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[1] Estimating CO2 fluxes from the pattern of atmospheric
CO2 concentrations with atmospheric transport models is an
ill-posed inverse problem, whose solution is stabilized using
prior information. Weights assigned to prior information
and to CO2 concentrations at different locations are
quantified by parameters that are not well known, and
differences in the choice of these parameters contribute to
differences among published estimates of the regional
partitioning of CO2 fluxes. Following the TransCom 3
protocol to estimate CO2 fluxes for 1992–1996, we find
that the partitioning of the CO2 sink between land and
oceans and between North America and Eurasia depends on
parameters that quantify the relative weight given to prior
flux estimates and the extent to which CO2 concentrations at
different stations are differentially weighted. Parameter
values that minimize an estimated prediction error can be
chosen by generalized cross-validation (GCV). The GCV
parameter values yield fluxes in northern regions similar to
those obtained with the TransCom parameter values, but the
GCV fluxes are smaller in the poorly constrained equatorial
and southern regions. INDEX TERMS: 0322 Atmospheric

Composition and Structure: Constituent sources and sinks; 1610

Global Change: Atmosphere (0315, 0325); 3260 Mathematical

Geophysics: Inverse theory; 3337 Meteorology and Atmospheric

Dynamics: Numerical modeling and data assimilation.

Citation: Krakauer, N. Y., T. Schneider, J. T. Randerson, and

S. C. Olsen (2004), Using generalized cross-validation to select

parameters in inversions for regional carbon fluxes, Geophys. Res.

Lett., 31, L19108, doi:10.1029/2004GL020323.

1. Introduction

[2] To complement direct measurements of, for example,
land or ocean carbon uptake, inverse modeling is widely
used to estimate CO2 fluxes from the observed spatial and
temporal variations of atmospheric CO2 concentrations.
Different inverse modeling studies, however, have reached
apparently contradictory conclusions on the longitudinal
and land/ocean partitioning of CO2 fluxes. For example,
studies using similar data sets have variously placed a sink
of order 1 Pg C yr�1 in temperate North America [Fan et
al., 1998], in north Asia [Bousquet et al., 1999a], or in the
north Atlantic and Pacific [Rayner et al., 1999].

[3] Estimating CO2 fluxes involves the solution of a
linear system

Ax ¼ bþ E; ð1Þ

where b is a vector of observed variations in CO2

concentrations, E is a vector of random errors with zero
mean and with covariance matrix cov(E) = Cb, x is an
unknown vector of CO2 fluxes, and A is a transport operator
that relates CO2 fluxes to CO2 concentrations.
[4] The solution of this inverse problem is generally not

well constrained by the CO2 concentrations (i.e., the
problem is ill-posed) and must be stabilized through the
use of prior information or regularity constraints [e.g.,
Hansen, 1998]. Estimates of CO2 fluxes are usually con-
strained to be close to CO2 fluxes specified a priori [e.g.,
Enting, 2002] by minimizing an object function of the form

J ¼ Ax� bð ÞTC�1
b Ax� bð Þ þ l2 x� x0ð ÞTC�1

x x� x0ð Þ; ð2Þ

consisting of the sum of the least squares object function
(first term) and a penalty term (second term) that penalizes
deviations of the solution x from a given prior estimate x0.
The covariance matrix Cx represents uncertainty about the
prior estimate x0, and the regularization parameter l sets the
weight of the term involving the prior information relative
to the least squares term. (See also the online supplement1.)
[5] In CO2 inversions, the covariance matrices Cb and Cx

are usually taken to be diagonal, with diagonal entries cb
and cx equal to assumed variances of the local CO2

concentration errors and of the regional prior flux distribu-
tions. The prior fluxes x0 and their assumed variances cx are
typically chosen ad hoc from a range of reasonable values,
as are the error variances cb of the CO2 concentrations. It is
known that inversion results can sensitively depend on the
choice of such inversion parameters [Bousquet et al., 1999b;
Rayner et al., 1999; Law et al., 2003], but a unified
approach to quantifying this source of uncertainty and to
choosing inversion parameters systematically has not been
pursued.
[6] Several methods are available to choose inversion

parameters systematically [e.g., Hansen, 1998, chapter 7].
One method applied in inverse problems in such fields as
meteorological data assimilation [Wahba et al., 1995] and
geodesy [Ditmar et al., 2003] is generalized cross-validation
(GCV) [Golub et al., 1979]. A form of leave-one-out cross-
validation, GCV chooses parameters by minimizing an
estimated mean-squared error of predictions with the model
specified by the parameters. For the CO2 problem, this
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means that GCV chooses inversion parameters by minimiz-
ing an estimated mean-squared error of predictions of CO2

concentrations given estimated CO2 fluxes and the model of
atmospheric transport. Although such predictions are gen-
erally not the objective of inverse modeling of CO2 fluxes,
GCV provides a useful heuristic for choosing inversion
parameters.
[7] We applied GCV to estimate two parameters in the

TransCom 3 framework for inverse modeling of CO2 fluxes
[Gurney et al., 2002]. The two inversion parameters con-
sidered control the weighting of the prior flux estimates and
the relative magnitudes of error variances of CO2 concen-
trations at different locations. We examine how the CO2

flux estimates depend on the values assigned to these
parameters, choose parameter values by GCV, and discuss
how the flux estimates thus obtained differ from those
obtained with the original TransCom parameter values.

2. Methods

2.1. Inverse Modeling Framework

[8] The TransCom 3 annual-mean inversion [Gurney et
al., 2002] uses measured CO2 concentrations to estimate
CO2 fluxes from 11 land and 11 ocean regions after
subtracting the estimated effects of fossil fuel emissions,
of ocean carbon uptake, and of covariances between the
seasonality of the biosphere and that of atmospheric trans-
port (the seasonal ‘‘rectifier effect’’). The data used are the
mean 1992–1996 CO2 concentrations at 76 stations and the
mean growth rate of atmospheric CO2 concentrations during
that period, the latter constraining the sum of the regional
fluxes. We followed the TransCom 3 protocol except for
excluding one station, Darwin, whose mean concentration is
anomalously high and apparently reflects local sources
[Law et al., 2003], leaving 75 stations. (The TransCom 3
data and flux patterns are available at http://transcom.
colostate.edu/TransCom_3/T3_Input_Data/. The prior
fluxes and variances used in the TransCom 3 inversion
are given in the online supplement to Gurney et al. [2002].)
[9] The transport operator A for this inverse problem

specifies the modeled impact of the magnitude of each of
the TransCom 3 regional flux patterns on each data point.
We modeled atmospheric CO2 transport with the Model of
Atmospheric Transport and Chemistry (MATCH) [Rasch et
al., 1994; Mahowald et al., 1997], run at T21 resolution
(about 5.5� * 5.5�) with 26 vertical levels. The model was
driven with one year of winds from a simulation with the
National Center for Atmospheric Research’s Community
Climate Model version 3 [Kiehl et al., 1998]. In this
configuration, MATCH has been used to study column
CO2 variability [Olsen and Randerson, 2004]. Other con-
figurations of MATCH participated in the TransCom model
intercomparisons [Gurney et al., 2003].

2.2. Parameters Varied

[10] Like other recent inverse modeling studies,
TransCom 3 uses prior estimates of regional CO2 fluxes
to stabilize the flux estimates. The weighting assigned to the
prior estimates of regional CO2 fluxes determines the
relative influence of the data and of the prior estimates on
the flux estimates. Assigning a very large weight to the prior
estimates leads to a solution that is close to the prior
estimates and fits the data poorly; a very small weight leads

to an unstable solution that typically exhibits spurious large-
amplitude fluxes.
[11] Here we scale the weighting given to the prior

estimates by a parameter l that we vary from 0.5 to
3 (equation (2)). The parameter l can be interpreted as
the regularization parameter in what is known as Tikhonov
regularization or ridge regression [e.g., Hansen, 1998,
chapter 5]. Alternatively, in a Bayesian inversion frame-
work, the parameter l can be thought of as a scaling factor
of the prior standard deviations, so that instead of the error
variances cx,0 assigned by TransCom to the prior estimates,
the error variances are of the form cx = l�2cx,0. (See also the
online supplement.)
[12] The relative magnitudes of the error variances cb

assigned to the CO2 concentration data control the relative
weights of CO2 concentrations at different locations in the
inverse model. The data error variances should reflect
uncertainty due to error in the transport model and error
in the regional source patterns assumed in the inversion as
well as measurement and calibration error [Kaminski et al.,
2001]. (Estimated errors in the forward model can be taken
into account explicitly in the solution of inverse problems
[Van Huffel and Vandewalle, 1989; Golub et al., 1999].
Using such methods to estimate CO2 fluxes appears to be
worth pursuing, but we will not do so here.)
[13] Investigators have typically either assumed the same

error variance for all stations [Fan et al., 1998; Rayner et al.,
1999] or have, as in TransCom, taken the error variance at
each station to be proportional to the high-frequency variance
of CO2 concentrations at the station. In fact, the error
variance may well be the sum of components that scale in
each of the two ways [cf. Rödenbeck et al., 2003]. Therefore,
we allow a gradation from uniform station error variances cb,e
to the TransCom error variances cb,0 by varying a parameter t
between 0 (uniform error variances) and 1 (TransCom error
variances). The i-th station variance is given by cb

i =
(cb,0

i )t(cb,e
i )1�t, and the magnitude of the uniform error

variance is chosen such that the diagonal covariance matrices
Cb,e and Cb,0 have the same determinant.

3. Results

3.1. Effects of Parameter Choices on Flux Estimates

[14] The large northern land sink inferred in the TransCom
3 inversions is stable with respect to changing the parameter
values, decreasing by�25% (0.7 Pg C yr�1) with increasing
l (Figure 1a). The longitudinal distribution of the sink
changes as t is varied (an effect noted by Gurney et al.
[2002] as explaining part of the difference between the
TransCom flux distribution and that inferred by Fan et al.
[1998]). Most of this shift is due to two stations at the ITN
tower in North Carolina [Bakwin et al., 1995], whose low
CO2 concentrations imply a large North American sink
but which are assigned large errors, hence little weight, in
TransCom. At low t, the North American sink is inferred to
be higher by 0.3 PgC yr�1 (Figure 1b) and the estimated sinks
in Europe (Figure 1c) and Asia correspondingly decrease.
[15] By contrast, the estimated flux distribution in

equatorial and southern regions depends strongly on the
parameter values chosen. Changing l can shift fluxes of
2 Pg C yr�1 between equatorial and southern land regions
(Figures 1d and 1e), with particularly large flux magnitudes
at low l, where the prior constraints are weaker.
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[16] The sensitivity of the equatorial and southern
regions’ flux estimates to parameter choices affects the
global partitioning of fluxes between land and ocean. The
total ocean flux estimate varies by up to 0.8 Pg C yr�1 as t is
changed (Figure 1f), with compensating changes in the land
flux estimate. (Because of the global growth rate constraint,
the sum of land and ocean fluxes stays approximately
constant at �2.8 Pg C yr�1 as inversion parameters are
varied.)

3.2. Choosing Parameters by GCV

[17] The GCV function is minimized when t = 0.7 and
l = 2.1 (Figure 2). TransCom’s error model (t = 1) or an
intermediate error model (0 < t < 1) thus seems more
appropriate than an error model with equal error variances
for all stations (t = 0). The GCV choice of l implies that the
TransCom standard deviations of the prior fluxes may be
too large by about a factor of 2, intimating that TransCom’s
estimated CO2 fluxes overfit the data.
[18] For northern regions, using the GCV parameter

choices in place of the TransCom parameter values changes
the estimated fluxes by less than 20% (Figures 1a–1c). For
many equatorial and southern regions (Figures 1d and 1e),
however, the GCV flux estimates are much closer to the
prior values than the TransCom estimates, suggesting that
the station network provides little information about CO2

fluxes in these regions.

4. Implications for Future Inverse
Modeling Studies

[19] Parameter-choice methods such as GCV offer some
scope for reducing uncertainty in and variations between
inverse modeling studies. Although selecting what
parameters to estimate will remain arbitrary, the fact that
even our restricted variation of parameters resulted in
differences in estimated fluxes that are comparable to the
TransCom inter-model variation and to the a posteriori

uncertainties estimated from the data and prior flux uncer-
tainties [Gurney et al., 2002] suggests that choosing param-
eters systematically is necessary.
[20] GCV could be particularly useful for choosing

relative weights for blocks of data from different sources
[Gao, 1994]. As inversions for carbon fluxes add additional
types of data, such as CO2 isotopic composition [Ciais et
al., 1995; Rayner et al., 1999], spectroscopically determined
column CO2 [Yang et al., 2002], and measurements of other
gases such as CO and O2, GCV can be used to select a
weighting for each type that reflects not only measurement
accuracies but also model capability to simulate each type
of data.

5. Conclusion

[21] The choice of parameters can significantly contribute
to variations in CO2 flux estimates obtained in inverse
modeling studies. Methods such as GCV that choose
parameters systematically by optimizing a given objective

Figure 1. CO2 fluxes (Pg C yr�1) as a function of the inversion parameters. The contour interval is 0.1 Pg C yr�1 in
Figures 1a–1c and 1f and 0.5 Pg C yr�1 in Figures 1d–1e. Positive values represent flux into the atmosphere. The circle
marks the parameter values chosen by generalized cross-validation. The square marks the original TransCom parameter
values. (a) Sum of the TransCom northern land regions; (b) North America (sum of the TransCom temperate North America
and boreal North America regions); (c) the Europe TransCom region; (d) sum of the TransCom equatorial land regions
(northern South America, northern Africa, and southeast Asia); (e) sum of the TransCom southern land regions (southern
South America, southern Africa, and Australia); (f) sum of ocean regions (including the Takahashi et al. [2002] fluxes that
were presubtracted for the inversion).

Figure 2. Generalized cross-validation (GCV) function for
the TransCom inversion. The circle marks the function
minimum. The square marks the original TransCom
parameter values.
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function can improve inversion results. We recommend that
uncertainty in inversion parameters be considered in future
inverse modeling protocols and that formal parameter
choice methods be used where appropriate.
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