Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Next Generation Ethernet the time to start is now

Permalink

https://escholarship.org/uc/item/29s051km

Author Bennett, Mike J.

Publication Date 2006-06-21

Next Generation Ethernet the time to start is now!

Mike Bennett

Sr. Network Engineer

POFWORLD June 21, 2006

- Current "state of the network"
- Why not use aggregated links?
- Challenges with 10G
- Why 100G?
- Questions and wrap-up

- Most sites generally have a mix of 10/100/1000 Mb/s Ethernet connectivity
- Most computers now ship with 1000BASE-T capability
 - Many would argue whether or not it's necessary on basic host machines
- We've seen a significant increase in demand for 1000BASE-T at the host end of the connection
 - No surprise since the computer comes with it

Current "state of the network"

• LBLnet is built in a star topology (feeding 80+ buildings)

.....

BERKELEY LAB

- LBLnet is currently upgrading to 10G
 - ISP to Core switch first
 - ~ Security is a challenge (more later)
- Other National Labs have significant 10G networks
 - LLNL has at least 400 10G connections!
 - NERSC is connected to ESnet @ 10G
 - LBNL plans to be connected @ 10G this calendar year
 - ESnet has several 10G MANs
- The question is how do we increase BW until next generation Ethernet comes along?

Why not use Link Aggregation?

- Manageability/troubleshooting of multiple physical links for a single logical interface more complex than a serial link
- Traffic flows over aggregated links are not deterministic
 - Force vendors to implement complex hashing functions to try to make flows evenly distributed
 - ~ That's not free
- Some traffic patterns will always cause inefficient link utilization, including
 - Any traffic that ends up flowing between a few addresses
 - Single interface server with many clients
 - More than 1 Gbps coming from 10 GbE host connections

Why not use Link Aggregation?

- Even with the issues mentioned, many people provision LAG as a "temporary" solution
 - Have to weigh the cost of complexity against the cost of higher BW ports
- Based on a survey of potential users of next generation Ethernet
 - Typical number of channels in an aggregated link is in a range between 2 and 8
 - The difference in cost between 8 aggregated optical
 1 GbE links and a single 10 GbE link is not that great

~ More cost effective to provision the 10G link

All things considered, there are still challenges using serial 10G links

- Even though it's more cost effective to provision the 10G link, there are issues
 - Hard to find security devices, e.g. IDS, that will operated at wire-speed
 - ~ They're out there but not cheap
 - For that matter, not all routers and switches operate at wire speed for all frame sizes
 - Price per port is still relatively high
 - ~ IEEE "rule of thumb" is 10X increase in BW for 3 X increase in cost
 - We're not quite there yet

Challenges with 10G

Current LBLnet security system

Challenges with 10G

DIVISION

BERKELEYLAB

Challenges with 10G

- 10GBASE-T was approved for publication on June 9, 2006
 - o This should help drive down the cost of 10G
 - This version of copper Ethernet not quite as simple for end users as the previous
 - ~ Multiple cable lengths based on cable type
 - Seems like there may be an opportunity for POF
- Challenges aside, all of this will drive the need for next generation Ethernet

- First This is MY OPINION
 - IEEE CFI is next month
 - If a study group is formed, it will be their job to determine the next speed
 - So why do I think it should be 100G?
- Research and education networks support highbandwidth applications
- Survey of network capacity demands by the research community conducted in 2002 yielded forecast by discipline for 5-year and 10-year windows
- The large dataset size and the geographic distribution of users and resources present *major challenges in network bandwidth utilization*

- Researchers forecast
 - 20 major data sites to have better than 10 Gb/s network access in order to keep up with the expected requests for data
 - Most areas of science will generate petabytes of data per year
 - ~ Forecast made in 2002
 - ~ Expected demand between 2007-2012

	Feature	Characteristics that Motivate Advanced Infrastructure	Vision for the Future Process of Science	Anticipated Requirements	
	Time Frame			Networking	Middleware
2002	Near-term	 Instrument based data sources Hierarchical data repositories Hundreds of analysis sites 100 gigabytes of data extracted from a 100 terabyte data store and transmitted to the analysis site in 10 minutes in order not to destabilize the distributed processing system with too many outstanding data requests Improved quality of videoconferencing capabilities Cross-site authentication/ authorization 	 The ability to analyze the data that comes out of the current experiment Remote collaborative experiment control 	• gigabit/sec • end-to-end QoS	 Secure access to world-wide resources Data migration in response to usage patterns and network performance naming and location transparency Deadline scheduling for bulk transfers Policy based scheduling / brokering for the ensemble of resources needed for a task Automated planning and prediction to minimized time to complete task
2007	5 years	 100 terabytes of data extracted from a 100 petabyte data store and transmitted to the analysis site in 10 minutes in order not to destabilize the distributed processing system with too many outstanding data requests Global collaboration Compute and storage requirements will be satisfied by optimal use of all available resources 	 Worldwide collaboration will cooperatively analyze data and contribute to a common knowledge base Discovery of published (structured) data and its provenance 	 100 gigabit/sec lambda based point-to-point for single high- bandwidth flows capacity planning Network monitoring 	 Track world-wide resource usage patterns to maximize utilization Direct network access to data management systems Monitoring to enable optimized use of network, compute, and storage resources Publish / subscribe and global
2012	5+ years	 1000s of petabytes of data 		 1000 gigabit/sec 	uiscovery

Table D.1.	High-Energy	Physics	Requirements	Summary
			1	

- For 1 site, 100GB in 10 minutes:
 - 10 GB per minute = 1.33 Gbits per second
- For 20 sites that's 26.6 Gb/s in 2002.
 - ESnet provides several 10Gb/s links to sites today
- In 2007 it scales by a factor of 10, so for 20 sites, that's 266 Gb/s
- In 2012, assuming the same scaling factor, that's 2.66 Tb/s aggregate traffic.
- This is just to support Physics!
 - There are many other branches of research that will consume bandwidth

Why 100G? Observed Network Traffic

ey Lae

.....

Why 100G? Observed Network Traffic

ESnet traffic has increased by 10X every 45 months, on average, since 1990

.....

BERKELEY LAE

Standards Development Timeline

- The standard will likely not be finished till 2010 which will be just in time to meet this demand.
 - This is assuming a study group is formed next month
 - Again, in my opinion, assuming the next speed is 100G
 - ~ 40G is too little too late
- It takes roughly 3 to 4 years to complete standard and 40G is already available
 - Costs vendors several million \$ to build next generation equipment, 100G will yield better ROI

Why 100G?

 Consider that most of this discussion is based on a fraction of the Research and Education market

- As you can see, there is an increasing demand for next generation Ethernet
 - If we start now, this will be ready for 2012
 - ~ Standard should be done in 2010
 - ~ First generation hardware *affordable* in 2012
 - Early adopters will buy in 2010-2012 timeframe
- Otherwise network operators will have to aggregate a LOT of links
 - Complexity leads to support problems
 - ~ This translates to higher operational costs
 - ~ You and I get to pay for it!

Questions and wrap-up

- Sources
 - High-Performance for High-Impact Science
 - Report of the August 13-15, 2002 Workshop conducted by Office of Science, DOE.
 - A Vision for DOE Scientific Networking Driven by High Impact Science
 - ~ Johnston, Kramer, Leighton, Catlett, March 15, 2002
 - ESnet Observed Traffic
 - ~ Eli Dart, Network Engineering Services Group (ESnet)
 - Ethernet standards development timeline
 - ~ David Law, IEEE 802.3 Working Group Vice Chair
 - o End User Survey
 - ~ Steve Garrison, VP Corporate Marketing, Force10 Networks
- Questions?

If you think of a question after this session
 <u>mjbennett@lbl.gov</u>

Thanks for your time!