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Abstract 

We present a Bayesian model of causal learning that 
incorporates generic priors on distributions of weights 
representing potential powers to either produce or prevent an 
effect. These generic priors favor necessary and sufficient 
causes. Across three experiments, the model explains the 
systematic pattern of human judgments observed for 
questions regarding support for a causal link, for both 
generative and preventive causes.  
Keywords: causal learning; Bayesian inference 

Causal Inference in a Bayesian Framework 
Intelligent behavior in a complex and potentially hostile 
environment depends on acquiring and exploiting 
knowledge of “what causes what.” It is likely that the 
cognitive mechanisms for causal learning have deep 
evolutionary roots, a conjecture supported by many parallels 
between phenomena in animal conditioning and human 
causal learning (see Shanks, 2004). Ever since the 
philosopher David Hume, the fundamental question about 
causal knowledge has been how a learner can take non-
causal inputs (notably, observations regarding temporal 
order and covariation) and induce cause-effect relations as 
outputs.  Cheng (1997) developed a theory that integrates 
the Humean covariational view of causality with Kant’s 
conception of causal “powers”. Her power PC theory 
assumes that learners have a tacit understanding that causes 
in the world have powers (i.e., strengths) to produce or 
prevent effects, and use observations to infer unobservable 
causal powers (for a review see Cheng et al., in press). 

The view that learners have a tacit theory of causal 
powers can be incorporated into a Bayesian framework for 
inference. Griffiths and Tenenbaum (2005) developed a 
Bayesian model, closely related to the power PC theory, for 
inferring whether a causal link exists between cause C and 
effect E (i.e., model selection for the structure of the causal 

graph; Mackay, 2003). Their model addressed the simplest 
variant of elemental causal induction, in which the learner is 
using observations to decide between Graph 0 versus Graph 
1 (Fig. 1), where B is a constantly-present background cause 
that may generate E, and C is a candidate cause that may be 
either present or absent (varying from trial to trial).  

B C B C 

E E 

w0 w0 w1

Graph 0 Graph 1 
 

Figure 1. Graphs contrasting hypotheses that C causes E 
(Graph 1) or does not (Graph 0). B, C, and E are binary 
variables.  Weights w0 and w1 indicate causal strength of 
the background cause (B) and the candidate cause (C), 
respectively.  
 

A major strength of Bayesian inference is that it enables 
beliefs to be updated by integrating prior beliefs with new 
observations. Bayesian inference involves two basic 
components, likelihood probabilities and prior probabilities. 
Likelihoods assess the probability that particular observed 
data would be expected under some hypothesis, and are 
determined by the generating model for the data (e.g., how 
multiple independently-operating causes produce an effect). 
Priors assess beliefs about the world held before observing 
any particular data (e.g., beliefs about causal powers).  

One variant of the “causal support” model developed by 
Griffiths and Tenenbaum (2005) used a generating model 
proposed by Cheng (1997), based on a logical “noisy-OR” 
function (Eq. 4) for generative causes and “noisy-AND-
NOT” (Eq. 5) for preventive causes. (See Glymour, 2001, 



for a more general definition of what he termed “Cheng 
models”.)  This causal-support variant yields causal power 
(Cheng, 1997) as the maximum likelihood estimate of a 
causal strength parameter. The value of causal support (Eq. 
2) is a measure of whether a causal link exists. As Griffiths 
and Tenenbaum (2005) noted, “Speaking loosely, causal 
support is the Bayesian hypothesis test for which causal 
power is an effect size measure: it evaluates whether causal 
power is significantly different from zero” (p. 359).   
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The second component of Bayesian inference, priors, wi
 especially important in guiding learning when data are 

sparse or noisy, as is often the case for naturalistic causal 
learning. In particular, the Bayesian formulation can take 
account of priors on the causal powers (i.e., w0 and w1). 
When learners have no obvious reason to have specific 
priors about weights (e.g., the power of a novel medicine to 
stop headaches), one might suppose that the priors are 
simply uniform (e.g., Griffiths & Tenenbaum, 2005). 

It is possible, however, that even when the inpu
tirely novel, learners may be guided by generic priors—

systematic assumptions about the abstract quantitative 
properties of a variable. In the case of motion perception, 
for example, human judgments of velocity are guided by the 
prior that motion tends to be slow and smooth.  This generic 
prior explains a wide range of visual illusions and motion 
perception phenomena (Lu & Yuille, 2006; Weiss, 
Simoncelli & Adelson, 2002; Yuille & Grzywacz, 1988). 

We propose that in the case of causal learning, peop
nd possibly other animals) have a prior favoring causes 

that are necessary and sufficient (e.g., a genetic defect on 
chromosome 4 is necessary and sufficient to cause 
Huntington’s disease). The importance of necessity and 
sufficiency in causal inference was first discussed by J. S. 
Mill (1843). Causal necessity is the focus of the “but for” 
condition in law, and of the concept of attributable risk in 
epidemiology. In psychology, some have placed particular 
emphasis on sufficiency (e.g., Mandel & Lehman, 1998). 
Pearl (2000) reinterpreted various well-known causally-
related measures in terms of probabilistic necessity and 
sufficiency (causal power as “probability of sufficiency”; 
attributable risk as “probability of necessity”; and ΔP as 
“probability of necessity and sufficiency”). Lien and Cheng 
(2000) proposed and provided evidence that a tacit goal of 
maximizing ΔP (i.e., necessity and sufficiency jointly), 
conditional on “no confounding”, guides human induction 
of categories and causal powers at multiple hierarchical 
levels. However, previous researchers have not considered 
the possibility that the goal of maximizing the necessity and 
sufficiency of causes may provide relational generic priors 
that guide elemental causal induction.  

Bayesian inference focuses on prob
rictly deterministic relations. It would seem that most 

naturally-occurring causal relations are probabilistic, such 
that C is in fact neither necessary nor sufficient to produce E 
(e.g., the link between smoking and cancer). Nonetheless, a 

prior with weight peaks indicative of “approximately” 
necessary and sufficient causes (NS priors) would 
encourage causal networks that are inherently simple 
(ideally, one cause reliably predicts the effect). Such a prior 
would create a generic expectation in accord with what 
Holland, Holyoak, Nisbett and Thagard (1986, p. 160) 
termed “the “unusualness rule, unexpected events signal 
other unexpected events.” For example, rats often show 
initial conditioning to a novel cue that precedes shock, even 
though the cue is in fact uncorrelated with shock (Rescorla, 
1972). Readiness to “jump to causal conclusions” consistent 
with NS priors (assuming they can be overturned if 
contradicted by later experience) may have important 
survival value in a natural environment. 

In the remainder of this paper we form
odel incorporating NS priors.  We then summarize three 

human experiments, and compare model predictions using 
NS versus uniform priors with human causal judgments. 

an decision can be formalized to infe
structure by assessing whether a causal relationship exists 
between C and E after observing contingency data D. The 
decision variable is obtained from the posterior probability 
ratio of Graphs 1 and 0 by applying Bayes’ rule:  
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Griffiths and Tenenbaum (2005) defined the first term on 
the right of Eq. 1 (log likelihood ratio) as “causal support” 
(the second term, the log prior odds, is a constant). In 
general, support can be defined as the log posterior odds, 
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nctions specified by the power PC theory. Let +/− indicate 
the value of the variable to be 1 vs. 0. For a Cheng model 
(noisy-OR) in which B and C are both potential generative 
causes, the probability of observing E is given by 
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In the preventive case, B is assumed to be 

potentially generative (following the “no background 
preventers” assumption of the power PC theory) and C is 
potentially preventive. The resulting noisy-AND-NOT 
generating model for preventive causes is 
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The second component in Eq. 3 is th

strength, )1|,( 10 GraphwwP  and )0|( 0 GraphwP . Griffiths and 
Tenenbau ed th  on weights w0 
and w1 follow a uniform distribution. Our guiding 
hypothesis is that generic priors will favor necessary and 
sufficient causes. Accordingly, we set priors favoring NS 
generative causes, with the prior distribution peaks for w0, 
w1 at 0,1 (C is an NS cause) and 1,0 (B is). We use the 
exponential formulation 
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where α  is a parameter controlling how strongly nec
fi

essary 
and suf cient causes are preferred, and Z is a normalizing 
term that ensures the sum of the prior pro bilities equals 1. 
When 

ba
α = 0, the prior follows a uniform distribution, 

indicating no preference to any values of causal strength. 
Griffiths and Tenenbaum’s (2005) support model is thus 
derived as a special case. The present formulation provides 
an analytic calculation of support values. 
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In the preventive case B is again ass
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umed to be 
nerative, hence only C could be a preventer (i.e., B and C 

do not compete). Evidence for C as an NS preventer will be 
clearest when B is a sufficient generative cause (w0 = 1), 
yielding a likelihood peak for w0, w1 at 1,1: 
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 a causal link (Eq. 

2). Fig. 2 depicts the prior distributions used in generative 
and preventive cases. 

 
 
Figure 2: Prior distributions over w0 and w1 with NS pri

eft: Generative case, 
ors. 

L α = 30  (peaks at 0,1 and 1,0); right: 
Preventive case, 30=α (peak at 1,1). 

Over  of Experimview ents 1-3 

Methods 
 procedure were very similar across all 3 
xperiments 1-2 are from Liljeholm (2006). A 

Materials and
experiments. E
simultaneous presentation format, adapted from that used by 
Buehner, Cheng and Clifford (2003, Ex. 2), was used to 
minimize memory demands and other processing issues 
extraneous to causal inference (see Fig. 3). The cover story 
always involved a set of allergy patients who either did or 
did not have a headache (E), and either had or had not 
received a new allergy medicine (C); the query concerned 
whether as a side effect the medicine caused headache 
(generative conditions) or relieved headache (preventive 
conditions). Each patient was represented by a cartoon face    
that was either frowning (headache) or smiling (no 
headache). The data were divided into 2 subsets, each an  
array of faces. The top subset represented patients who had 
 
 
 
 
 
 
 
 
 
 
 
 

Medicine A

No Medicine

When Medicine A was given to them,
t his is how t hey were:

When t hese pat ient s were not  given any
medicine, t his is how t hey were:

= headache Figure 3. Example 
of an experimental 
display, showing 
patients who had not 
(top) or had 
(bottom) received an 
allergy medicine, 
and who either had 
or had not developed 
headaches. 



not received the medicine; the bottom subset represented 

s in each experiment 
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 query regarding existence of a causal link 
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Judgment Patterns 
e modeling results, it will help to 

ch

patients after receiving the medicine.  
The specific contingency condition
e shown in Figs. 4-5. The code in the figures indicates 

number of patients with headache out of number who had 
not received the medicine (i.e., base rate of the effect), and 
number with headache out of number who did receive the 
medicine. The number of cases in the sample was varied. In 
the figures and all analyses, generative and preventive 
conditions are identical except that the frequencies of 
headache and no headache are transposed. For example, the 
generative case 2/8, 8/8, where P(E|C) = .25, P(E|C) = 1, 
power = 1, is matched to the symmetrical preventive case 
6/8, 0/8, where P(E|C) = .75, P(E|C) = 0, power = 1. Ex. 1 
included a series of contingency conditions in which the 
causal power of the medicine was 1 but the base rate of 
headache was varied, plus additional conditions with lower 
causal power. 

The specific
ried across experiments. In Ex. 1-2 the query (generative 

conditions) was, “How likely is it that this medicine 
produces headaches?” with the response being a numerical 
rating on a line marked in units of 10 from 0 (extremely 
unlikely) to 100 (extremely likely). For preventive 
conditions (Ex. 1), “produces” was replaced by “relieves”. 
The dependent measure was the rating in each condition. In 
Ex. 3, the query was to select one of two alternatives: “This 
medicine has absolutely no influence on headache” (no link) 
or “This medicine produces headache” (link exists), and rate 
confidence in the answer on a 100-point scale. The 
dependent measure was mean confidence that a link exists 
(treating the rating as negative when the answer was that no 
link exists).  

Participants
ychology Department subject pool. Generative versus 

preventive conditions in Ex. 1 was a between-subject 
variable. In Ex. 1-2, contingency condition was a within-
subjects variable, with order of presentation randomized. In 
Ex. 3 each participant evaluated a single condition. The data 
points for humans shown in Figs. 4-5 are each mean ratings 
based on responses from 20-33 participants. 

Before presenting th
aracterize the major factors that influenced link judgments 

for both generative and preventive conditions (see Figs. 4-
5). (1) Causal power: high power led to higher confidence 
there is a link. (2) Sample size: an overall larger sample 
tended to yield higher confidence (a surprisingly weak but 
statistically reliable factor in Ex. 1). (3) Base rate of effect, 
P(E+|C−): confidence was higher when the base rate was 
more optimal for revealing any influence of the candidate 
cause, where the optimal base rate is 0 for the generative 
case and 1 for the preventive case. More optimal base rates 
lead to a larger “virtual sample” (Liljeholm, 2006), defined 

as the number of cases in which C could potentially reveal 
its influence; the complementary maximally suboptimal 
base rates lead to ceiling effects such that the power of C 
cannot be determined from the data. (4) Direction of 
causation: In Ex. 1, there was evidence of a possible 
interaction between causal direction and contingency 
condition. In particular, for conditions where w1 = 1, 
preventive ratings tended to be higher than generative 
ratings when the base rate was far from optimal, with the 
difference diminishing as the base rate approached optimal. 
A comparison of the direction effect for the conditions in 
which the generative base rate was .75 (.25 preventive) vs. 
.25 (.75 preventive) yielded a significant interaction, F(1, 
51) = 4.71, p = .035. Similar differences between preventive 
and generative judgments have been observed for causal 
strength judgments (Liljeholm, 2006; Wang & Fu, 2005). 

Model Fits to Human Causal Judgments 
Data from all 3 experiments were fit using the Bayesian 
model with either NS or uniform priors. An α value of 30 
for NS priors was selected using data from Ex. 1, and then 
held constant in fitting data from Ex. 2-3. The model with 
uniform priors (α = 0) is identical to that of Griffiths and 
Tenenbaum (2005). For both NS and uniform priors, 
support values were scaled to human data (a 100-point 
confidence scale) using a best-fitting power transformation 
(the same procedure employed by Griffiths & Tenenbaum).  

Figs. 4-5 each show the data for human causal judgments 
(top) along with predictions based on NS priors (middle) 
and uniform priors (bottom). Ex. 1 tested 30 contingency 
conditions (15 generative and 15 preventive) with sample 
sizes of 32 (left side of Fig. 3) and 128 (right side). 
Although both Bayesian models fit the human data 
reasonably well, the overall correlation was substantially 
higher with NS priors (r = .94) than with uniform priors (r  
= .71). 

Two qualitative aspects of the data favor the model with 
NS priors. First, NS priors capture the fact that human 
judgments of confidence in a causal link were more 
sensitive to causal power and P(E+|C−) (base rate of the 
effect; e.g., increasingly optimal across left 6 contingencies 
in Fig. 4) than to sample size. Uniform priors place 
relatively greater weight on sample size. Second, NS priors 
capture the apparent asymmetry between generative and 
preventive judgments for cases matched on causal power 
and optimality of the base rate. For the human data, for 9 of 
the 10 matched conditions in which the base rate is non-
optimal, the preventive rating exceeds the generative case. 
The asymmetric NS priors (1 peak for preventive causes, 2 
for generative) capture this subtle interaction between 
preventive and generative judgments. In contrast, the model 
with uniform priors (like all previous formal models of 
causal judgments) predicts strict equality of matched 
generative and preventive conditions. 



 

Figure 4: Confidence in a 
causal link (Ex. 1). 
Numbers along top show 
stimulus contingencies for 
generative cases; those 
along bottom show 
contingencies for matched 
negative cases.  Top: Data 
from Ex. 1 (error bars 
indicate 1 standard error); 
middle: Predictions of 
Bayesian model with NS 
priors, 30=α ; bottom: 
Predictions with uniform 
priors, 0=α .  C
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Ex. 2 provided a further test of the relative potency of 
power and sample size as determinants of human causal 
judgments. This study employed two intermediate 
contingencies (powers of .4 and .67) at sample sizes 36 
and 72 (generative conditions only). As shown in Fig. 5A, 
NS priors provided a far better fit to the human data (r = 
.97) than did uniform priors (r = .20). As in Ex. 1, NS 
priors capture the greater potency of power relative to 
sample size, whereas uniform priors erroneously predict 
the opposite trade-off. 

 
Figure 5. Confidence in a causal link. A: Ex. 2. B: Ex. 

3. See Fig. 4 caption for additional information.  

In the extreme, when the presented contingencies 
closely match the NS priors, the model with these generic 
priors predicts that people will be highly confident in the 
presence of a causal link after only a few observations. 
Ex. 3 was designed to test this prediction, comparing 
judgments for contingencies close to NS priors with a 
small sample size of 16 to contingencies far from NS 
priors with a substantially larger sample size of 128. As 
shown in Fig. 5B, NS priors again provided a much better 
fit (r = .84) than did uniform priors (r = −.15). As 
predicted, people placed much greater weight on match to 
NS priors than on sample size. In the most dramatic case, 
where the data fit the generative peak at w0 = 0, w1 = 1, 
human mean confidence was 85 on the 100-point scale 
after just 16 observations. NS priors closely match the 
human level of high confidence, whereas uniform priors 
erroneously predict a confidence level below 50. 
Moreover, uniform priors generate the wrong ordinal 
ranking of this favorable contingency relative to the 
rightmost condition in Fig. 5B (a case of lower power 
with a much high sample size).  
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Conclusions and Future Directions 
We have established that a Bayesian formulation of 

causal inference that incorporates (1) a theory of learners’ 
model of the generating model for binary causal variables 
and (2) generic priors favoring necessary and sufficient 
causes can explain the pattern of human causal judgments 
about existence of causal links. In contrast, a formulation 
assuming uniform priors (Griffiths & Tenenbaum, 2005) 
is unable to account for key findings. Humans place 



greater weight on match to NS priors than on size of the 
sample of observations, and their causal judgments reveal 
a systematic interaction between preventive and 
generative ratings. NS priors are a special case of a 
general preference for simplicity in causal networks (cf. 
Novick & Cheng, 2004, p. 471). 

The present Bayesian formulation, like that of Griffiths 
and Tenenbaum (2005), is based on a noisy-OR and 
noisy-AND-NOT generating model (Cheng model). 
Griffiths and Tenenbaum also discussed an alternative 
formulation based on a linear generating model that yields 
ΔP (i.e., P(E+|C+ − P(E+|C−)) as a strength measure. This 
model gives an incoherent account of independent causal 
influence (Cheng, 1997; Cheng et al., in press). It is clear 
the linear model will fail for the data modeled in the 
present paper. To take one simple example, each 
contingency in Ex. 2 (Fig. 5A) is equated for ΔP (.33); 
accordingly for paired conditions at each sample size, 
values of P(E+|C−) and P(E+|C+) vary symmetrically 
around .5. Since generative priors (either uniform or NS) 
for w0 and w1 are also symmetrical around .5, for these 
contingencies the linear model with either set of priors 
will necessarily predict support values that vary only with 
sample size. Clearly, however, people’s confidence 
ratings varied with power within each sample-size 
condition even though ΔP was constant.  

A major advantage of the Bayesian formulation of 
causal learning, when coupled with the concept of causal 
power, is that it is compositional: it allows the 
formulation of coherent answers to a wide variety of 
causal queries. Here we have focused on modeling 
support for a causal link, but the same formulation can 
also be used to model judgments of causal strength and 
confidence in strength judgments. Additional work will be 
required to extend the formulation to situations involving 
multiple candidate causes, potential interactive influences 
among causes, sequential presentation of data, and 
diagnostic inference from observed effects to possible 
causes. 
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