tumors.

Reaction–diffusion modeling mimics the self-organizing patterns
of PDK activity and Wnt signaling in xenograft tumors

The regular spotted pattern in the xenograft IHC stains suggests the

development of a mathematical model consisting of reaction–

diffusion equations similar to those first described by Alan Turing

(Turing, 1952). Turing’s equations describe how an initial perturba-

tion in the concentrations of chemicals, or morphogens, can grow in

the presence of diffusion (the Turing instability) and self-organize

into a spatial pattern. Because diffusion is normally a stabilizing

process, diffusion-driven instabilities occur only under certain

conditions (Murray, 2003; Kondo & Miura, 2010). Recently, Marcon

et al (2016) performed an automated analysis of Turing-type reac-

tion–diffusion equations and identified general conditions for which

instabilities could occur. When two species are considered (e.g.,

activator–inhibitor models), the species need to diffuse at suffi-

ciently different rates as observed previously (e.g., short-range acti-

vator, long-range inhibitor). However, when multiple diffusing

species are present, instabilities can be obtained even for arbitrary

diffusivities. Here, we focus on reaction–diffusion models that link

cell metabolic phenotypes with Wnt signaling and argue that condi-

tions for instability are met in colon cancer.

Despite the fact that colon cancers are most often driven by

genetically activated Wnt signaling, a cell-autonomous condition,

there are numerous studies that highlight that secreted Wnt ligands

and their bona fide signaling through Frizzled receptors on the

plasma membrane are abundantly active in human colon cancer

and that they influence colon cancer biology (Holcombe et al, 2002;

Seshagiri et al, 2012; Voloshanenko et al, 2013; Giannakis et al,

2014). Importantly, Wnt ligands are highly constrained in their dif-

fusion, traveling only one to two cells from the origin of their secre-

tion, meaning that the range of their influence is highly localized

(Farin et al, 2016). This is in contrast to the longer-range diffusion

properties of known, secreted inhibitors that bind to Wnt ligands

and/or interfere with receptor binding (i.e., DKK, SFRPs) (Mii &

Taira, 2009, 2011). Some of these inhibitors are Wnt target genes,

for example, DKK4, an inhibitor that is expressed in human colon

cancer, and SFRP2, a secreted Wnt inhibitor induced by Wnt4 in

the developing kidney (Lescher et al, 1998). Thus, a Turing-type

model, wherein short-range nonlinear activation by Wnt ligands

and long-range inhibition of their activities, fits well with the known

physical and regulatory properties of Wnts and their inhibitors.

Moreover, this type of model is capable of forming patterns

(Murray, 2003; Kondo & Miura, 2010). Previously, Turing models

have been used to describe Wnt-directed patterns in a variety of

contexts including hair follicles (Sick et al, 2006; Kondo & Miura,

2010), colon crypts (Zhang et al, 2012), limb development (Raspo-

povic et al, 2014), and stem cell-driven cancers (Youssefpour et al,

2012; Yan et al, 2016). Additionally, the BMP family, known to be

Wnt signaling antagonists, has been recently described to direct

murine intestinal patterning (Walton et al, 2015).

We therefore developed a Turing-type model for simulating the

spatial and temporal dynamics of different metabolic phenotypes,

nutrients, and Wnt signaling activity through a system of reaction–

diffusion equations (Fig 2A and B; Appendix A2 and A3). We

included populations of cells that perform less glycolysis, which we

refer to as oxidative (Po) cells, and those that perform more glycoly-

sis, which are termed glycolytic (Pg) cells. Both types of cells may

divide, die, and undergo random movement. Depending on local

environmental conditions, the cells may switch from one phenotype

to the other. A diffusible substrate (N), which accounts for concen-

trations of nutrients such as glucose and growth factors, regulates

cell division and death (vN), the switching function v�W v�N from
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OXPHOS to glycolysis, and the ability of cells to generate Wnt (W)

and Wnt inhibitor (WI) activities. The Wnt and Wnt inhibitor equa-

tions are based on the Gierer–Meinhardt activator–inhibitor model

(Gierer & Meinhardt, 1972), where Wnt is the short-range activator

which produces a long-range factor that inhibits Wnt activity (e.g.,

SFRP2). Because Wnt signaling is assumed to be constitutively

active, both OXPHOS and glycolytic cells are assumed to upregulate

Wnt activity at the rate SW. In the model shown in Fig 2A and B, the

glycolytic cell proliferation rates and the metabolic switching rates

(vW and v�W) also depend on Wnt activity where a higher activity

level increases cell propensities for glycolysis over OXPHOS, if suffi-

cient nutrients are available (v�N). To model the angiogenic response

of the mouse vasculature to the lactate produced by the glycolytic

cells and the accompanying increased delivery of nutrients, we intro-

duced sources NS that increase the amount of nutrient in the system

proportionally to the amount of glycolytic activity of the cells. We

also assumed that the vascular density was largest at the domain

boundary and thus, we modified the boundary conditions for nutri-

ents analogously. See Appendix A2 for the precise functional rela-

tionships.

We also considered a more general in vivo model, which

accounted for PDK activity, hypoxia-inducible transcription factor

concentrations (HIF1a), lactate concentration, and cross-feeding

between glycolytic and OXPHOS cells (Appendix A3). Assuming that

Wnt and HIFs promote PDK expression/activity (Kim et al, 2006;

Pate et al, 2014; Prigione et al, 2014), that PDK activity promotes

lactate production (Pate et al, 2014), and that lactate increases

HIF1a expression levels and provides a source of fuel for OXPHOS

cells (De Saedeleer et al, 2012; Epstein et al, 2014), we obtained

results that were qualitatively similar to the simpler model shown in

Fig 2A and B where these additional processes were not considered

directly. In particular, the effects of Wnt signaling dominate those of

cross-feeding between the cell types, and the positive feedback loop

between Wnt and PDK (high PDK implies more Pg cells; higher

numbers of Pg cells imply more Wnt activity; more Wnt activity

means increased PDK) has been distilled in the simpler model so

that Wnt activity level, rather than PDK levels, provides an effective

metabolic switch between relative amounts of OXPHOS and glycoly-

sis. Because PDK drives the switch in metabolism in SW480 cells,

we use the Pg and Po spatial distributions to compare to our xeno-

graft stains.

The model equations were solved in nondimensional form using

a characteristic proliferation time T of 1 day to rescale time and a

characteristic diffusion length l of the Wnt inhibitor to rescale space.

Since we did not know l (in fact, there may be many factors that

contribute to Wnt inhibition), we varied l and found good agree-

ment between the experimental and numerical patterns when

l � 40 lm. A full description of the both models, boundary condi-

tions, and the nondimensionalization can be found in Materials and

Methods and in the Appendix. The parameter values can be found

in Table 1 (Jiang et al, 2005; Rockne et al, 2010; Mendoza-Juez

et al, 2012).

Figure 2C presents the numerical results for the fractions of

glycolytic and oxidative cells and the concentrations of Wnt and

Wnt inhibitor, where each two-dimensional plot is a horizontal slice

through the center of the three-dimensional spatial domain (nutrient

distributions can be found in Appendix Fig S15 and Appendix A4).

The cells were initially seeded randomly near the boundary of the

domain to reflect the fact that the cells that survive the initial

implantation are likely close to nutrient sources (alternative initial

distributions of cells give similar results). The cells then proliferate

and grow inwards toward the center of the domain with angiogene-

sis-induced nutrient sources fueling the growth. Consistent with the

xenograft data, a distinct spotted pattern in the population of glyco-

lytic cells is produced by the model over time. Over the entire

domain, there is a high level of glycolytic-dominant cells with local-

ized areas of highly active glycolytic cells (dark red spots). Similar

to the xenograft tumors, the spots are denser toward the boundary

of the tumor space, where there is a higher density of vasculature, a

spatial pattern that agrees with the overall pattern of pPDH staining

of the mock tumors in Fig 1A. The oxidative cell fractions are close

to 0 in the same spots where glycolysis is high, and their levels are

relatively higher in regions surrounding these spots. Wnt and Wnt

inhibitor activity show a similar pattern, with high levels distributed

in a spotted array throughout the domain, surrounded by lower

levels in the neighboring regions. Like the pattern of glycolysis, the

frequency of spots is higher near the boundary relative to the inte-

rior. The square symmetries in the simulated spot distributions are

due to the use of a cubic spatial domain in the simulations. Quanti-

tative and comparative analysis of the patterns in the xenograft

tumors to the simulated pattern generated by the model indicates

that the model predicts similar dimensions for the size of the spots

and distance between the spots (see Fig 3D and E), although there

is significant scatter in the data.

Because the model parameters were largely unknown, we inves-

tigated their influence on the results through a parameter study

(Appendix A5). Using a diffusive stability analysis to determine the

ranges of values for which patterns were predicted to occur (see

▸Figure 2. A mathematical model for Wnt signaling regulation of metabolism.
This set of reaction–diffusion equations describes the change over time of oxidative (Po) and glycolytic (Pg) cell populations, Wnt signaling activity (W), and Wnt inhibitor
activity (WI).

A The cells can diffuse, proliferate, and “switch” metabolism programs depending on Wnt signaling activity and nutrient levels and die from lack of nutrient (N).
B Wnt and Wnt inhibitor activity equations are based on the Gierer–Meinhardt activator–inhibitor model. The Wnt signal diffuses short range relative to the longer-

range diffusion of the Wnt inhibitor. Wnt also auto-upregulates its activity in glycolytic cells at a rate proportional to nutrient level, is inhibited by a Wnt inhibitor, is
constitutively upregulated in both cell types, and decays (downregulation term). The Wnt inhibitor diffuses long range, is nonlinearly upregulated by Wnt, and decays.
Equations for nutrient and dead cells (Pd) are not shown; their descriptions are in the main text.

C Three-dimensional numerical simulations that model the spatial distribution and level of glycolytic and oxidative cells, Wnt, and Wnt inhibitor reveal an emergent
self-organizing pattern of metabolic heterogeneity (spots). The simulations shown depict the heterogeneity in a 3D and 2D representation. The 3D representation
includes a portion of the “tumor” removed to visualize the interior of the domain. The 2D representation is a horizontal slice of the respective 3D simulation in the
center of the domain. Color bars refer to unitless concentrations.

D Summary of parameter effects on the spotted pattern.
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Appendix A6), we modified the parameters one by one within the

pattern-forming range and tested for phenotype changes in metabo-

lism and patterning. The results are summarized in the table in

Fig 2D. Increasing the Wnt diffusion coefficient or decreasing the

Wnt decay rate increased the extent of Wnt activity, so that the

spots of glycolysis increased in size. Increasing the Wnt inhibitor

diffusion coefficient or decreasing the decay of the Wnt inhibitor

caused the inhibitor to stay within the system for longer times and

resulted in fewer spots. Modifying the switching times between the

phenotypes changed the proportion of Po and Pg. Increasing or

decreasing the Wnt switch changed the background levels of Pg cells

and spot sizes without affecting the number of spots. Small reduc-

tions in SW, which can be thought of as reducing overall Wnt

signaling, reduced the background levels of glycolytic cells without

much effect on the sizes or numbers of spots. Sufficiently reducing

SW resulted in all terms (Po, Pg, W, and WI) decreasing to 0.

Decreasing jW (nonlinear Wnt activity) or increasing b (Wnt

response to inhibition) paradoxically increases the number of glyco-

lytic cells because nonlinear interactions actually result in a

decreased amount of WI. Analogously, when jWI (nonlinear Wnt

inhibitor activity) decreases, the number of glycolytic cells

decreases. Modifying the cell diffusion coefficients, death and decay

rates, and the nutrient uptake rates did not significantly influence

the self-organization of a spotted array. Similarly, varying the prolif-

eration times only changed the time it took to reach a steady state

but otherwise had no effect on pattern formation.

Table 1. Parameters.

Parameter Description Mock value dnLEF value References

Do Diffusion coefficient of oxidative cells 0.01 0.01 Rockne et al (2010)

Dg Diffusion coefficient of glycolytic cells 0.01 0.01 Rockne et al (2010)

DW Diffusion coefficient of Wnt 0.004 0.008 Chosen to be small

DWI Diffusion coefficient of Wnt inhibitor 1 1.5 Chosen to be large

DN Diffusion coefficient of nutrient 100 100 Jiang et al (2005)

so Oxidative cell proliferation time 1 1 Non-dimensionalization (time scale)

sg Glycolytic cell proliferation time 1 1 Non-dimensionalization (time scale)

sog Switch time from OXPHOS to glycolysis 1/24 1/24 Mendoza-Juez et al (2012)

sgo Switch time from glycolysis to OXPHOS 1 1 Mendoza-Juez et al (2012)

aW Constant for Michaelis-Menten dynamics 1 1 Parameter estimation

jW Rate of nonlinear Wnt production 5 5 Parameter estimation

jWI Rate of Wnt inhibitor production 1 1 Parameter estimation

lo Decay rate of Po cells 1 1 Parameter estimation

lg Decay rate of Pg cells 1 1 Parameter estimation

ld Decay rate of Pd cells 1 1 Parameter estimation

lW Decay rate of Wnt 2 2 Parameter estimation

lWI
Decay rate of Wnt inhibitor 3 3 Parameter estimation

lN Decay rate of nutrient 0.1 0.1 Parameter estimation

SW Rate of Wnt production through cells 7.5 6.5 Parameter estimation

a Constant of inhibition 10�8 10�8 Parameter estimation

b Constant of inhibition by WI 1 1 Parameter estimation

cW Sensitivity level of Wnt switch functions 1 1 Parameter estimation

cN Sensitivity level of nutrient switch function 100 100 Assumed to be high

mNG Uptake of nutrient by Pg cells 10 10 Parameter estimation

mNO Uptake of nutrient by Po cells 10 10 Parameter estimation

Ns Parameter for nutrient source 2 2 Parameter estimation

W* Wnt level at which 50% of cells switch metabolism 5 5 Parameter estimation

N* Nutrient level below which cells die 0.07 0.07 Parameter estimation

N�
g Nutrient level below which Po cells cannot

switch to glycolysis
0.1 0.1 Parameter estimation

aN Value of scaling function when ∫Pg = 0 0.025 0.025 Parameter estimation

Sx Horizontal length of spatial domain 12 12

Sy Vertical length of spatial domain 12 12

Model parameters for mock and dnLEF/dnTCF simulations.
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Interfering with Wnt signaling alters colon cancer metabolic
patterns in vivo

Since our model utilizes Wnt signaling, we tested how interference

of this pathway would alter metabolic patterning. To disrupt the

pathway, we used lentiviral transduction to express dominant nega-

tive LEF-1 (dnLEF-1) or dominant negative TCF-1 (dnTCF-1) tran-

scription factors. Both dominant negative versions are naturally

occurring LEF/TCF isoforms that lack the b-catenin binding domain

and therefore interfere with the activation/expression of Wnt target

genes. Expression of moderate, physiological levels of dnLEF-1 or

dnTCF-1 expression, partially, but not completely, disrupts Wnt

target gene expression in the xenograft tumors (Van de Wetering

et al, 2002; Hoverter et al, 2012; Pate et al, 2014). Partial disruption

is necessary because complete inhibition of Wnt activity would

block cell cycle progression and the formation of tumors altogether.

SW480 colon cancer cells that had been lentivirally transduced

and selected for dnLEF-1 or dnTCF-1 expression were subcuta-

neously injected into immunocompromised mice for tumor forma-

tion. Experiments showed that, as a result of dnLEF-1 expression,

PDK1 activity was reduced, Warburg metabolism was diminished,

and tumor mass was reduced approximately four- to fivefold (Pate

et al, 2014). Immunohistochemical staining of the levels of phos-

pho-PDH in these tumors (Fig 3A) revealed a lighter background

and lower pPDH level overall. Interestingly, pPDH positivity

remained easily visible in clusters of cells, but there were striking

changes in the spotted pattern. Each pPDH-positive cluster was

comprised of a larger number of cells (mock average: ~seven cells/

spot and dnLEF average: ~17 cells/spot; see Appendix A1.15 and

Appendix Fig S11), and there was a greater distance between each

spot (compared to parental, mock-transduced cells; Fig 3D). We

also utilized immunohistochemical staining for the Wnt-mediating

factor b-catenin in the dnLEF tumors (Fig 3E) (dnLEF-expressing

tumors cannot be stained for LEF-1). These stains revealed a spotted

pattern, with clusters of cells having higher levels of b-catenin in

the nucleus than neighboring cells, although because of the very

high levels of b-catenin in SW480 cells, there was an overall strong

intensity of the IHC stain. Image analysis showed that while the

b-cateninHI spots are, on average, smaller than the pPDH-positive

spots, they too had increased in size and distance relative to the

pattern of b-cateninHI cell clusters in the mock/parental tumors.

Additional image analyses of staining for pPDH and b-catenin in

dnLEF-1- and dnTCF-1-expressing tumors are provided in

Appendix A1 (Appendix A1.8–A1.12), together with a quantification

of these staining patterns (Appendix A1 and Appendix A1.13–

A.1.15). In summary, there were significant changes in both the

intensity and distribution of the spotted patterns for pPDH and

b-catenin when Wnt signaling was reduced by dnLEF-1/dnTCF-1

expression.

Reaction–diffusion modeling of metabolic patterns under partial
disruption of Wnt signaling predicts expression of factors that
increase the range of Wnt signaling

To understand the phenotypic changes in the spotted patterns when

Wnt signaling was partially disrupted, we used our model to identify

changes in parameters that could recapitulate the experimental

observations. The simplest change was to reduce SW, which mimics

dnLEF-1 and dnTCF-1 expression in lowering intrinsic Wnt activity

throughout the domain, a manipulation that represents the cell-au-

tonomous effect of expressing Wnt-interfering, dominant negative

LEF/TCF factors in the nucleus of every cell. However, as described

earlier in our parameter study, decreasing Sw lowers the overall

background levels of Pg cells, but does not affect the spotted pattern

(unless it is taken to be too small in which case the pattern disap-

pears). Thus, solely lowering overall Wnt signaling (SW) in the

model produces outcomes in pattern that are inconsistent with the

experimental data.

Clearly, the effects of dnLEF-1/dnTCF-1 expression are more

complex than the cell-autonomous manipulation of only decreasing

Wnt pathway activity in the nucleus. We considered the possibility

that dnLEF-1/dnTCF-1 might also be triggering a cell-extrinsic

response that connects collections of cells in the microenvironment.

Specifically, our parameter study suggested that the increase in the

sizes of pPDH-positive cell clusters might be due to extracellular

soluble factors that increase the range of the activator (Wnt ligands)

and that the decrease in the number of pPDH-positive cell clusters

could be due to factors that increase the range of inhibition. There-

fore, we included two additional parameter modifications: increas-

ing DW, which increases the range of Wnt ligands and makes the

spots larger, and concomitantly increasing DWI, which increases the

range of Wnt ligand inhibitors and reduces the number of spots.

◀ Figure 3. Decreasing Wnt signaling leads to changes in metabolic patterning in xenograft tumors.

A, B SW480 cells were lentivirally transduced to express dominant negative LEF-1 (dnLEF-1), and transduced cells were injected subcutaneously into
immunocompromised mice. Tumor sections were stained for phosphorylated PDH (A) and b-catenin (B) and counterstained with hematoxylin. Compared to mock
tumors, the spots are larger and more heterogeneous and the background staining is lighter, which reflects an overall decrease in Wnt signaling. Scale bars are
100 lm. The red curves denote spot contours and the blue curves denote convex hulls, which group spots that are sufficiently close to one another (see Appendix A1).

C Numerical simulations that lower Wnt signaling activity in the model show an overall decrease in glycolysis and a change in the spotted pattern that closely
mimics that observed in the dnLEF tumors. Color bars refer to unitless concentrations.

D Image analysis of spot size versus distance of spot to nearest neighbor, using analyzed images. Averages for mock and dnLEF spot simulations are denoted in white
outlined symbols (pPDH: spot sizes/inter-spot distances: mock simulation average: 225 � 278 lm2/29 � 12 lm; mock xenograft tumor average: 309 � 367 lm2/
29 � 10 lm; dnLEF-1 simulation average: 423 � 327 lm2/41 � 14 lm; dnLEF-1 xenograft tumor average: 1,139 � 1,042 lm2/53 � 15 lm). Results are also
shown for dominant negative transcription factor 1 (dnTCF-1) tumors (see Appendix A1.10–A1.12 and Appendix Figs S8–S10). The metabolic pattern in dnTCF-1
tumors is consistent with that in dnLEF-1 tumors. The analysis and model predict that the changes in the metabolic spotted pattern (larger spots, greater distance
between spots) are due to an increase in the diffusion of Wnt and the Wnt inhibitor.

E Comparison of mock b-catenin spots to dnLEF-1 and dnTCF-1 b-catenin spots from image analysis. Averages for mock and dnLEF-1 spot simulations are denoted in
white outlined symbols (b-catenin spot sizes/inter-spot distances: mock simulation average: 139 � 145 lm2/26 � 11 lm; mock xenograft tumor average:
97 � 209 lm2/16 � 4 lm; dnLEF-1 simulation average: 342 � 221 lm2/39 � 14 lm; dnLEF-1 xenograft tumor average: 312 � 277 lm2/32 � 9 lm; dnTCF-1
xenograft tumor average: 603 � 578 lm2/42 � 14 lm). The analysis and model predict that Wnt signaling diffuses further with dominant negative LEF-1
expression.
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Changing these two parameters and decreasing Sw simultaneously

resulted in a striking recapitulation of the changes in the spotted

pattern observed in the dnLEF-1/dnTCF-1-expressing tumors: lower

background levels of Pg cells and larger, fewer spots of Pg-glycolysis

(Fig 3C). The average sizes and centroid distances of the Pg spots in

the simulated tumors correlated very well with the experimental

observations (Fig 3D). Further, the simulation showed a decrease in

nutrient concentrations throughout the tumor (Appendix A4), a result

that is consistent with our previous experimental data as we observe

significantly fewer blood vessels in the dnLEF-1 and dnTCF-1 tumors

(Pate et al, 2014). This is because the nutrient concentration N is

linked to the proportion of Pg cells, which are decreasing.

Since in the experiments, we used IHC staining of b-catenin as a

direct assessment of patterns in Wnt signaling, in the simulations,

we analogously examined patterns of Wnt activity in the model.

The results show very good agreement between the simulations and

the experiments: The spots of Wnt activity are smaller than the Pg
spots but the Wnt-activity spots were increased in size and distance

relative to the pattern of Wnt activity in the simulations of the mock

tumors (Fig 3E). In summary, our results suggest that stressing the

colon cancer cells by interfering with Wnt signaling triggers changes

in the expression of factors that increase the diffusion range, or

“spread”, of Wnt ligands and extend the range of Wnt inhibition.

In vivo validation of model predictions

Only a few studies have directly examined the diffusion range of

Wnt ligands in any tissue, a range which is extremely limited, in

part because the ligands are post-translationally modified by palmi-

toylation and are highly lipophilic for membranes and extracellular

matrix proteins (Willert et al, 2003; Farin et al, 2016). There is a

growing awareness of proteins that modify the range of ligand diffu-

sion, although their actions and impact are not very well character-

ized (Fig 4A). Perhaps the best-characterized factors that influence

Wnt ligand diffusion are the SFRP protein family, secreted inhibitors

that bind directly to Wnt ligands and interfere with receptor binding.

Importantly, several studies have shown that even though SFRPs

can interfere with Frizzled receptor binding, they are bimodal in

their actions, repressing Wnts at high concentrations of ligand but

also promoting Wnt actions by increasing their range of diffusion

and, in essence, delivering the ligands to cells that are further away

(Mii & Taira, 2009, 2011). Given that our mathematical model

predicts the diffusion of Wnt ligands and their inhibitors have

increased in the dnLEF-1 and dnTCF-1 xenograft tumors, we tested

the prediction that one or more candidate regulators of Wnt diffu-

sion were elevated in their expression. Using RNA-seq data as a

guide for identifying candidates expressed in SW480 cells, we

designed human-specific primers for both diffusion regulators and

inhibitors that were detectably expressed in this cell line. Expression

analysis of mRNA purified from 2D cultures and 3D xenograft

tumors revealed that the Wnt diffusers SPOCK2, GPC4, and SFRP5

are upregulated specifically in dnLEF-1 and dnTCF-1 xenograft

tumors but not 2D culture (Fig 4B and C). Since the primers are

human specific, the expression changes derive specifically from the

human cancer cells and not mouse-derived cell types in the tumor

microenvironment.

While small-molecule Wnt inhibitors that mimic the effects of

dnLEF-1 and dnTCF-1 are working their way through pre-clinical

testing and early-phase clinical trials, there are not yet any available

data from patient studies that profile gene expression changes in

primary colorectal cancers treated with Wnt inhibitors. However,

there are limited data available from patients treated with radio- and

chemotherapy regimens, treatments that induce stress and loss of

nutrient delivery to the tumor. We analyzed one dataset [(Snipstad

et al, 2010) NCBI GEO GDS3756], which provided gene expression

profiles of a group of colorectal cancer patients before and after

radio- and chemotherapy treatment. Figure 4D and E shows that,

while the treatment had no significant effect on expression of Wnt

ligand regulators in normal rectal tissue, the expression of GPC1

and three SFRP family members (SFRP1, SFRP2, and SFRP4) was

strongly and specifically increased in the tumor following treatment

(Fig 4E). We checked for changes in expression of Wnt ligands,

and although there was a trend toward significantly increased

expression of Wnt2, Wnt5b, Wnt8b, and Wnt10b specifically in

the tumor and not the neighboring normal tissue, the changes did

not quite reach statistical significance (Fig EV2A and B). Inter-

estingly, one glycolytic gene (ENO2) was significantly increased in

radiochemotherapy-treated tumor tissue (Fig EV2D), and the glyco-

lytic regulator HIF1A was increased but not to the same level of

significance. This suggests that radiochemotherapy may trigger

increased expression of proteins that increase the range of Wnt dif-

fusion, a response that we predict might serve to maintain a critical

level of glycolytic cells in the tumor.

Modeling a therapeutic treatment for cancer:
metabolic targeting

To test whether glycolytic cells are the important subpopulation of

cells to target in the tumors, we compared the effectiveness of a

hypothetical therapy program that selectively targeted each popula-

tion by independently varying the death rates of Po and Pg cells (we

introduced additional death terms lPoPo and lPg Pg in the Po and Pg
equations in Fig 2A). The simulation applied the targeted therapy to

a fully developed tumor at steady state for different lengths of time

(days), followed by removal of the therapy and a recovery time for

tumor development (Fig 5). In this figure, the tumor size (integral

of Pg + Po over the entire domain) is shown relative to that of the

untreated tumor (see Fig EV3 for the dynamics of the individual cell

populations). The treatment dose refers to cell death rates lPo or

lPg , and targeting means that the death rate is nonzero only for the

target cell population. These simulations revealed that regardless of

the targeted population, modest rates of cell death suppressed tumor

development transiently, followed by full recovery of the system

once therapy was removed, a pattern more evident and more robust

when cell killing was directed toward the Po population. At suffi-

ciently large death rates, complete loss of the tumor could be

achieved. However, targeting the Pg population led to a complete

loss of the simulated tumor at shorter treatment times and smaller

death rates than when Po cells were targeted. Thus, the simulation

predicts that Pg cells are the more sensitive population and that

targeting these cells could more effectively lead to a full regression

of the tumor.

Since selective targeting resulted in full recovery of the simulated

tumors unless death rates were sufficiently high and treatment was

sufficiently long, we considered dual targeting of two features of

cancer cell metabolism as a mechanism for more effective killing.
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Figure 4. Model predictions revealed in xenograft tumors and human colorectal cancer.
The model predicted that lowering Wnt signaling results in an increase in the expression of factors that increase the range of diffusion of Wnt and Wnt inhibitors.

A Known regulators of Wnt ligand diffusion.
B, C Quantitative PCR of diffusion regulators in SW480 mock, dnLEF-1, and dnTCF-1 (B) transduced cells, and (C) xenograft tumors show human SPOCK2, GPC4, and

SFRP5 mRNA are notably upregulated in xenograft tumors but not 2D in vitro culture. In vitro data represent an average of three sample sets (� SEM), and
xenograft tumor data represent the average of five independent tumor sets (� SEM); * denotes P < 0.05. Statistical significance was determined using Student’s
two-tailed t-test.

D, E Gene expression data, from GEO dataset GDS3756, of 21 rectal cancer patient tissue with or without radio-chemotherapy (Snipstad et al, 2010). Significant changes
in expression levels of GPC1 (P = 0.00019), SFRP1 (P = 0.016), SFRP2 (P = 0.0006), and SFRP4 (P = 0.0006) are observed in post-therapy tumor cells compared to
before treatment. SD shown. Statistical significance was determined using the Mann–Whitney U-test with Benjamini–Hochberg correction for multiple hypotheses
(RStudio).
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Specifically, we targeted canonical Wnt signaling and PDK enzyme

activity, both of which act as regulators of glycolysis (Fig 6A).

Dichloroacetate (DCA) inhibits PDK activity and therefore targets

cell metabolism directly by releasing inhibition of PDC, which

increases OXPHOS capacity. Tankyrase inhibitors such as XAV939

reduce b-catenin levels and hence reduce canonical Wnt signaling.

Compounds that target Wnt and PDK are currently being tested in

preclinical studies as individual agents in clinical trials, but they

have not been tested in combination (Fig 6B). We asked whether

targeting glycolytic cells using anti-Wnt and anti-PDK therapies in

combination is more effective than single-agent therapy.

Because the inhibition of b-catenin by XAV939 is similar to the

effects of dnLEF-1 and dnTCF-1, we modeled treatment by XAV939

using an analogous approach. In particular, we assumed that

XAV939 decreases the general Wnt signaling term SW and increases

the ranges of Wnt and its inhibitor (due to upregulation of Wnt and

Wnt inhibitor diffusers), which we modeled by increasing DW and

DWI proportionally. To model the effects of DCA, we increased the

rate at which cells switched from a glycolytic metabolic phenotype

to an OXPHOS phenotype (e.g., 1/sgo is increased) to reflect the

tendency of cells to perform OXPHOS when PDK is inhibited.

In Fig 6C, we simulated a combination therapy applied to a fully

developed tumor at steady state. At a fixed dose of XAV939, coupled

to increasing doses of DCA, the simulation predicts that the popula-

tion of oxidative cells will increase initially as cells switch from a

glycolytic state (Pg) to an OXPHOS state (Po) until there is an insuffi-

cient level of glycolytic cells to sustain the tumor and all the tumor

cells die. Furthermore, the treatment simulations indicate that a

combination of the two therapies will be more effective than single

therapies as long as one or the other has adequately been applied.

For example, a value of 1=sgo ¼ 12 is effective in eradicating the

cells as long as Wnt signaling has been reduced by more than about

27% (e.g., �SW ¼ 0:73). In other words, if b-catenin expression has

not been sufficiently suppressed by XAV939, then PDK inhibition by

DCA must be adequately increased, and vice versa. Similar results

are obtained when an in vitro version of the mathematical model is

used to simulate the growth of colonies in fibrin gels (Fig 7C; see

also Appendix A7 and Appendix Fig S17). In the in vitro case,
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Figure 5. Simulations identify the glycolytic cell population as a sensitive drug target.
We target either cells with more oxidative phosphorylation (Po; left) or cells with more glycolysis (Pg; right) selectively, starting from a metabolically patterned state, for
2.5, 5, or 7.5 (arbitrary) time units, with a treatment dose between 0.25 and 1. After therapy is halted, the cells are allowed to evolve according to the original model (Fig 2).
The total cell populations, relative to the initial, starting cell population are shown. Corresponding populations of Po and Pg cells can be found in Fig EV3.
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Figure 6. Therapies targeting metabolism and Wnt synergize for tumor death in mathematical simulations.

A, B Modeled therapies, their targets, and the model parameters influenced by therapy.
C Starting with a metabolically patterned state, treatment of tumors with dichloroacetic acid (DCA) and XAV939 combined leads to an effective crash in the system,

as shown by the complete loss of cells (1e and 2e). The panels on the left show the cell arrangements for the oxidative (Po) and glycolytic (Pg) populations
(metabolic patterning), and the three graphs on the right show the fractions of Po or Pg cells relative to their initial values, after applying the therapy for 50
(arbitrary) time units. The effects of therapy on the total cell population, relative to the initial cell population, for the same DW and 1/sgo values, are shown in the
third graph. XAV939 treatment is modeled by decreasing SW and increasing DW and DWI linearly with respect to the decrease in SW; legend values are listed relative
to mock SW. The dashed curves labeled ~SW ¼ 0.80 correspond to the case in which �SW ¼ 0.80, but DW and DWI are unchanged and take the values used in the
mock tumor simulations. The panels on the left correspond to the red curve in the graphs and show the effect on patterning for 1/sgo values 1, 4, 12, 17, and 18,
respectively [denoted by labels (1a) through (2e)]. Color bar refers to unitless concentrations.
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however, the colony does not die out as the DCA concentration is

increased. Instead, the effect saturates because sufficient nutrients

are available to diffuse throughout the spheroid to maintain cell

viability in the absence of glycolytic cells. Additionally, in the

in vitro version of the model, there is no angiogenesis, but there

is cross-feeding between the OXPHOS and glycolytic cells

(Appendix A7.1–A7.3).

Given that factors that increase Wnt diffusion were upregulated

in the dnLEF/dnTCF tumors, we also tested the effect of increases

in Wnt diffusion. We determined that increased expression of Wnt

diffusers decreases the sensitivity of the tumors to treatment. For

example, decreasing SW but maintaining DW and DWI at their pre-

treatment values to model the inhibition of Wnt diffusers results in

more efficient treatment—tumor eradication occurs at smaller

concentrations of XAV939 and DCA (e.g., compare the red solid

and dashed curves in Fig 6C (right panels), which correspond to a

20% reduction in Wnt signaling; the dashed curve shows the

result when the production of Wnt diffusers is inhibited and is

labeled as ~SW).

We performed a preliminary experimental test of model predic-

tions using 3D colony growth of colon cancer cells. A total of 200

single cells were seeded in fibrin gels and cultured under drug treat-

ment for 14 days (Fig 7A). Over this time, the single cells prolifer-

ated to give rise to tumor spheroids, and we used image analysis to

quantify the increase in colony size as a proxy for proliferation

(Fig 7B and C). Treatment with low doses of DCA (0.5 mM, 2 mM)

or XAV939 (5 lM) as single agents had no effect on the develop-

ment and growth of colonies over the 2-week treatment period—in

fact, DCA treatment appeared to increase colony size. By contrast,

combination therapy had a significant inhibitory effect on colony

growth, indicating a strong, negative, and synergistic effect on

proliferation.

Synergy can be quantified using the Bliss Independence Model

Combination Index (Foucquier & Guedj, 2015), which assumes that

XAV939 and DCA treatments act independently (e.g., XAV939

targets Wnt signaling, and DCA targets PDK activity). In particular,

if the Combination Index is less than one, this indicates synergy

(see Appendix A8 for the definition of the Combination Index and

further details). In the in vivo simulation and the in vitro experi-

ments, the Combination Index is zero because neither XAV939 nor

DCA treatment separately affects tumor sizes (provided the concen-

trations of XAV939 and DCA are not too large; Appendix A8). In the

in vitro model, the Bliss Combination Index is 0.3462 (using
�SW ¼ 0:80, 1/sgo = ¼), although the Combination Index does

depend on the drug concentrations and increases toward one as the

DCA concentration increases because the responsiveness to DCA

treatment saturates (Appendix A8). Since the Combination Indices

in all cases are less than one, this indicates synergy of the XAV939

and DCA combinatorial treatments. As predicted by both the in vivo

and in vitro models, these results suggest that combining Wnt inhi-

bitors and metabolic targeting agents is a promising strategy for

treating colon tumors.

Discussion

In this study, we generated colon cancer xenograft tumors and

examined changes in cellular metabolism by immunohistochemical

staining for phospho-PDH (a marker of PDK activity), and markers

of Wnt signaling (LEF-1, b-catenin). We observed that the tumors

exhibit a pronounced spotted pattern of metabolic states where the

spots indicate clusters of cells in which their mitochondria are inhib-

ited (by PDK action) and thus where glycolysis was likely to be

highly active. This is in contrast to the cells in the regions surround-

ing the spots. In these regions, mitochondria are more active (not

inhibited by PDK) and therefore utilize more oxidative phosphoryla-

tion. Although we cannot rule out that the spotted pattern is due to

the emergence of genetically distinct, clonal populations, the short

timescale of the xenografting (14–21 days) and the reproducibility

of the pattern in another cell line (SW620) as well as site of injection

(subcutaneous and orthotopic within the colon cecum) suggest that

what we have observed is a fundamental pattern of tumor hetero-

geneity that is not genetic in nature, but nongenetic and dynamic

(Appendix A9 and Appendix Fig S20).

Metabolic patterning had been previously proposed as a mecha-

nism to facilitate transport of glucose into hypoxic regions of tumors

(Sonveaux et al, 2008). In particular, cells performing OXPHOS

would be located near blood vessels, and, rather than fueling respi-

ration using glucose, these OXPHOS cells would instead use lactate

produced by the hypoxic (glycolytic) cells as an alternative nutrient

source. Utilization of lactate frees the glucose to travel farther into

the hypoxic regions of the tumor where it would be used during

glycolysis. Recent studies propose that cancer cell subpopulations

segregate and reorganize to survive the sudden loss of nutrients due

to antiangiogenic therapy and that this leads to the development of

resistance (Allen et al, 2016; Jiménez-Valerio et al, 2016; Pisarsky

et al, 2016). However, in our xenograft images, we did not observe

this type of spatial relationship between metabolism and vascula-

ture. In fact, we observed that the spotted pattern was denser at the

tumor margin where the vascular density was highest.

To investigate the mechanisms underlying the patterning we

observed, we proposed a mathematical model based on Turing–

Gierer–Meinhardt activator–inhibitor equations that simulated a

symbiotic spatiotemporal relationship between these two cell popu-

lations (an oxidative population and a glycolytic population). Our

model incorporated terms for Wnt as an activator with a short range

of diffusion and Wnt inhibitors (e.g., SFRP, DKK) with longer ranges

of diffusion. The Wnt and Wnt inhibitor equations describe a feed-

back relationship, and this lies at the crux of a spotted pattern that

emerges in our simulations. Our equations also describe activities of

metabolic reprogramming through changes in Wnt levels and avail-

ability of nutrients and cell substrates. The model describes a mutu-

alistic interaction between the glycolytic and OXPHOS cells because

the glycolytic cells induce the delivery of nutrients from blood

vessels to mimic the effects of lactate-induced angiogenesis and

these nutrients benefit both cell types. More generally, we can also

interpret these nutrients as mutually beneficial cell substrates

produced by the glycolytic cells. When we considered the effects of

symbiosis by explicitly incorporating cross-feeding between glyco-

lytic and OXPHOS cells in a more general model (Appendix A3) and

an in vitro model (Appendix A7), we found that Wnt signaling

dominates the behavior and the patterning is robust to this form of

symbiosis. Although mathematical models have been developed

previously to investigate metabolic symbiosis, including spatially

homogeneous (Mendoza-Juez et al, 2012) and heterogeneous

models (McGillen et al, 2014; Phipps et al, 2015), to our knowledge,
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the model presented here is the first to describe a pattern for hetero-

geneity in tumors that derives from an intricate spatial relationship

between metabolic types and Wnt signaling. Though the role of

Wnt signaling in cancer growth and development has been studied

for many years, only recently has its regulation of Warburg/glycoly-

sis metabolism been described. A better understanding of the link

between Wnt and metabolism is crucial for defining how this over-

active pathway drives tumorigenesis and progression, and for
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Figure 7. Targeted therapy significantly decreases SW480 tumor spheroid size in vitro.
Combined Wnt signaling and glycolysis targeting therapies significantly decrease SW480 spheroid size in vitro.

A SW480 cells were embedded in a fibrin gel using the method shown. Media containing a mock treatment, 0.5 mM DCA, 2 mM DCA, 10 lM of XAV939, or a
combination of DCA and XAV939.

B Representative 4× images of spheroids each condition, imaged 14 days after treatment, are shown.
C Analysis of 75 spheroids per condition shows 2 mM DCA significantly increases SW480 spheroid size, while combined 2 mM DCA treatment with 10 lM XAV939

significantly decreases their size. Statistical significance was determined using Student’s two-tailed t-test.
D The effects of therapy on the total cell population, relative to the initial cell population, of combined XAV939 and DCA treatment were simulated using an in vitro

version of the model (Appendix A7). As in Fig 6, DCA treatment was modeled by increasing the rate at which cells switched from a glycolytic metabolic phenotype to
an OXPHOS phenotype (e.g., 1/sgo is increased) to reflect the tendency of cells to perform OXPHOS when PDK is inhibited. XAV939 treatment was modeled by
decreasing the general Wnt signaling term SW and increasing the range of Wnt and its inhibitor (due to upregulation of Wnt and Wnt inhibitor diffusers), which we
modeled by increasing DW and DWI proportionally. The dashed curves labeled ~SW ¼ 0.80 correspond to the case in which �SW ¼ 0.80 but DW and DWI are unchanged.
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developing novel cancer treatments that target its key oncogenic

actions.

Our mathematical model demonstrated strong qualitative and

quantitative (spatial) agreement with the spotted patterns of activity

detected in the tumors. The model also predicted that interference

with Wnt signaling is not solely the result of a decrease in overall

Wnt activity. Making the simple parameter change of decreasing

Wnt signaling throughput leads to overall less glycolytic activity

(lower background of Pg cells), a prediction that was validated in

our xenograft experiments in which Wnt transcription was partially

blocked by the overexpression of dominant negative LEF-1.

However, the phospho-PDH stains also revealed fewer, but larger

regions of PDK activity (i.e., larger, fewer cell clusters). To simulate

these observations, coefficients of diffusion for Wnt and its secreted

inhibitors were increased—parameter changes that resulted in a

“spreading out” of Wnt and Wnt inhibitor activity. This model

prediction prompted us to investigate whether the expression of

proteins known to increase the range of Wnt ligand and Wnt inhi-

bitor diffusion was increased when dnLEF- or dnTCF-expressing

colon cancer cells were developed into xenograft tumors. Consistent

with the mathematical model, we observed that the diffusers

SPOCK2 and GPC4 were overexpressed in our xenografts but inter-

estingly, not in our 2D in vitro culture conditions. The expression of

SFRP5, which acts simultaneously as a Wnt inhibitor and diffuser

by preventing binding to Frizzled receptors, also shows somewhat

higher expression in our Wnt-low xenografts (dnLEF-1). It is impor-

tant to emphasize that it is human-specific oligonucleotide primers

that detect these changes in expression of Wnt ligand modifiers.

Thus, the implanted human colon cancer cells appear to adapt to

interference with Wnt signaling by directly increasing expression of

Wnt ligand regulators. Our analysis of primary human colorectal

tumors stressed by radiochemotherapy treatment shows that one

consequence of therapy could be a similar increase in the distribution

of Wnt ligands through upregulated expression of glypicans (e.g.,

GPC1) and SFRP proteins (Fig 4E). These observations suggest that

there are likely to be significant changes in Wnt signaling dynamics

and metabolic programming of treated tumors, perhaps as a means

of coping and surviving the loss of nutrient and cellular damage.

The model also suggested that the tumor is most reliant on the

glycolytic cells, and we found that inhibitors that target glycolysis

and Wnt signaling in combination are more effective than treat-

ments that only target one of these features. We simulated the

actions of XAV939, which lowers b-catenin levels, and DCA, which

inhibits PDK activity, thereby decreasing glycolysis. Since standard-

of-care treatments for colon cancer have not changed significantly

for decades, the novel combination of an inhibitor of glycolysis

(e.g., DCA) with a Wnt pathway inhibitor (e.g., XAV939) might be

an effective treatment to consider. We validated this prediction

using 3D colony growth of SW480 colon cancer cells, which have

high, intrinsic Wnt signaling and high levels of glycolytic activity.

However, given that primary human colon cancers are more

complex with respect to intrinsic Wnt pathway activity and cross-

talk with the microenvironment, determining which tumor subtypes

will be the most sensitive to this drug combination and how in vivo

tumors respond to treatment will be important issues to resolve in

developing effective drug combinations.

Our mathematical model is an abstract idealization and simplifi-

cation of tumor proliferation and metabolism, and real tumors

are much more complex than modeled here. For example, it is

likely that Wnt and a Wnt inhibitor are not the only factors

contributing to the pattern, although it is clear that Wnt has a

strong influence, since the spots change significantly when Wnt

signaling is interfered with. In the Appendix, we developed a more

complete model that simulated PDK activity, hypoxia-inducible tran-

scription factor concentrations (HIF1a), and lactate concentration

(see Appendix A3), and linked these factors to cross-feeding, Wnt

signaling, and metabolism. In this more detailed model, the switch

between metabolic phenotypes depends on PDK activity, rather than

on Wnt directly. However, since Wnt and HIF1a promote PDK

expression and activity (Kim et al, 2006; Pate et al, 2014; Prigione

et al, 2014), we found that the spatiotemporal distributions of PDK,

Wnt, and lactate track closely together and so the results from the

more detailed model are qualitatively similar to those presented in

the main text for the simplified model.

While we have used a Turing-type model to simulate the spotted

pattern, a decision well supported by data, we acknowledge that this

type of model is only one possible mechanism to explain the

patterning in the tumors. Other alternatives include differential

adhesion or cell sorting—a process where cells of different adhesion

potential sort away from each other (Amack & Manning, 2012; Foty

& Steinberg, 2013), and bet-hedging—a process where different cells

are differentially sensitive to external stresses, so that no matter the

condition, at least some cells thrive (de Jong et al, 2011; Starrfelt &

Kokko, 2012; Vogt, 2015). For bet-hedging to generate patterns, cell

state changes must be reversible on a time scale slower than cell

division, so that cells of like state end up clustered by default.

Further experiments are needed to definitively distinguish among

these processes. For example, these three types of processes (Tur-

ing, differential adhesion, bet-hedging) would be expected to be

driven by different types of molecular signals and so these signals

would need to be identified and tested.

Finally, although we focused on xenograft tumors, artificial

constructs that only partially model tumorigenesis, we observed

heterogeneity in metabolism and Wnt signaling in other settings as

well. For example, we generated orthotopic tumors by implanting

colon cancer cells (mock-parental SW480 and SW620, as well as

dnLEF- or dnTCF-expressing variants) in the wall of the mouse

cecum and observed patterning (Appendix A9 and Appendix Fig

S19). In normal colon epithelia, pPDH stains show a gradient with

high PDK activity in the base of the crypt where there is strong Wnt

signaling and less PDK activity at the top of the crypt near the

mucosal surface where Wnt signaling is not active (Pate et al, 2014;

Fig 1D). In primary human patient colon tumors, our analysis

revealed clear and striking heterogeneity in PDK activity and LEF-1

expression in the epithelial portion of the tumor (Fig 1D). While this

heterogeneity was not apparent as a regular array of cell clusters

like the xenograft patterns, groups of cells with markedly different

activities are clearly evident. Since the tumor microenvironment is

more complex in human tumors than xenograft tumors, an inherent

pattern of metabolic and Wnt activity may be modified by additional

structural and cellular components as well as nutritional stresses

and a changing microenvironment. Understanding how these addi-

tional components influence metabolic heterogeneity and the

symbiosis between neighboring cells and how they might create

more complex pattern-on-pattern activities is a challenge going

forward.
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Materials and Methods

Numerical simulations

The nondimensionalized equations for the rate of change in the

population of oxidative (Po) cells and glycolytic (Pg) cells, respec-

tively, are shown in Fig 2A. See Appendix A2 for details on the

nondimensionalization. Figure 2B shows the rate of change in the

concentration of Wnt and Wnt inhibitor (W and WI) activity,

respectively.

The first term on the right side of the equality in the Po and Pg
equations refers to diffusion, or random motion of the cells. The

next terms are standard logistic proliferation terms, with prolifera-

tion dependent on nutrient level N, cell type, and the current total

population of cells in the domain. The model sets the proliferation

of glycolytic cells to be dependent on Wnt activity according to

Michaelis–Menten dynamics, given by the term W/(aW+W), which

saturates at high levels of W. The parameters 1/so and 1/sg are

proliferation rates and 1/sgo and 1/sog are switching rates. The last

terms in these equations are cell death terms; death is modeled such

that it occurs if the nutrient supply N drops below a threshold Nd.

The death rates are given by lo and lg.
The model is designed such that glycolytic and oxidative cells

can emphasize, or “switch”, metabolism programs depending on

W, Wnt activity, which is reflected in the third and fourth terms of

each equation, where vW and v�W are switch functions. Each switch

function is defined by a modified hyperbolic tangent function, such

that if Wnt activity falls below a parameter W*, then the cells

utilize a more dominant OXPHOS program, and if Wnt activity is

above W*, then cells are more likely to utilize a greater level of

glycolysis.

We assume that oxidative cells can switch to utilizing more

glycolysis only if sufficient nutrient is present, given by parameter

N�
g. Cells will die if nutrient is below the parameter Nd. The steep-

ness of the functions can be adjusted so that they are more step-like

and hence more sensitive to W and N. Since we use large values for

the steepness of the functions, we could alternatively have used

piecewise functions for vN and v�N.
The dynamics of dead cells (not shown) is described by a similar

reaction–diffusion equation. This is the population of cells that have

died from lack of nutrient. These cells can also diffuse and decay.

The equations in Fig 2 describe W (Wnt) and WI (Wnt inhibitor,

e.g., DKK or SFRP) activity. DW and DWI are constant diffusion coef-

ficients. It has been shown in epidermal cells that Wnt target genes

produce Wnt signals as well as long-range secreted Wnt inhibitors

(Lim et al, 2013), so the inhibitor is assumed to diffuse much longer

range than Wnt; that is, DW must be significantly smaller than DWI.

Wnt signaling activity is assumed to be nonlinear with respect to

Wnt and is inhibited by the Wnt inhibitor through the term 1/(a+b

W1). We assume the Wnt inhibitor is being produced by Wnt activ-

ity through both cell types. The terms lW and lWI are decay rates.

The term SW(Po+Pg) in the Wnt equation refers to constitutive Wnt

signaling through the cells.

The equation for nutrient (eq. 1h in Appendix A2) describes the

diffusion and uptake, decay, and source of nutrient. The nutrient

term has Dirichlet (fixed) boundary conditions and diffuses in from

the boundary of the spatial domain, so that the boundary can be

considered as regions where vasculature is high. The second and

third terms refer to uptake of nutrient by the two different cell

types. The term lNN is a natural decay term. The last term, NS,

refers to the nutrient source, which is a small source term applied

to the entire domain. This source term is based linearly on the

glycolytic activity of the cells and is given by NS ¼ NSð
R
PgÞ ¼

cN ½ 1� aNð Þ R Pg
SxSy

þ aN �; where aN and cN are parameters,
R
Pg is the

integral of Pg cells, and Sx and Sy are the lengths of the sides of the

spatial domain. This function was chosen so that Nsð0Þ ¼ caNN and

Ns SxSy
� � ¼ cN (SxSy is the maximum that

R
Pg can reach). We

chose to have the nutrient source Ns depend on Pg cells because

glycolysis induces angiogenesis (Dhup et al, 2012; Porporato et al,

2012; Ruan & Kazlauskas, 2013), allowing more nutrients and

growth factors to be delivered to the tumor (Pate et al, 2014). We

use a linear function in the model as the simplest form for the

dependency between N and Pg, which is consistent with experi-

mental observations.

To summarize, in addition to consideration of Wnt signaling

dynamics, biological assumptions for the model include terms for

random motion in space (diffusion), terms for each cell type (oxida-

tive and glycolytic, or Po and Pg, respectively), and their propensity

to proliferate, die, and switch to the other cell type. Equations were

included to account for dead cells, which consists of Po and Pg cells

that have died from lack of nutrient, and which can diffuse and

decay. Terms for Wnt (W) and Wnt inhibitor (WI) activity were

made nonlinear with respect to Wnt, meaning that their rates are

proportional to Wnt activity. Nonlinear Wnt activity is dependent

on Pg levels, while nonlinear Wnt inhibitor activity is proportional

to both Pg and Po levels. A term for constitutive Wnt signaling was

included for both cell types as well as decay terms for W and WI.

The general nutrient term N can diffuse, decay, and be taken up by

the different cell populations. A bulk source was included for the

nutrient as well as a Dirichlet boundary condition, both of which

are dependent on the average level of glycolytic cells in the domain,

a simplified way to incorporate increased angiogenesis driven by

glycolysis (Pate et al, 2014). This relationship was included to take

into account our observation that there is considerably less vascula-

ture in tumors in which Wnt signaling has been blocked by domi-

nant interfering forms of the Wnt transcription factors lymphoid

enhancer factor-1 (dnLEF-1) or T cell factor 1 (dnTCF-1) (Pate et al,

2014). Finally, there is a baseline assumption that there is sufficient

oxygen available throughout the domain for OXPHOS to operate,

even at a minimal level.

In the numerical results presented here, no-flux boundary condi-

tions were used for all terms except N, which is governed by Dirich-

let boundary conditions (N at the boundary is equal to the value
1
cN
Ns where Ns is described above). Initial conditions were set for a

random distribution of Pg cells located near the boundary, and small

random values of W and WI in the same areas where initial Pg cells

are located. A constant high level of nutrient throughout the domain

was provided (results did not change qualitatively if N was solved

as a quasi-steady-state equation), and the initial condition contained

no Po or Pd cells. All parameters are given in Table 1, and a sensitiv-

ity analysis is provided in Appendix A5.

Numerical simulations were performed in MATLAB, using a

forward difference method for each time derivative. Po, Pg, W, and

WI equations were solved implicitly in centered diffusion terms. The

nutrient equation was solved implicitly in uptake, decay, and

centered diffusion terms.
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Animal protocols for xenograft and orthotopic tumors

SW480 stable transductants for xenograft or orthotopic injection

were prepared through lentiviral infection with pCDH vector from

System Biosciences: empty vector (mock), or vector expressing

dnLEF-1 or dnTCF-1, followed by selection with 500 lg/ml G418.

Transduced cells were collected as a pool for confirmation of expres-

sion, and Wnt signaling activity was measured by a SuperTOPFlash

luciferase reporter (Pate et al, 2014). A total of 2.5 × 106 cells were

injected into immunodeficient NSG mice [2-month-old NSG male

and female mice were used for the subcutaneous xenograft tumors

(JAXTM Mice from Jackson Labs); male and female NSG mice,

approximately 3 months old, were used for orthotopic tumors (in-

jection of 5–10 × 103 cells into the cecum wall)]. Tumors were

removed (subcutaneous after 3 weeks, orthotopic after 4 weeks),

fixed in paraformaldehyde overnight, and paraffin-embedded

4 weeks after injection. All experiments involving animals were

approved by the UCI IACUC (Protocol 2002-2357-4 to R. Edwards).

Immunohistochemistry

Deparaffinized 5- to 6-lm sections of formalin-fixed paraffin-

embedded (FFPE) mouse xenograft tumor and human colorectal

carcinoma tissues followed by pressure cooker antigen retrieval in

citrate buffer were blocked in 3% H2O2 and goat or horse serum

plus MOM block reagent (if mouse primary antibody was used on

mouse tissue), avidin, and biotin blocking reagents (Vector Labs).

Sections were incubated in primary antibodies: antiphospho-

PDHpSer293 (Calbiochem; 1:50–1:100), anti-b-catenin (BD; 1:500),

anti-LEF-1 (Cell Signaling; 1:100), anti-HIF1a (Thermo Scientific;

1:1,000) followed by biotinylated secondary antibodies and visual-

ization using a peroxidase-conjugated avidin-based Vectastain

protocol. Slides were then counterstained with hematoxylin and

mounted using Permount mounting medium (Fisher). Images were

captured using an Olympus FSX100 system and processed in Adobe

Photoshop.

Quantitative PCR

RNA was extracted from xenograft tumors and cells using TRIzol

(Invitrogen) following the manufacturer’s instructions. cDNA was

synthesized with 1 lg of total RNA with the High Capacity cDNA

Reverse Transcription Kit (Invitrogen), as per the manufacturer’s

instructions. qPCR was performed in triplicate for each experimental

condition using Maxima SYBR Green qPCR Master Mix (Invitrogen),

according to the manufacturer’s instructions. To normalize mRNA

levels, GAPDH probes were used. Primer pairs are as follows:

GAPDH forward: TCGACAGTCAGCCGCATCTTCTT, reverse: GCG

CCCAATACGACCAAATCC; TINAGL1 forward: ACCAGGTCACTC

CTGTCTACC, reverse: GATGCCTCCCTTGTATAGGAAG; CDC42

forward: CCATCGGAATATGTACCGAC, reverse: CTCAGCGGTCG

TAATCTGTC; SPOCK2 forward: CCCGGCAATTTCATGGAGG, rev-

erse: GCGGTTCCAGTGCTTGATC; GPC1 forward: GGCTGGTGGCT

GCTATGT, reverse: CAGGTTCTCCTCCATCTCGC; GPC2 forward:

CACCTGCTGTTCCAGTGAGA, reverse: AGAGAGTGCTGGGCTACT

GA; GPC4 forward: GTGGGAAATGTGAACCTGGAA, reverse: CGAG

GGACATCTCCGAAGG; DKK4 forward: GGGACACTCTGTGTGAA

CGA, reverse: TGGTTTTCCTGGACTGGGTG; SFRP5 forward: CTGT

ACGCGTCATCCTAGCC, reverse: CGGACCAGAAGGGGGTCTAT.

Fibrin gel assay

A total of 200 trypsinized SW480 cells were mixed with 100 ll of
2.5 mg/ml bovine fibrinogen (MP Biomedicals) in DMEM plus 10%

FBS and 1% penicillin–streptomycin–glutamine and 1 ll of throm-

bin (Sigma). The fibrin gels were seeded in 96-well, flat-bottom

plates. After the gels solidified, 100 ll of DMEM media containing

the desired drug treatment was layered on top (DCA was obtained

from Sigma, XAV939 from Stemgent). Wells were imaged after

14 days of incubation. Size measurements were taken using Adobe

Photoshop. Data were analyzed using Prism (GraphPad).

Image processing of spots

Image processing (overlay of spot contours and convex hulls) was

done using built-in functions in MATLAB’s Image Processing

Toolbox. Briefly, a color channel of an image was converted to a

binary image based on a manually chosen threshold dependent on

staining intensity. A noise filter was applied to reduce background

staining. Thresholds were then chosen to define cutoff values of

spot boundaries. Parameters for built-in tools were chosen

manually to give the best fit for pattern contours. Details for

this method are provided in Appendix A1 and A1.1–A1.3, and

Appendix Figs S1–S10.

Expanded View for this article is available online.
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