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Abstract

Analogy has always been considered a mechanism for
interrelating distinct parts of the world, but it is perhaps just
as important to consider how analogy might be used to break
the world into comprehensible parts. The MAGI program
uses the Structure-Mapping Engine (SME) to flexibly and
reliably match a description against itself. The resulting
mapping pulls out the two maximally consistent parts of the
given description. MAGI then divides out the parts of the
mapping and categorizes the mapping as symmetrical or
regular. These parts may then be used as the basis for new
comparisons. We theorize that MAGI models how people
use symmetry and regularity to facilitate the encoding task.
We demonstrate this with three sets of examples. First, we
show how MAGI can augment traditional axis detection and
reference frame adjustment in geometric figures. Next, we
demonstrate how MAGI detects visual and functional
symmetry in logic circuits, where symmetry of form aids
encoding symmetry of function. Finally, to emphasize that
regularity and symmetry detection is not simply visual, we
show how MAGI models some aspects of expectation
generation in story understanding. In general, MAGI shows
symmetry and regularity to be not only pretty, but also
cognitively valuable.

Introduction: Why regularity and symmetry
aren’t (just) pretty

Regularity and symmetry are phenomena strangely divided
between disciplines,  Researchers in computer vision
(Witkin & Tenenbaum, 1983) and perceptual psychology
(Palmer, 1985; Rock, 1983) have long recognized
regularity and especially symmetry as important, but have
understood it strictly as a perceptual effect. Although
rescarchers in analogy might easily agree that symmetry
and regularity must involve some form of self-similarity,
this community has produced little work in the area,
perhaps due to an emphasis on problem solving and
learning, rather than encoding.

This paper is an attempt to bridge this gap by recasting
symmetry and regularity as analogical processes that
operate on structured but undivided representations in the
world. There are two central theoretical claims in the
MAGI model. The first is that regularity and symmetry are
like analogy--they work by mapping a maximal common
set of structurally interconnected relations, but within a
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single description instead of between separate base and
target descriptions. The second is illustrated by Figure 1.
Regularity and symmetry are not strictly perceptual, but
may be found in any task involving the encoding of
relational knowledge structures. For example, regularity
and symmetry may be found imperfect figures (a), in
diagrams (b), or in story narratives (c). To support these
two claims, we have constructed MAGI, a system that uses
SME to detect regularity and symmetry, and can handle all
these cases.

R [_Do——- ~Q

SR Latch Diagram

A. Goblet figure B.

C. Representation o{ The Gift of the Magi

bv O. Henrv (simplified example)
Figure 1: Three types of symmetry handled by MAGI
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Self-similarity Mapping Stage

Map a description to itself using the I-SME algorithm (Forbus, Ferguson & Gentner, to appear) based on the literal
similarity algorithm in SME (Falkenhainer, Forbus, & Gentner, 1989). In addition to the constraints provided by I-SME,
block matches between an entity or expression and itself, but allow such an item to match to itself when it is aligned as
the argument of two non-identical expressions.

Mapping Analysis Stage
Create mirrored mapping pairs. For each mapping M;, create a pair of mirrored mappings. A mirrored mapping pair

(M;.N;) is a pair of mappings such that each mapping kemnel (submapping) in M; between two expressions has a twin
mapping kernel in N; that maps those expressions in the opposite direction. In many cases for regular mappings, SME
will produce the mirrored mappings as two separate, equally-scored mappings (see text). Otherwise, M; must be split to
produce the mirrored mapping pair.

To split a single mapping. Divide mapping into pairs of mirrored mapping kernels, starting with the largest kemnel.
When kernels overlap with previously paired kernels, align the left-right pairing such that the left side of the new pair has

maximum overlap of match hypotheses with left sides of those already paired.

i i irs, For each mirrored mapping pair (M;,N;), use M;. Collect symmetry
core SR by collecting all kernels in M; that contain at least one pair of symmetrically related entities. The symmetry set
§; is then defined recursively as all root mappings in M; that are either in SR; or overlap S;.

et within mirror

Figure 2: Summary of MAGI Algorithm

The MAGI system and Algorithm

How does MAGI work? MAGI uses the Structure Mapping
Engine (SME) 10 match a structured description to itself,
taking the description as both the base and target. MAGI
then uses the resulting mapping to find two maximally
similar subareas of the original description, and classifies
the mapping as symmetrical or regular,

Figure 1(c) is illustrative of the process. This figure
shows the results of a MAGI run on a simplified example
representation of its namesake, O. Henry's short story "The
Gift of the Magi." (1992) In this portion of the story, a
husband sells his watch to buy an expensive comb for his
wife's hair, while the wife sells her hair to purchase a chain
for her husband's watch. This single highly-interconnected
plotline, when presented to MAGI, produces a mapping
that divides the story into two symmetrical subplots, one
concerning the husband's actions and the other the wife's,
MAGI then interprets the mapping as symmetrical, rather
than regular, by finding a core of symmetrical matches
between the two MOTIVE expressions, which are
augmented by regular matches between the HELD-BY and
EXPENSIVE expressions. '

This section explains the algorithm MAGI uses,
beginning with the new version of the Structure Mapping
Engine (SME) at the core of MAGI, then moving to the

' A note on the distinction between regularity and symmetry.
Regularity in descriptions comes from the self-similarity of one
part to another part. Symmelry is a subtype of regularity that
maps one part to another part, but also contains a “core” of
relations that map some entities symmetrically, i.c. when A is
mapped 1o B, B is also mapped to A. "Bob likes ice cream and
Susan like cake" is regular. "Bob knows Susan and Susan knows
Bob" is symmetric. Likewise, when the core symmetry is linked
to other regular expressions, the result is a symmeiric as a whole.
"Bob knows Susan likes cake, and Susan knows Bob likes ice
crcam” is, as a whole, symmetric, even though the mapping
between cake and ice cream is regular.
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extensions MAGI makes to SME, and finally ending with
the routines MAGI uses to analyze the mapping and
classify the mapping as either regular or symmetric. Figure
2 contains a summary.

The Self-Similarity Mapping

The first stage of MAGI simple uses [-SME (Forbus,
Ferguson & Gentner, to appear) to create a mapping
between a description and itself, using the literal similarity
rules described in (Falkenhainer, Forbus & Gentner, 1989)
which are modified to discourage matches between an item
and itself. This is because the literal similarity algorithm,
if left unmodified, would produce a verbatim mapping, with
every description item (i.e. every expression and entity)
mapped to itself. To avoid this rather uninformative result,
[-SME could simply block all self-matches, but this also has
unfortunate  consequences, since self-matches are
sometimes needed. For example, suppose that I wanted to
find regularity in a story that began with Bob missing his
train and walking to the Art Institute in Chicago, and
Susan missing a movie and also visiting the Institute. The
intuitive regularity in the story maps Bob to Susan, and
their mutual misfortunes to each other, but also maps the **
Insutute to iselfl. The natural interpretation of the regularity in the story
would be missed if we blocked all self-maiches. Because of
cases like this, MAGI takes a flexible approach by allowing
self-matches only when the self-match occurs due to the
alignment of two non-identical expressions. So (to return
to our story) given the expressions (TRANS Bob Institute)
and (TRANS Susan Institute), Bob could not be self-
mapped, nor could Susan, but Institute could because the
two non-identical TRANS expressions align it as the
second argument”  MAGI's matching rules are a

?Commutative expressions, such as (EQUAL-LENGTH linel
line2), or (MARRIED Jim Della), are a special case. Such an
expression can be matched to itself, but only if the arguments are
reversed.



compatible extension of I-SME's rules, as they do not
modify I-SME’s mapping of separate base and target
descriptions.

symmetric kernel

regular kernels
|

L
N R

Figure 3 Mapping kernels from Figure 1(c).
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The Mapping Analysis Stage

Afiter the mappings are created, they must be analyzed.
This involves several steps. First, each mapping must be
split into a pair into "mirrored” mappings®. The mappings
produced by the self-similarity stage are "mirrored” with
one half from the base to the target, and another from the
target to the base. For example, for the Magi story, (SELL
wife hair) is mapped to (SELL husband watch), but
(SELL husband watch) is also mapped to (SELL wife
hair). Pairing them removes this redundancy.

After a mapping is paired into two mirrored mappings,
the properties of either of the mirrored mappings
determines the type of that mapping. Symmetric mappings
will contain at least one kernel that will symmetrically
match at least one pair of entities. This set of kernels is
called the symmetry core of the mapping. All kernels that
are not part of the symmetry core are considered regular.
The symmetry core propagates symmetry 1o all kernels that
overlap it. Thus, the symmetry set of the mapping consists
of all kernels that are either in the symmetry core, or
overlap a kernel within the symmetry set. If all the kemels
of the mapping are in the symmetry set, the mapping itself
is symmetrical. If some kemels are in the symmetry set,
but not all, the mapping is partially symmetrical. Finally,
if there are no kemels in the symmetry core, and thus none
in the symmetry set, the mapping is regular.

Returning to our initial example from O. Henry, Figure 3
shows the kermels from one half of the first mirrored
mapping pair. Figure 3(a) is the symmetry core, since it
maps wife to husband and husband to wife. The other
two kemnels are regular, but are included in the final

Y Actually, it is not always necessary to split a mapping to get
the two mirrored mappings. When a figure is regular, rather than
symmetric, a resulting mapping may be inconsistent with its
mirror, and thus will that mapping and its mirror emerge from
the self-similarity mapping stage as separate mappings with
identical scores. MAGI checks for this condition before executing
the algorithm outlined above.

\
T
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symmetry set because they share entity mappings with the
core. Because all kernels in this mapping are included in
the symmetry set, this mapping is symmetric.

Examples using MAGI

In this section we will describe three classes of examples
where MAGI does regularity and symmetry detection.
These three cases span the range from purely perceptual to
purely conceptual representations. The first example shows
how MAGI can detect axes of symmetry in simple
geometric figures, and how these axes are helpful in
building representations. The second example, where
MAGI is used to construct representations of logic
diagrams, takes the results of the perceptual examples to
show how symmetry is useful in real world tasks. More
specifically, it shows that symmetry of form may facilitate
encoding of symmetrical function in logic circuit diagrams.
Finally, after doing perceptual and perceptual/conceptual
examples, we briefly demonstrate MAGI in a conceptual
domain by showing how MAGI may model the detection of
regularity and symmetry in the narrative structure of fables.

Using MAGI with GeoRep to model
reasoning.

spatial

Before beginning the examples, we should briefly note
how the geometric representations are created. The
described spatial representations were created using a
system called GeoRep. GeoRep is a diagram
representation tool kit currendy in development that takes
FIG diagram files (from the public domain drawing
program Xfig, by Brian V. Smith) and turns them into
predicate calculus representations used by a logic-based
truth maintenance system (LTMS) and its associated rule
engine (Forbus and deKleer, 1993). The LTMS then can
infer further representations that can be fed into MAGIL
The mappings created by MAGI may also be fed in turn
into the LTMS for further inferencing.

GeoRep begins with a diagram consisting of groups of
lines, circles, and arcs. It constructs a representation based
on the types of connections that may occur among
geometric elements (corners, mid-connections, and
intersections of lines, and connections, tangents, and
abutments for lines and shapes) and on interval
relationships (as in Allen, 1983) between proximate
parallel lines and other proximate objects within a
reference frame. It also has a rudimentary representation of
polylines based on an analogy to members of a set. GeoRep
can also run domain-specific rules that use the visual
representation to build a representation based on what the
diagram itself represents. Figurc 4 shows the visual and a
functional representations generated for a single NAND
gate.



Percepiual Representation:

(CORNER <L1> <1.2>)

(CORNER <1.2> <L.3>)

(VERTICAL <1.2> <REF-FRAME:1>)
(MID-CONNECT <L4> <1.2>)
(MID-CONNECT <L5> <1.2>)

(ABUTS <CIRCLE:1> <ARC:1>)
(HORIZONTAL <L1> <REF-FRAME:1>)
(RADIATES <L.2> <CIRCLE:1>)

+ 20 other expressions

-

fFunctional Representation:

(REPRESENTS (ELEMENTS (POLYLINE:1> <ARC:1> <CIRCLE; 1>)
(NAND-GATE NANDGATE-1 <L.2> <CIRCLE:1>))
(REPRESENTS <I4> (INPUT NAND-IN-2 NANDGATE-1))
> N,

Figure 4 Sample representation for NAND gate figure

Finally, GeoRep has an axis-detection mechanism that
uses the self-similarity mapping produced by the MAGI.
The mechanism is similar to the standard Hough transform
used in computer vision (Duda and Hart, 1983), but for
pairs of lines rather than for single lines. Each mapped
pair of lines votes for a particular pair of axes and frame of
reference. When the vote is tallied, the winning reference
frame is adopted, along with any compatible axis with a
vote greater than half that of the winning frame of
reference.

Example Set 1: Geometric Figures

Geometric  figures are
traditionally used to illustrate
aspects of symmetry and
regularity, but the. geometric
examples given here
demonstrate how MAGI is
different from traditional
approaches.  Symmetry in
computer vision has
conventionally meant the
detection of an axis using a
transform acting on points in
the boundary of a figure (e.g.,
Blum, 1973; Brady, 1984).
Neither of these methods
handle figures that contain
symmetry within their
boundaries (such as in Figures
1(a) and 1(b)). Each of the following figures (Figures 5-7)
were represented using GeoRep and then processed by
MAGI. Each set of figures shows a different aspect of how
thinking of regularity as analogical mapping lends it a
power not traditionally associated with regularity or
symmetry.

The sketchy goblet drawn in Figure 5 indicates the most
obvious advantage of using propositional representations--
symmetry need not be exact. The relational structure is
important, and contains the same flexibility as normal SME
matches.  Secondly, because SME produces multiple
mappings, MAGI can produce multiple interpretations, as
Figure 6 illustrates. In mapping the top figure (A), it is

Figure 5: Symmetry
need not be exact
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possible to see the squares as regular or symmetrical (either
they are two squares in a row or as lwo squares facing each
other). MAGI produces both interpretations, but favors the
regular interpretation. In the bottom figure (B), the facing
trapezoids are interpreted as symmetrical, with no regular
interpretation.

A. Two Squares.
Produces three mappings. Highest scoring mapping is regular
(abcd->1234), and returns gravitational reference frame (no
axis). Next highest score (4.34) is symmetric (abcd->3214) and
produces a symmetry axis between lines c and 1. A third sig-
nificantly lower mapping (3.95) maps figure over itself, rotated
by 180 degrees (with some errors).

B. Facing trapezoids.

The most significant mapping (score=1.59) is symmelrical, and
produces an axis belween lines ¢ and 1. Two marginally significant

rotational mappings are produced.

Figure 61 MAGI can produce both regular and
symmetric interpretations, sometimes for the very same
descriptions

i 0]
e ??W?gflcdar,

*. radial?
\J

Figure 7: Candidate inferences from MAGI mappings

Finally, mappings produced by SME not only list
correspondences but also generate candidate inferences
when the mapping intersects base structure (Falkenhainer,
Forbus & Gentner, 1989). The same effect occurs in
regular or symmetric mappings in MAGI. Figure 7
contains a triad of three circles with attached polylines.
Object A contains a polyline with a perpendicular comer,
and that line is radially connected to the circle. When
given this figure, MAGI produces two mappings--one from



A to B, and another from A to C--with both mappings

'.-;~Q

CLl%

Figure 8: Symmetrical and non-symmetrical flip-flop
diagrams

aligning the corners, polylines and circles in the obvious
way. In the mapping between figures A and B, because the
corners match, MAGI produces a candidate inference that
B's comer is also perpendicular. In the second mapping
between A and C, for similar reasons, the radial connection
of A is expected at C as well. A geometric reasoning
system could use these candidate inferences to guide
further exploration of the figure by attempting to confirm
the candidate inferences. If the inference turn out to be
true, the inferences have cut down on the search space; if
they are not true, they may become alignable differences
(Markman and Gentner, 1993) that are salient.

Even at the geometric level, then, understanding
symmetry and regularity in terms of analogical mapping
offers a wealth of new possibilities that are simply not
addressed by conventional forms of symmetry detection.

Example Set 2: Flip-flop diagrams: Symmetrical
form suggests symmetrical function

Geometric figures are helpful for demonstrating the
various capabilities of MAGI, but say little about its
cognitive usefulness, or about encoding larger more
complex figures. To understand encoding in a more
realistic domain, we have turned to logic circuits. We are
currently using diagrams of various latches and flip-flops
(Figure 8). Flip flops and latches are among the first
sequential logic devices taught o electrical engineering and
computer science students, and the functioning of these
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devices is symmetrical (the two input/output pairs can be
swilched without changing the functioning of the device).
Diagrams for flip-flops and latches tend to be symmetrical
in form. It seems intuitive that the symmetry of form should
simplify the recognition of the symmetry of function.

We tested this hypothesis on three different flip-flop
circuits--an SR latch, a clocked SR flip-flop, and a JK flip-
flop. For each circuit, two functionally equivalent diagrams
were given 1o GeoRep (shown in Figure 8), where one was
symmetrical and the other asymmetrical. The symmetrical
diagram was taken from a standard digital design textbook
(Johnson & Karim, 1987), and was then modified to
produce the asymmetrical version. GeoRep was then given
two scts of rules--the perceptual representation rules
described above, and a set of function recognition rules
specific to logic diagrams (e.g. describing the NAND gate,
the device inputs and outputs, and the feedback paths).
Links between form and function were made explicit by
expressions of the form (REPRESENTS X Y), where X
was some geometric object in the diagram and Y was the
logical path or connection represented (see Figure 4).

MAGI was then run twice on each figure. First, MAGI
ran on the perceptual representation only. Then, after the
functional rules were run, the new functional information
was added to the description, and MAGI incrementally
extended the mapping using I-SME. In each case, the
result was the same as in Figure 8. The initial run on the
perceptual representation produced a clear symmetry
mapping on the symmetrical diagram, while the
asymmetrical diagram would manage only a partial
symmetry. Usually the NAND gates themselves and the
device inputs and outputs would map correctly, but the
other polylines would map in erratic ways (see Figure 8 for
the mappings). Then the functional representation was
added, and the mapping incrementally extended. For the
symmetrical diagram, the symmetry of function in the flip-
flop cleanly integrates into the symmetry of form for the
symmetrical diagram. In the nonsymmetrical diagram, the
functional representation could be added, but the links
between form and function were not consistent with the
initial perceptual mapping, and were thus lost. Also, the
mapping for the function is clearly lead astray, mapping
logical paths in the figure that have nothing to do with each
other (see dashed lines in Figure 8(B)). If the
nonsymmetrical  representation was remapped from
scratch, however, with both the functional and perceptual
parts of the description, the functional relationships would
carry more weight, and the proper functional mapping
produced.

Example Set 3: Using regularity and symmetry in
understanding social narratives

Symmetry makes revenge sweeter, and returned favors
more satisfying. Reciprocity of this type plays a key role in
many social sitwations, and thus are central to
understanding stories about social situations (Lehnert,
1981).  To test whether the perception of regularity and
symmetry set up expectations in the reader, we gave



subjects sets of short fables. Half the fables were
symmetrical; the others were non-symmetrical variants
with the same ending and characters. The question of
interest is whether subjects will generate inferences based
on the symmetric structure of the stories. For each fable,
the subjects were asked to choose one inference from a list
of four. One of these was designed to be the symmetric
inference; the others were designed to be plausible
inferences. The results for 24 subjects showed sensitivity to
symmetric structure: subjects choose the symmetric
inference 60 percent of the time for the symmetric stories,
but only 38 percent of the time for non-symmetric stories,
We are currently working on replicating these effects with
MAGI.

Problems with the MAGI model, and areas to
explore

Currently, there are several limitations to the MAGI model.
It does not handle regularity or symmetry that is not binary
in some sense. For example, it could not handle a diagram
of a brick wall, nor separate out the plot line of ‘The Three
Little Pigs." Also, there is a distinct tendency for MAGI to
produce rotational mappings on visual figures (as noted, for
example, in Figure 6). Such rotational mappings are
technically correct and somewhat novel, but people seem to
generate them much less than MAGI does, which makes
them suspect.

Conclusion

Any cognitive model of symmetry and regularity must meet
three criteria. First, it must show why regularity and
symmetry are useful. Second, it should show a clear
distinction between regularity and symmetry, since this
distinction is clear to people, and thus must explain the role
of an axis in symmetrical representations. Finally, there
should be an account of how asymmetry is handled, and
why it is sometimes stark and other times less noticeable.
We believe that the MAGI model satisfies these criteria.

The maturity of the current models of analogical
mapping provide the means for a congruent model of
analogical encoding using symmetry and regularity.
Symmetry and regularity should be understood, not as
perceptual, but as analogical processes of encoding that
often operate on perceptual representations. MAGI's
success in a variety of domains provides clear evidence for
the strength of this view. Symmetry and regularity, from a
cognitive perspective, are not gems, but pick-axes. Though
they are aesthetically pleasing, underneath the pretty covers
are incredibly useful tools that help us pull apart and
understand the world.
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