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HOMOMORPHIC CONDITIONAL EXPECTATIONS AS
NONCOMMUTATIVE RETRACTIONS

ROBERT PLUTA1 and BERNARD RUSSO2∗

Communicated by D. S. Djordjević

Abstract. Let A be a C∗-algebra and E : A → A a conditional expectation.
The Kadison-Schwarz inequality for completely positive maps,

E(x)∗E(x) ≤ E(x∗x),

implies that
‖E(x)‖2 ≤ ‖E(x∗x)‖ .

In this note we show that E is homomorphic (in the sense that E(xy) = E(x)E(y)
for every x, y in A) if and only if

‖E(x)‖2 = ‖E(x∗x)‖ ,

for every x in A. We also prove that a homomorphic conditional expectation
on a commutative C∗-algebra C0(X) is given by composition with a contin-
uous retraction of X. One may therefore consider homomorphic conditional
expectations as noncommutative retractions.

1. Introduction

It is easy to see that a conditional expectation E is homomorphic if and only if
the kernel of E is an ideal. Thus, there are no nontrivial homomorphic conditional
expectations on simple C∗-algebras, but it makes sense to study homomorphic
conditional expectations on C∗-algebras with rich ideal structure. It follows from
[3, Theorem 3.1] that a conditional expectation is homomorphic if and only if
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equality holds in the Kadison-Schwarz inequality for every x. In our main result,
Theorem 3.4 below, we weaken the latter condition to equality of the norms.

A central projection p in a C∗-algebra A gives rise to a homomorphic condi-
tional expectation Ep : A → A given by Ep(x) = px for all x in A. As a bi-product
of our main result, we prove a converse in Corollary 3.9.

A retraction of a locally compact Hausdorff space X, that is, a continuous
map τ : X → X such that τ ◦ τ = τ , gives rise to a homomorphic conditional
expectation Eτ : C0(X) → C0(X) given by Eτ (f) = f ◦ τ for all functions f in
C0(X). There are expectations on C(K), K compact, which do not come from
retractions of K, but those expectations are not homomorphic. A unital con-
ditional expectation E : C(K) → C(K) is homomorphic if and only if it comes
from some retraction of K (Theorem 4.2 below), and, in accordance with Theo-
rem 3.4 below, this in turn is equivalent to the requirement that the conditional
expectation satisfies ‖E(f)‖2 = ‖E(|f |2)‖ for every f in C(K). A similar result
holds for (not necessarily unital) commutative C∗-algebras C0(X) for a locally
compact Hausdorff space X. Thus, in the framework of Gelfand duality, we have
the equivalence:(

Retractions τ : X → X of
locally compact spaces X

)
⇔

 Homomorphic
conditional expectations
E : C0(X) → C0(X)


⇔

 Conditional expectations
E : C0(X) → C0(X)

with ‖E(f)‖2 = ‖E(|f |2)‖


We believe that this justifies the following definition: A noncommutative retrac-
tion on a C∗-algebra A is a conditional expectation E : A → A with E(xy) =
E(x)E(y) for all x, y ∈ A. (By Theorem 3.4 below, this is equivalent to the
requirement that the conditional expectation satisfies ‖E(x)‖2 = ‖E(x∗x)‖ for
x ∈ A.)

2. Basic properties of conditional expectations

In this section we review some basic facts and terminology that relate to con-
ditional expectations in a general noncommutative setting of C∗-algebras.

Definition 2.1. A conditional expectation defined on a C∗-algebra A is a positive
linear map E : A → A satisfying E2 = E (where E2 = E ◦ E) and

E(E(x)y) = E(x)E(y) for every x, y in A.

It follows that the range of E is a C∗-subalgebra of A. A conditional expectation
E : A → A also satisfies

E(xE(y)) = E(x)E(y) for every x, y in A.

Thus E is a bimodule map over its range. Moreover, E is completely positive
and has norm 1 ([2, Corollary II.6.10.3]). The Kadison-Choi-Schwarz inequality
is proved in [3, Corollary 2.8].
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If A is unital with the identity element 1, then the projection e = E(1) is
an identity element of the range, which is contained in the corner eAe, i.e., the
largest C∗-subalgebra of A containing e as the identity element.

Remark 2.2. By a corner of a C∗-algebra A we mean a C∗-subalgebra S of A with
the additional property that there is a norm closed linear subspace M of A such
that A = S ⊕M and M is invariant under both left and right multiplication by
elements of S, i.e. SM ⊆ M , MS ⊆ M . It follows automatically that M is also
invariant under the ∗-operation, i.e. M∗ = M , so it can be regarded as a (not
necesarily unital) involutive Banach S-bimodule. If E : A → A is a conditional
expectation, then the range of E is a corner of A. On the other hand, if a C∗-
subalgebra S is not a corner of A, then there is no conditional expectation from
A onto S.

It is clear that a corner of a unital C∗-algebra must be unital, however the
identity element of the corner need not be the same as the identity element
of the ambient C∗-algebra. This observation is useful. It shows, for example,
that if H is an infinite-dimensional Hilbert space, then the algebra of compact
operators K(H) is not a corner of B(H). Consequently, there is no conditional
expectation from B(H) onto K(H). Exactly the same argument shows that there
is no conditional expectation from `∞ onto c0. Of course, these two observations
can be strengthened to the assertion that there is no conditional expectation from
a unital C∗-algebra A onto a non-unital C∗-subalgebra of A.

Regarding terminology, we will occasionally refer to a conditional expectation
simply as an expectation leaving the word “conditional” implicit. The following
remark provides us with some basic properties of expectations.

Remark 2.3. Let A be a C∗-algebra and let E : A → A be a conditional expecta-
tion. The range of E , which we denote by S, is the C∗-subalgebra of A consisting
of all fixed points of E . The kernel of E is a norm closed linear subspace of A that
is closed under the ∗-operation and invariant under left and right multiplication
by elements of S. In particular, letting M be the kernel of E , one has M∗ = M ,
SM ⊆ M , MS ⊆ M . The space M can be regarded as an involutive Banach
S-bimodule if one does not require that 1m = m1 = m, for all m ∈ M , even if S
has an identity 1 = 1S. With this convention, A = S ⊕M is a direct sum in the
category of involutive Banach S-bimodules and the following sequence

0 −−−→ S
1−−−→ A

1−E−−−→ M −−−→ 0

of ∗-preserving S-bimodule maps is exact.

There is a link between certain projections and expectations. It has already
been observed that every nonzero conditional expectation E : A → A defined on
a C∗-algebra A is a projection of norm one. The converse of this observation does
not hold in general. For example, the mapping from the matrix algebra M2(C)
into itself that replaces each main diagonal entry of every 2-by-2 matrix with
zero is a projection of norm one, yet it is not a conditional expectation because
its range is not a subalgebra of M2(C). However, every projection of norm one
whose range is a subalgebra must be a conditional expectation; this is a general
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version of the well known theorem of Tomiyama [17], which we mention for the
sake of completeness.

3. Homomorphic conditional expectations

The main result of this section is Theorem 3.4.

Definition 3.1. Let A be a C∗-algebra. A conditional expectation E : A → A is
homomorphic (or multiplicative) if E(xy) = E(x)E(y) for every x, y in A.

We now give some examples of homomorphic conditional expectations. The
first one describes a connection between homomorphic conditional expectations
and C∗-algebra homomorphisms.

Example 3.2 (Expectations onto graphs of C∗-algebra homomorphisms). Let
A, B be C∗-algebras. Let A ⊕ B be the C∗-algebra endowed with the maxi-
mum norm, with the summands as ideals, and the algebraic operations performed
pointwise. If φ : A → B is a ∗-homomorphism, then the map

E : A⊕B → A⊕B, E(x, y) = (x, φx), x ∈ A, y ∈ B (3.1)

is a homomorphic conditional expectation of A ⊕ B onto the graph of φ. Con-
versely, if φ : A → B is a function and E given by (3.1) is a homomorphic condi-
tional expectation, then φ is a ∗-homomorphism.

The projection on a direct sum of two C∗-algebras onto one of the summands
is an example of a homomorphic conditional expectation. In particular, a split
extension E of a C∗-algebra A by a C∗-algebra B gives rise to homomorphic
conditional expectations.

Example 3.3. In the theory of generalized inductive limits, due to Blackadar
and Kirchberg ([2, V.4.3]), NF algebras are not the same as strong NF algebras
([2, V.4.3.24.]). Nevertheless, by [2, Corollary V.4.3.27], any NF algebra A is the
range of a homomorphic conditional expectation defined on any split essential
extension B of A, which is in fact a strong NF algebra. In this corollary, A is
called a retraction of B, which partially motivated our use of the term retraction.

We will establish the following characterization of homomorphic conditional
expectations in terms of operator norm and the Kadison–Schwarz inequality. Re-
call that the Kadison–Schwarz inequality shows that any conditional expectation
E : A → A defined on a C∗-algebra A satisfies E(x)∗E(x) ≤ E(x∗x) and conse-
quently ‖E(x)‖2 ≤ ‖E(x∗x)‖ for every x in A.

Theorem 3.4. Let A be a C∗-algebra and let E : A → A be a conditional expec-
tation. Then E is homomorphic if and only if

‖E(x)‖2 = ‖E(x∗x)‖ for every x in A. (3.2)

In the proof we will make use of the fact that a closed Jordan ideal (defined in
the proof of Lemma 3.6) in a C∗-algebras A is a two-sided ideal of A. ([5, The-
orem 5.3], also see [1, Remark p.188]) and the observations made in Lemmas 3.5
and 3.6.
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Lemma 3.5. A conditional expectation E : A → A defined on a C∗-algebra A is
homomorphic if and only if the kernel of E is an ideal in A.

Proof. This is a straightforward consequence of conditional expectation proper-
ties. �

Lemma 3.6. Let A be a C∗-algebra. If E : A → A is a conditional expectation
satisfying ‖E(x)‖2 = ‖E(x∗x)‖ for all x ∈ A, then the kernel of E is a closed
Jordan ∗-ideal in A.

Proof. We use M to denote the kernel of E . It is clear that M is a closed linear
subspace of A which is also closed under the ∗-operation. We need only to prove
that M is a Jordan ideal in the sense that if x ∈ A and y ∈ M , then the Jordan
product x · y = 1

2
(xy + yx) is in M . The proof of this fact will proceed through

several steps.
First, if y ∈ M , then y∗y ∈ M by the assumption ‖E(y)‖2 = ‖E(y∗y)‖. In par-

ticular, y2 ∈ M for all self-adjoint elements y ∈ M .
Second, if y, z are self-adjoint elements of M , then by the preceding paragraph,

both (y + z)2 and (y − z)2 are in M , and one has

y · z = [(y + z)2 − (y − z)2]/4.

It follows that y · z ∈ M , whenever y, z are self-adjoint elements of M .
Third, if y, z are arbitrary elements of M , write y = y1 + iy2 and z = z1 + iz2

with yi = y∗i and zi = z∗i in M , and split the Jordan product y · z into real and
imaginary parts as

y · z = y1 · z1 − y2 · z2 + i(y1 · z2 + y2 · z1).

By the preceding paragraph, each of the four terms yi · zj appearing above is in
M , thus y · z ∈ M . At this stage, we may conclude that M is closed under the
Jordan product and we may indicate this by writing M ·M ⊆ M .

Fourth, since M is invariant under both left and right multiplication by ele-
ments of the range of E , which we denote by E(A), it follows that E(A) ·M ⊆ M .
That is, the Jordan product E(x) · y is in M for all x ∈ A and all y ∈ M .

Finally, if x ∈ A and y ∈ M , then the Jordan product

x · y = E(x) · y + (x− E(x)) · y
is in M because, by what we have proved, E(x) · y ∈ E(A) · M ⊆ M and (x −
E(x)) · y ∈ M ·M ⊆ M . Thus M is a Jordan ideal (and a Banach ∗-subspace of
A). �

We now turn to the proof of Theorem 3.4.

Proof of Theorem 3.4. Let E : A → A be a conditional expectation satisfying
‖E(x)‖2 = ‖E(x∗x)‖ for every x in A. Then by Lemma 3.6 the kernel of E
is a closed Jordan ∗-ideal in A, hence a two-sided ideal. It follows that E is
homomorphic by the observation made in Lemma 3.5. �

We have already mentioned that if p is a central projection in a C∗-algebra A,
then the map Ep : A → A defined by Ep(x) = px, for all x ∈ A, is a homomorphic
conditional expectation. We prove the converse in Proposition 3.8.
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Lemma 3.7. Let e be a projection in a von Neumann algebra A, and suppose
Ee(x) = exe is a homomorphism.

(i) If 1− e is subequivalent to e, then e = 1.
(ii) If e is subequivalent to 1− e, then e = 0.

Proof. Since Ee is a homomorphism, we have exeye = exye for every x, y ∈ A.
If 1 − e is subequivalent to e, then by definition, there exists u ∈ A satisfying
uu∗ = 1− e and u∗u = h ≤ e. Then

h = ehe = eu∗ue = eu∗eue = eu∗uu∗eue = eu∗(1− e)eue = 0,

which proves (i).
If e is subequivalent to 1− e, there exists u ∈ A satisfy uu∗ = e and u∗u = h ≤

1− e. Then

e = euu∗e = eueu∗e = euu∗ueu∗e = euheu∗e = euh(1− e)eu∗e = 0,

which proves (ii). �

Proposition 3.8. If e is a projection in a C∗-algebra A, and Ee(x) = exe is a
homomorphism, then e belongs to the center of A.

Proof. By passing to the second dual, it suffices to assume that A is a von Neu-
mann algebra. Apply the comparability theorem ([2, III.1.1.10]) to the projec-
tions e and 1− e to obtain a central projection z such that ze is subequivalent to
z(1− e) and (1− z)(1− e) is subequivalent to (1− z)e. With A = Az⊕A(1− z)
we have Ee = Eez ⊕ Ee(1−z). Then by Lemma 3.7, ez = 0 and e(1− z) = 1− z, so
that e = ez + e(1− z) = 1− z is in the center of A. �

Corollary 3.9. If e is a projection in a C∗-algebra A, and ‖exe‖ = ‖ex‖ for
every x ∈ A, then e belongs to the center of A.

Proof. By Theorem 3.4, the assumption ‖exe‖ = ‖ex‖ for every x ∈ A implies
that Ee is a homomorphism. �

As pointed out to us by Matt Neal, Corollary 3.9 also follows from [10, Lemmas
1.5 and 1.6]. An elegant elementary proof of [10, Lemma 1.5] appears in [12].
Another topological characterization of central projections is given in [11], namely
a projection in a von Neumann algebra is central if and only if it is an isolated
point in the set of projections with the norm topology.

Remark 3.10. After submitting this paper, the authors learned of two alterna-
tive arguments that can be used to prove Theorem 3.4, without passing through
Jordan theory. However, the method presented in our proof of Theorem 3.4
can be used to deduce a similar operator norm characterization of multiplicative
conditional expectations in the context of ternary rings of operators and Jordan
triple systems (where the concept of multiplicative domain is not applicable). For
example, see Proposition 3.12.



402 R. PLUTA, B. RUSSO

The first alternative argument, due to E. Størmer, shows directly that ker E is
a two sided ideal. If x ∈ ker E and a ∈ A, then

‖E(ax)‖2 = ‖E((ax)∗ax)‖ = ‖E(x∗a∗ax)‖
≤ ‖a∗a‖‖E(x∗x)‖ = ‖a∗a‖‖E(x)‖2

= 0.

so that ker E is a left ideal. Since ker E is self-adjoint, it is a two sided ideal.
The second alternative argument is due to a referee. Since x := a − E(a)

belongs to ker E , ||E(x∗x)|| = ||E(x)||2 = 0 immediately implies that a belongs to
the multiplicative domain of E ([3, Theorem 3.1]). This latter argument can be
applied to prove two other results (see Propositions 3.13 and 3.14).

The two results which follow, and the tools used in their proofs, are valid
for abstract JB∗-triples, for which a reference is the monograph [4, Definition
2.5.25]. The principal example of a JB∗-triple is a JC∗-triple, that is, a norm
closed subspace A of a C∗-algebra which is closed under the symmetrized triple
product {xyz}A := (xy∗z + zy∗x)/2. We therefore phrase these two results in
this context.

A triple homomorphism is a linear mapping T : A → B between two JC∗-triples
which preserves the triple product: T{xyz}A = {Tx, Ty, Tz}B. A triple ideal is
a subspace I of a JC∗-triple A satisfying {IAA}A + {AIA}A ⊂ I.

Let A be a JC∗-triple, with triple product denoted {abc}A (or just {abc}) and
let P : A → A be a nonzero contractive projection: P 2 = P , ‖P‖ = 1. We have
the “conditional expectation” formulas ([8, Corollary 1])

P{x, Py, Pz} = P{Px, Py, Pz} = P{Px, y, Pz} for all x, y, z ∈ A. (3.3)

We recall ([9, Theorem 2], [4, Theorem 3.3.1]) that P (A) is isometric to a JC∗-
triple under the norm of A and the triple product

{Px, Py, Pz}P (A) := P ({Px, Py, Pz}A). (3.4)

Lemma 3.11. A contractive projection P : A → A defined on a JC∗-triple A is
a triple homomorphism of A into P (A), that is, for all a, b, c ∈ A,

P{abc}A = {Pa, Pb, Pc}P (A), (3.5)

if and only if the kernel of P is a triple ideal in A.

Proof. Assume (3.5), let a ∈ ker P , and let b, c ∈ A. Then

P{abc}A = {Pa, Pb, Pc}P (A) = P{Pa, Pb, Pc}A = 0

and similarly, P{bac}A = 0.
Conversely, suppose ker P is an ideal. For x ∈ A, with x = Px + P ′x, where

P ′ = I − P , we have (noting that {Px, Px, P ′x} = {P ′x, Px, Px})
{xxx}A = {Px + P ′x, Px + P ′x, Px + P ′x} = {Px, Px, Px}+ y,

where y ∈ ker P . Thus P{xxx}A = P{Px, Px, Px}A = {Px, Px, Px}P (A) and
by the polarization identity,

{xyz} =
1

8

∑
α4=1,β2=1

αβ{x + αy + βz, x + αy + βz, x + αy + βz},
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P is a triple homomorphism. �

Proposition 3.12. Let A be a JC∗-triple and let P : A → A be a contractive
projection. Then P is a triple homomorphism of A onto P (A) if and only if P
satisfies

{ker P, ker P, ranP}A ⊂ ker P, (3.6)

{ker P, ranP, ker P}A ⊂ ker P, (3.7)

and
‖P (x)‖3 = ‖P{xxx}A‖ for every x ∈ A. (3.8)

Proof. If P is a triple homomorphism, it is obvious that (3.6) and (3.7) hold, and
if x ∈ A, then

P{xxx}A = {Px, Px, Px}P (A),

so that

‖P{xxx}A‖ = ‖{Px, Px, Px}P (A)‖ = ‖Px‖3
P (A) = ‖Px‖3

A.

Conversely, assume (3.6)-(3.8) hold. We shall show that ker P is an ideal, so
that Lemma 3.11 is applicable.

For x ∈ ker P and y, z ∈ A, it is required to show that P{xyz}A = 0 and
P{yxz}A = 0. Write y = Py + P ′y, and z = Pz + P ′z. Then

{xyz}A = {P ′x, Py + P ′y, Pz + P ′z}
= {P ′x, Py, Pz}+ {P ′x, P ′y, Pz}

+{P ′x, Py, P ′z}+ {P ′x, P ′y, P ′z}.
By (3.8), ker P is closed under x 7→ {xxx}A, so by the polarization identity,
it is a subtriple of A, and therefore P{P ′x, P ′y, P ′z} = 0. By (3.6) and (3.7),
P ({P ′x, P ′y, Pz} + {P ′x, Py, P ′z}) = 0. By (3.3), P{P ′x, Py, Pz} = 0. Thus
P{xyz}A = 0 and a similar proof shows P{yxz}A = 0. �

As noted in Remark 3.10, the technique mentioned there can be used to show
the following two results, which are responses to a question posed to the authors
independently by C. Akemann and by the referee.

A JC∗-algebra is a norm closed subspace A of a C∗-algebra which is closed
under the Jordan product x ◦ y := (xy + yx)/2 and the involution. A Jordan
homomorphism is a linear mapping T : A → B between two JC∗-algebras which
preserves the Jordan product: T (x ◦ y) = Tx ◦ Ty, equivalently, T (a2) = T (a)2

for all a = a∗.

Proposition 3.13. Let A be a C∗-algebra and let E : A → A be a conditional
expectation. Then E is a Jordan homomorphism if and only if

‖E(x)‖2 =
∥∥E(x2)

∥∥ for every x = x∗ in A. (3.9)

Proof. If E is a Jordan homomorphism, then E(a2) = E(a)2 so (3.9) holds. Con-
versely, if a = a∗ ∈ A, then x = x∗ = a− E(a) ∈ ker E , and

0 = E(x2) = E(a2 − aE(a)− E(a)a + E(a)2) = E(a2)− E(a)2,

so E is a Jordan homomorphism. �
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Let A be a unital JC∗-algebra, with Jordan product denoted a ◦ b, and let
P : A → A be a nonzero positive unital projection. The conditional expectation
formulas (3.3) reduce to

P (x ◦ Py) = P (Px ◦ Py), (3.10)

and by (3.4), P (A) is isometric to a JC∗-algebra under the norm of A and the
Jordan product (a, b) 7→ a ∗ b := P (a ◦ b), for a, b ∈ P (A) (see [7, Theorem 1.4]
for the original proof of the latter statement and [7, Lemma 1.1] for the original
proof of (3.10)). Note that P (a) ∗ P (a) = P (P (a)2).

Proposition 3.14. Let A be a unital JC∗-algebra and let P : A → A be a positive
unital projection. Then P is a Jordan homomorphism, that is, P (a2) = P (P (a)2)
if and only if

‖Px‖2 =
∥∥P (x2)

∥∥ for every x = x∗ in A. (3.11)

Proof. If P is a Jordan homomorphism, so that P (a2) = P (P (a)2), then ‖P (a2)‖ ≤
‖P (a)2‖ = ‖P (a)‖2. However, since P is positive, P (a2) ≥ P (a)2 ([15, Theorem
1.2]), so that (3.11) holds.

Conversely, if a = a∗ ∈ A, then x = x∗ = a− E(a) ∈ ker E , and

0 = P (x2) = P (a2 − P (a)a− aP (a) + P (a)2)

= P (a2)− 2P (P (a) ◦ a) + P (P (a)2)

= P (a2)− P (P (a)2) (by (3.10)),

so P is a Jordan homomorphism. �

4. Homomorphic conditional expectations on C0(X)

This section is based on [13, 5.1]. We discuss the relationship between homo-
morphic conditional expectations on commutative C∗-algebras C0(X) and retrac-
tions on X, for compact and locally compact Hausdorff spaces X. When we deal
specifically with a compact Hausdorff space we usually use K in place of X.

If K is a compact Hausdorff space, we use C(K) to denote the unital C∗-algebra
(with pointwise operations and the supremum norm) of all complex-valued con-
tinuous functions on K. If X is a locally compact Hausdorff space, we use C0(X)
to denote the C∗-algebra of all complex-valued continuous functions on X which
vanish at infinity. If K is compact, then C0(K) = C(K).

Example 4.1. Retractions τ : K → K on a (locally) compact Hausdorff space
K give rise to homomorphic conditional expectations Eτ : C(K) → C(K) via
Eτ (f) = f ◦ τ . But there are expectations on C(K) which do not come from
any retraction of K (those expectations are not homomorphic). For instance, let
K = {eiθ : 0 ≤ θ ≤ 2π} and define

E : C(K) → C(K) by E(f)(ζ) =
f(ζ) + f(−ζ)

2
.

Then E is a (not homomorphic) conditional expectation on C(K) and there is no
retraction τ : K → K with E = Eτ ; see [13, Proposition 5.1.6].
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Theorem 4.2. Let K be a compact Hausdorff space. If τ : K → K is a retraction
(i.e., a continuous function with τ ◦ τ = τ), then the map

Eτ : C(K) → C(K), Eτ (f) = f ◦ τ, for every f in C(K) (4.1)

is a unital homomorphic conditional expectation.
Conversely, if E : C(K) → C(K) is a unital homomorphic conditional expecta-

tion, then there is a retraction τ : K → K such that E = Eτ , where Eτ is given by
formula (4.1).

Proof. The first implication is a straightforward verification. For the second impli-
cation, let E : C(K) → C(K) be a unital homomorphic conditional expectation.
Then the kernel of E , which will be denoted by ker E , is a closed ideal and hence
there is a closed set K1 ⊆ K such that ker E = {f ∈ C(K) : f |K1= 0}; (see, for
example, [14, Theorem 4.2.4] or [16, Theorem 85]). If we let S denote the range
of E , then S is a closed subalgebra of C(K) (containing the constants) and E
induces an algebra isomorphism

Ẽ : C(K)/ ker E → S, Ẽ(f + ker E) = E(f), for every f in C(K).

We also have an isomorphism

π : C(K)/ ker E → C(K1), π(f + ker E) = f |K1 , for every f in C(K);

([14, Theorem 4.2.4], or [16, Theorem 85]). Now Ẽ ◦π−1 : C(K1) → S ⊆ C(K) is a
unital algebra homomorphism and so there exists a continuous function φ : K →
K1 such that (Ẽ ◦π−1)(h) = h◦φ, for h ∈ C(K1); see [2, II.2.2.5]. Let τ : K → K
be given by τ(t) = φ(t), for t ∈ K, so that τ has the same values as φ but with
a different co-domain. Note that τ is continuous (since φ is). We claim that
E(f) = f ◦ τ for all f ∈ C(K). Indeed, if f ∈ C(K), then π(f + ker E) = f |K1

thus f + ker E = π−1(f |K1), and this implies that (Ẽ ◦ π−1)(f |K1) = E(f). But
also (Ẽ ◦ π−1)(f |K1) = (f |K1) ◦ φ = f ◦ τ . Hence we have E(f) = f ◦ τ for all
f ∈ C(K), as claimed. Since E(E(f)) = E(f) we must have f ◦ τ ◦ τ = f ◦ τ for
each function f ∈ C(K). Since the functions in C(K) separate the points of K,
it follows that τ ◦ τ = τ so that τ is a retraction. �

Corollary 4.3. Let K be a compact Hausdorff space and let E : C(K) → C(K)
be a homomorphic conditional expectation. Then there is a clopen set L ⊆ K and
a retraction τ : L → L such that E is given by

E(f)(t) =

{
f(τ(t)) if t ∈ L

0 for t ∈ K \ L

for f ∈ C(K), t ∈ K.

Proof. Let 1K denote the constant function 1 in C(K). Then E(1K)2 = E(1K)
and so there is L = {t ∈ K : E(1K)(t) = 1} so that E(1K) = 1L (the characteristic
function of L). Moreover, since 1L ∈ C(K), L ⊆ K is a clopen subset. Since
E(1K−1L) = E(1K)−E(1L) = E(1K)−E(E(1K)) = 0, we have that 1K−1L ∈ ker E
(which is an ideal). So if f ∈ C(K), then

E(f) = E(1Lf + (1K − 1L)f) = E(1Lf) = 1LE(1Lf). (4.2)
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Identifying C(L) with {f ∈ C(K) : f = 1Lf} via g ∈ C(L) 7→ g̃ ∈ C(K)
(where g̃ |L= g and g̃(t) = 0 for t ∈ K \L), we see that E induces a homomorphic
unital conditional expectation EL : C(L) → C(L) by EL(g) = E(g̃) |L. The result
follows by applying Theorem 4.2 to EL and using (4.2). �

Let X be a locally compact Hausdorff space and X∗ = X ∪ {ω} the one point
compactification. We use this notation here even when X is already compact, in
which case {ω} is open (and closed) in X∗. Subsets U of X∗ are open if U ∩X
is open in X and if ω ∈ U we insist that X∗ \ U be a compact subset of X.

We consider C0(X) as embedded in C(X∗) via

f 7→ f̃ : C0(X) → C(X∗),

where

f̃(t) =

{
f(t) if t ∈ X

0 for t = ω.

Note that this identifies C0(X) with {g ∈ C(X∗) : g(ω) = 0} (the maximal ideal

of C(X∗) consisting of functions which take the value zero at ω) and f 7→ f̃ is a
*-algebra isomorphism onto its range.

If τ : X∗ → X∗ is a retraction such that τ(ω) = ω, then we can define a

conditional expectation Eτ,∗ : C0(X) → C0(X) by Eτ,∗(f) = (f̃ ◦ τ)|X .

Corollary 4.4. If X is a locally compact Hausdorff space and E : C0(X) → C0(X)
is a homomorphic conditional expectation, then there is a retraction τ : X∗ → X∗

(X∗ = X ∪ {ω}) with τ(ω) = ω such that E = Eτ,∗.

Proof. First consider the case when X is compact. We apply Corollary 4.3 above
to get L ⊆ X compact and clopen and τ : L → L a retraction with

E(f)(t) =

{
f(τ(t)) if t ∈ L

0 if t ∈ X \ L.

Define a retraction ρ : X∗ → X∗ by ρ(t) = τ(t) for t ∈ L and ρ(t) = ω for
t ∈ (X \L)∪{ω}. Since L is clopen and so is {ω}, ρ is continuous. We can verify
that ρ ◦ ρ = ρ and E = Eρ,∗.

In the case that X is not compact, note that C(X∗) is isomorphic as a *-

algebra to the unitisation C0(X)
]
, where C0(X)

]
is defined as in [6, Definition

1.3.3]. The isomorphism is given by g 7→ φ(g) := (g|X − g(ω), g(ω)). Indeed, if
φ(g1) = φ(g2), then g1(ω) = g2(ω) and g1|X = g2|X , thus g1 = g2. On the other

hand, if (h, α) ∈ C0(X)
]
, then φ(g) = (h, α), where

g(x) =

{
h(x) + α if x ∈ X

α if x = ω.

Regard E ]
: C0(X)⊕C → C0(X)⊕C as E ]

: C(X∗) → C(X∗), where E ]
(h, α) =

(E(h), α) for h ∈ C0(X), α ∈ C. Then E ]
is an algebra homomorphism and

a conditional expectation.
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We apply Corollary 4.3 to get L ⊂ X∗ clopen and τ : L → L a retraction so
that

E ]

(f)(t) =

{
f(τ(t)) if t ∈ L

0 if t ∈ X∗ \ L,
(4.3)

for f ∈ C(X∗). Since C0(X) can be identified with the maximal ideal of C(X∗)
consisting of functions which take the value zero at ω, i.e., C0(X) = {g ∈ C(X∗) :
g(ω) = 0}, we have

E ]

(C0(X)) = E ]

({g ∈ C(X∗) : g(ω) = 0}) ⊂ C0(X),

and, therefore, if ω ∈ L, then τ(ω) = ω. (Indeed, if ω ∈ L and τ(ω) = t ∈ X,
there is f ∈ C0(X) with f(t) = 1 and we would have a contradiction from

0 = E ]
(f)(ω) = f̃(τ(ω)) = f(t) 6= 0). If ω /∈ L, then ω ∈ X∗ \ L, L ⊆ X is

compact, and E ]
is given by (4.3).

Thus we can extend τ to a retraction ρ : X∗ → X∗ by ρ(t) = τ(t) for t ∈ L
and ρ(t) = ω for t ∈ X∗ \L. Since L is clopen, ρ is continuous, and we can verify
that ρ ◦ ρ = ρ and E = Eρ,∗. �
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