UC Santa Barbara

UC Santa Barbara Previously Published Works

Title

A New Compound Poisson Process and Its Fractional Versions

Permalink

<https://escholarship.org/uc/item/29q9m0gk>

Authors

Vellaisamy, Palaniappan Ichiba, Tomoyuki

Publication Date

2024-07-25

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at<https://creativecommons.org/licenses/by/4.0/>

A NEW COMPOUND POISSON PROCESS AND ITS FRACTIONAL VERSIONS

PALANIAPPAN VELLAISAMY AND TOMOYUKI ICHIBA

ABSTRACT. We consider a weighted sum of a series of independent Poisson random variables and show that it results in a new compound Poisson distribution which includes the Poisson distribution and Poisson distribution of order k . An explicit representation for its distribution is obtained in terms of Bell polynomials. We then extend it to a compound Poisson process and time fractional compound Poisson process $(TFCPP)$. It is shown that the one-dimensional distributions of the $TFCPP$ exhibit over-dispersion property, are not infinitely divisible and possess the long-range dependence property. Also, their moments and factorial moments are derived. Finally, the fractional differential equation associated with the $TFCPP$ is also obtained.

1. INTRODUCTION

In recent decades, the classical Poisson process, negative binomial process and gamma process have been generalized to various forms of their fractional versions such as fractional Poisson process (FPP), fractional negative binomial processes $(FNBP)$ and fractional gamma process (FGP) ; see, for example, Laskin [21], Begin and Orsingher [5], Begin [3], Mainardi *et. al* [24], Begin and Macci [4], Meerchaert *et al.* [26], Meerchaert *et al.* [25], Vellaisamy and Maheswari [40] and Kataria and Khandakar [18]. These time and space fractional versos have heavy-tailed distributions, non-exponential waiting times and long-range dependence properties; see Biard and Saussereau [9], Kataria and Vellaisamy [14] and Maheshwari and Vellaisamy [31]. These characteristics make the these processes more suitable, than the classical Levy processes (see Applebaum [1]) for modeling various phenomena that arise in many disciplines such as finance, hydrology, atmospheric science, etc. (see Laskin [22]). The time fractional Poisson process which initially derived from certain fractional differential equations (see Laskin [21], Begin and Orshinger [5]) can also be viewed as a Poisson process subordinated to inverse stable subordinator (see Meerchaert *et al.* [25]). This approach initiated the study of various subordinated processes leading to time-fractional and space fractional versions; some references, among others, are Orshinger and Polito [28], Maheswari and Vellaisamy [32], Leonenko *et. al* [23] and Begin and Vellaisamy [6].

In this paper, we look at the sum of a series of independent weighted Poisson random variables (rvs) which leads to a new compound Poisson distribution (CPD) . By suitably choosing the associated sequence of parameters, we show that the CPD includes the Poisson distribution, Poisson distribution of order k and infinity and so its study leads a unified approach. Replacing Poisson rvs by Poisson processes, we extend it to a new compound Poisson process (CPP) . Later, as a natural extension, we consider its time fractional version and call it $TFCPP$.

²⁰¹⁰ *Mathematics Subject Classification.* Primary: 65L99; Secondary: 93E25, 60E05.

Key words and phrases. Adomian polynomials, Poisson distribution of order n, probabilistic method, recurrence relations.

In Section 2, we introduce the notations and required preliminary results and the CPD is introduced and studied in Section 3. In Section 4, the associated CPP is studied and its time fractional version $T F C P P$ is investigated in Section 5. In particular, the one-dimensional distributions of the $T F C P P$ have the over-dispersion property, are not infinitely divisible, and possess the long-range dependence property. The moments and the factorial moments of the $TFCPP$ are derived. Finally, its factional differential equation satisfied by the $TFCPP$ is also derived.

2. PRELIMINARIES

In this section, we introduce the notations and the results that will be used later. We start with some special functions that will be required later.

2.1. Some special functions.

Definition 2.1. (i): The one parameter Mittag-Leffler function $M_\beta(z)$ is defined as (see [12])

$$
M_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}, \ \alpha, z \in \mathbb{C} \text{ and } \text{Re}(\alpha) > 0.
$$
 (2.1)

(ii): For $z \in \mathbb{C}$, the two parameter Mittag-Leffler function is defined as

$$
M_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}, \quad \alpha > 0, \beta > 0.
$$
 (2.2)

When $\beta = 1, M_{\alpha,1}$ reduces to the one parameter Mittag-Leffler function $M_{\alpha}(z)$. (iii): The generalized Mittag-Leffler function (Prabhakar [36]) is defined as

$$
M_{\alpha,\beta}^{\gamma}(z) = \frac{1}{\Gamma(\gamma)} \sum_{k=0}^{\infty} \frac{\Gamma(\gamma + k)}{k! \Gamma(\alpha k + \beta)} z^k, \quad \alpha, \beta, \gamma, z \in \mathbb{C}
$$
 (2.3)

where $Re(\alpha)$, $Re(\beta)$, $Re(\gamma) > 0$. Note that $M^{\gamma}_{\alpha,\beta}(0) = 1/\Gamma(\beta)$.

Let $M_{\alpha,\beta}^{(n)}(x)$ denote the *n*-th derivative of the two parameter Mittag-Leffler function. Then (see Kilbas et al. [19], Eq (1.9.5))

$$
M_{\alpha,\beta}^{(n)}(x) = n! M_{\alpha,n\alpha+\beta}^{n+1}(x), \quad n \ge 0.
$$
 (2.4)

It is well known that

$$
\alpha M_{\alpha}^{(n)}(-\lambda t^{\alpha}) = M_{\alpha,\alpha}^{(n-1)}(-\lambda t^{\alpha}), \quad n \ge 1.
$$
\n(2.5)

The Mittag-Leffler $ML(\alpha, \lambda)$ distribution is introduced and studied by Pillai [35]. Its distribution function is given by

$$
F(t \mid \alpha, \lambda) = 1 - M_{\alpha}(-\lambda t^{\alpha}) = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{(\lambda t^{\alpha})^k}{\Gamma(\alpha k + 1)}, \ t > 0,
$$
 (2.6)

where $0 < \alpha \leq 1$ and $\lambda > 0$ are the parameters. The density of $ML(\alpha, \lambda)$ is given by

$$
f(t \mid \alpha, \lambda) = \alpha \lambda t^{\alpha - 1} M_{\alpha}^{'}(-\lambda t^{\alpha})
$$

= $\lambda t^{\alpha - 1} M_{\alpha, \alpha}(-\lambda t^{\alpha}),$ (2.7)

using (2.5).

Let $X \sim ML(\alpha, \lambda)$. The its Laplace transform is

$$
E(e^{-sX}) = \frac{\lambda}{\lambda + s^{\alpha}}.
$$

If $T = X_1 + \cdots + X_n$, where X_i 's are IID $ML(\alpha, \lambda)$, then the density of T (see Kataria and Vellaisamy $[16]$) is

$$
f(t \mid \alpha, \lambda) = \frac{\lambda^n}{(n-1)!} t^{\alpha n-1} M_{\alpha, \alpha}^{n-1}(-\lambda t^{\alpha})
$$

=
$$
\frac{\alpha \lambda^n}{(n-1)!} t^{\alpha n-1} M_{\alpha}^{(n)}(-\lambda t^{\alpha}).
$$
 (2.8)

Definition 2.1. (i): The Wright function $W_{\alpha, \beta}(z)$ is defined, for $\alpha > -1$ and $\beta \in \mathbb{C}$, as

$$
W_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{(z)^n}{n!\Gamma[\alpha n + \beta]}
$$
\n(2.9)

which converges in the whole complex plane.

(ii): A particular case of the Wright function, called the M-Wright function $W_\beta(z)$ is defined as

$$
W_{\beta}(z) = W_{-\beta,1-\beta}(-z) = \sum_{n=0}^{\infty} \frac{(-z)^n}{n!\Gamma[-\beta n + (1-\beta)]}
$$

= $\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-z)^{n-1}}{(n-1)!} \Gamma(\beta n) \sin(\pi \beta n),$ (2.10)

which converges for $z \in \mathbb{C}$ and $0 < \beta < 1$.

The following results are well known (see Kilbas et. al [19], Kataria and Vellaismy [15]).

Definition 2.2. (i): Let $D_\beta(t)$ be the β -stable subordinator. Then the density of $D_\beta(t)$ is

$$
g_{\beta}(x;t) = \beta t x^{-(\beta+1)} W_{\beta}(t x^{-\beta}), \quad x > 0.
$$
 (2.11)

(ii): Let $E_\beta(t)$ be the inverse β -stable subordinator. Then the density of $E_\beta(t)$ is

$$
h_{\beta}(x;t) = t^{-\beta} W_{\beta}(t^{-\beta}x), \quad x > 0.
$$
 (2.12)

2.2. Some fractional derivatives. Let $AC[a, b]$ be the space of functions f which are absolutely continuous on $[a, b]$ and

$$
AC^{n}[a,b] = \{ f : [a,b] \to \mathbb{R}; f^{(n-1)}(t) \in AC[a,b] \},\
$$

where $AC^1[a, b] = AC[a, b]$.

Henceforth, $\mathbb{Z}_+ = \{0, 1, \ldots\}$ and $\mathbb{N} = \{1, 2, \ldots\}$ the set of nonnegative integers and the set of positive integers respectively.

Definition 2.3. Let $n \in \mathbb{N}$, $\beta \ge 0$ and $f(t) \in AC^n[0, T]$. Then (i): The (left-hand) Riemann-Liouville (R-L) fractional derivative $\mathbb{D}_t^{\beta} f$ of f (see [19, Lemma 2.2]) is defined by (with $\mathbb{D}^0 f = f$)

$$
\mathbb{D}_{t}^{\beta} f(t) := \begin{cases} \frac{1}{\Gamma(n-\beta)} \frac{d^{n}}{dt^{n}} \int_{0}^{t} \frac{f(s)}{(t-s)^{\beta-n+1}} ds, & \text{if } n-1 < \beta < n, \\ f^{(n)}(t), & \text{if } \beta = n. \end{cases}
$$
(2.13)

(ii): The (left-hand) Caputo fractional derivative $\partial^{\beta} f$ of f (see Kilbas *et. al* [19, Theorem 2.1]) is defined by (with $\partial^0 f = f$)

$$
\partial_t^{\beta} f(t) := \begin{cases} \frac{1}{\Gamma(n-\beta)} \int_0^t \frac{f^{(n)}(s)}{(t-s)^{\beta-n+1}} ds, & \text{if } n-1 < \beta < n \\ f^{(n)}(t), & \text{if } \beta = n. \end{cases} \tag{2.14}
$$

The relation between the R-L fractional derivative and the Caputo fractional derivative is (see Kilbas *et. al* [19, eq. (2.4.6)])

$$
\mathbb{D}_{t}^{\beta} f(t) = \partial_{t}^{\beta} f(t) + \sum_{k=0}^{n-1} \frac{t^{k-\beta}}{\Gamma(k-\beta+1)} f^{(k)}(0^{+}),
$$

where $f^{(k)}(0^+) := \lim_{t \to 0^+} \frac{d^k}{dt^k} f(t)$.

2.3. Poisson Distribution of Order k. Let $\{N_j\}$, $j \geq 1$, where $N_j \sim Poi(\lambda_j)$, be a sequence of independent Poisson random variables with probability distribution

$$
\mathbb{P}\{N_j = n\} = \frac{e^{-\lambda_j} \lambda_j^n}{n!}, \ n \in \mathbb{Z}_+, \ j \in \mathbb{N}.
$$

It is well known that the Poisson family is stable under convolution, that is,

$$
S_k = \sum_{j=1}^k N_j \sim \text{Poi} \ (\lambda_1 + \dots + \lambda_k), \quad k \ge 1,
$$

the Poisson distribution with mean $\lambda_1 + \cdots + \lambda_k$.

For $k \ge 1$, consider now the random variable $W_k = N_1 + 2N_2 + \cdots + kN_k$, a weighted sum of Poisson rvs. Its distribution is given by, for $n \in \mathbb{Z}_+$,

$$
\mathbb{P}\{W_k = n\} = \sum_{\begin{cases} \sum\limits_{j=1}^k jx_j = n \end{cases}} \mathbb{P}\{N_1 = x_1, \dots, N_k = x_k\}
$$

$$
= \sum_{\begin{cases} \sum\limits_{j=1}^k jx_j = n \end{cases}} \prod\limits_{j=1}^k \mathbb{P}\{N_j = x_j\}
$$

$$
= e^{-(\lambda_1 + \dots + \lambda_k)} \sum_{\begin{cases} \sum\limits_{j=1}^k jx_j = n \end{cases}} \left(\frac{\lambda_1^{x_1} \cdots \lambda_k^{x_k}}{x_1! \dots x_k!}\right),
$$
(2.15)

where we have used the independence of the X_i 's in the second line above. The probability distribution given in (2.15) is called the Poisson distribution of order k (see Philippou *et. al* [34]) and is denoted by Poi (u_1, \ldots, u_k) . Thus, it follows that

$$
W_k = \sum_{j=1}^k jN_j \sim \text{Poi}(u_1, ..., u_k), \quad k \ge 1.
$$

2.4. Bell Polynomials. The following definitions and results on Bell polynomials will be required later.

2.4.1. *Ordinary Bell polynomials.* Let c_j 's denote the nonnegative integers. For $1 \le k \le n$, define

$$
\Lambda_{k,n} = \left\{ (c_1, c_2, \dots, c_n) : c_1 + \dots + c_n = k; \ c_1 + 2c_2 + \dots + nc_n = n \right\}
$$
 (2.16)

and

$$
\Lambda_{k,n}^* = \left\{ (c_1, c_2, \dots, c_{n-k+1}) : c_1 + \dots + c_{n-k+1} = k; \ c_1 + 2c_2 + \dots + (n-k+1)c_{n-k+1} = n \right\}.
$$
\n(2.17)

Also, for $n \geq 1$, let

$$
\Lambda_n = \left\{ (c_1, c_2, \dots, c_n) : c_1 + 2c_2 + \dots + nc_n = n \right\}.
$$
\n(2.18)

The ordinary partial Bell polynomials are defined by

$$
\hat{B}_{n,k}(u_1,\ldots,u_{n-k+1})=\sum_{\Lambda_{k,n}^*}\frac{k!}{c_1!\cdots c_{n-k+1}!}u_1^{c_1}\cdots u_{n-k+1}^{c_{n-k+1}}
$$
(2.19)

or equivalently

$$
\hat{B}_{n,k}(u_1,\ldots,u_n) = \sum_{\Lambda_{k,n}} \frac{k!}{c_1! \ldots c_n!} u_1^{c_1} \ldots u_n^{c_n},
$$
\n(2.20)

since, for each fixed k, there can be no nonzero c_j 's, for $j \ge (n-k+1)$ and so $c_{n-k+2} = \cdots = c_n = 0$. The ordinary Bell polynomials are defined by

$$
\hat{B}_n(u_1,\ldots,u_n) = \sum_{k=1}^n \hat{B}_{n,k}(u_1,\ldots,u_n), \quad n \ge 1.
$$
 (2.21)

The following results are well known (see Comtet [10], pp. 133-137):

$$
\exp\left(x\sum_{j=1}^{\infty}\frac{u_jt^j}{j!}\right) = 1 + \sum_{n=1}^{\infty}\frac{t^n}{n!}\left\{\sum_{k=1}^n\hat{B}_{n,k}\left(u_1,u_2,\ldots,u_{n-k+1}\right)x^k\right\}
$$

and also for the series expansion of the k-th power, for $k \geq 1$,

$$
\left(\sum_{j=1}^{\infty} u_j t^j\right)^k = \sum_{n=k}^{\infty} \hat{B}_{n,k} \left(u_1, u_2, \dots, u_{n-k+1}\right) t^n.
$$
 (2.22)

2.4.2. *Partial exponential Bell polynomials.* The partial or incomplete exponential Bell polynomials are a triangular array of polynomials given by

$$
B_{n,k}(u_1, u_2, \dots, u_{n-k+1}) = \sum_{\Lambda_{k,n}^*} \frac{n!}{c_1!c_2! \cdots c_{n-k+1}!} \left(\frac{u_1}{1!}\right)^{c_1} \left(\frac{u_2}{2!}\right)^{c_2} \cdots \left(\frac{u_{n-k+1}}{(n-k+1)!}\right)^{c_{n-k+1}}
$$

or compactly

$$
B_{n,k} (u_1, u_2, \ldots, u_n) = \sum_{\Lambda_{k,n}} {n \choose c_1, c_2, \ldots, c_n} \left(\frac{u_1}{1!}\right)^{c_1} \left(\frac{u_2}{2!}\right)^{c_2} \cdots \left(\frac{u_n}{n!}\right)^{c_n},
$$

where $B_{0,0} = 1, B_{0,k} = 0, k \ge 1$. Here $\binom{n}{c_1, c_2}$ $\binom{n}{c_1, c_2, ..., c_n}$ denotes the multinomial coefficient. Let Λ_n be defined as in (2.18). Then the sum

$$
B_n (u_1, ..., u_n) = \sum_{k=1}^n B_{n,k} (u_1, u_2, ..., u_n)
$$

=
$$
\sum_{\Lambda_n} \binom{n}{c_1, c_2, ..., c_n} \left(\frac{u_1}{1!}\right)^{c_1} \left(\frac{u_2}{2!}\right)^{c_2} \cdots \left(\frac{u_n}{n!}\right)^{c_n},
$$
 (2.23)

with $B_0 = 1$, is called *n*-th complete exponential Bell polynomial. Henceforth, Bell polynomials always refer to exponential Bell polynomials unless stated otherwise.

The relation between ordinary Bell polynomials and exponential Bell polynomials is

$$
\hat{B}_{n,k}(u_1, u_2, \dots, u_n) = \frac{k!}{n!} B_{n,k}(1!u_1, 2!u_2, \dots, n!u_n).
$$
 (2.24)

The following result from Johnson [37, p. 220] is useful. Let |A| denote the determinant of the matrix A.

Lemma 2.1. If $n \geq 1$, then

$$
B_n(u_1, u_2, \dots, u_n) = \begin{vmatrix} u_1 & \binom{n-1}{1} u_2 & \binom{n-1}{2} u_3 & \cdots & \binom{n-1}{n-2} u_{n-1} & u_n \\ -1 & u_1 & \binom{n-2}{1} u_2 & \cdots & \binom{n-2}{n-3} u_{n-2} & u_{n-1} \\ 0 & -1 & u_1 & \cdots & \binom{n-3}{n-4} u_{n-3} & u_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & u_1 & u_2 \\ 0 & 0 & 0 & \cdots & -1 & u_1 \end{vmatrix}.
$$

Note in the above matrix, all the entries on the main subdiagonal are −1, and all entries below it are 0 .

Corollary 2.1. Let $u_j = 0$ for $j \ge 2$. Then by using Lemma 2.1

$$
B_n(u_1,0,0,\ldots,0) = \begin{vmatrix} u_1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & u_1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & u_1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & u_1 & 0 \\ 0 & 0 & 0 & \cdots & -1 & u_1 \\ \end{vmatrix}
$$

= u_1^n .

2.4.3. *A Probabilistic Formula.* In this subsection, we present a probabilistic approach to compute the Bell polynomials. Let $X_j \sim Poi(\lambda_j)$ be a sequence of independent Poisson rvs and $u_j = j! \lambda_j, j \ge 1$. As before, let $S_n = X_1 + \cdots + X_n$ and $W_n = X_1 + 2X_2 + \cdots + nX_n$. Then by definition

$$
B_{n,k}(u_1, ..., u_n) = \sum_{\Lambda_{k,n}} {n \choose c_1, ..., c_n} \left(\frac{u_1}{1!}\right)^{c_1} ... \left(\frac{u_n}{n!}\right)^{c_n}
$$

\n
$$
= n! \sum_{\Lambda_{k,n}} \frac{\lambda_1^{c_1}}{c_1!} ... \frac{\lambda_n^{c_n}}{c_n!}
$$

\n
$$
= n! e^{\lambda_1 + ... + \lambda_n} \sum_{\Lambda_{k,n}} \frac{e^{-\lambda_1} \lambda_1^{c_1}}{c_1!} ... \frac{e^{-\lambda_n} \lambda_n^{c_n}}{c_n!}
$$

\n
$$
= \frac{n! P\{S_n = k; W_n = n\}}{P\{S_n = 0\}}.
$$
 (2.25)

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\bigg\}$ $\bigg\}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

Using (2.23), the complete Bell polynomial is for $n \ge 1$,

$$
B_n(u_1, \dots, u_n) = \sum_{k=1}^n B_{n,k}(u_1, \dots, u_n)
$$

= $n! \sum_{k=1}^n \frac{P\{S_n = k; W_n = n\}}{P\{S_n = 0\}}$
= $\frac{n!}{P\{S_n = 0\}} \sum_{k=0}^n P\{S_n = k; W_n = n\}$
= $\frac{n! P\{W_n = n\}}{P\{S_n = 0\}},$ (2.26)

since $P(S_n = 0; W_n = n) = 0$ for $n \ge 1$. In other words,

$$
B_n(1!\lambda_1, 2!\lambda_2, \dots, n!\lambda_n) = \frac{n! P\{W_n = n\}}{P\{S_n = 0\}},
$$
\n(2.27)

where $X_j \sim Poi(\lambda_j)$.

For some additional details on the probabilistic connections to the Bell polynomials, see Kataria and Vellaisamy [39].

3. A COMPOUND POISSON DISTRIBUTION

Let $\{N_j\}$ be a sequence of independent Poisson variates, where $\{N_j\} \sim Poi(\lambda_j), j \geq 1$. Henceforth, we define $N_j \equiv 0$ a.s if $\lambda_j = 0$, that is, a Poisson distribution with mean zero is defined to be the degenerate distribution at zero. Let $\lambda = {\lambda_j}_{j \geq 1}$ be the sequence of associated parameters such that $\delta = \sum_{n=1}^{\infty}$ $j=1$ $\lambda_j < \infty$ and \sum^{∞} $j=1$ $t^j \lambda_j < \infty$, for $0 < |t| < M$, for some $M > 0$. We call the distribution of

$$
G_P(\boldsymbol{\lambda}) = \sum_{j=1}^{\infty} j N_j,
$$
\n(3.1)

a generalized Poisson distribution (GPD). Note that $G_P(\lambda) = W_\infty$. Our generalization of the Poisson distribution is new and different from the ones available in the literature, see for instance, Consul and Jain [11] where a two parameter generalization of the Poisson distribution is obtained as a limiting form of the generalized negative binomial distribution.

Remarks 3.1. (i) Let $\lambda_j = 0$ for $j \ge 2$. Then, obviously, $G_P(\lambda) \stackrel{\mathcal{L}}{=} N_1 \sim Poi(\lambda_1)$, the Poisson distribution with mean λ_1 .

(ii) Let $\lambda_j = 0$, for $j \ge k+1$. Then, clearly, $G_P(\boldsymbol{\lambda}) \stackrel{\mathcal{L}}{=} N_1 + 2N_2 + \ldots + kN_k = W_k \sim Poi(u_1, \ldots, u_k)$, the Poisson distribution of order k .

The study of the *GPD*'s provide a unified approach and has not been addressed in the literature. In view of the form of (3.1) , the GPD may be viewed as the Poisson distribution of order infinity. First we show that the series in the right-hand side of (3.1) indeed follows a compound Poisson distribution. One could also apply Kolmogorov's three series theorem to check the convergence.

Let now Y be a positive integer-valued random variable with the distribution

$$
\mathbb{P}\{Y=\ell\}=\frac{\lambda_{\ell}}{\delta}, \ \ell \in \mathbb{N}.\tag{3.2}
$$

where $\delta = \sum^{\infty}$ $_{\ell=1}$ λ_{ℓ} . Observe that given a sequence λ , satisfying the conditions given above, the distributions of $N \sim Poi(\delta)$ and Y can be determined.

Theorem 3.1. Let $G_P(\lambda)$ be the GPD defined in (3.1) and $\{Y_i\}_{i\geq 1}$ be a sequence of IID positiveinteger valued rvs with distribution defined in (3.2). Also, let $N \sim Poi(\delta)$ be a Poisson rv with mean δ and is independent of the sequence ${Y_i}$. Then

$$
\sum_{j=1}^{\infty} jN_j \stackrel{\mathcal{L}}{=} \sum_{j=1}^{N} Y_j.
$$
\n(3.3)

Proof. First note that the PGF of N is

$$
H_N(z) = \mathbb{E}\left(z^N\right) = e^{-\delta(1-z)}.
$$

Consider now the random sum $T_N = \sum_{j=1}^N Y_j$. Then the *PGF* of T_N is

$$
H_{T_N}(z) = H_N(H_{Y_1}(z))
$$

= $e^{-\delta(1 - H_{Y_1}(z))}$

$$
= \exp\left(\delta\left(\sum_{j=1}^{\infty} z^j \frac{\lambda_j}{\delta} - 1\right)\right)
$$

\n
$$
= \exp\left(\sum_{j=1}^{\infty} z^j \lambda_j - \delta\right)
$$

\n
$$
= \exp\left(\sum_{j=1}^{\infty} z^j \lambda_j - \sum_{n=1}^{\infty} \lambda_j\right)
$$

\n
$$
= \exp\left(\sum_{j=1}^{\infty} \lambda_j (z^j - 1)\right).
$$
\n(3.5)

Also, the *PGF* of $\sum_{j=1}^{\infty} jN_j$ is

$$
\mathbb{E}\left(z^{N_1+2N_2+\cdots}\right) = \prod_{j=1}^{\infty} \mathbb{E}\left(z^{jN_j}\right)
$$

$$
= \prod_{j=1}^{\infty} \mathbb{E}\left((z^j)^{N_j}\right)
$$

$$
= \prod_{j=1}^{\infty} e^{-\lambda_j(1-z^j)}
$$

$$
= \exp\left(\sum_{j=1}^{\infty} \lambda_j(z^j-1)\right).
$$
(3.6)

which coincides with (3.5). This proves the result. \Box

The above result motivates the following alternative definition.

Definition 3.1. A Compound Poisson Distribution. Let $\{N_j\}$ be a sequence of Poisson rvs with parameter λ_j and $\delta = \sum_{i=1}^{\infty}$ $j=1$ λ_j . Let $\{Y_j\}$ be a sequence of *iid* rvs with $\mathbb{P}(Y_1 = \ell) = \lambda_\ell/\delta$ for $\ell \geq 1$. We call the distribution $\sum_{j=1}^{N} Y_j = T_N$, where $N \sim Poi(\delta)$ and is independent of the Y_j , the compound Poisson distribution (\overline{CPD}) and denote it by $C_P(\lambda)$.

Remarks 3.2. (i) Let $\lambda_j = 0$ for $j \ge 2$. Then, obviously, $\delta = \lambda_1$ and $T_N \stackrel{\mathcal{L}}{=} N_1 \sim Poi(\lambda_1)$, the Poisson distribution. (ii) Let $\lambda_j = 0$, for $j \ge k+1$. Then, $\delta = \delta_k = \sum_{j=1}^k \lambda_j$ and $T_N \stackrel{\mathcal{L}}{=} N_1 + 2N_2 + \ldots + kN_k \sim$ $Poi(u_1, \ldots, u_k)$, the Poisson distribution of order k and has the PGF

$$
\exp\left(\sum_{j=1}^{k} -\lambda_j (1-z^j)\right). \tag{3.7}
$$

The mean and variance of the CPD follows easily. Since $E(N) = Var(N)$, we have

$$
\mathbb{E}(T_N) = E(Y_1)E(N) = \sum_{j=1}^{\infty} j\lambda_j
$$

and similarly

$$
Var(T_N) = E(Y_1^2)E(N) = \sum_{j=1}^{\infty} j^2 \lambda_j.
$$

Next, we obtain the probability distribution of the CPD. Define $T_0 \equiv 0$ a.s. For $1 \le m \le n$, let

$$
\Delta_{m,n} = \{(y_1, y_2, \dots y_m) : y_j \ge 1; \sum_{j=1}^m y_j = n\},\tag{3.8}
$$

and $\sum_{y_j \in \Delta_{m,n}} \lambda_{y_1} \cdots \lambda_{y_m} = 0$, if the set $\Delta_{m,n}$ is empty.

Theorem 3.2. (i): The *PMF* of the $C_P(\lambda)$ defined in (3.3) is

$$
\mathbb{P}\left\{T_N=n\right\} = \begin{cases} e^{\delta}, & \text{if } n=0\\ e^{-\delta} \sum_{m=1}^n \left\{ \sum_{y_j \in \Delta_{m,n}} \lambda_{y_1} \cdots \lambda_{y_m} \right\} \frac{1}{m!}, & \text{if } n \ge 1. \end{cases}
$$
(3.9)

(ii): An explicit expression in terms of Bell polynomials is

$$
P(T_N = n) = \frac{e^{-\delta}}{n!} B_n (u_1, u_2, \dots, u_n), \quad n \ge 0,
$$
\n(3.10)

where $u_j = j! \lambda_j$, for $1 \le j \le n$.

Proof. (i): First, clearly, $\mathbb{P}\{T_N = 0\} = \mathbb{P}(N = 0) = e^{-\delta}$. For $n \ge 1$, we have

$$
\mathbb{P}\left\{T_{N}=n\right\} = \sum_{m=1}^{n} \mathbb{P}\left\{Y_{1}+Y_{2}+\cdots+Y_{m}=n \mid N=m\right\} \mathbb{P}\left\{N=m\right\} \quad (\because y_{j} \geq 1)
$$
\n
$$
= \sum_{m=1}^{n} \mathbb{P}\left\{Y_{1}+Y_{2}+\cdots+Y_{m}=n\right\} \mathbb{P}\left\{N=m\right\}
$$
\n
$$
= \sum_{m=1}^{n} \left\{\sum_{y_{j} \in \Delta_{m,n}} \mathbb{P}\left\{Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{m}=y_{m}\right\}\right\} \mathbb{P}\left\{N=m\right\}
$$
\n
$$
= \sum_{m=1}^{n} \sum_{y_{j} \in \Delta_{m,n}} \prod_{i=1}^{m} \mathbb{P}\left\{Y_{i}=y_{i}\right\} \mathbb{P}\left\{N=m\right\}
$$
\n
$$
= \sum_{m=1}^{n} \left(\sum_{y_{j} \in \Delta_{m,n}} \frac{\lambda_{y_{1}} \cdots \lambda_{y_{m}}}{\delta^{m}}\right) \frac{e^{-\delta} \delta^{m}}{m!}
$$
\n
$$
= e^{-\delta} \sum_{m=1}^{n} \left\{\sum_{y_{j} \in \Delta_{m,n}} \lambda_{y_{1}} \cdots \lambda_{y_{m}}\right\} \frac{1}{m!},
$$
\n(3.11)

where $\delta = \sum_{j=1}^{\infty} \lambda_j < \infty$.

(ii): The probability generating function (PGF) of the $C_P(\lambda)$ (see (3.4)) is

$$
H_{T_N}(z) = e^{-\delta(1-H_{Y_1}(z))}
$$

\n
$$
= e^{-\delta} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\sum_{j=1}^{\infty} \lambda_j z^j \right)^k
$$

\n
$$
= e^{-\delta} \sum_{k=0}^{\infty} \frac{1}{k!} \left\{ \sum_{n=k}^{\infty} \hat{B}_{n,k}(\lambda_1, \lambda_2, \dots, \lambda_{n-k+1}) z^n \right\} \text{ (using (2.22))}
$$

\n
$$
= e^{-\delta} \sum_{n=0}^{\infty} \left\{ \sum_{k=0}^n \frac{1}{k!} \hat{B}_{n,k}(\lambda_1, \lambda_2, \dots, \lambda_{n-k+1}) \right\} z^n
$$

\n
$$
= e^{-\delta} \sum_{n=0}^{\infty} \left\{ \frac{1}{n!} \sum_{k=0}^n B_{n,k} (1! \lambda_1, 2! \lambda_2, \dots, (n-k+1)! \lambda_{n-k+1}) \right\} z^n \text{ (using (2.24))}
$$

\n
$$
= e^{-\delta} \sum_{n=0}^{\infty} \left\{ \frac{1}{n!} B_n (1! \lambda_1, 2! \lambda_2, \dots, n! \lambda_n) \right\} z^n
$$

which shows that, for $n \geq 0$,

$$
P(T_N = n) = \frac{e^{-\delta}}{n!} B_n (1! \lambda_1, 2! \lambda_2, \dots, n! \lambda_n)
$$

$$
= \frac{e^{-\delta}}{n!} B_n (u_1, u_2, \dots, u_n),
$$

which proves the result.

Corollary 3.1. When $\lambda_j = 0$, for $j \geq 2$, we get $\delta = \lambda_1$ and Y_j 's are degenerate at 1. Hence, $\Delta_{m,n}$ is empty for $1 \le m \le n-1$. When $m = n$, $\Delta_{n,n} = (1, \ldots, 1)$ and so $\sum_{y_j \in \Delta_{n,n}} \lambda_{y_1} \cdots \lambda_{y_1} = \lambda_1 \cdots \lambda_1 =$ λ_1^n . Thus, (3.9) reduces to $Poi(\lambda_1)$, the distribution of N_1 , as expected.

(ii) Take now $\lambda_j = 0$ for $j \ge k + 1$ so that $\delta = \delta_k$ in (3.9), we get *PMF* of Poisson distribution of order k . That is,

$$
P\{W_k = n\} = e^{-\delta_k} \sum_{m=1}^n \left\{ \sum_{y_j \in \Delta_{m,n}} \lambda_{y_1} \cdots \lambda_{y_m} \right\} \frac{1}{m!},
$$
\n(3.12)

where $\Delta_{m,n} = \{(y_1, y_2, \dots y_m) : y_i \ge 1; \sum_{j=1}^m y_j = n\}$ and $\delta_k = \sum_{j=1}^k \lambda_j$, for all $\lambda_j > 0$.

Remark 3.1. It is well known (see Comtet [10]) that the complete Bell polynomials appear in the exponential of a formal power series:

$$
\exp\left(\sum_{n=1}^{\infty} \frac{a_n x^n}{n!}\right) = \sum_{n=0}^{\infty} \frac{B_n(a_1, a_2, \dots, a_n)}{n!} x^n
$$

which when $x = 1$ leads to

$$
\exp\left(\sum_{n=1}^{\infty}\frac{a_n}{n!}\right)=\sum_{n=0}^{\infty}\frac{B_n(a_1,a_2,\ldots,a_n)}{n!}.
$$

□

If we take $a_n = n! \lambda_n$, we get

$$
\exp\left(\sum_{n=1}^{\infty}\lambda_n\right)=\exp(\delta)=\sum_{n=0}^{\infty}\frac{B_n(1!\lambda_1,2!\lambda_2,\ldots,n!\lambda_n)}{n!},
$$

proving that (3.10) is indeed a valid probability distribution.

Remark 3.2. From (2.27) and (3.10),

$$
P\{T_N = n\} = \frac{e^{-\delta}}{n!} B_n (1! \lambda_1, 2! \lambda_2, ..., n! \lambda_n)
$$

= $e^{-\delta} \frac{P\{W_n = n\}}{P(S_n = 0)}$
= $e^{-(\delta - \delta_n)} P\{W_n = n\}, n \in \mathbb{Z}.$ (3.13)

Let now $\lambda_j = 0$ for $j \ge 2$. Then $\delta = \delta_n = \lambda_1$. and $W_n = X_1$. Hence,

$$
P\{T_N=n\}=P\{X_1=n\},\
$$

as expected.

Suppose now $\lambda_j = 0$ for $j \ge (k+1)$. Then $\delta = \delta_k$ and $W_n = W_k$ for $n \ge (k+1)$. Hence,

$$
P\{T_N = n\} = \begin{cases} e^{-(\delta_k - \delta_n)} P\{W_n = n\}, & \text{if } n \le k \\ P\{W_k = n\}, & \text{if } n \ge k+1. \end{cases}
$$

Note the distribution of W_k is given in (2.15) or in (3.12).

4. A COMPOUND POISSON PROCESSES.

Motivated by the properties of the GPD , we now extend it to processes versions.

Definition 4.1. (i): A Generalized Poisson Process. Let $\{N(t, \lambda_j)\}, j \geq 1$, be a sequence of independent Poisson processes with parameters λ_j satisfying $\delta = \sum_{j=1}^{\infty} \lambda_j < \infty$. We call the process

$$
G(t,\lambda) = \sum_{j=1}^{\infty} jN(t,\lambda_j),
$$
\n(4.1)

the generalized Poisson process (GPP) .

(ii): **Poisson Process of order** k. For $k \in \mathbb{N}$, let $\lambda^{(k)} = (\lambda_1, \dots, \lambda_k)$ and

$$
G(t, \lambda^{(k)}) = \sum_{j=1}^{k} jN(t, \lambda_j),
$$
\n(4.2)

We call the generalized Poisson process $\{G(t, \boldsymbol{\lambda}^{(k)})\}_{t\geq 0}$ the Poisson process of order k.

Note that the process $G(t, \lambda)$ reduces to a $G(t, \lambda^{(k)})$, when $\lambda_j = 0$ for $j \ge k + 1$. We next show that the GPP is indeed a compound Poisson process (CPP) .

Lemma 4.1. Let Y_j 's be i.i.d with distribution given in (3.1) and $N(t, \delta)$ be a Poisson process with the parameter $\delta = \sum_{j=1}^{\infty} \lambda_j < \infty$ and is independent of the Y_j . Then the GPP

$$
G_P(t,\lambda) \stackrel{\mathcal{L}}{=} \sum_{j=1}^{N(t,\delta)} Y_j, \quad t > 0,
$$
\n(4.3)

and hence is a compound Poisson process.

Proof. For fixed $t > 0$, the PGF of $G(t, \lambda)$ is

$$
H_{G(t,\lambda)}(z) = \mathbb{E}\left(z^{\sum_{j=1}^{N(t,\delta)} Y_j}\right)
$$

= $\exp\left(-t\delta(1 - F_{Y_1}(z))\right)$
= $\exp\left(-t\delta\left(1 - \sum_{j=1}^{\infty} z^j \frac{\lambda_j}{\delta}\right)\right)$
= $\exp\left(-t\delta + t \sum_{j=1}^{\infty} z^j \lambda_j\right).$ (4.4)

Similarly, it follows from (3.6) that

$$
\mathbb{E}\left(z^{\sum_{j=1}^{\infty}jN(t,\lambda_j)}\right) = \exp\left(-t\delta + t\sum_{j=1}^{\infty}z^j\lambda_j\right),\tag{4.5}
$$

The lemma follows from (4.4) and (4.5).

□

Denote henceforth the compound Poisson process $(CPP) \sum_{j=1}^{N(t,\delta)} Y_j$ by $H(t,\lambda)$. Taking $\lambda_j = 0$ for $k \geq 1$, the CPP becomes the Poisson process of order k, defined by

$$
H(t, \boldsymbol{\lambda}^{(k)}) \stackrel{\mathcal{L}}{=} \sum_{j=1}^{N(t, \delta_k)} Y_j,
$$
\n(4.6)

where $\boldsymbol{\lambda}^{(k)} = (\lambda_1, \dots, \lambda_k)$ and $\delta_k = \sum_{j=1}^k \lambda_j$.

The one-dimensional distributions of the process $H(t, \lambda)$ can be obtained from the CPD, by replacing λ_j by $t\lambda_j$. This leads us to the following result.

Theorem 4.1. The one-dimensional distributions of the CPP are

$$
\mathbb{P}\left\{H(t,\lambda)=n\right\}=\begin{cases}e^{-t\delta},\text{ if }n=0,\\e^{-t\delta}\sum_{m=1}^{n}\sum_{y_{j}\in\Delta_{m,n}}\prod_{i=1}^{m}\lambda_{y_{i}}\frac{t^{m}}{m!},\text{ if }n\geq 1,\end{cases}
$$
(4.7)

where $\Delta_{m,n}$ is defined in (3.8).

Alternatively, in terms of Bell polynomials,

$$
\mathbb{P}\left\{H(t,\lambda)=n\right\}=\frac{e^{-t\delta}}{n!}B_n\left(1!t\lambda_1,2!t\lambda_2,\ldots,n!t\lambda_n\right),\ \ n\geq 0. \tag{4.8}
$$

Corollary 4.1. Taking $\lambda_j = 0$ for $j \ge k + 1$ in (4.7), we get the *PMF* of the Poisson process of order k as

$$
\mathbb{P}\left\{H(t,\boldsymbol{\lambda}^{(k)})=n\right\} = \begin{cases} e^{-t\delta_k}, & \text{if } n=0, \\ e^{-\delta_k} \sum_{m=1}^n \sum_{y_j \in \Delta_{m,n}} \prod_{i=1}^m \lambda_{y_i} \frac{t^m}{m!}, & \text{if } n \ge 1, \end{cases}
$$
(4.9)

4.1. Mean, Variance and Covariance Functions of the CPP. The mean, variance and covariance functions of $G(t, \lambda)$ are as follows. For positive reals s and t,

$$
\mathbb{E}\left(H(t,\lambda)\right) = \mathbb{E}(Y_1)\mathbb{E}\left(N(t,\delta)\right) = t\sum_{j=1}^{\infty} j\lambda_j;
$$

$$
\text{Var}(H(t,\lambda)) = \mathbb{E}(Y_1^2)\mathbb{E}\left(N(t,\delta)\right) = t\sum_{j=1}^{\infty} j^2\lambda_j,
$$

since $\mathbb{E} (N(t, \delta)) = \text{Var}(N(t, \delta)).$ Using $Cov(N(s, \delta), N(t, \delta)) = min(s, t)\delta$, we have for $0 < s \le t$,

$$
Cov(H(s, \lambda), H(t, \lambda)) = Var(Y_1) \mathbb{E} (N(s, \delta)) + \mathbb{E}^2(Y_1) \mathbb{E} (\text{Cov}(N(s, \delta), N(t, \delta)))
$$

= Var(Y_1)s\delta + \mathbb{E}^2(Y_1)s\delta = s\delta \mathbb{E}(Y_1^2)
= s\sum_{j=1}^{\infty} j^2 \lambda_j.

The CPP exhibits over-dispersion property. That is, for $t > 0$,

$$
\operatorname{Var}(H(t,\lambda)) - \mathbb{E}(H(t,\lambda)) = t \sum_{j=1}^{\infty} j^2 \lambda_j - t \sum_{j=1}^{\infty} j \lambda_j
$$

$$
= t \sum_{j=1}^{\infty} j(j-1)\lambda_j > 0,
$$

The following definition of long-range property (LRD) and short-range property (SRD) property will be used (see, for e.g., Maheshwari and Vellaisamy [31]):

Definition 4.2. Let $s > 0$ be fixed and $\{X(t)\}_{t\geq 0}$ be a stochastic process such that

$$
Corr(X(s), X(t)) \sim c(s)t^{-\gamma}, \text{ as } t \to \infty,
$$

for some $c(s) > 0$. The process $\{X(t)\}_{t\geq 0}$ is said to have the LRD property if $\gamma \in (0,1)$ and SRD property if $\gamma \in (1, 2)$.

Remark 4.1. For fixed s and $s < t$, the correlation function of CPP is

$$
Corr(H(s, \lambda), H(t, \lambda)) = \sqrt{s/t}
$$

and hence it exhibits the LRD property.

Lemma 4.2. The following asymptotic result holds for the CPP :

$$
\lim_{t \to \infty} \frac{H(t, \lambda)}{t} = \delta \mathbb{E}(Y_1) \ a.s. \tag{4.10}
$$

Proof. By the renewal theorem of the Poisson process,

$$
\lim_{t \to \infty} \frac{N(t, \lambda_j)}{t} = \lambda_j, \ a.s.
$$

Hence,

$$
\lim_{t \to \infty} \frac{H(t, \lambda)}{t} \stackrel{d}{=} \sum_{j=1}^{\infty} j \lim_{t \to \infty} \frac{N(t, \lambda_j)}{t}
$$

$$
= \sum_{j=1}^{\infty} j \lambda_j \ a.s
$$

$$
= \delta \mathbb{E}(Y_1) \ a.s.
$$

The above result implies also the convergence in law, that is,

$$
\frac{H(t,\lambda)}{t} \xrightarrow{\mathcal{L}} \delta \mathbb{E}(Y_1), \text{ as } t \to \infty.
$$
 (4.11)

Also, replacing δ by δ_k , we obtain the corresponding result for PP_k , the Poisson process of order k.

5. A TIME FRACTIONAL COMPOUND POISSON PROCESS

In the past few decades, fractional Poisson processes and their extensions have received considerable attention of several researchers, see, for instance, Laskin [22], Begin and Vellaisamy [6] and Kataria and Khandakar [17], Gara *et. al* [13] and the references therein. A multivariate extension of the fractional Poisson process is discussed in Begin and Macci [7].

First, we briefly recall some properties of the time fractional Poisson process, which will be used later.

5.1. Time Fractional Poisson process. Let $0 < \beta < 1$ and $\lambda > 0$. Unlike the Poisson process, the time fractional Poisson process $(TFPP)$ has neither independent nor stationary increments. Also, it is not a Markov process.

Let $\{U_i\}_{i=1}^{\infty}$ be a sequence of IID positive rvs, denoting the inter-arrival times of an event, with the common CDF

$$
F_U(u) = \mathbb{P}\{U \le u\} = 1 - M_\beta(-\lambda u^\beta),\tag{5.1}
$$

where $M_{\beta}(-t^{\beta})$ is the one-parameter Mittag-Leffler function. That is, U_i 's follow the Mittag-Leffler distribution with density (see (2.7))

$$
f_{U_1}(u) = \lambda u^{\beta - 1} M_{\beta, \beta}(-\lambda u^{\beta}), \ u \ge 0.
$$

The sequence of the *epochs*, denoted by ${V_n}_{n=1}^{\infty}$, is given by the sums of the inter-arrival times

$$
V_n = \sum_{j=1}^n U_j, \ n \ge 1. \tag{5.2}
$$

The epochs represent the times in which events arrive or occur. The PDF of the n-th epoch V_n , the *n*-fold convolution of U_i 's, is given by (see (2.8))

$$
f_{V_n}(v) = f_U^{*n}(v) = \beta \lambda^n \frac{v^{n\beta - 1}}{(n - 1)!} M_\beta^{(n)}(-\lambda v^\beta).
$$
 (5.3)

□

The counting process $N_\beta(t, \lambda)$ that counts the number of epochs (events) up to time t, assuming that $U_0 = 0$, is called the TFPP. Note $N_\beta(t, \lambda)$ is given by

$$
N_{\beta}(t,\lambda) = \max\{n : V_n \le t\}.
$$
\n(5.4)

The PMF $p_{\beta}(n|t,\lambda)$ of the $TFPP$ is given by (see Laskin [21] or Meerschaert *et. al* [25])

$$
p_{\beta}(n|t,\lambda) = (\lambda t^{\beta})^n M_{\beta,n\beta+1}^{n+1}(-\lambda t^{\beta})
$$

=
$$
\frac{(\lambda t^{\beta})^n}{n!} M_{\beta}^{(n)}(-\lambda t^{\beta}), \text{ (using (2.5))}
$$
 (5.5)

and with $p_{\beta}(n|0,\lambda) = 1$ if $n = 0$ and is zero if $n \ge 1$. Also, the *PMF* $p_{\beta}(n|t,\lambda)$ satisfies (see Begin and Orsingher [5])

$$
\partial_t^{\beta} p_{\beta}(n|t,\lambda) = \begin{cases}\n-\lambda p_{\beta}(0|t,\lambda), & \text{if } n = 0, \\
-\lambda \left[p_{\beta}(n|t,\lambda) - p_{\beta}(n-1|t,\lambda) \right], & \text{if } n \ge 1,\n\end{cases}
$$
\n(5.6)

where ∂_t^{β} denotes the Caputo fractional derivative defined in (2.14). The mean and the variance of the $TFPP$ are given by (see [21])

$$
\mathbb{E}\left(N_{\beta}(t,\lambda)\right) = qt^{\beta}, \quad q = \lambda/\Gamma(1+\beta); \tag{5.7}
$$

$$
\text{Var}\left(N_{\beta}(t,\lambda)\right) = qt^{\beta}\left[1 + qt^{\beta}\left(\frac{\beta B(\beta,1/2)}{2^{2\beta-1}} - 1\right)\right],\tag{5.8}
$$

where $B(a, b)$ denotes the beta function. An alternative form for Var[$N_\beta(t, \lambda)$] is given in [5, eq. (2.8)] as

$$
\text{Var}\left(N_{\beta}(t,\lambda)\right) = qt^{\beta} + \lambda^{2}t^{2\beta}Q(\beta),\tag{5.9}
$$

where

$$
Q(\beta) = \frac{1}{\beta} \left(\frac{1}{\Gamma(2\beta)} - \frac{1}{\beta \Gamma^2(\beta)} \right).
$$
\n(5.10)

Also, the covariance functions (see Leonenko *et. al* [23]) of the TFPP is given by

$$
\text{Cov}(N_{\beta}(s,\lambda), N_{\beta}(t,\lambda)) = qs^{\beta} + \lambda^{2} \text{Cov}(E_{\beta}(s), E_{\beta}(s))
$$
\n
$$
= qs^{\beta} + ds^{2\beta} + q^{2} [\beta t^{2\beta} B(\beta, 1 + \beta; s/t) - (st)^{\beta}],
$$
\n(5.11)

 $0 < s \le t$, where $d = \beta q^2 B(\beta, 1 + \beta)$, and $B(a, b; x) = \int_0^x t^{a-1} (1-t)^{b-1} dt$, $0 < x < 1$, is the incomplete beta function.

It is also known that (see [25]) when $0 < \beta < 1$,

$$
N_{\beta}(t,\lambda) \stackrel{\mathcal{L}}{=} N(E_{\beta}(t),\lambda),\tag{5.12}
$$

where $\{E_\beta(t)\}_{t\geq 0}$ is the inverse β -stable subordinator and is independent of $\{N(t,\lambda)\}_{t\geq 0}$. The PGF of the $TFPP$ is given by

$$
H_{N_{\beta}(t,\lambda)}(z) = \mathbb{E}(z^{N_{\beta}(t,\lambda)}) = M_{\beta}(-\lambda t^{\beta}(1-z)), \ |z| \le 1,
$$
\n
$$
(5.13)
$$

see for example Maheshwari and Vellaisamy[32].

5.2. Time Fractional Compound Poisson Process. The study of compound fractional Poisson process has been of recent interests, see, for example Begin and Macci [8] and Kataria and Khandakar [18]. In this section, we introduce a new time-fractional compound Poisson process, motivated by the compound Poisson process discussed in Section 4.

Definition 5.1. (i) Let $\{N_\beta(t, \lambda_i)\}\$, $j \geq 1$, be a sequence of independent time fractional Poisson processes with parameters β and $\lambda = {\lambda_j}_{j \geq 1}$. Let Y_j 's be i.i.d with distribution given in (3.1) and is independent of the process $\{N_\beta(t,\delta)\}\)$, where $\delta = \sum_{j=1}^\infty \lambda_j$. We call the process

$$
G_{\beta}(t,\lambda) = \sum_{j=1}^{\infty} jN_{\beta}(t,\lambda_j),
$$
\n(5.14)

a time fractional generalized Poisson process (*TFGPP*).

The next result shows that the $G_\beta(t,\lambda)$ is indeed a time fractional compound Poisson processes and is also a subordinated GPP.

Proposition 5.1. Let $G(t, \lambda)$ and $G_{\beta}(t, \lambda)$ be the GPP and TFGPP respectively. For fixed $t > 0$,

$$
G_{\beta}(t,\lambda) \stackrel{\mathcal{L}}{=} \sum_{j=1}^{N_{\beta}(t,\delta)} Y_j \stackrel{\mathcal{L}}{=} G(E_{\beta}(t),\delta),
$$
\n(5.15)

where $\{E_\beta(t)\}_{t\geq 0}$ is an idependent inverse β -stable subordinator.

Proof. Note, for fixed $t > 0$,

$$
G_{\beta}(t, \lambda) = \sum_{j=1}^{\infty} jN_{\beta}(t, \lambda_j)
$$

\n
$$
\stackrel{\mathcal{L}}{=} \sum_{j=1}^{\infty} jN(E_{\beta}(t), \lambda_j) \text{ (using (5.12))}
$$

\n
$$
\stackrel{\mathcal{L}}{=} \sum_{j=1}^{N(E_{\beta}(t), \delta)} Y_j \text{ (using (4.3))}
$$

\n
$$
\stackrel{\mathcal{L}}{=} \sum_{j=1}^{N_{\beta}(t, \delta)} Y_j \text{ (using (4.3))}.
$$

From the above results and (4.3), we have

$$
G_{\beta}(t,\lambda) \stackrel{\mathcal{L}}{=} \sum_{j=1}^{N(E_{\beta}(t),\delta)} Y_j \stackrel{\mathcal{L}}{=} G(E_{\beta}(t),\delta), \tag{5.16}
$$

showing that it is a subordinated GPP .

Henceforth, we call the process $\sum_{j=1}^{N_{\beta}(t,\delta)} Y_j$ the time fractional compound Poisson process (*TFCPP*) and denote it by $H_\beta(t,\boldsymbol{\lambda})$. Similarly, the time fractional compound Poisson process of order k, denoted by $H_{\beta}(t, \boldsymbol{\lambda}^{(k)})$, can be defined by replacing δ by δ_k in the result given in (5.16).

The PGF of the $TFCPP$ is

$$
K_{H_{\beta}(t,\lambda)}(z) = \mathbb{E}\left(z^{H_{\beta}(t,\lambda)}\right)
$$

\n
$$
= K_{N_{\beta}(t,\delta)}(K_{Y_1}(z))
$$

\n
$$
= M_{\beta}\left(-\delta t^{\beta}\left(1 - K_{Y_1}(z)\right)\right) \text{ (using (5.13))}
$$

\n
$$
= M_{\beta}\left(-t^{\beta}\sum_{j=1}^{\infty}\lambda_j\left(1 - z^j\right)\right), \tag{5.17}
$$

where M_β is defined in (2.1).

5.3. Mean, variance and Covariance Functions of $TFCPP$. Let $H_\beta(t,\lambda)$ be the $TFCPP$ defined in (5.15). Then mean, variance and covariance functions of of $H_\beta(t,\lambda)$ for $s \le t$ are as follows. Let $q = \delta/\Gamma(1+\beta)$. Then

$$
\mathbb{E}\left(H_{\beta}(t,\boldsymbol{\lambda})\right) = \mathbb{E}(Y_1)\mathbb{E}\left(N_{\beta}(t,\delta)\right) = qt^{\beta}\mathbb{E}(Y_1); \tag{5.18}
$$

and

$$
\operatorname{Var}(H_{\beta}(t,\boldsymbol{\lambda})) = \operatorname{Var}(Y_1) \mathbb{E}\big(N_{\beta}(t,\delta)\big) + \mathbb{E}^2(Y_1) \operatorname{Var}(N_{\beta}(t,\delta))
$$

\n
$$
= \operatorname{Var}(Y_1) \mathbb{E}\big(N_{\beta}(t,\delta)\big) + \mathbb{E}^2(Y_1) \mathbb{E}[N_{\beta}(t,\delta) + R_{\lambda}(\beta)]
$$

\n
$$
= \mathbb{E}(Y_1^2) \mathbb{E}\big(N_{\beta}(t,\delta)\big) + \mathbb{E}^2(Y_1) \lambda^2 t^{2\beta} Q(\beta)
$$

\n
$$
= \mathbb{E}(Y_1^2) qt^{\beta} + \mathbb{E}^2(Y_1) \lambda^2 t^{2\beta} Q(\beta), \tag{5.19}
$$

where $Q(\beta)$ is defined in (5.10). Also, for $0 < s \leq t$,

$$
Cov(H_{\beta}(s,\lambda), H_{\beta}(t,\lambda)) = Var(Y_1)qs^{\beta} + \mathbb{E}^2(Y_1) Cov(N_{\beta}(s,\delta), N_{\beta}(t,\delta)),
$$
 (5.20)

where $\delta = \sum_{n=1}^{\infty}$ $j=1$ λ_j . Note $\text{Var}(N_\beta(t,\delta))$ and $\text{Cov}(N_\beta(s,\delta), N_\beta(t,\delta))$ are given in (5.8) and (5.11) respectively.

Remark 5.1. The $TFCPP$ exhibits over-dispersion property. For $t > 0$,

$$
\operatorname{Var}(H_{\beta}(t,\lambda)) - \mathbb{E}(H_{\beta}(t,\lambda)) = qt^{\beta}[\mathbb{E}(Y_1^2) - \mathbb{E}(Y_1)] + \mathbb{E}^2(Y_1)\lambda^2 t^{2\beta} Q(\beta)
$$

=
$$
\frac{qt^{\beta}}{\delta} \sum_{j=1}^{\infty} j(j-1)\lambda_j + \mathbb{E}^2(Y_1)\lambda^2 t^{2\beta} Q(\beta)
$$

> 0,

since $Q(\beta) > 0$ for $0 < \beta \in (0, 1)$ (see Vellaisamy and Maheshwari [40], p. 87.).

Theorem 5.1. For $1 \leq k \leq n$, let

$$
\Delta_{k,n} = \{(y_1, y_2, \dots y_k) : y_j \geq 1; \sum_{j=1}^k y_j = n\}.
$$

(i) The *PMF* of the *TFCPP* $H_{\beta}(t, \lambda)$ is

$$
\mathbb{P}\left\{H_{\beta}(t,\boldsymbol{\lambda})=n\right\} = \begin{cases} M_{\beta}(-\delta t^{\beta}), & \text{if } n=0\\ \frac{1}{n!} \sum_{k=0}^{n} \left\{\sum_{y_{j} \in \Delta_{k,n}} \prod_{i=1}^{k} \lambda_{y_{i}}\right\} t^{k\beta} M_{\beta}^{(k)}\left(-\delta t^{\beta}\right), & \text{if } n \geq 1 \end{cases}
$$
(5.21)

(ii) Alternatively, in terms of Bell polynomials,

$$
\mathbb{P}\left\{H_{\beta}(t,\boldsymbol{\lambda})=n\right\}=\frac{1}{n!}\mathbb{E}\left(e^{-\delta E_{\beta}(t)}B_{n}\left(1!\lambda_{1}E_{\beta}(t),2!\lambda_{2}E_{\beta}(t),\ldots,n!\lambda_{n}E_{\beta}(t)\right)\right) \tag{5.22}
$$

for $n \geq 0$.

Proof. (i) From (5.5), we have $\mathbb{P} \{ H_{\beta}(t, \lambda) = 0 \} = \mathbb{P} \{ N_{\beta}(t, \lambda) = 0 \} = M_{\beta}(-\delta t^{\beta})$. For $n \ge 1$,

$$
\mathbb{P}\left\{H_{\beta}(t,\boldsymbol{\lambda})=n\right\} = \sum_{k=1}^{n} \mathbb{P}\left\{Y_{1}+Y_{2}+\cdots+Y_{k}=n\right\} \mathbb{P}\left\{N_{\beta}(t,\delta)=k\right\} \quad (\because y_{j}\geq 1)
$$
\n
$$
=\sum_{k=1}^{n} \sum_{\Delta_{k,n}} \mathbb{P}\left\{Y_{1}=y_{1}, Y_{2}=y_{2},\ldots,Y_{k}=y_{k}\right\} \mathbb{P}\left\{N_{\beta}(t,\delta)=k\right\}
$$
\n
$$
=\sum_{k=1}^{n} \sum_{\Delta_{k,n}} \prod_{i=1}^{k} \mathbb{P}\left\{Y_{i}=y_{i}\right\} \mathbb{P}\left\{N_{\beta}(t,\delta)=k\right\}
$$
\n
$$
=\frac{1}{n!} \sum_{k=1}^{n} \left\{\sum_{y_{j}\in\Delta_{k,n}} \frac{\lambda_{y_{1}}\cdots\lambda_{y_{k}}}{\delta^{k}}\right\} (\delta t^{\beta})^{k} M_{\beta}^{(k)}\left(-\delta t^{\beta}\right) \text{ (using (5.5))}
$$
\n
$$
=\frac{1}{n!} \sum_{k=1}^{n} \left\{\sum_{y_{j}\in\Delta_{k,n}} \lambda_{y_{1}}\cdots\lambda_{y_{k}}\right\} t^{\beta k} M_{\beta}^{(k)}\left(-\delta t^{\beta}\right).
$$

(ii) Note that, for fixed t, and $n \geq 0$,

$$
\mathbb{P}\left\{H_{\beta}(t,\lambda)=n\right\}=\mathbb{P}\left\{\sum_{j=1}^{N(E_{\beta}(t),\delta)}Y_{j}=n\right\}
$$
\n
$$
=\mathbb{E}\left(\mathbb{P}\left\{\sum_{j=1}^{N(E_{\beta}(t)\delta)}Y_{j}=n\mid E_{\beta}(t)\right\}\right)
$$
\n
$$
=\frac{1}{n!}\mathbb{E}\left(e^{-\delta E_{\beta}(t)}B_{n}\left(1!\lambda_{1}E_{\beta}(t),2!\lambda_{2}E_{\beta}(t),\ldots,n!\lambda_{n}E_{\beta}(t)\right)\right),
$$
\n
$$
\mathbb{E}\left[\sum_{j=1}^{N(E_{\beta}(t),\delta)}\sum_{j=1
$$

using (4.8). The density of $E_\beta(t)$ is given in (2.12) \Box

Theorem 5.2. The one-dimensional distributions of the $H_\beta(t, \lambda)$ are not infinitely divisible.

Proof. Using the well-known result (see [27]) that $E_\beta(t) \stackrel{\mathcal{L}}{=} t^\beta E_\beta(1)$, we obtain

$$
\frac{H_{\beta}(t,\boldsymbol{\lambda})}{t^{\beta}} \stackrel{\mathcal{L}}{=} \frac{G(E_{\beta}(t),\boldsymbol{\lambda})}{t^{\beta}} \text{ (use (5.15))}
$$

$$
\stackrel{\mathcal{L}}{=} \frac{G(t^{\beta}E_{\beta}(1),\boldsymbol{\lambda})}{t^{\beta}}
$$

$$
\stackrel{\mathcal{L}}{=} E_{\beta}(1) \frac{G(t^{\beta} E_{\beta}(1), \lambda)}{t^{\beta} E_{\beta}(1)}
$$

$$
\stackrel{\mathcal{L}}{\rightarrow} E_{\beta}(1) \delta \mathbb{E}(Y_1),
$$

using (4.10).

Suppose $H_\beta(t,\lambda), t>0$, is infinitely divisible (i.d.). Then this implies $\frac{H_\beta(t,\lambda)}{t^\beta}$ is i.d. for every $t>0$ and also its limit $E_\beta(1)\delta \mathbb{E}(Y_1)$ or equivalently $E_\beta(1)$ is also i.d. (see Sato [29]). But this is a contradiction, since $E_\beta(t)$ is not i.d. for any $t > 0$ (see Steutel and Van Harn [38]).

5.4. Moments and factorial moments of $TFCPP$. For real-valued functions f and g, let $f^{(k)}$ denote its k-th derivative and $g(f)$ denote the composite function. The following two results are from Johnson [37], equation (3.3) and equation (3.6) .

Hoppe's formula. If g and f are functions with a sufficient number of derivatives, then

$$
(g(f))^{(m)} = \sum_{k=0}^{m} \frac{g^{(k)}(f)}{k!} A_{k,m}(f),
$$
\n(5.23)

where $A_{0,0} = 1$, $A_{0,m} = 0$ for $m \ge 1$ and

$$
A_{k,m}(f) = \sum_{j=0}^{k} {k \choose j} (-f)^{k-j} (f^j)^{(m)}, \quad 1 \le k \le m.
$$
 (5.24)

The next lemma is from [37, eq. (3.6)].

Lemma 5.1. (i): If f_1, f_2, \ldots, f_k are functions with a sufficient number of derivatives, then

$$
(f_1 f_2 \cdots f_k)^{(m)} = \sum_{j_1 + \cdots + j_k = m} \binom{m}{j_1, \ldots, j_k} f_1^{(j_1)} \cdots f_k^{(j_k)}.
$$
 (5.25)

(ii): When $f_i = f, 1 \leq i \leq k$,

$$
(f^k)^{(m)} = \sum_{j_1 + \dots + j_k = m} {m \choose j_1, \dots, j_k} f^{(j_1)} \dots f^{(j_k)}.
$$
 (5.26)

Note that the moment generating function $K_\beta(s, t)$, $s \geq 0$, of $TFCPP$ is (see (5.17))

$$
K_{\beta}(s,t) = \mathbb{E}\left(e^{-sH_{\beta}(t,\lambda)}\right) = M_{\beta}\left(t^{\beta}\sum_{j=1}^{\infty}\lambda_j\left(e^{-sj}-1\right)\right). \tag{5.27}
$$

Theorem 5.3. Let Y_j 's be IID with distribution given in (3.2) and $T_k = \sum_{j=1}^k Y_j$, for $k \ge 1$. Then the r-th raw moment of the $TFCPP$ is given by

$$
\mathbb{E}\left(H_{\beta}^r(t,\boldsymbol{\lambda})\right)=\sum_{k=1}^r\frac{t^{k\beta}\delta^k}{\Gamma(k\beta+1)}\mathbb{E}(T_k^r).
$$

Proof. Using Hoppe's formula in (5.23), we get

$$
\mathbb{E}\left(H_{\beta}^{r}(t,\boldsymbol{\lambda})\right)=(-1)^{r}\left.\frac{\partial^{r}K_{\beta}(s,t)}{\partial s^{r}}\right|_{s=0}
$$

A NEW COMPOUND POISSON PROCESS AND ITS FRACTIONAL VERSIONS 21

$$
= \sum_{k=0}^{r} \frac{(-1)^{r}}{k!} M_{\beta,1}^{(k)} \left(t^{\beta} \sum_{j=1}^{\infty} \lambda_{j} \left(e^{-sj} - 1 \right) \right) A_{k,r} \left(t^{\beta} \sum_{j=1}^{\infty} \lambda_{j} \left(e^{-sj} - 1 \right) \right) \Big|_{s=0}, \quad (5.28)
$$

where $A_{k,r}$, for $0 \le k \le r$, is defined in (5.24). From (2.4), we obtain

$$
M_{\beta}^{(k)} \left(t^{\beta} \sum_{j=1}^{\infty} \lambda_j \left(e^{-sj} - 1 \right) \right) \Big|_{s=0} = k! M_{\beta,k\beta+1}^{k+1} \left(t^{\beta} \sum_{j=1}^{\infty} \lambda_j \left(e^{-sj} - 1 \right) \right) \Big|_{s=0}
$$

=
$$
\frac{k!}{\Gamma(k\beta+1)},
$$
 (5.29)

using the fact that $M^{\gamma}_{\alpha,\beta}(0) = 1/\Gamma(\beta)$. Next, for $0 \leq k \leq r$,

$$
A_{k,r} \left(t^{\beta} \sum_{j=1}^{\infty} \lambda_j \left(e^{-sj} - 1 \right) \right) \Big|_{s=0}
$$

=
$$
\sum_{m=0}^{k} {k \choose m} \left(-t^{\beta} \sum_{j=1}^{\infty} \lambda_j \left(e^{-sj} - 1 \right) \right)^{k-m} \frac{d^r}{ds^r} \left(t^{\beta} \sum_{j=1}^{\infty} \lambda_j \left(e^{-sj} - 1 \right) \right)^m \Big|_{s=0}
$$

=
$$
t^{k\beta} \frac{d^r}{ds^r} \left(\sum_{j=1}^{\infty} \lambda_j \left(e^{-sj} - 1 \right) \right)^k \Big|_{s=0},
$$
 (5.30)

The last step follows since only the case corresponding to $m = k$ remains in its previous step and also by using \sum^{∞} $j=1$ $\lambda_j(z^j-1)|_{z=1}=0.$ Now, by Lemma 5.1, we get

$$
\frac{d^r}{ds^r} \left(\sum_{j=1}^{\infty} \lambda_j \left(e^{-sj} - 1 \right) \right)^k \Big|_{s=0} = (-1)^r \sum_{n_1 + \dots + n_k = r} {r \choose n_1, \dots, n_k} \prod_{i=1}^k \frac{d^{n_i}}{ds^{n_i}} \left(\sum_{j=1}^{\infty} \lambda_j \left(e^{-sj} - 1 \right) \right) \Big|_{\rho=0}
$$

$$
= (-1)^r \sum_{n_1 + \dots + n_k = r} {r \choose n_1, \dots, n_k} \prod_{i=1}^k \sum_{j=1}^{\infty} \lambda_j j^{n_i}
$$

$$
= (-1)^r \delta^k \sum_{n_1 + \dots + n_k = r} {r \choose n_1, \dots, n_k} \prod_{i=1}^k \mathbb{E}(Y_i^{n_i})
$$

$$
= (-1)^r \delta^k \mathbb{E}(Y_1 + \dots + Y_k)^r.
$$
(5.31)

Substituting (5.29) - (5.31) in (5.28) , we get the result. \Box

For a random variable Z, let $Z^{(r)} = Z(Z-1)\cdots(Z_r+1)$ so that $\mathbb{E}(Z^{(r)})$ denote its r-th factorial moment.

Theorem 5.4. The *r*-th factorial moment $\mathcal{M}_r^{\beta}(t)$ of the $TFCPP$ is given by

$$
\mathbb{E}(H_{\beta}^{(r)}(t,\boldsymbol{\lambda}))=\sum_{k=1}^{r}\frac{t^{k\beta}\delta^{k}}{\Gamma(k\beta+1)}\sum_{n_{1}+...+n_{k}=r}\binom{r}{n_{1},\ldots+n_{k}}\prod_{i=1}^{k}\mathbb{E}(Y^{(n_{i})}).
$$

Proof. From (5.17) and using Hope's formula, we get

$$
\mathbb{E}(H_{\beta}^{(r)}(t,\lambda)) = \frac{\partial^{r} H_{H_{\beta}(t,\lambda)}(z)}{\partial z^{r}}\Big|_{z=1}
$$
\n
$$
= \frac{\partial^{r}}{\partial z^{r}} \left\{ M_{\beta} \left(t^{\beta} \sum_{j=1}^{\infty} \lambda_{j} (z^{j} - 1) \right) \right\}\Big|_{z=1}
$$
\n
$$
= \sum_{k=0}^{r} \frac{1}{k!} M_{\beta}^{(k)} \left(t^{\beta} \sum_{j=1}^{\infty} \lambda_{j} (z^{j} - 1) \right) A_{k,r} \left(t^{\beta} \sum_{j=1}^{\infty} \lambda_{j} (z^{j} - 1) \right)\Big|_{z=1}, \qquad (5.32)
$$
\ne for $0 < k < r$

where, for $0 \leq k \leq r$,

$$
A_{k,r}\left(t^{\beta}\sum_{j=1}^{\infty}\lambda_{j}\left(z^{j}-1\right)\right)\Big|_{z=1}
$$
\n
$$
=\sum_{m=0}^{k}\binom{k}{m}\left(-t^{\beta}\sum_{j=1}^{\infty}\lambda_{j}\left(z^{j}-1\right)\right)^{k-m}\frac{d^{r}}{dz^{r}}\left(t^{\beta}\sum_{j=1}^{\infty}\lambda_{j}\left(z^{j}-1\right)\right)^{m}\Big|_{z=1}
$$
\n
$$
=t^{k\beta}\frac{d^{r}}{dz^{r}}\left(\sum_{j=1}^{\infty}\lambda_{j}\left(z^{j}-1\right)\right)^{k}\Big|_{z=1}
$$
\n
$$
=t^{k\beta}\sum_{n_{1}+...+n_{k}=r}\binom{r}{n_{1},...,n_{k}}\prod_{i=1}^{k}\frac{d^{n_{i}}}{dz^{n_{i}}}\left(\sum_{j=1}^{\infty}\lambda_{j}\left(z^{j}-1\right)\right)\Big|_{z=1}
$$
\n
$$
=t^{k\beta}\sum_{n_{1}+...+n_{k}=r}\binom{r}{n_{1},...,n_{k}}\prod_{i=1}^{k}\sum_{j=1}^{\infty}\lambda_{j}\left(j-1\right)\cdots\left(j-n_{i}+1\right)
$$
\n
$$
=t^{k\beta}\delta^{k}\sum_{n_{1}+...+n_{k}=r}\binom{r}{n_{1},...,n_{k}}\prod_{i=1}^{k}\mathbb{E}(Y^{(n_{i}}).
$$
\n(5.34)

Also, as seen in (5.29),

$$
M_{\beta}^{(k)}\left(t^{\beta}\sum_{j=1}^{\infty}\lambda_j\left(z^j-1\right)\right)\Big|_{z=1}=\frac{k!}{\Gamma(k\beta+1)}.\tag{5.35}
$$

The result now follows by using (5.33) - (5.35) in (5.32) .

5.5. Long Range Dependence Properties. Here, we discuss about long-range property (LRD) and short-range dependence property (SRD) of the $TFCPP$. The LRD property of the FPP is established by Biard and Saussereau [9]. We use the following definitions (see Maheshwari and Vellaisamy [31], p. 991.) for a non-stationary stochastic process $\{X(t)\}_{t>0}$.

Definition 5.2. Let $s > 0$ be fixed and $t > s$. Let $\{Z(t)\}_{t\geq 0}$ be a stochastic process whose correlation function satisfies

$$
Corr(Z(s), Z(t)) \sim m(s)t^{-d}, \text{ as } t \to \infty,
$$

for some function $m(s) > 0$. The process $\{X(t)\}_{t>0}$ is said to have the LRD property if $d \in (0,1)$ and the SRD property if $d \in (1, 2)$.

The mean and variance of inverse β -stable subordinator are given by (see Leonenko et al., [23], Equation (8) and Equation (11))

$$
\mathbb{E}\left(E_\beta(t)\right)=\frac{t^\beta}{\Gamma(\beta+1)}
$$

and

$$
Var(E_{\beta}(t)) = t^{2\beta} Q(\beta),
$$

where $Q(\beta)$ is defined in (5.10).

Also, for $0 < s \le t$, we have from (5.20) and (5.11),

$$
Cov(H_{\beta}(s, \lambda), H_{\beta}(t, \lambda)) = Var(Y_1)qs^{\beta} + \mathbb{E}^2(Y_1) Cov(N_{\beta}(s, \delta), N_{\beta}(t, \delta))
$$

= Var(Y_1)qs^{\beta} + \mathbb{E}^2(Y_1) (qs^{\beta} + \delta^2 Cov(E_{\beta}(s), E_{\beta}(t)))
= qs^{\beta} \mathbb{E}(Y_1^2) + \delta^2 \mathbb{E}^2(Y_1) Cov(E_{\beta}(s), E_{\beta}(t)). \t(5.36)

For large t , it is known that (see Leonenko et al. [23])

$$
Cov(E_{\beta}(s), E_{\beta}(t)) \sim \frac{s^{2\beta}}{\Gamma(2\beta + 1)}.
$$
\n(5.37)

Thus, form (5.37) in (5.36), we get

$$
Cov(H_{\beta}(s,\lambda), H_{\beta}(t,\lambda)) \sim \mathbb{E}(Y_1^2) + \delta^2 \mathbb{E}^2(Y_1) \frac{s^{2\beta}}{\Gamma(2\beta+1)},
$$
\n(5.38)

as $t \to \infty$.

Theorem 5.5. The $TFCPP$ $H_{\beta}(t, \lambda)$ possesses the LRD property.

Proof. For fixed $s > 0$ and large t, we have, from (5.38) and (5.19),

$$
\begin{split} \text{Corr}\left(H_{\beta}(s,\boldsymbol{\lambda}), H_{\beta}(t,\boldsymbol{\lambda})\right) \\ &= \frac{\text{Cov}\left(H_{\beta}(s,\boldsymbol{\lambda}), H_{\beta}(t,\boldsymbol{\lambda})\right)}{\sqrt{\text{Var}\left(H_{\beta}(s,\boldsymbol{\lambda})\right)}\sqrt{\text{Var}\left(H_{\beta}(t,\boldsymbol{\lambda})\right)}} \\ &\sim \frac{\mathbb{E}(Y_1^2) + \delta^2 \mathbb{E}^2(Y_1) \frac{s^{2\beta}}{\Gamma(2\beta+1)}}{\left\{H_{\beta}(s,\boldsymbol{\lambda})\left[\mathbb{E}(Y_1^2)q t^{\beta} + \delta^2 \mathbb{E}^2(Y_1) t^{2\beta} Q(\beta)\right]\right\}^{1/2}} \\ &\sim Z(s)t^{-\beta}, \text{ for large } t, \end{split}
$$

where

$$
Z(s) = \frac{\mathbb{E}(Y_1^2) + \delta^2 \mathbb{E}^2(Y_1) \frac{s^{2\beta}}{\Gamma(2\beta+1)}}{\{\delta^2 H_\beta(s, \lambda) \mathbb{E}^2(Y_1) Q(\beta)\}^{1/2}}.
$$

Since $0 < \beta < 1$, the *TFCPP* possesses the LRD property. \Box

Finally, we obtain the fractional Kolmogorov forward type equations for the PMF of $H_\beta(t,\lambda)$. Let

$$
\mathbb{P}\left\{H_{\beta}(t,\lambda)=n\right\}=q(n|t,\lambda), \quad n\geq 0,
$$

$$
\mathbb{P}(S_k=n)=h_k(n), \quad n\geq 1,
$$

be respectively the *PMF* of the *TFCPP* and $S_k = \sum_{j=1}^k Y_j, k \ge 1$.

Theorem 5.6. Let $0 < \beta \le 1$ and ∂_t^{β} be the Caputao-fractional derivative defined in (2.14). The PMF $q(n|t, \lambda)$ of the $TFCPP$ satisfies the following fractional differential equation:

$$
\partial_t^{\beta} q(n|t, \lambda) = \begin{cases}\n-\delta p_{\beta}(0|t, \lambda), & \text{if } n = 0, \\
-\delta q(n|t, \lambda) + \delta \sum_{k=1}^n h_k(n) p_{\beta}(k-1|t, \delta), & \text{if } n \ge 1,\n\end{cases}
$$
\n(5.39)

where $p_\beta(n|t, \lambda)$ denotes the PMF of the fractional Poisson process.

Proof. First note that

$$
q(0|t,\boldsymbol{\lambda}) = \mathbb{P}\left\{H_{\beta}(t,\boldsymbol{\lambda})=0\right\} = p_{\beta}(0|t,\delta)
$$

and so

$$
\partial_t^{\beta} q(0|t, \boldsymbol{\lambda}) = \partial_t^{\beta} p_{\beta}(0|t, \delta) = -\delta p_{\beta}(0|t, \delta),
$$

which follows form (5.6) . When $n > 1$,

$$
q(n|t, \lambda) = \sum_{k=1}^{n} \mathbb{P}(S_k = n) \mathbb{P}(N_{\beta}(t, \delta) = k)
$$

$$
= \sum_{k=1}^{n} h_k(n) p_{\beta}(k|t, \delta).
$$

This implies, using (5.6),

$$
\partial_t^{\beta} q(n|t, \lambda) = \sum_{k=1}^n h_k(n) \partial_t^{\beta} p_{\beta}(k|t, \delta)
$$

= $-\delta \sum_{k=1}^n h_k(n) [p_{\beta}(k|t, \delta) - p_{\beta}(k-1|t, \delta)]$ (using (5.6))
= $-\delta q(n|t, \lambda) + \delta \sum_{k=1}^n h_k(n) p_{\beta}(k-1|t, \delta),$

where $p_\beta(n|0, \delta) = 1$ if $n = 0$ and is zero if $n \ge 1$. This proves the result. \Box

Similar results for $H_\beta(t, \boldsymbol{\lambda}^{(k)})$ can be obtained by replacing δ by δ_k .

Remark 5.2. Let $\tilde{N}_{\beta}(t, \delta) = N(D_{\beta}(t), \delta)$ be the space fractional Poisson process. One could study, similar to $TFCPP$, the space fractional compound Poisson process $(SFCPP)$ (see, for example, Orsingher and Polito [28], Begin and Vellaisamy [6])

$$
S_{\beta}(t,\boldsymbol{\lambda}) \stackrel{\mathcal{L}}{=} \sum_{j=1}^{\tilde{N}_{\beta}(t,\delta)} Y_j \stackrel{\mathcal{L}}{=} G(D_{\beta}(t),\delta), \qquad (5.40)
$$

by subordinating the $G(t, \lambda)$ to stable subordinator $D_{\beta}(t, \lambda)$ and derive the corresponding results. Also, the study of time-changed versions of such subordinated processes also could be of interest.

REFERENCES

- [1] D. Applebaum, *Lévy Processes and Stochastic Calculus*, second edition, Cambridge University Press, Cambridge, 2009.
- [2] G. E. Andrews, R. Askey and R. Roy, *Special Functions*, Cambridge University Press, Cambridge, 1999.
- [3] L. Beghin, *Fractional gamma processes and fractional gamma-subordinated processes,* arXiv:1305.1753 [math.PR] (2013).
- [4] L. Beghin and C. Macci, *Fractional discrete processes: compound and mixed Poisson representations,* J. Appl. Probab. 51(1) (2014), pp. 9–36.
- [5] L. Beghin and E. Orsingher, *Fractional Poisson processes and related planar random motions*, Electron. J. Probab. 14 (2009), pp. 1790–1827.
- [6] L. Beghin and P. Vellaisamy, *Space-fractional versions of the negative binomial and Polya-type processes*, Methodol. Comput. Appl. Probab. 20 (2018), No. 2, 463–485.
- [7] L. Beghin and C. Macci *Multivariate fractional Poisson processes and compound sums*, Adv. in Appl. Probab. 48 (2016), No. 3, 691–711.
- [8] L. Beghin and C. Macci *Non-central moderate deviations for compound fractional Poisson processes*, Statist. Probab. Lett. 185 (2022), Paper No. 109424, 8 pp.
- [9] R. Biard and B. Saussereau, *Fractional Poisson process: long-range dependence, applications in ruin theory*, J. Appl. Probab. 51(3) (2014), pp. 727–740.
- [10] L. Comtet, *Advanced Combinatorics: The Art of Finite and Infinite Expansions*. Dordrecht: D. Reidel Publishing Co., 1974.
- [11] P. C. Consul and C. G. Jain, *A generalization of the Poisson distribution*, Technometrics 15 (1973), 791–799.
- [12] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, ´ *Higher Transcendental Functions*, McGraw-Hill Book Company Inc., Vol. III, New York-Toronto-London, 1955.
- [13] R. Gara, E. Orsingher and M. Scanivo, *Some probabilistic properties of fractional point processes*, Stoch. Anal. Appl. 35 (2017), no. 4, 701–718.
- [14] K. K. Kataria, and P. Vellaisamy, *On distributions of certain state-dependent fractional point processes*, J. Theoret. Probab., 3 (2019), pp. 1554–1580.
- [15] K. K. Kataria, and P. Vellaisamy, *On densities of the product, quotient and power of independent subordinators*, J. Math. Anal. Appl. 462 (2018), pp. 1627–1643.
- [16] K. K. Kataria, and P. Vellaisamy, *On the convolution of Mittag-Leffler distributions and its applications to fractional point processes*, Stoch. Anal. Appl., No. 1 (2019), pp. 115–122
- [17] K. K. Kataria, and M. Khandakar, *Convoluted fractional Poisson process*, ALEA Lat. Am. J. Probab. Math. Stat., 18 (2021), No. 2, 1241–1265.
- [18] K. K. Kataria, and M. Khandakar, *Generalized fractional counting process*, J. Theoret. Probab. 35 (2022), no. 4, 2784–2805.
- [19] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, Elsevier Science B.V., Amsterdam, 2006.
- [20] T. J. Kozubowski and K. Podgórski, *Distributional properties of the negative binomial Lévy process*, Probab. Math. Statist. 29 (2009), pp. 43–71.
- [21] N. Laskin, *Fractional Poisson process*, Commun. Nonlinear Sci. Numer. Simul. 8 (2003), pp. 201–213.
- [22] N. Laskin, *Some applications of the fractional Poisson probability distribution*, J. Math. Phys. 50 (2009), pp. 113513.
- [23] N. N. Leonenko, M. M. Meerschaert, R. L. Schilling and A. Sikorskii, *Correlation structure of time-changed Levy ´ processes*, Commun. Appl. Ind. Math. 6 (1) (2014), p. e-483.
- [24] F. Mainardi, R. Gorenflo and E. Scalas, *A fractional generalization of the Poisson processes*, Vietnam J. Math. 32 (2004), pp. 53–64.
- [25] M. M. Meerschaert, E. Nane and P. Vellaisamy, *The fractional Poisson process and the inverse stable subordinator*, Electron. J. Probab. 3 (2011), pp. 1600–1620.
- [26] M. M. Meerschaert, E. Nane and P. Vellaisamy, *Fractional Cauchy problems on bounded domains* , Ann. Probab. 3 (2009), pp. 979–1007.
- [27] M. M. Meerschaert and P. Straka, *Inverse stable subordinators*, Math. Model. Nat. Phenom. 8 (2013), pp. 1–16.
- [28] E. Orsingher and F. Polito, *The space-fractional Poisson process*, Statist. Probab. Lett. 82 (2012), pp. 852–858.
- [29] K. Sato, *Lévy Processes and Infinitely Divisible Distributions*, Cambridge University Press, Cambridge, 1999.
- [30] N. M. Temme, *Special functions*, John Wiley & Sons Inc., New York, 1996.
- [31] A. Maheshwari, and P. Vellaisamy, *On the long range dependence of fractional Poisson and negative binomial processes*. J. Appl. Prob. 37 (2016), pp. 989-1000.
- [32] A. Maheshwari, and P. Vellaisamy. *Fractional Poisson process time-changed by Levy subordinator and its inverse ´* . J. Theoret. Probab. 32 (2019), pp. 1278—1305
- [33] A. Maheshwari, and P. Vellaisamy, *Non-homogeneous space-time fractional Poisson processes*. Stoch. Anal. Appl. 37 (2019), pp. 137–154.
- [34] A. N. Philippou, D. L. Antzoulakos and G. A. Tripsiannis, *Multivariate distributions of order* k*.* Statist. Probab. Lett. 7 (1988), 207–216.
- [35] R. N. Pillai, *On Mittag-Leffler functions and related distributions*. Ann. Inst. Statist. Math. 1 (1990), pp. 157–161.
- [36] T. R. Prabhakar, *A singular integral equation with a generalized Mittag-Leffler function in the Kernel*. Yokohama Math. J. (1971), pp. 7–15.
- [37] W. P. Johnson (2002) *The curious history of Faa di Bruno's Formula `* , *The American Mathematical Monthly*.109(3),217–234.
- [38] F. W. Steutel and K. Van Harn. *Infinite Divisibility of Probability Distributions on the Real Line*. Marcel Dekker, New York, (2004).
- [39] K. K. Kataria, P. Vellaisamy, and V. Kumar. *A probabilistic interpretation of the Bell polynomials.* Stochastic Analysis and Applications, Stoch. Anal. Appl. 4 (2022), pp. 610-622.
- [40] P. Vellaisamy and A. Maheshwari. *Fractional negative binomial and Polya processes ´* . Probab. Math. Statist. 38 (2018), pp. 77–101. DOI: 10.19195/0208-4147.38.1.5

DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY, UC SANTA BARBARA, SANTA BARBARA, CA, 93106, USA.

DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY, UC SANTA BARBARA, SANTA BARBARA, CA, 93106, USA.

Email address: pvellais@ucsb.edu, ichiba@pstat.ucsb.edu