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Abstract 

An assumption of all major accounts of categorization is that 
the system operates in a Features-First manner: a stimulus is 
mentally encoded in terms of observable properties which are 
then evaluated for fit to known categories. A testable prediction 
of this view is that people must know the features of an object 
before knowing what category it belongs to. Experimental 
results using a speeded verification task clearly show the 
opposite: people verify a category label more quickly than they 
verify a physical or functional feature. A theoretical 
groundwork for interpreting this finding is suggested. 
Categorization can be viewed as a means for constructing 
featural representations, rather than as the result of a 
comparison process between a “received” featural encoding and 
generic concept representations. 

Introduction 
Categorization is the central, ubiquitous process by which we 
make sense of the world. By categorizing, we interpret the 
stimuli in our immediate experience as examples of generic 
knowledge structures stored in long-term memory. 
Reseachers have proposed a variety of theoretical accounts 
and models to explain categorization, but there is little 
consensus on the major questions (Murphy, 2002).  

One might be tempted to consider the possibility that there 
has been a misstep in the field. The theory or knowledge-
based view of concepts (Murphy & Medin, 1985: Medin, 
1989) issued  a powerful critique of certain core assumptions 
widely held across the class of models designated as 
‘probabilistic.’ In particular, the reliance on independent 
feature lists for item representation was argued to be 
inadequate and the reliance on a similarity computation 
between inputs and generic representations was argued to be 
fatally unconstrained. Despite these concerns, the fits of 
major models to behavioral data from laboratory studies have 
been robust and compelling (e.g., Kruschke, 1992). The 
theory view has failed to give rise to a process model that is 
competitive on these grounds. Therefore, the field stands in 
the position of offering a set of models that impressively 
account for only a highly managed portion of the problem of 
understanding categorization. It is possible that we are a little 
bit stuck. 

In the present investigation, the idea is to take a step back 
and experimentally evaluate an assumption common to all 
major accounts of categorization. From the perspective of 
rules, similarity, prototypes, exemplars, probabilities, even 
theories, the  problem has been articulated as follows: Find 
the best account for a set of input features in terms of known 
categories. Many models assume that some form of 

perceptual pre-processing serves to deliver a set of feature 
values as input to the categorization system. But as some 
researchers have noted over the years: the features of a 
stimulus do not arrive objectively from the bottom-up or 
merely for the asking (e.g., Schyns, Goldstone, & Thibaut. 
1998; Wisniewski & Medin, 1994).  

Implementations of the exemplar view such as ALCOVE 
(Kruschke, 1992) – representative of what is considered by 
many to offer the best available account of human category 
learning – address the issue of input representation in terms of 
psychological dimensions. Every stimulus is represented as a 
point in a space; as in a multidimensional scaling solution. 
Presumably this is intended to stand in for, rather than to 
explain at the process level how a physical stimulus is 
encoded in psychological terms. In actual practice (Kruschke, 
1992), the step is passed over. As the author states, “It was 
assumed that the three physical dimensions of the stimuli 
[Shepard, Hovland, and Jenkins’ (1961) geometric figures] 
had corresponding psychological dimensions” (p. 27).  

To further emphasize the widespread commitment to the 
Features-First assumption, the power of models such as 
ALCOVE and SUSTAIN (Love, Medin, & Gureckis, 2004) 
rests to a considerable extent on a mechanism by which the 
degree of attention to each input feature is selectively updated 
based on the diagnosticity of that feature for classification 
purposes. With such an operation as an integrated part of the 
categorization system, it is clear that the features have to be 
available and subject to processing as a preliminary to 
categorization.  

To summarize, major models of category learning rest on 
the assumption that inputs arrive to the categorization system 
in the form of feature lists or dimension values. This 
assumption does not prove damaging to models in part 
because  most artificial laboratory studies use stimuli that 
actually are graphical instantiations of small sets of 
underlying binary-valued feature lists that are carefully 
packaged for easy access by experimental participants.  

The focus of the present study is to evaluate the Features-
First assumption. As discussed, the dominant approach to 
categorization defines the problem in terms of performing a 
set of computations on a fixed, available feature set. There is, 
however, an alternative perspective: the construal view of 
categorization (Kurtz & Dietrich, in preparation; Kurtz, 1997) 
in which the very goal of the categorization process is to 
construct an encoding of the elements of meaning that 
comprise a stimulus. This idea shares something in common 
with the theory view as well as with the notion of strong 
mutual dependency and flexible interactivity between 
perceptual and conceptual systems (e.g., Goldstone, 2003). 
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However, the construal view makes no commitment to 
causal/explanatory principles underlying concepts and is 
generally compatible with a  modular perceptual front-end; 
placing the focus instead on the processes of recoding and 
enriching perceptually-derived initial representational 
content. To be clear, the construal view does not challenge 
the very idea of semantic features as units of representation; 
instead, the claim is that such features are the product of, 
rather than the input to, categorization. The construal view 
therefore makes the unusual-sounding prediction that we 
know what category an input belongs to before we have a 
meaningful description of the properties of that input. 

Experiment 1 
There has been no clear experimental test of the assumption 
that categorization begins with a featural item description. 
The Features-First assumption makes the testable prediction 
that people must encode the features of a stimulus in order to 
(and prior to) determining its category membership.  

A speeded verification task is used to evaluate this 
prediction. Photographic images of highly familiar everyday 
objects were presented to participants – whose task was to 
evaluate whether a verbal descriptive matched the image. The 
manipulation in this within-subjects design was the type of 
descriptive that appeared. For each image in the set, three 
possible descriptives were prepared: 1) a Category label 
chosen as the expected basic level name for the object 
depicted; 2) a Functional feature chosen as an archetypal use 
or action associated with the object; and 3) a Physical feature 
chosen as an archetypal structural or perceptual attribute of 
the object.   

The Features-First assumption implicit in all major 
accounts of categorization makes the prediction that the 
features of the stimulus are encoded initially and used as the 
basis from which to compute the best fitting category. A 
further specification of this standard view is that perceptually-
available features are encoded initially while more conceptual 
features (such as functional features) are not immediately 
available, but must be inferred from an activated category 
representation. The Features-First view can therefore be 
summarized as: 1) Physical features encoded initially; 2) 
Category determined based on features; and 3) Function 
features inferred from Category. 

Some theorists might suggest that Functional features are 
read off directly from the stimulus as part of the input to the 
categorization system (that is, it requires no top-down 
information processing to encode a chair as for sitting). The 
ecological approach with its focus on affordances is certainly 
not far removed from such a view and therefore might 
generate a prediction that functional verification occurs 
quickly and in a direct fashion rather than mediated through a 
category representation.  

The construal views rejects the notion of an initially, fully-
featured input and suggests that a category is activated (via 
heuristic methods which generate candidate categories based 
on raw visual information and situational context) and then 

leveraged to build an actual semantic encoding of the 
stimulus (Kurtz & Dietrich, in preparation). 
 

Table 1: Theoretical predictions 
 

Theoretical 
stance 

 Predicted Fastest     
Verification 

Features-first  Physical 
Ecological   Functional/Physical 
Construal   Category 

 

Method 
Subjects A total of 82 undergraduates at Binghamton 
University participated in the experiment in order to receive 
course credit.  
Materials Images (see Figure 1) were collected by searching 
the Internet for clear, representative photographs of everyday 
objects. Images were manipulated in order to show each 
object in isolation or presented on a generic surface. The size 
of the images varied in a range of approximately 3 to 5 inches 
in height and width. The most obvious descriptive was sought 
in all cases, though two additional constraints were applied: 
1) no repetition of a descriptive across the item set; and 2) 
maximal avoidance of difficult, ambiguous, unusual, or low 
frequency words.  

 
Table 2: Descriptives used for the critical items. 

 
Category Function Physical 

Banana Eating  Peel 
Baseball Bat Hitting Wood 
Book Reading Paper 
Calculator Computing Numbers 
Camera Photographing Lens 
Candle Burning Wax 
Chair  Sitting Legs 
Clock Timekeeping Hands 
Fork  Dining Prongs 
Glasses Seeing Fragile 
Hammer Pounding Heavy 
Ice Cream Snacking Cold  
Lamp  Lighting Bulb 
Paintbrush Painting Bristles 
Scissors Cutting Sharp 
Stapler Attaching Metal 
Telephone Ringing Buttons 
Tennis Racket Playing Strings 
Toothbrush Cleaning Plastic 
Umbrella Protecting Handle 
Vase  Containing Delicate 

 
Procedure Participants were given a thorough set of 
instructions that explained their task. They were asked to 
respond as quickly as possible as to whether or not the verbal 
descriptive matched the pictured everyday object. The 
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instructions fully explained the three types of descriptives and 
gave clear examples. The Category descriptives were 
described as the “common name for the object.” The Function 
descriptives were described as the “Function or Activity 
associated with the object.” The Physical descriptives were 
described as a “Physical aspect of the object” and was further 
explained as a “feature, property, substance, characteristic, or 
part.”  
 

 
Figure 1:  Two examples of object stimuli. 

 
In addition, it was pointed out that the descriptives would not 
include “tricks.” The instructions emphasized the importance 
of responding as quickly as possible without sacrificing 
accuracy. Participants were asked to keep their fingers in 
position above the response keys and were told they ought to 
be able respond in under one second. A practice phase was 
conducted in which participants acclimated to the task, 
practiced responding with a keypress as quickly as possible, 
and gained additional exposure to the three types of 
descriptives.  

Participants were randomly assigned to one of three item 
counterbalancing forms. Each group was shown the exact 
same set of images, however the groups varied in the 
assignments of the images to descriptions. For each image, 
one group was asked the Category question about that image, 
a second group was asked the Functional question about that 
image, and the remaining group was asked the Physical 
question about that image. The assignments of descriptives to 
form were fixed and arbitrary aside from the criteria that each 
image appear once for each group and with a different 
descriptive in each group.  

In addition to the set of Critical items, a set of Filler items 
were used to ensure that 50% of the presented items were 
paired with an accurate descriptive during test. The Filler 
items were the same for all three groups and they were always 
mismatches between the image and descriptive. The Filler 
items were photos of everyday objects just like the Critical 
items. The descriptives were chosen to be clearly wrong, but 
not distractingly so (care was taken to avoid near misses or 
humorously inappropriate descriptives). The Filler items were 
evenly distributed across the three types of descriptives. The 
combined set of Critical and Filler images was presented to 
each participant in a random order.    

On each trial, participants were given 3s to prepare while  a 
“Get Ready” prompt was shown on the computer screen. A 
fixation point appeared for 750ms and was replaced by the 
stimulus image. After a delay of 500ms, the verbal descriptive 
appeared below the image. The image was intentionally 
presented first so that the task consisted of processing the 
object stimulus and then evaluating the descriptive. 
Alternatively, it would be possible for participants to use the 
descriptive to guide their processing of the depicted image. 
With the delay, the initial processing of the image is neutral. 
At the same time as the descriptive appears, the cue words 
“Yes” (on the left) and “No” (on the right) also appeared in 
locations on the screen corresponding spatially to sticker-
labeled response keys. No feedback was provided at any point 
during the task. 

Results and Discussion 
Latency data usually require a procedure to protect against the 
distorting effects of outliers. In the present data set, we 
applied a pruning process in which any single response time 
that was more than 2.5 standard deviations from the mean 
was removed. This procedure left the vast majority of data 
points intact, but a total of forty individual response latencies 
out of the entire data set were removed. The efficacy of this 
procedure was verified by computing medians on the raw 
data which closely paralleled the results of the pruning 
process. 

The logic of the experiment was to evaluate response 
latency under an expectation of high accuracy of responding. 
There were several image-descriptive pairs that  were 
removed from the dataset for mean percent correct accuracy 
below a threshold set at 70%. As it turned out, there was not 
high consensus (under speeded conditions and for these 
particular photographic representations) about glasses being 
fragile, toothbrushes being plastic, forks having prongs, 
tennis rackets having strings, clocks having hands, hammers 
being heavy, and telephones having buttons. These items 
were evenly distributed (2,2,3) across the three 
counterbalancing forms. While the overall results were not 
impacted either way, the analysis was conducted on the 
remaining 59 of the original 66 image-description pairings. 
For the critical items, mean accuracy was above 90% for all 
three item types. The filler items were successfully employed 
in that they were overwhelmingly rejected by participants at a 
rate of 98%. 

The mean latency data for correctly answered items are 
shown in Figure 2. A repeated measures ANOVA was 
conducted on response latency revealing a significant main 
effect of item type, F(2, 81) = 128.25, MSe = 1186891, p < 
.001). Paired sample t-tests showed all pairwise differences to 
be reliable (p < .001). Category descriptives were 
significantly faster to verify than either Physical or Function 
descriptives. A smaller effect also showed Function 
descriptive to be verified faster than Physical. Therefore, the 
expected ordering from the Features-first view was found to 
be lacking on all counts. It is worth noting that the large size 
of these observed differences is on a different scale than 
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variation attributable to lower-level processes such as reading 
time. These effects are at the level of semantic processing. 

In a secondary analysis, a significant interaction was found 
between counterbalancing form and item type. There was no 
main effect of forms. In order to interpret the interaction, an 
ANOVA was conducted separately for each form. The 
Physical vs. Function difference was significant in one form 
(p < .001), marginal in the second form (p < .1) and non-
significant in the third form (p > .3). Accordingly, there is 
some question about the generality of the Function vs. 
Physical difference. However it is clear that the fastest 
responding occurs for the Category descriptives and that this 
effect is robust across forms.  
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Figure 2:  Response latency for correct items by condition. 

 
Additional analyses were conducted to evaluate potential 

differences among possible subtypes within each item type. 
The physical features were selected with awareness of the 
following subtypes: characteristics (e.g. heavy); parts (e.g., 
lens); and substances (e.g., wood). No reliable differences 
were found comparing mean latency for these subtypes. The 
Function items can also be interpreted as subtypes: what the 
object does (e.g.,  scissors cut); what is done by a person to an 
object (e.g. bananas are eaten); and what is done by a person 
with an object (e.g., glasses allow seeing). Once again, no 
reliable differences in  performance were observed across 
subtypes. 

Experiment 2 
The second experiment was designed to replicate the basic 
finding under slightly different task conditions. In the first 
experiment, participants did not know what type of 
description they would be asked to evaluate on any given 
trial. It is possible that participants developed a strategy such 
as assuming a particular question type and then compensating 
when wrong. It should be noted that the three types of 

questions were equally frequent, so there was no obvious 
basis for establishing such a hierarchy. If the two types of 
feature descriptives are considered together, there are in fact 
twice as many feature verifications to make as category 
verifications. Therefore, if there were to be a frequency-based 
bias, it ought to be toward preparing for a feature verification 
rather than a category verification. Another possibility is that 
the task was tapping into some unusual form of cognitive 
processing because of the multifaceted, uncertain nature of 
the task from trial to trial.  

In the current experiment, the items from the three within-
subjects conditions were presented in blocks rather than 
randomly distributed. Therefore, participants received three 
blocks of trials and within each block all of the descriptives 
were of the same type (Category, Functional or Physical). 
The order of the three blocks was randomized by subject.  

The same pattern of results was predicted: even when the 
participant knows what type of descriptive they will be asked 
to evaluate, it should take longer to verify a feature then a 
category. If this pattern is observed, it provides even stronger 
evidence that the semantic encoding of the features of an 
object is slower than the encoding of its category 
membership.  

Method 
Subjects A total of 79 undergraduates at Binghamton 
University participated in the experiment in order to receive 
course credit. 
Materials  The same stimuli were used as in Experiment 1. 
Procedure  The same procedure was used as in Experiment 1 
except that item order was randomized by blocks of item type 
rather than by item. Participants were instructed that they 
would encounter all three types of items, but that each of the 
types would be grouped together. 

Results and Discussion 
The same procedure was applied to remove outliers from 

the response time distribution resulting in the removal of 20 
individual trial RT’s across the entire data set. The filler items 
were again successful in that they were overwhelmingly 
rejected by participants at a rate of 99%. After the pruning 
process, mean accuracy on the critical items was above 90% 
for all three item types. The mean latency data for correctly 
answered items are shown in Figure 4. A repeated measures 
ANOVA was conducted on response latency revealing a 
significant effect of item type, F(2, 88) = 157.57.25, MSe = 
1945930, p < .001). Paired sample t-tests showed all pairwise 
differences to be significant (p < .001). 

Once again, a significant interaction was found between 
counterbalancing form and item type. This time, all of the 
follow-up comparisons showed reliable pairwise differences. 
The interaction is likely due to one of the forms showing 
somewhat faster mean latencies on only some of the item 
types. An additional issue in this design is whether the order 
of the blocking of the item types influenced performance. A 
mixed-design ANOVA testing the repeated measures factor 
of item type and the between-subjects factor of blocking order 
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(six possible orderings of the three blocks) showed no 
significant interaction (p > .1).   

Additional data collection was conducted in order to 
evaluate the image-descriptive pairings used in Experiments 1 
and 2. While every effort was made to choose the most 
obvious and appropriate descriptives of each type, it is 
important to evaluate these selections. In a separate mini-
experiment, the set of images used for the critical items in the 
previous experiments was presented to participants in a 
random order. The task was to type into a response area on 
the computer screen the first descriptive that came to mind. 
Unlike the previous experiments, a between-subjects design 
was used, so each participant was asked to produce only one 
type of descriptive throughout the task. For example, in the 
Category condition, the participant was asked to type in the 
first Category label that came to mind for each image.  
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Figure 3:  Response latency for correct items by condition 
under blocked presentation (E2) 

 
The resulting data allowed us to determine which of the 

descriptives used in Experiments 1 and 2 were of high or low 
dominance in a generation task. By considering only the 
subset of high-dominance descriptives, an evaluation was 
possible of the speed of verification differences beteween 
item types for only the most salient, accessible, and agreed-
upon descriptives. A preliminary version of such an analysis 
showed all of the observed pairwise differences remaining 
intact for the subset of the experimenter-selected descriptives 
which matched the descriptives most frequently generated by 
participants presented with these images. 

General Discussion 
The surprising result of these studies is that people know the 
category of a familiar everyday object before they know its 
features. The result is actually consistent with introspective 
experience: when you look up and see an object in the room, 

what do you know first about it: that it has legs, that it is for 
sitting, or that it is a chair? The results of two studies offer 
concrete evidence contradicting the Features-First view.  

There are possible counterarguments, but none that are 
especially compelling. It is possible that the features are 
encoded, but somehow unavailable for purposes such as a 
verification task. Features may be encoded in some notation 
that is sufficient as input to the categorization system, but not 
sufficient to allow a fast verification judgment. If this is the 
case, it is an important issue to begin to understand. The 
evidence is clear that, at the very least, people verify 
categorical information more quickly than featural 
information for highly familiar object categories. The further 
conclusion that the mental encoding of category membership 
precedes the mental encoding of compositional semantic 
elements of the stimulus also seems hard to escape. 

Additional work is underway to evaluate whether features 
are verified more quickly than categories for newly acquired 
or weakly understood categories. Such a reversal would 
provide further insight into the machinery of concept 
formation and use. 
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