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COMMENTARY Open Access

Commentary to: a cross-validation-based
approach for delimiting reliable home range
estimates
Eric R. Dougherty1*, Perry de Valpine1, Colin J. Carlson2,3, Jason K. Blackburn4,5 and Wayne M. Getz1,6

Abstract

Background: Continued exploration of the performance of the recently proposed cross-validation-based approach
for delimiting home ranges using the Time Local Convex Hull (T-LoCoH) method has revealed a number of issues with
the original formulation.

Main text: Here we replace the ad hoc cross-validation score with a new formulation based on the total log
probability of out-of-sample predictions. To obtain these probabilities, we interpret the normalized LoCoH hulls as a
probability density. The application of the approach described here results in optimal parameter sets that differ
dramatically from those selected using the original formulation. The derived metrics of home range size, mean
revisitation rate, and mean duration of visit are also altered using the corrected formulation.

Conclusion: Despite these differences, we encourage the use of the cross-validation-based approach, as it provides a
unifying framework governed by the statistical properties of the home ranges rather than subjective selections by the
user.

Keywords: Time local convex hulls, T-LoCoH, Home range, Visitation, Duration, Cross-validation, Etosha national park

Background
Continued exploration of the the cross-validation-based
approach proposed in [1] has revealed a number of
issues with the original formulation of the optimization
equation. This original formulation was ad hoc in its com-
bination of two statistical approaches (cross-validation
and information criteria), and the result was a metric
without a clear basis in statistical theory. As such, we
strongly recommend that users rely upon the method
described here as opposed to one set forth in the orig-
inal publication. In particular, the shortcomings can be
summarized as follows:

1. Both cross-validation and information criterion
approaches aim to avoid over-fitting. In the case of
cross-validation, one attempts to estimate
out-of-sample prediction error, so the score used
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should be a measure of prediction errors of the
held-out points. If the model uses k too small or s
too large, it is likely to overfit the training data and
will predict the testing data poorly. On the other
hand, if the model uses k too large or s too small, it
will underfit the training data by missing the real
variations in space use. Thus, cross-validation
naturally penalizes model complexity because
excessive complexity (small k ) results in poor
predictions. Information criteria approaches include
a penalty term that increases with model complexity
as measured by larger numbers of parameters. Using
such an information criterion as a cross-validation
score is not necessary since cross-validation should
naturally penalize excessive model complexity.

2. The formulation of the information criterion score
did not follow the rules of probability because
probabilities of out-of-sample predictions were not
properly normalized, and multiple probabilities were
combined by summation. In this sense, it lacked a
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firm connection to the statistical theory underlying
information criteria approaches.

Here we propose an alternative formulation in which we
interpret a normalized version of LoCoH hulls as an esti-
mated probability surface and recast the cross-validation
score as the total log probability of out-of-sample predic-
tions, a common choice in cross-validation schemes. The
approach, explained in detail below, results inmore appro-
priate behavior, but also has the effect of significantly
altering the optimal parameter values selected by the
algorithm. Thus, in addition to presenting the new cross-
validation equation, we include tables and figures with
the newly selected parameter values and newly calculated
derived metric values (home range area, mean duration,
and mean visitation rates). Finally, we offer an alternative
R script that searches a much broader parameter space in
a more efficient manner (Additional file 1).

Updated Cross-Validation Approach
Using the training/testing split as described in the original
presentation of the algorithm, a grid-based exploration of
parameter space was conducted (Fig. 1), whereby each of
the training/testing datasets (i = {1, ..., n}) was analyzed
at every combination of k and s values on the grid. This
analysis entailed the creation of local convex hulls with k
nearest neighbors and a scaling factor of s. In all subse-
quent analyses, we assume that the scaling of time follows
a linear formulation; however, when movement patterns

more closely exemplify diffusion dynamics, an alternative
equation for the TSD may be more appropriate [2]. The
test points (j = {1, ...,m}) were then laid upon the resulting
hulls.
We formulate the probabilities for out-of-sample points

by normalizing the LoCoH surface so that the probability
of an observation occurring at a particular location can be
calculated. This value is obtained by dividing the number
of training hulls that contain the test point location (gi,j)
by the summed area of all training hulls (Ai). Then, the
log probability was calculated for each point per training
hullset. To avoid log probability values of -∞, test points
that were not contained within any hulls were assigned a
probability value equal to the inverse of A2

i , resulting in a
substantially lower log probability than that of a test point
contained in a single hull. Finally, a single value (Pk,s) was
assigned to each combination of k and s value by summing
across all of the test points in all of the training/testing
datasets:

Pk,s =
n∑

i=1

m∑

j=1
log

(gi,j
Ai

)

Because the probability of each test point is normalized
based on the total area contained within all of the training
hulls, there exists a natural penalty for high k values. For
example, a k value equal to the number of training points
(kmax; regardless of the s value) will result in all hulls being
identical and each test point overlapping all of the hulls.

Fig. 1 Conceptual Figure of Grid-based Search. A cross-validation surface is generated as the algorithm searches over a grid of alternative s and k
values for each individual movement path. The increments of the grid can be chosen by the user. The peak in the surface indicates that the home
range associated with the particular parameter set offers the highest probability for the test points. Here, the white boxes denote the maximum
probability value, and thereby, the optimal parameter set
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Table 1 Parameter values for analysis

ID Species Sample s (Algo) k (Algo) s (Guide) k Range

Points (Guide)

AG063 Zebra 2111 0.003 355 0.023125 20-25

AG252 Zebra 3601 0.001 485 0.0140625 20-25

AG253 Zebra 3601 0 156 0.0140625 25-30

AG255 Zebra 3601 0.001 405 0.0184375 20-25

AG256 Zebra 3601 0.001 335 0.0171875 15-20

AG205 Springbok 2887 0.05 182 0.003125 25-30

AG206 Springbok 3601 0.023 187 0.00875 25-30

AG207 Springbok 3601 0.036 155 0.01140625 20-25

AG209 Springbok 2887 0.013 171 0.002421875 25-30

AG214 Springbok 2887 0.001 104 0.00265625 15-20

AG215 Springbok 2883 0 554 0.00328125 25-30

The s and k values selected using the algorithm and the guidelines in the T-LoCoH
documentation. A range of k values were used for the Guide due to the subjective
nature of parameter selection

However, the large total area of the hullset when k = kmax
will result in relatively small probability values for each
test point (i.e., independent probability values equal to the
inverse of the area of one of the hulls), effectively penal-
izing the parameter set containing kmax. The underlying
cross-validation procedure could very easily be extended
for the optimization of the the adaptive parameter in the
a-method (as opposed to the k-method) because of its
scaling with the total area of the hullset.

Results
The optimal parameter values selected using the corrected
cross-validation method are substantially different from
those selected in the original publication (Table 1). How-
ever, because the original formulation was not supported

Table 2 Home range areas (in square kilometers)

ID HR Area (Algo) HR Area (Guide Low) HR Area (Guide High)

AG063 1093 571 603

AG252 1486 913 958

AG253 593 501 513

AG255 871 579 600

AG256 1363 740 798

AG205 370 256 268

AG206 973 558 588

AG207 430 299 318

AG209 347 207 216

AG214 32 23 25

AG215 258 165 177

The total area of the home range obtained using the parameter sets recommended
by the algorithm and by the guidelines set forth in the T-LoCoH documentation

Table 3 Mean duration (MNLV) values. The derived metrics
obtained using the parameter sets recommended by the
algorithm and by the guidelines set forth in the T-LoCoH
documentation

ID MNLV (Algo) MNLV (Guide Low) MNLV (Guide High)

AG063 48.9 10.0 11.3

AG252 77.3 10.4 11.7

AG253 2.6 10.7 12.5

AG255 75.1 9.5 10.3

AG256 42.0 8.0 9.7

AG205 92.6 24.4 27.1

AG206 80.8 14.3 16.4

AG207 67.9 12.3 14.5

AG209 78.9 23.4 26.0

AG214 24.7 16.5 19.4

AG215 2.6 37.9 42.6

by cohesive statistical theory, we will discuss these new
results only in reference to the guideline-based param-
eter values rather than comparing them to the results
emerging from the published algorithm. The mean s value
selected using the algorithm for springbok was 0.02 (SE =
0.008) and for zebra was 0.0012 (SE = 0.0005). The mean
s value selected using the guidelines for springbok was
0.005 (SE = 0.002) and 0.017 (SE = 0.002) for zebra. Thus,
the s values selected by the algorithm and the guidelines
were not significantly different for springbok (p = 0.10),
but were for zebra (p < 0.001). In the case of the k values,
the optimal values selected using the algorithm were sig-
nificantly higher than those resulting from the guidelines.
The mean k value selected using the algorithm for spring-
bok was 225.5 (SE = 66.83) whereas the mean using the

Table 4 Mean visitation (NSV) values

ID NSV (Algo) NSV (Guide Low) NSV(Guide High)

AG063 13.8 5.8 6.6

AG252 9.1 5.6 6.3

AG253 61.5 15.0 16.0

AG255 19.7 8.1 9.5

AG256 14.0 7.4 8.6

AG205 7.1 4.2 4.5

AG206 8.2 6.5 6.9

AG207 17.8 14.9 15.7

AG209 5.7 3.6 3.8

AG214 20.2 14.6 16.3

AG215 218.1 6.6 6.8

The derived metrics obtained using the parameter sets recommended by the
algorithm and by the guidelines set forth in the T-LoCoH documentation
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Fig. 2 Comparison of Resulting Home Ranges. An illustration of two sets of home ranges that result from the parameter sets chosen by the
algorithm (red), the low range of the guide (blue), and the high range of the guide (black). The home range set on the left is based on the sample
points from the springbok AG207, and the largest home range covers 429.81 km2. The home range set on the right is based on the GPS fixes from
zebra AG256, and the largest home range covers 1363.21 km2

guidelines was 22.5 (SE = 1.71; p = 0.003). The same trend
was observed in zebra where the mean k value based on
the algorithm was 347.2 (SE = 54.36), whereas the mean
from the guidelines was 20 (SE = 1.58; p = 0.004).
The significantly higher k values emerging from the

algorithm gave rise to significantly larger home ranges in
both species (Table 2). In springbok, themean home range
size was 265.41 km2 (SE = 76.23 km2) using the high end
of the guideline based range, and 401.64 km2 (SE = 127.56
km2) using the algorithm (p = 0.05). In zebra, the mean
home range was 694.43 km2 (SE = 80.81 km2) using the
guidelines and 1081.29 km2 (SE = 162.17 km2) when the

algorithm was applied (p = 0.01). When the derived met-
rics were considered, however, the substantial differences
in k values did not always result in significantly different
duration (Table 3) and visitation rates (Table 4). Though
the duration rates in zebra derived from the algorithm
were, indeed, significantly higher than those derived using
the high value from the range based on the guidelines
(p = 0.05), this was not the case for springbok (p = 0.08).
Similarly, the visitation rates emerging from the parameter
sets selected by the algorithm were not significantly dif-
ferent from those derived based on the guidelines in either
species (p = 0.33 in springbok and p = 0.15 in zebra).

Fig. 3 High Resolution Cross-Validation Surface. A high resolution depiction of a portion of the optimal parameter space traversed during the final
stage of the efficient search algorithm. All parameter sets with log probability values above -10090 are shown, with darker shading indicating higher
probability. In this particular application, the search is performed over smaller intervals of s (0.0001 rather than 0.001), and the optimal parameter set
(k = 171 and s = 0.0133) is similar to the parameter set selected at the coarser scale
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Conclusion
The results presented here indicate that the effect of
selecting parameters using the algorithm rather than the
guidelines will be highly contingent upon the focus of the
research question. Where home range delineation is the
goal, the results are likely to differ significantly (Fig. 2).
In the case of epidemiological questions, however, the
effects will be somewhat less predictable, and in certain
cases, similar conclusions might be drawn irrespective of
the approach used for selecting optimal parameters. If an
element of the analysis involves comparisons across indi-
viduals or species, however, the cross-validation-based
approach provides a unifying framework governed by
statistical properties of the home ranges rather than sub-
jective selections by the user.

Additional file

Additional file 1: A new R script for a more efficient grid-based search
(Fig. 3) can be found at: https://github.com/doughertyeric/Updated_T-
LoCoH_Algorithm. As currently parameterized, the grid-based search
algorithm covers s values from 0 to 0.05 and k values between 4 and 800.
The algorithm searches across the broadest set of k values in intervals of 20
and s values in intervals of 0.01. Upon identifying a peak in the probability
surface, the algorithm selects a range of 40 k values around the peak and
refines the search there in k value increments of 5. Finally, another range of
10 possible k values is selected and the finest scale grid-search is
conducted in intervals of 1 and s value intervals of 0.001 before selecting
the optimal parameter set. (R 11 kb)
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