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Introduction

Southern California is prone to recurrent wild-
land fire that strongly influences ecosystem pro-
cesses and vegetation dynamics. Over the past 
50 yr, an average of 40 large fires (>40 ha each) 
occurred each year, resulting in a mean burned 
area of 53 300 ha per yr (Jin et al. 2014). Despite 
considerable investment in fire suppression, fire 
perimeter data sets show an increasing trend in 
burned area since 1980 (Westerling 2006, Jin et al. 
2014). These fires have caused extensive property 

loss and multiple fatalities (Brillinger et al. 2009, 
Keeley et al. 2009). Spatial and temporal variabil-
ity in burned area within the region depends on 
ignition, meteorology, vegetation characteristics, 
topography, and fire suppression (Davis and Mi-
chaelsen 1995, Zedler and Seiger 2000, Moritz 
et al. 2004). Large areas of wildland–urban inter-
face further contribute to variability in burned 
area as a consequence of ignition probability, 
landscape fragmentation, and access points for 
suppression. Interactions between the envi-
ronmental and human controls on wildfire are 
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complex, and consequently quantitative models 
of the spatial patterns of fire risk remain highly 
uncertain.

The relative importance of the physical factors 
controlling large wildfires in Southern Califor-
nia has been vigorously debated. One school of 
thought has argued that large fires are the result 
of past fire suppression (Minnich 1983, Minnich 
and Chou 1997, Goforth and Minnich 2007). This 
perspective has emphasized the buildup of vege-
tation and detritus, which is thought to contrib-
ute to the development of large fires. A second 
school of thought has emphasized the importance 
of extreme weather (Davis and Michaelsen 1995, 
Moritz 1997, 2003, Keeley and Fotheringham 
2001, Keeley and Zedler 2009, Moritz et al. 2010). 
The literature documenting the latter perspective 
has noted that large fires often occur during brief 
episodes, from September through January when 
strong Santa Ana winds blow out of Southern Cal-
ifornia’s eastern deserts and mountains (Moritz 
et al. 2010, Peterson et al. 2011). Santa Ana winds 
often exceed 60 km/h and relative humidity may 
drop below 10%, resulting in fires that can spread 
at rates exceeding 10,000 ha/h (Keane et al. 2008). 
Fire spread during these extreme conditions is of-
ten comparatively insensitive to landscape varia-
tions in fuel loads. Approximately, half of the total 

burned area in Southern California occurs during 
Santa Ana events; almost all of the remaining 
burned area occurs during hot and dry summer 
months when the winds are predominately on-
shore (Jin et al. 2014).

Unique sets of environmental factors may drive 
the fire regime in the different ecoregions of Cal-
ifornia (Taylor and Skinner 2003, Stavros et  al. 
2014a,b). A conceptual diagram of the way physi-
cal and human factors interact to influence burned 
area is shown in Fig. 1. Interactions between me-
teorology, fuel structure and composition, and the 
frequency, spread, and severity of fire are well 
known (Keeley and Fotheringham 2001, Mori-
tz 2003, Collins et al. 2007, Meyn et al. 2007, Ar-
chibald et al. 2009, Preisler et al. 2011, Parisien and 
Moritz 2012). Within Southern California, fire sus-
ceptibility is known to be strongly related to va-
por pressure deficit and relative humidity, which 
covary with attributes such as elevation and mean 
annual precipitation (Parisien and Moritz 2012). 
Human activity also exerts a strong influence on 
fire frequency and burned area (Syphard et  al. 
2007). Variation in ignition frequency, for exam-
ple, is positively related to the extent of human de-
velopment and negatively related to the distance 
from infrastructure such as housing and roads 
(Syphard et al. 2008; Faivre et al. 2014). Roads also 

Fig. 1. Conceptual model of the major factors controlling burned area in Southern California (adapted from 
Archibald et al. 2009). The diagram categorizes the controls among human-related and biophysical variables and 
shows how they relate to fire regime and influence burned area.
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may serve as a barrier to fire spread, particularly 
for non-Santa Ana fires (Jin et al. 2015).

Three recent advances provide a foundation 
for more accurately modeling fire risk in South-
ern California. First, increasing quality and avail-
ability of geographic information system data 
sets describing human variables makes it pos-
sible to develop more sophisticated approaches 
for representing the interactions between human 
and environmental drivers shown in Fig. 1. Lim-
ited access to this type of information in previous 
regional assessments in Southern California and 
elsewhere may have led to an overreliance on 
climate and weather drivers. Second, the use of 
high resolution meteorology has made it possible 
for the first time to quantitatively separate Santa 
Ana and non-Santa Ana fires in the fire record 
(Jin et  al. 2014). This is important because the 
way climate and other environmental variables 
influence these two fire types is considerably 
different (Jin et  al. 2015). Third, new statistical 
techniques have the potential to improve model 
formulation and yield insight about the relation-
ship between driver variables. Ecological studies 
comparing the predictive ability of regression 
models to explain species distributions and fire 
dynamics have shown considerable variation, 
depending on methodology (Segurado and 
Araujo 2004, Elith and Graham 2009, Syphard 
and Franklin 2009). Prasad et al. (2006) concluded 
that machine learning methods, such as random 
forest or boosted regression trees, produce more 
accurate results in ecological studies than linear 
or additive models. Studies comparing multiple 
regression to ensemble learning techniques such 
as random forest modeling (Breiman 2001) for 
burned area are currently lacking.

Here, we investigate the relationship between 
burned area and human and biophysical con-
trols in Southern California using an array of 
modeling techniques, including (1) multiple lin-
ear regression, (2) generalized additive models 
(GAMs), (3) GAMs with spatial autocorrelation, 
(4) non-linear multiplicative models, and (5) 
random forest models. Our analysis focuses on 
the spatial pattern of mean annual burned area 
during 1960–2009, and begins by partitioning 
this area into Santa Ana (SA) and non-Santa Ana 
(non-SA) components (Jin et al. 2014). Our use of 
multiple modeling approaches allowed us to test 
the ability of each technique to accurately predict 

the spatial pattern of burned area for both fire re-
gimes and to quantify the relative contribution of 
the most important controls. Our analysis carries 
implications for the effect of climate change and 
further WUI development on Southern Califor-
nia fire risk, while also contributing to regional 
assessments of fire risk and more effective strate-
gies for fire and ecosystem management.

Data and Methods

Study area
Our study domain spanned 36,500  km2 of 

wildland and developed areas in Southern 
California within Santa Barbara, Ventura, Los 
Angeles, San Bernardino, Orange, Riverside 
and San Diego counties. Southern California’s 
Mediterranean-type climate is characterized by 
a dry summer followed by a relatively brief 
and mild rainy season (Bailey 1966). Spatial 
gradients of temperature and rainfall result in 
a variety of vegetation habitats (Franklin 1998). 
Widespread vegetation types include chaparral 
shrubland, coastal sage shrubland, valley grass-
land, open oak woodland, oak woodland, and 
coniferous forest (Di Castri et  al. 1981, Arroyo 
et  al. 1995, Davis and Richardson 1995). 
Southern California has experienced intense 
population pressure and urban growth around 
the major metropolitan areas during the past 
five decades; this has created widespread urban 
communities interspersed with wildland areas 
and connected by an extensive road network. 
Over 22 million people lived in Southern 
California in 2010 (source: US Census Bureau 
2012). We focused our analysis on predicting 
the regional burned area patterns throughout 
Southern California after excluding dense urban 
areas and deserts. Urban areas in the study 
domain represented less than 8% of the total 
land area, while the wildland–urban interface 
(WUI) accounted for 17%. Two-thirds of the 
area within the WUI consisted of housing in 
the vicinity of contiguous wildland vegetation 
and the remaining third was interspersed hous-
ing and vegetation.

Data sets: Wildfire data
We assessed burned area using the digitized 

perimeter for all reported fires >40 ha compiled 
by the California Department of Forestry – Fire 
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and Resource Assessment Program (FRAP 2010). 
We focused on the 50-yr period from 1960 to 
2009; the fire records during this period were 
more reliable than earlier records, and the pe-
riod overlapped with the availability of infor-
mation on human and biophysical factors.

We carried out our analysis at a 3 × 3 km res-
olution to match the spatial resolution of com-
plementary downscaled meteorological data sets 
that were important for characterizing regional 
variations in fire weather (Faivre et al. 2014). A 
sensitivity test was done during a preliminary 
analysis stage to quantify the effect of spatial 
resolution. We found that the 3-km resolution 
did not produce results that were systematical-
ly different from those using a finer resolution 
of 1 km. The 3-km resolution resulted in a sam-
ple total of 3590 grid cells that had a large and 
well-distributed range of burned area fractions, 
which aided model development. We considered 
burned area fraction, defined as the ratio of total 
area burned summed during 1960–2009 within 
each 3 × 3 km grid cell divided by the grid cell 
area as the dependent variable. Multiple human 
and environmental variables, which are de-
scribed below, were the predictors. The ArcGIS 
overlay geoprocessing tool was used to intersect 
the polygon layer of the grid cell boundaries with 
all fire polygons during 1960–2009, and the areas 
of all intersected new polygons within each indi-
vidual grid were then summed. For example, if 
two different fires during the study period each 
burned half of the grid area, the resulting burned 
area fraction would be one. We classified the his-
toric record of fire perimeters into SA fires and 
non-SA fires using the start date reported in the 
FRAP database and a continuous historic time se-
ries of days with Santa Ana conditions (Jin et al. 
2014, Fig.  2). Santa Ana days were determined 
using a downscaled meteorological time series 
that was obtained by driving the MM5 mesoscale 
model with the ERA-40 and North American Re-
gional Reanalysis data sets. Santa Ana days were 
identified when the northeasterly component 
of the daily mean wind speed was greater than 
6 m/s at the exit of the largest gap across the San-
ta Monica Mountains (Hughes and Hall 2010).

Data sets: Human factors
Humans can influence wildland fire regimes 

through several different pathways (Hammer 

et  al. 2007, Radeloff et  al. 2010). WUI areas 
and road networks, for example, influence fuel 
continuity, the patterns of ignition and access 
for suppression (Lloret et al. 2002, Rollins et al. 
2002, Ryu et  al. 2007). We defined the WUI 
as areas with less than 50% vegetation and at 
least 6.2 houses/km2 (1 house per 40 acres) 
that are located within 2.4  km of a 5  km2 (or 
greater) area that is more than 75% vegetated 
(Stewart et  al. 2007).

We considered seven variables to describe 
the human influence on burned area: (1) dis-
tance of cell center to a major road, (2) distance 
of cell center to a minor road, (3) road density, 
(4) population density, (5) distance of cell cen-
ter to low-density housing, (6) wildland–urban 
land fragmentation, and (7) ignition frequency. 
We derived these seven variables using the best 
available statewide data. Geographic Encoding 
and Referencing road data (TIGER; US Census 
Bureau 2000) was used to calculate the road 
density per grid cell and the distance to nearest 
road from the cell centroid. We computed aver-
age population and housing density per 3 × 3 km 
grid for 1960–2009 using the 1990 and 2000 U.S. 
decennial census spatial data, along with consis-
tent decadal projections of past growth trends 
for 1960, 1970, and 1980 (see Hammer et al. 2004, 
2007 for details). We used the distance from cell 
centroid to the nearest housing area with a den-
sity greater than 6.2 housing units/km2 as an in-
dicator of the proximity to low-density housing 
within the WUI.

Wildland–urban land fragmentation was cal-
culated using an edge density metric that rep-
resented the degree of spatial heterogeneity in 
the landscape. We used a land cover data set at 
100 m resolution from the California Department 
of Forestry and Fire Protection’s Fire Resource 
Assessment Program (FRAP 2002) to aggregate 
vector-based layers describing urban and non-
urban land cover types. The resulting binary 
map was then processed using the FRAGSTATS 
software package (McGarigal and Marks 1995) to 
analyze the spatial arrangement of wildland–ur-
ban patterns. We tested several landscape met-
rics including the patch density, mean patch size, 
mean shape index, edge density, mean nearest 
neighbor distance between similar patches and 
the interspersion and juxtaposition index (see 
McGarigal and Marks 1995 for a definition of 
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Fig.  2. Historical fire patterns in Southern California. The number of fires reported from 1960 to 2009 is 
shown for Santa Ana fires (a) and non-Santa Ana fires (b).
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Fig. 3. Expanded map of the Cajon Pass section of the study area, including the 3 × 3 km grid overlay used to 
analyze burned area. (a) The number of fires reported from 1960 to 2009. (b) The local land use/land cover. (c) 
The local housing density and major and minor roads.
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metrics). We found that edge density was the 
best proxy for quantifying the complexity of 
wildland patches imbricated within urban areas. 
Edge density (ED) is a shape index that indicates 

whether the wildland–urban boundary is simple 
and compact (low value) or irregular and convo-
luted (high value). We computed the mean for 
each predictor within each 3 × 3 km grid cell by 

Table 1. Spatial data on human and biophysical drivers of burned area used as inputs to the models.

Burned area drivers and 
input variables Variable name Data resolution Data source

Human accessibility
Distance to major roads (km) d.majR 1:100,000 Census Bureau’s TIGER road data (Topologically  

 �Integrated Geographic Encoding and 
Referencing) (US Census 2000)

Distance to minor roads (km) d.minR 1:100,000 Census Bureau’s TIGER road data (Topologically  
 �Integrated Geographic Encoding and 

Referencing) (US Census Bureau 2000)
Distance to low-density 

housing (km)
d.hou NA Census block-group data for 2000 (US Census  

 �Bureau 2001)
Urban development

Population density  
(Mpers./km2)

pop.den NA Census block-group data for 2000 (US Census  
 �Bureau 2001)

Ignition frequency (No. 
ignitions/km2)

pred.ign 3 km Ignition frequency estimates for Southern  
 �California (Faivre et al. 2014)

Land fragmentation
Edge density index (0–100) ed.den 30 m WUI maps computed from the 1990 and 2000  

 �US Census block datasets (Radeloff et al. 2005)
Road density (km roads/km2) rd.den 1:100,000 Census Bureau’s TIGER road data (Topologically  

 �Integrated Geographic Encoding and 
Referencing) (US Census Bureau 2000)

Topography
Elevation (m) elev 90 m Digital elevation data from the United States  

 �Geological Survey—National Elevation Dataset
Slope (%) slope 90 m Digital elevation data from the United States  

 �Geological Survey—National Elevation Dataset
Land cover

Tree cover (%) tree 100 m California Department of Forestry and Fire  
 �Protection’s Fire Resource Assessment Program 

(FRAP 2002)
Shrub cover (%) shrub 100 m California Department of Forestry and Fire  

 �Protection’s Fire Resource Assessment Program 
(FRAP 2002)

Grass cover (%) grass 100 m California Department of Forestry and Fire  
 �Protection’s Fire Resource Assessment Program 

(FRAP 2002)
Climate

Temperature maximum (°C) tmax 800 m Monthly estimates of average daily maximum  
 �temperature from PRISM (Daly et al. 2008)

Temperature minimum (°C) tmin 800 m Monthly estimates of average daily minimum  
 �temperature from PRISM (Daly et al. 2008)

Precipitation (mm/yr) prec 800 m Monthly estimates of mean cumulative  
 �precipitation from PRISM (Daly et al. 2008)

Weather
Fosberg fire weather index ffwi 6 km Daily estimates of a mesoscale model version 5  

 �(MM5)—Penn State/National Center for 
Atmospheric Research

Relative humidity rel.h 6 km Daily estimates of a mesoscale model version 5  
 �(MM5)—Penn State/National Center for 

Atmospheric Research
Wind speed (m/s) wind.s 6 km Daily estimates of a mesoscale model version 5  

 �(MM5)—Penn State/National Center for 
Atmospheric Research
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applying the zonal statistics tool in ArcGIS Spa-
tial Analyst (Fig. 3).

Consistent region-wide ignition data outside of 
the National Forests were unavailable, and we es-
timated ignition frequency for each 3 × 3 km grid 
using the spatial modeling approach developed 
in Faivre et al. (2014). Poisson regression analy-
ses were used to model ignition frequency as a 
function of the dominant human and biophysical 
covariates (Syphard et al. 2008, Faivre et al. 2014).

Data sets: Vegetation and biophysical factors
We used a set of 12 environmental variables 

that were expected to influence the physical 
characteristics of fuel, including continuity, 
moisture, or loading (Fig.  1). These variables 
can be sorted into three main categories: to-
pography (1-elevation, 2-slope), land cover (frac-
tional cover of 3-forest, 4-shrubland, 5-grassland, 
and 6-other), and meteorology (annual average 
daily 7-maximum and 8-minimum temperature, 
9-cumulative winter precipitation, 10-wind 
speed, 11-relative humidity, and 12-Fosberg fire 
weather index (FFWI) (Table  1)). The FFWI is 
a non-linear construct of meteorological condi-
tions (i.e., temperature, relative humidity, and 
wind speed), which is widely used to infer 
wildfire potential from the short-term weather 
conditions (Fosberg 1978). FFWI values range 
from 0 to 100; values ≥50 indicate a significant 
threat of wildfire incidence and spread.

The topographic variables (elevation and 
slope) were calculated for each 3  ×  3  km grid 
cell using the three arc-second digital elevation 
model from the U.S. Geological Survey National 
Elevation Dataset (NED). We assessed vegeta-
tion characteristics using the recent and compre-
hensive land cover data set at 100 m resolution 
from the California Department of Forestry and 
Fire Protection’s Fire Resource Assessment Pro-
gram (FRAP 2002). We classified the mixed veg-
etation of wildland areas into three major types: 
“shrubland” (comprising 52% of the study area), 
“forest/woodland” (19%), and “grassland” (8%). 
The remaining non-vegetated land cover types 
(21%) were grouped as “other”; this category in-
cluded agricultural land, urban, desert, wetland, 
water, and barren soil. We calculated the frac-
tion of each class within each 3 × 3 km grid cell.

We derived several of the meteorological 
variables from the monthly gridded Parameter-

Elevation Regressions on Independent Slopes 
Model (PRISM) data set that has a native reso-
lution of 800  m (Daly et  al. 2002; Oregon State 
University PRISM Group). Winter precipitation 
was estimated using monthly mean of precipita-
tion during September through March for each 
3 × 3 km cell over the 1960–2009 period. Similarly, 
variables representing the annual mean of daily 
maximum temperature and the annual mean 
of daily minimum temperature were calculated 
over the period by averaging all the available 
monthly files.

To capture the spatial pattern of meteorologi-
cal conditions that typically occur during SA and 
non-SA fires, we estimated daily relative humid-
ity, wind speed, and the Fosberg Fire Weather 
Index using 3-hourly model outputs from the 
Mesoscale Model version 5 (MM5) forced with 
reanalysis data sets as described by Jin et  al. 
(2014). Santa Ana days were identified using 
winds at the exit of the largest gap in the San-
ta Monica Mountains (Hughes and Hall 2010). 
Most of the Santa Ana events occurred in late 
autumn and early winter in Southern California, 
and most SA fires occurred in a 3-month window 
from September to November (Jin et  al. 2014). 
We therefore quantified the meteorological con-
ditions that typically occur during SA fires by 
averaging each of these three variables from the 
MM5 daily time series during Santa Ana days 
from September to November. For non-SA fires, 
we calculated these same variables during non-
Santa Ana days from June to August. We resa-
mpled all meteorological data to the common 
3 × 3 km grids.

Modeling approaches to predict burned area
We built, tested, and compared five modeling 

approaches separately for SA and non-SA fires: 
multiple linear regression (MLR), generalized 
additive models (GAMs), GAMs incorporating 
spatial autocorrelation (GAMspA), non-linear 
multiplicative models (NMM), and random for-
est models (RF).

MLR has been used extensively to analyze 
the relationship between burned area and en-
vironmental controls (Larsen 1996, Carvalho 
et al. 2008, Camia and Amatulli 2009). Empirical 
studies often predict a high proportion of the 
variation in burned area using MLR (Flannigan 
and Harrington 1988, Turner and Romme 1994, 
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Turner et al. 1994, Larsen 1996). However, linear 
regression assumes the variance of the response 
variable is constant across observations and the 
errors follow a normal (Gaussian) distribution; 
these assumptions may be invalid for the estima-
tion of burned area or other ecological variables 
(Viegas and Viegas 1994, Li et al. 1997, McCarthy 
et al. 2001). We therefore also considered gener-
alized additive models (GAMs), which are com-
paratively flexible and often are better-suited for 
analyzing ecological data based on non-linear 
responses to predictor variables (Hastie and Tib-
shirani 1986).

These modeling approaches assume spatial sta-
tionarity (i.e., effects of environmental correlates 
are constant across the region) and isotropic spa-
tial autocorrelation (i.e., the process resulting 
in spatial autocorrelation acts in the same way 
in all directions). Anisotropic spatial autocor-
relation arises when the variables of interest in 
nearby sample units are not independent of each 
other (Griffith 1987), i.e., in ecological data. Such 
spatial patterns are usually explained by envi-
ronmental features such as climatic or habitat 
structure variables that are themselves spatially 
structured (e.g., directionality and intensity of 
wind patterns). It is often impossible to measure 
all spatially structured variables, and this issue 
affects the uncertainty of statistical models (Leg-
endre 1993, Legendre et al. 2002). A positive spa-
tial autocorrelation (i.e., closer locations having 
more similar residual values than others) tends 
to underestimate the true standard error of pa-
rameters, which leads to an over estimation of 
the regression coefficients.

We thus constructed a version of the GAM 
model accounting for spatial autocorrelation to 
better represent gradually changing spatial vari-
ability in environmental correlates. We imple-
mented these autocovariate GAMs by calculat-
ing locally weighed regressions within a moving 
window spanning the entire study domain. We 
included a two-dimensional smoothing function 
f(xi,yi) in the GAMs, using the two geographic co-
ordinates (i.e., latitude and longitude) as a single 
variable, along with the other terms in the model 
(Wood and Augustin 2002, Wood 2003).

As an alternative approach to GAM, we in-
vestigated the use of non-linear multiplicative 
regression models. Previous modeling studies 
have shown that the rate of fire spread has a pos-

itive exponential relationship with slope (Junpen 
et al. 2013) and fuel load (Cheney et al. 1998, Mar-
tins Fernandes 2001), and a negative exponential 
relationship with fuel moisture content (Junpen 
et  al. 2013). Thus, we tested several non-linear 
multiplicative models including power functions 
(of the form y = xr), rational functions (quotients 
of polynomial functions), exponential decay and 
growth functions (Eq. 1), logistic functions (Eq. 
2) and combined forms. We performed an opti-
mization of the model equations using the non-
linear least squares solver (nls; Bates and Watts 
1988) that estimates iteratively the coefficients 
of explanatory variables to find the best fit (i.e., 
highest correlation) with the response variable. 

� (1)

� (2)

The previous modeling approaches are sensi-
tive to collinearity among predictors, which can 
hinder the variable selection process, and mod-
el predictive power. A promising alternative is 
the use of classification and regression tree tech-
niques; these approaches are generally more ro-
bust to the inclusion of correlated variables, and 
are complementary to generalized linear and ad-
ditive models (Archer and Kimes 2008). Conse-
quently, we implemented a random forest mod-
el (R package “random forest”) by generating a 
large number of bootstrapped trees (using a ran-
domized subset of predictors), and reserving 30% 
of the data for testing (Breiman 2001). We trained 
1000 trees using 70% of the data and selected six 
predictors at each split. We used a default min-
imum node size of five to prevent the creation 
of small sample nodes without increasing the 
overall relative error (i.e., misclassification rate; 
Breiman (2001)). The model predictions were ob-
tained using the reserved data each time a tree 
was grown. The final predictions consisted of the 
average of all predictions from the 1000 regres-
sion trees.

Variable selection and model validation
We performed initial univariate regressions 

between the response variable and all predictors 

f(x,�)=�1 × e−�2x

f(x,�)=
�1

1+�2 × e−�3x
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Table 2. Univariate impacts of various controls on spatial patterns of Santa Ana and non-SA fires using a linear 
regression approach.

Explanatory variable

Santa Ana fires

Explanatory variable

non-Santa Ana fires

rpearson R2 rpearson R2

Fosberg Fire Weather Index 0.35 12.3% Shrub cover 0.34 11.5%
Relative Humidity −0.29 8.4% Road density −0.24 5.7%
Temperature minimum 0.28 7.8% Distance to minor roads 0.22 4.8%
Distance to Housing −0.28 7.8% Distance to major roads 0.19 3.6%
Wind Speed 0.25 6.2% Relative Humidity −0.19 3.6%
Elevation −0.25 6.2% Grass cover −0.16 2.6%
Shrub cover 0.23 5.3% Distance to Housing 0.15 2.2%
Temperature maximum 0.22 4.8% Tree cover −0.13 1.7%
Tree cover −0.16 2.5% Predicted ignition −0.12 1.4%
Predicted ignition 0.15 2.2%
Distance to minor roads −0.15 2.2%
Slope 0.12 ~1% Population density −0.11 ~1%
Precipitation 0.11 ~1% Precipitation 0.11 ~1%
Distance to major roads −0.08 ~1% Elevation 0.1 ~1%
Road density 0.06 ~1% Temperature minimum 0.06 ~1%
Edge density 0.06 ~1% Fosberg Fire Weather 

Index
0.06 ~1%

Population density 0.02 ~1% Edge density −0.06 ~1%
Grass cover −0.01 ~1% Wind Speed −0.04 ~1%

Temperature maximum −0.04 ~1%
Slope 0.03 ~1%

Note: Table shows the explained variance by each predictor independently from the influence of other explanatory 
variables.

Table 3. Comparison of model performance and relative importance of variables in explaining burned area 
spatial patterns for Santa Ana fires.

MLR GAM GAMspA NMM RF

Var. Coef ± SE
Var. 
imp. Var. dff

Var. 
imp. Var. dff

Var. 
imp. Var. Coef ± SE

Var. 
imp. Var.

Var. 
imp.

Intercept −5.31 ± 0.33 NA Intercept 1 NA Intercept 1 NA C1 1.36 ± 0.08 NA ffwi 42%
ffwi 0.31 ± 0.01 28% s(ffwi) 5.3 34% s(lon,lat) 8.9 31% ffwi −0.59 ± 0.07 26% elev 20%
wind.s −0.83 ± 0.03 19% s(wind.s) 5.9 31% s(ffwi) 5.5 20% wind.s 1.73 ± 0.22 19% rel.h 16%
rel.h 0.08 ± 0.005 10% s(rel.h) 3.3 12% s(wind.s) 5.8 16% prec −2.66 ± 0.26 16% d.hou 12%
shrub 0.28 ± 0.04 9% s(shrub) 2.8 6% s(rel.h) 3.7 3% shrub −1.78 ± 0.22 6% shrub 11%
d.hou −0.01 ± 0.001 13% s(d.hou) 3.9 10% s(shrub) 2.9 10% d.hou 0.23 ± 0.02 14% tmin 7%
tree 0.19 ± 0.05 5% s(prec) 3.5 5% s(d.hou) 3.9 13% tmax −0.02 ± 0.03 6% pred.ign 3%
prec −0.07 ± 0.009 15% s(tree) 3.3 1% s(prec) 3.5 3% rel.h 0.07 ± 0.01 12%

s(tree) 2.8 4%
Notes: Variable importance (Var. imp.) is specified as the contribution to the explained variance for the Multiple Linear 

Regression (MLR), as the reduction in the generalized cross-validation (GCV) estimate of error for Generalized Additive Models 
(GAM), as the contribution to model deviance for the Non-linear Multiplicative Model (NMM) or as the decrease in Mean Square 
Error (MSE) for Random Forest (RF). Please refer to Table 1 for a full description of the explanatory variables retained in the mod-
els. For the MLR, the AIC = 3696, the adjusted R2 = 0.39 [0.34, 0.42], the percent bias = 0.21, the RSME = 0.49, df = 8; for the GAM, the 
AIC = 3474, the adjusted R2 = 0.43 [0.39, 0.46], the percent bias = 0.05, the RSME = 0.46, df = 29; for the GAMspA, the AIC = 3046, the 
adjusted R2 = 0.51 [0.48, 0.54], the percent bias = 0.06, the RSME = 0.43, df = 38; for the NMM, the AIC = 3399, the adjusted R2 = 0.44 
[0.39, 0.45], the percent bias = 0.013, the RSME = 0.26, df = 8; for the RF model, the adjusted R2 = 0.63, the percent bias = 0.023, the 
RSME = 0.2.
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with the goal of identifying the relative im-
portance of each predictor independent of its 
interactions with others (Table  2). We also ex-
amined the correlation matrix among explan-
atory variables for high pairwise correlations 
to detect multicollinearity issues and to narrow 
the selection of useful covariates.

We used the following methods to select the 
most relevant predictors from the entire set. The 
selection of terms for deletion from the MLR 
model was based on Akaike’s Information Crite-
rion (AIC). The selection of terms for the GAM 
analysis used the automatic term selection proce-
dure (Wood and Augustin 2002), which imposed 
a penalty to smooth functions and thus effective-
ly removed terms from the model. The selection 
of terms in the multiplicative models relied on 
sequentially adding terms based on an incremen-
tal improvement to model fit (i.e., minimizing 
cross-validated R2).

We used 70% of the data (n = 2495), randomly se-
lected, for the development of each model. The re-
maining data in reserve (30%, n = 1095) were used to 
quantify model performance, using cross-validated 
R2 values (model predictions against the validation 
data subset), root mean square errors (RMSE), per-
cent bias and AIC values. We repeated this process 

500 times for each model type (except for RF where 
the iteration process is integrated) while maintain-
ing the 70:30 ratio to ensure the statistically mean-
ingful mean and accuracy of the results. Finally, we 
estimated the number of degrees of freedom (Ta-
ble 3 and 4). Model building and statistical analyses 
were carried out using R software (R Development 
Core 2012; “mgcv” package for GAM, “rpart” and 
“randomForest” packages for RF).

Evaluation of relative importance of variables
We estimated the contribution of predictors 

by analyzing the deviance (AIC value) of nested 
models (i.e., models excluding successively the 
less relevant predictor) for all modeling ap-
proaches except Random Forest. In the RF ap-
proach, we used the 70:30 ratio to split the 
data sets for model calibration and validation 
(Breiman 2001), and used the percent decrease 
in accuracy (i.e., decrease in mean square error) 
as a measure of variable importance. Then, we 
conducted several analyses to better understand 
the relationship between driver variables, im-
portant splitting points, and the predicted spatial 
pattern of burned area. First, we ran an addi-
tional regression tree using the average (final) 
predictions from the random forest as input 

Table 4. Comparison of model performance and relative importance of variables in explaining burned area 
spatial patterns for non-Santa Ana fires.

MLR GAM GAMspA NMM RF

Variable Coef. ± SE
Var. 
imp. Variable dff

Var. 
imp. Variable dff

Var. 
imp. Variable Coef.± SE

Var. 
imp. Variable

Var. 
imp.

Intercept 2.05 ± 0.15 NA Intercept 1 NA Intercept 1 29% C1 12.9 ± 4.7 NA rel.h 17%
shrub 0.41 ± 0.03 34% s(shrub) 1 14% s(lon,lat) 8.2 28% shrub 1.04 ± 0.08 20% shrub 13%
rel.h −0.02 ± 0.001 23% s(rel.h) 4.4 32% s(shrub) 1 2% rel.h −0.05 ± 0.005 17% tmin 13%
tmin 0.07 ± 0.006 12% s(tmin) 3.9 23% s(rel.h) 3.5 15% tmin 0.15 ± 0.01 14% wind.s 12%
rd.den −0.05 ± 0.008 16% s(rd.den) 1.8 7% s(tmin) 3.8 9% rd.den −0.13 ± 0.02 2% ed.den 10%
wind.s −0.06 ± 0.01 3% s(wind_s) 5.6 8% s(rd.den) 1.1 9% wind.s −0.16 ± 0.02 18% d.hou 11%
tmax 0.03 ± 0.005 3% s(d.hou) 4.8 4% s(wind.s) 5.5 6% tmax −0.06 ± 0.01 8% prec 10%
d.hou 0.01 ± 0.001 7% s(tmax) 4.8 10% s(d.hou) 4.5 4% d.hou 0.02 ± 0.002 21% pred.ign 13%
pred.ign 0.03 ± 0.01 2% s(pred.ign) 3.6 1% s(tmax) 4.6 3% pred.ign 0.10 ± 0.02 1%

s(pred.ign) 3.8 3%
Notes: Variable importance (Var. imp.) is specified as the contribution to the explained variance for the Multiple Linear 

Regression (MLR), as the reduction in the generalized cross-validation (GCV) estimate of error for Generalized Additive 
Models (GAM), as the contribution to model deviance for the Non-linear Multiplicative Model (NMM) or as the decrease in 
Mean Square Error (MSE) for Random Forest (RF). Please refer to Table 1 for a full description of the explanatory variables 
retained in the models. For the MLR model, the AIC = 3892, the adjusted R2 = 0.21 [0.16, 0.24], the percent bias = 0.28, the RSME 
= 0.52, df = 9; for the GAM, the AIC = 3714, the adjusted R2 = 0.27 [0.25, 0.34], the percent bias = 0.29, the RSME = 0.49, df = 31; 
for the GAMspA, the AIC = 3585, the adjusted R2 = 0.32 [0.27, 0.36], the percent bias = 0.30, the RSME = 0.48, df = 37; for the 
NMM, the AIC = 3655, the adjusted R2 = 0.23 [0.18, 0.28], the percent bias = 0.22, the RSME = 0.51, df = 37; for the RF model, the 
adjusted R2 = 0.48, the percent bias = 0.28, the RSME = 0.31.
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Fig. 4. (a) Spatial patterns of burned during area 1960–2009 and mean Forsberg fire weather index during 
Santa Ana days. (b) Spatial patterns of area burned during 1960–2009 and mean relative humidity during non-
Santa Ana days. The orientation of wind vectors indicates the mean direction and the length indicates the wind 
speed. The fire perimeters in red are overlaid on a land cover map.
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data. We then pruned this tree using a com-
plexity parameter of 0.01 (see the documentation 
of R package “rpart” for an explanation of this 
parameter). This “summary tree” explained 
significantly more variance in the input data 

(P  <  0.001) than any random regression tree 
of equal complexity generated from the random 
forest (Rejwan et  al. 1999). The tree structure 
enabled to us to investigate the explanatory 
nature of the dominant controls on burned area. 

Fig. 5. Correlation matrix of 18 explanatory variables for (a) Santa Ana and (b) non-Santa Ana fires. The tables 
indicate the degree and sign of correlation between all of the variables used to explain the burned area patterns.
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We analyzed the splits and nodes of this re-
gression tree and determined the combinations 
of human and biophysical conditions resulting 
in high and low burned area fractions across 
the region. Finally, we used predictive maps 
to spatially characterize the combined influence 
of climate, fuel, and human conditions.

Results

Burned area patterns
We observed contrasting spatial patterns of 

burned area for SA and non-SA fires (Fig.  2). 
The characteristic location, size, shape, and 
overlap of individual fire perimeters differed 
markedly by fire type. SA fires accounted for 
most of the burned area in four regions: the 
Santa Monica Mountains and Simi Hills, the 
Cajon Pass between the San Gabriel Mountains, 
and the San Bernardino Mountains (Fig. 3), the 
Santa Ana Mountains, and the eastern part of 
San Diego County. High wind speeds occur 
through these mountain passes on Santa Ana 
days (Moritz et  al. 2010), which translates into 
a FFWI above 21 (Fig.  4a). SA fires burned 
repeatedly near developed areas, resulting in 
aggregated fire mosaics with high burn fre-
quencies in areas close to the wildland–urban 
interface. Non-SA fires were mostly confined 
to inland areas with low summer relative hu-
midity (Fig.  4b). 370 SA fires and 890 non-SA 
fires were recorded between 1960 and 2009. 
The average size of SA fires during 1960–2009 
was 2700  ha (median 723  ha), and 53% of the 
large fires (≥5000  ha) were SA. Non-SA fires 
were typically smaller, with a mean size of 
900  ha (median 356  ha), and were typically 
scattered across remote and rugged areas, such 
as the central part of Los Padres National Forest 
and the San Gabriel Mountains. A relatively 
high frequency of non-SA fires occurred in the 
San Gorgonio Pass.

Contrasting sets of variables were required to 
predict the spatial burned area patterns for SA 
and non-SA fires (Table  2). SA fire burned area 
was positively associated with variables empha-
sizing human presence and proximity to urban 
development (Table  2; Fig.  5a), whereas non-SA 
burned area often had a negative relationship 
with these variables (Table  2; Fig.  5b). Both fire 
types had a positive relationship with variables 

related to the amount and composition of fuels, 
such as shrub cover. The relationship between 
meteorological variables and burned area was 
more pronounced for SA fires, with wind speed, 
temperature, and precipitation having a positive 
influence, and relative humidly having a negative 
influence (Table  2; Fig.  5).

Comparison of modeling approaches for SA fires
Performance characteristics and input parameters 

used to predict burned area patterns for each 
model are shown in Table  3 for SA fires and 
Table  4 for non-SA fires. The best compromise 
between model complexity and model performance 
was achieved using seven variables for SA fires 
and eight variables for non-SA fires. The variables 
retained for SA or non-SA fires were generally 
consistent regardless of modeling approach, al-
though the relative importance of variables typ-
ically varied with method (Tables  3 and 4).

All five modeling methods captured a signif-
icant amount of variance in the spatial distribu-
tion of SA burned area (Tables  3). The burned 
area variance explained by models ranged from 
39% for the MLR model to 63% for the RF mod-
el. Compared with MLR, GAMs increased the 
adjusted-R2 to 43% and reduced bias but also 
had considerably more degrees of freedom 
(i.e., the number of components in the model 
that need to be known). Incorporating spatial 
autocorrelation in GAMs improved model per-
formance, explaining 51% of the variance. We 
caution that the primary influence of the spatial 
autocorrelation term in the augmented GAM 
(Table 3) may be confounded with the influence 
of spatially structured variables such as wind 
speed, relative humidity, and to a lesser extent, 
elevation and fuel distributions (Fig. 4a). Indeed, 
the burned area patterns of SA fires varied by 
latitude and longitude along a south-western 
directional gradient. The non-linear multiplica-
tive model fit explained 44% of the variance and 
also had a lower bias compared to MLR, with 
the same degrees of freedom. The multiplicative 
model for SA fires had the form as seen in Eq. 3 
below. 

Multiple linear regression produced spatial 
patterns that had excessive spatial smoothing rel-
ative to the observations (Fig. 6). In contrast, non-
linear multiplicative and random forest models 
captured more of the fine scale spatial structure.
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Comparison of modeling approaches for  
non-SA fires

Non-SA model performance was somewhat 
weaker, ranging between 21% of the variance 
explained for the MLR to 48% for the RF model. 
Both GAMs (27%) and non-linear multiplicative 
models (23%) yielded slight improvements over 
MLR (i.e., had higher correlation coefficients and 
decreased AIC; Table  4). The non-linear multi-
plicative model developed for non-Santa Ana 
fires had the form as seen in Eq. 4 below. 

Adding a spatial autocorrelation term had 
little effect on the overall performance of GAM, 
explaining 32% of the variance. For non-SA 
fires, the RF model also had the lowest RMSE 
and bias values, and resolved more of the ob-
served patterns (Fig.  7).

Relative importance of biophysical and  
human variables

We found that the relative importance of vari-
ables influencing burned area differed between 
SA and non-SA fires. All models for SA fires 
identified FFWI as the variable that explained 
the most variance in burned area (i.e., from 28% 
of the total model predicted variance in MLR 
model to 40% for RF; Table  3). Wind speed, 
relative humidity, distance to housing, and shrub 
cover were comparatively strong contributors to 
model performance, and precipitation and tree 
cover were weaker factors. Shrub cover, relative 
humidity, temperature, wind speed and 
precipitation were the most important determin-
ing factors for predicting non-SA fires (Table 4). 
Road density was the strongest human variable 
influencing the spatial distribution of non-SA 
fires. Distance to housing and ignition frequency 
contributed to a lesser degree, though both fac-
tors are highly correlated with distance to roads.

Predictive mapping and split conditions
The “summary” trees created from the RF 

predictions for SA and non-SA fires were 

effective at predicting burned area for extremes 
cases, where particularly small or large pro-
portions of an area were predicted to burn. 
A possible explanation is that the environ-
mental and human conditions resulting in 
either high or low burned areas were easily 
identified for both fire types (Fig.  8). For SA 
fires, areas with FFWI <21 and located at a 
distance ≥5.8  km from low-density housing 
had the lowest mean predicted burned fraction 
(0.1% per yr) while representing nearly 30% 
of the domain (Table  5). Low SA burned frac-
tions (<0.25% per yr) were also predicted in 
another 22% of the domain within areas that 
were close to urban development (where dis-
tance to housing was <5.8  km). Shrub cover 
in these regions was <48% and FFWI was <17 
(Table  5). Intermediate SA burned area pre-
dictions coincided with areas at low elevations 
(<900  m), shrubland cover greater than 48%, 
and in close proximity to the wildland–urban 
interface (d.hou <5.8 km) (Table 5). Areas with 
higher predicted burned area were often lo-
cated at a distance <6.2  km from low-density 
housing, with FFWI ≥21 and low relative hu-
midity (<49%). These fire-prone conditions were 
especially common in the Santa Monica 
Mountains (Fig.  8a).

The occurrence of non-SA burns was most-
ly discriminated by fuel type (the amount of 
shrub cover) and relative humidity (Table  6). 
High humidity (≥62%) and low shrub cover 
(<40%) led to predictions of low to moderate 
non-SA burned area (i.e., mean annual fraction 
burned comprised between 1% and 3%). Denser 
shrub cover (≥40%) and lower relative humidi-
ty (<63%) were associated with intermediate to 
high burned areas. The fire probability within 
this group was further increased by annual av-
erage of daily minimum temperatures ≥6.7°C. 
Some areas showed extensive non-SA burning 
despite lower minimum temperatures; these 
areas were associated with low landscape frag-

y=C1 × e(C2×shr+C3×rel.h+C4×tmin+C5×rd.den+C6×wind.s+C7×tmax+C8×d.hou+C8×pred,ign)

y=C1 ×
1

1+e(C2×ffwi+C3×wind.s+C4×prec×C5×shr+C6×d.hou+C7×tmax+C8×rel.h)
(3)

(4)
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mentation (ED <0.2). Recurrent and extensive 
non-SA fires were predicted in areas character-
ized by relative humidity <60%, dense shrub 
cover (≥70%), an annual rainfall ≥438 mm and 
an annual average of daily minimum tempera-

tures ≥8.9°C (Fig. 8b; Table 6, nodes 9 and 10). 
These conditions were typical of the northern 
part of the Los Padres National Forest and the 
western part of the Angeles National Forest 
(Fig. 8b).

Fig. 6. Geospatial model predictions of SA fire burned area. Panels show: (a) the observed burned area, 
(b) the burned area predicted using multiple linear regression, (c) the area predicted using a generalized 
additive model, (d) the area predicted using a generalized additive model with spatial autocorrelation, (e) the 
area predicted using a non-linear multiplicative model, and (f) the area predicted using a random forest 
model.
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Discussion

Contrasting patterns of SA and non-SA fires
We characterized the spatial patterns of 

burned area and investigated the associated 

drivers for SA and non-SA fires in Southern 
California; these two fire regimes overlap spa-
tially but are temporally distinct. The environ-
mental and human-related driver variables 
influence the two types of fire in markedly 

Fig. 7. Geospatial model predictions of non-SA fire burned area. Panels show: (a) the observed burned 
area, (b) the burned area predicted using multiple linear regression, (c) the area predicted using a generalized 
additive model, (d) the area predicted using a generalized additive model with spatial autocorrelation, (e) the 
area predicted using a non-linear multiplicative model, and (f) the area predicted using a random forest 
model.
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different ways. Jin et  al. (2014) described a 
comprehensive analysis of the environmental 
controls on the temporal dynamics of SA and 
non-SA fires. Low relative humidity and strong 
wind promote ignition and increase the rate 
of fire spread within dry fuels, especially for 
SA fires. The cumulative precipitation during 
both the current and the preceding 3  yr exert 
a strong influence on fine fuel accumulation, 
which increases the likelihood of non-SA fire 
occurrence (Jin et  al. 2014).

Our research builds on previous studies that 
have provided an understanding of how meteoro-
logical factors (i.e., temperature and precipitation) 
constrain the temporal dynamics of fuel charac-
teristics and fire activity. Temperature modulates 
fuel moisture directly through evapotranspira-
tion, and indirectly at higher elevation through 
snowpack accumulation and melt (Westerling 
2006). Westerling and Bryant (2008) proposed two 
basic fire regimes: “energy-limited”, which occur 
in relatively wet and dense forested ecosystems 

Fig. 8. Spatial clustering of observed data using regression tree classification. Panels show the areas where 
fire regimes of Santa Ana (a) and non-Santa Ana fires (b) are under varying degrees of human, fuel and climatic 
controls. The mean predicted burned area fraction of each node is listed in the legend, and the corresponding 
sets of human and biophysical conditions with each node number, shown in the parenthesis, are described in 
Table 5 for Santa Ana fires and Table 6 for non-Santa Ana fires.
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where fuel flammability is the limiting factor, and 
“fuel-limited”, which occur in low-density shru-
bland where spread is limited by fuel availability. 
Meteorological conditions during preceding years 
can have an important effect on fuel accumulation 
and thus fire spread in “fuel-limited” systems (Lit-
tell et al. 2009, Stavros et al. 2014a,b). Our analysis 
expands on previous work to show that the spatial 
distribution of SA and non-SA fires in Southern 

California respond differently to environmental 
and human drivers and their interactions.

Ignitions in Southern California are clustered 
around urban development and transportation 
corridors, and are more widely scattered within 
wildland areas (Faivre et  al. 2014). The occur-
rence of very large fires (e.g., 10 000 acres) in the 
foothills and lower montane ecosystems of the 
San Gabriel and Castaic ranges reflects the like-

Table 5. Split conditions for Santa Ana Fires identified by the regression trees created from the mean of the 
random forest predictions.

Split 1 Split 2 Split 3 Split 4 Split 5 Split 6

Mean 
fraction 
burned % total area Node #

ffwi < 21 d.hou ≥ 5.8 0.05 28.6 1
d.hou < 5.8 shrub < 0.48 ffwi < 17 0.12 22.3 4

ffwi ≥ 17 elev ≥ 646 0.33 3.2 7
elev < 646 d.hou < 1.8 0.68 1.2 12

d.hou ≥ 1.8 2.10 0.2 13
shrub ≥ 0.48 elev ≥ 897 0.22 8.6 5

elev < 897 ffwi < 16 0.61 12.8 8
ffwi ≥ 16 1.09 3.4 9

ffwi ≥ 21 d.hou ≥ 6.1 0.28 4.5 2
d.hou < 6.1 rel.h ≥ 49 0.53 3.8 3

rel.h < 49 tmin < 10.8 ffwi < 26 0.75 3.9 10
ffwi ≥ 26 1.22 4.9 11

tmin ≥ 10.8 1.56 2.6 6

Note: These splits identify break points in the predictor variables that are important for explaining burned area spatial pat-
terns for Santa Ana fires. The reliability of this regression tree is slightly decreased from original random forest predictions 
(R2

SA = 0.56, P < 0.001). Please refer to Table 1 for the definition of acronyms and a full description of explanatory variables.

Table 6. Split conditions for non-Santa Ana Fires identified by the regression trees created from the mean of the 
random forest predictions.

Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7

Mean 
fraction 
burned % total area Node #

shrub < 0.40 rel.h ≥ 62 0.16 16 1
  rel.h < 62 shrub < 0.24 0.26 16.2 3
    shrub ≥ 0.24 0.46 5.1 4
shrub ≥ 0.40 rel.h ≥ 63   0.38 23.0 2
  rel.h < 63 tmin < 6.7 ed.den ≥ 0.2 0.29 6.3 5

ed.den < 0.2 0.77 8.6 6
tmin ≥ 6.7 shrub < 0.7 0.68 8.4 7

shrub ≥ 0.7 prec < 438 tmin < 8.9 0.50 3.2 8
tmin ≥ 8.9 rel.h < 60 0.80 1.2 11
  rel.h ≥ 60 1.43 0.9 12

prec ≥ 438 d.hou < 18 0.92 9.1 9
  d.hou ≥ 18 1.22 2.0 10

Note: These splits identify break points in the predictor variables that are important for explaining burned area spatial pat-
terns for non-Santa Ana fires. The reliability of this regression tree is slightly decreased from original random forest predictions 
(R2

nonSA = 0.42, P < 0.001). Please refer to Table 1 for the definition of acronyms and a full description of explanatory variables.
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lihood of periurban ignition, and the influence 
of continuous, chaparral-dominated fuels that 
facilitate fire spread (Fig. 2; Fig. 4). The combina-
tion of suitable fire weather during summer and 
fall, wet winters that promote vegetation growth, 
steep terrain and interspersed fuels allow ig-
nitions to grow into large wildland fires. These 
conditions are particularly effective at promoting 
fire growth in of the Los Padres National Forest 
and Angeles National Forest.

The spatial configuration and location of SA 
burns differs from that of non-SA fires, owing, 
in part, to a north–south gradient of the mete-
orological and topographic factors influencing 
SA fires (Minnich 1995, Moritz 1997). Santa Ana 
winds may reach 10–20  m/s as the northeaster-
ly flow is channeled through passes and can-
yons and are usually accompanied by very low 
relative humidity (i.e., 5–20%; Raphael 2003, 
Hughes and Hall 2010). Ignitions starting at the 
WUI interface of the Los Angeles Basin can de-
velop into large fires across the San Gabriel val-
ley and the Santa Monica Mountains (Fig.  4a). 
Similarly, the terrain-amplified flow of easterly 
downslope winds over San Diego County’s La-
guna Mountains is responsible for the spread of 
large chaparral fires toward the coast and WUI 
(Fovell 2012). Our results build on earlier work 
by Moritz et al. (2010) and provide further evi-
dence for strong meteorological forcing on the 
spatial distribution of SA fires. We found the 
FFWI was especially effective at capturing the 
combined influence of wind velocity, relative 
humidity, and temperature on SA burned area 
(Fig.  4a, Table  4). Short-term (hourly to daily) 
variations in fire weather (i.e., relative humidity, 
precipitation, temperature, wind velocity) have 
been associated with local fire behavior through 
their influence on fire spread and intensity (Flan-
nigan and Harrington 1988, Bessie and Johnson 
1995, Keeley 2004, Schoennagel et al. 2004).

Model comparison
We developed five different classes of fire 

model by regressing human, meteorological, 
and biophysical variables onto observed burn 
area using a stepwise approach. We found little 
differences in the set of predictors retained by 
the different models, yet the relative importance 
of explanatory variables varied considerably. 
The models differed significantly in the amount 

of variance explained, underscoring the value 
of using a suite of approaches for predicting 
the spatial patterns of burned area, as well as 
diagnosing the importance of controlling 
variables.

The comparison of model performance (Ta-
bles 3 and 4) revealed that random forest mod-
els performed significantly better than MLR, 
GAMs, and non-linear multiplicative models. 
Classification and regression tree procedures 
(CART) such as Random Forest can find opti-
mal binary splits in the selected covariates to 
partition the sample recursively into increas-
ingly homogeneous clusters (Cutler et al. 2007). 
As a consequence, this technique may be more 
effective at distinguishing presence and absence 
(areas that are fire-prone vs. ones that are inap-
propriate for burning) than models with con-
tinuous outputs such as GAMs. Random forest 
yielded the most accurate predictions, but did 
not perform well when used on spatially inde-
pendent test data or when varying the sample 
size of the training data set. This suggests that 
RF models suffered more from over fitting than 
the other models (Dormann 2011). Non-linear 
multiplicative models, in contrast, showed a 
good compromise between complexity and per-
formance. They performed well compared to RF 
(i.e., low bias in overfitting the model and high 
cross-validated R2) with relatively few degrees 
of freedom.

Our results showed that integrating a spatial 
autocorrelation term significantly increased the 
variance explained for SA fires (Table  3), likely 
as a consequence of resolving areas where a 
maximum neighborhood effect existed between 
predictors (i.e., areas where the spatial processes 
were explained by the surrounding influence of 
biophysical and human factors). Indeed, the spa-
tial autocorrelation of SA fire weather variables 
induced a strong clustering effect in specific ar-
eas for SA fires. SA fires were most common in 
areas where FFWI was ≥21 and relative humid-
ity <49%. In contrast, the human and biophysi-
cal conditions associated with non-SA fires were 
widely distributed across the region. Hence, a 
broader combination of factors explained the dis-
tribution of non-SA fire patterns, which hindered 
the influence of neighborhood effects. A decrease 
in average size of non-SA fires in the latter half 
of the 20th century may be the result of effec-
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tive fire suppression, limiting most fires to very 
small sizes and generating fine-grain fire mosa-
ics (Conard and Weise 1998). This translated into 
scattered non-SA fire patterns, as observed in the 
upper-elevation areas of the San Bernardino and 
Cleveland National Forests, where fires are ac-
tively suppressed.

Potential for change in fire activity in  
Southern California

Projections of the impact of climate change 
on wildfire activity in Southern California have 
yielded contradictory results (Lenihan et al. 2008, 
Westerling and Bryant 2008, Westerling et  al. 
2011). Uncertainty in future synoptic meteoro-
logical conditions, and the effect of complex 
topography on local surface wind speed, com-
plicate efforts to predict future trends of Santa 
Ana wind occurrence and intensity (Miller and 
Schlegel 2006). Wildfire activity during the sum-
mer fire season is strongly associated with im-
mediate drought conditions and, to a lesser 
extent, a moisture deficit from the preceding 
year (Westerling and Swetnam 2003). Most cli-
mate models project significant increases in 
surface temperatures for Southern California in 
the coming decades, while mean precipitation 
is expected to remain constant (Hayhoe et  al. 
2004, Cayan et al. 2008). Temperature projections 
indicate an annual warming of 1.5 to 5°C by 
2100, with a fall median of 2°C (Yue et al. 2014).

The fire predictions based on the regression 
trees provide a simplified illustration of the 
potential responses of fire under changing hu-
man and climatic influences. The models associ-
ated a high burning probability for non-SA fires 
with dense shrub cover (≥70%), an annual rain-
fall ≥438 mm and an annual average daily mini-
mum temperature ≥8.9°C (Fig. 8b; Table 6). Such 
conditions are already typical for large swaths of 
the foothills and mountain ranges of Southern 
California (e.g., San Bernardino and Angeles Na-
tional Forests), and the burned area may increase 
further as a result of warming at higher elevation 
(Yue et al. 2014). Rising temperatures will facili-
tate earlier snow-melt, runoff and green-up, des-
iccating fuels earlier and creating a longer fire 
season (McKenzie et  al. 2004, Flannigan et  al. 
2005, Westerling 2006, Littell et  al. 2009, Pari-
sien and Moritz 2012, Stavros et al. 2014b). Yue 
et al. (2014) projected that median area burned in 

Southern California will likely double as a con-
sequence of rising temperatures and increased 
length of wildfire season.

Rising temperatures coupled with an increased 
ignition probability and an expanding WUI will 
also impact the SA fire regime and may gener-
ate more frequent, larger, and higher severity 
fires in Southern California. The regression tree 
mapping of SA fires identified areas near the 
WUI with temperatures >10.8°C as especially 
hazardous for the spread of SA fires. However, 
the occurrence of Santa Ana events is project-
ed to decrease by 2100 (Hughes et al. 2011) and 
their peak occurrence is projected to shift from 
September-October to November-December 
with the decrease in the temperature gradient be-
tween the desert and ocean (Miller and Schlegel 
2006). Consequently, wildfires spreading under 
SA conditions are expected to be less frequent. 
Widespread burning by SA fires in the coastal 
ranges (e.g., Santa Ana and Santa Monica moun-
tains) may accelerate the expansion of grassland 
at the expense of shrublands, and an important 
next step is to integrate these types of vegetation 
feedbacks into predictive fire models.

Conclusion

We partitioned wildfires in Southern California 
into those coincident with SA and non-SA con-
ditions and separately modeled the spatial pat-
terns of mean annual area burned during 
1960–2009. Five different regression methods 
including a random forest model were tested. 
We found that these different methods explained 
38–63% of the spatial variance in the area burned 
by SA fires and 21–48% of the variance for 
non-SA fires. Further work is needed to inves-
tigate how fire suppression or other factors such 
as time-since-last-fire, contribute to the spatial 
patterns of non-SA fires. Our study implies that 
a separate consideration of SA and non-SA fire 
regimes should improve assessments of fire 
probability, and may be a useful consideration 
for the development of wildfire policy in 
Southern California. Fuel reduction treatments 
intended to mitigate large fire hazard may prove 
comparatively ineffective in preventing fire 
spread under SA conditions (Keeley 2008). 
Syphard et  al. (2012) noted that the majority 
of fire-related property losses occur within areas 
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of low-fuel volume, such as grasslands, which 
have low-heat requirements for ignition and the 
potential to carry fires to nearby shrubland and 
woodlands. Further research is needed to in-
tegrate climate and urban development trends 
for predicting future burned area patterns.
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