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Abstract. This paper proposes an approach to select a maintenance strategy from a predefined set of choices
considering the decision maker’s behavioral risk profile. It is assumed that the damage state is characterized
by a continuous state parameter probabilistically inferred from observable sensor data. This work applies an
engineering application of consequence-based decision-making incorporating the acceptable risk intensity
of the decision-maker, i.e., the decision-maker’s (individual or an organization) valuation of the outcome
of a decision, using a risk profile model. The utility of a decision-maker is subjective, and this paper
considers the fact that different decision-makers mentally assign a different importance factor (the utility) to
the seriousness or urgency to take necessary actions with the increasing intensity of structural damage. The
approach herein incorporates a layer of human psychology on selecting appropriate maintenance strategies
that not only depend on the posterior distribution of unmeasurable damage state but also consider the
behavioral risk profile of the decision-maker. The collective decision-making of an organization consisting
of many individuals is also investigated. The approach is exemplified in a case study involving life cycle
monitoring of a miter gate, part of a lock system enabling navigation of inland waterways.
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1 Introduction
Structural health monitoring (SHM) is the process of collecting in-situ data from an in-service structure

and mining that data for information that informs decisions about the structure’s state of health [1, 2]. Such
health information is then used for a variety of reasons typically related to operational or maintenance
actions throughout the structure’s life cycle. Due to the many sources of variability and/or noise that infuse
this SHM “data-to-decision” workflow, the process of inferring the damage state from sensor measurements
and making decisions regarding it is inherently probabilistic. A successful SHM workflow, therefore,
requires in-situ data acquisition, feature extraction from the measurement data that will be used to perform
the inference, probabilistic modeling of the features (and corresponding damage state), and subsequently
evaluating some form of hypothesis on the features to make risk-informed decisions about the actions to be
taken.

One of the most important classes of actions that SHM is designed to inform is maintenance planning.
This paper focuses on risk-informed decision-making in SHM and proposes an approach to choose a series
of maintenance actions (which may comprise an overall maintenance strategy) from a predefined set of
choices, usually under the constraints of meeting a safety requirement and preserving cost-effectiveness.
The maintenance actions constituting this set–the decision space–are assigned corresponding discrete labels,
ratings, or indices that map to various degrees of damage relating to a limit state. As an example which
will be exploited as a case study in this work, the U.S. Army Corps of Engineers (USACE) considers an
operational conditional assessment (OCA) rating protocol consisting of five discrete damage labels: (A
(excellent), B (good), C (fair), D (poor), F (failing), and CF (complete failure)) for its miter gate structures
(discussed later in detail). These ratings are generally commensurate with increased overall damage state
[3], and in turn the state parameters. In our present case study example, considering the monitoring and
maintenance of USACE miter gate structures, the state parameter measuring “health” is a measure of the
loss of boundary contact between the miter gate itself and its supporting wall quoin block at the bottom
of the gate, hereafter referred to as the gap length. In the most unsophisticated case, the structure can be
assigned a rating, which is used interchangeably with the term label, purely based on various mutually
exclusive and collectively exhaustive ranges of true gap length values. For instance, the structure might
be rated A if the true gap length value ranges from 0-30 inches; similarly, the structure might be rated CF
for a gap greater than 180 inches [4]. This assignment could be made by either an inspector/engineer or
organizationally determined by USACE; in either case, it may be informed by formal predictive limit-state
analysis, prior expert experience, historical practice, or some combination.

Establishing maintenance policies usually has three major challenges. First, it requires establishing
damage/state parameter(s) that is/are reflective of the structure’s health. Unlike the demonstration problem
that we consider in this paper, where the damage is quantified by a single well-defined damage parameter (gap
length), it is usually not so straightforward to find these damage parameters and their relationship to the overall
health of the structure. This requires running high-fidelity finite element models and obtaining macro/global
damage parameters (or features). This paper assumes that the global/macro damage parameter(s) exist(s).
Second, these damage parameters are continuous quantities that evolve with time and, for the purposes of
establishing the maintenance policy, they require obtaining discrete structural health labels/ratings that are
related to the damage parameter(s) (e.g., the OCA ratings A, B, C, D, F, and CF label in the case of the
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miter gate structure). If the labels are related to the damage parameter (gap value for the miter gate) as
described in the simple example above, it is easy to define a unique maintenance action for each label (and
consequently a strategy over the set of actions). However, such a simple label assignment system suffers
from two major drawbacks: (1) it requires obtaining the exact value of the true damage parameter (like
gap length value for the miter gate), which is typically impossible, and (2) it is a very rudimentary way of
defining a label obtained by explicit discretization of the continuous state parameter. Third, having decided
on the meaning of the indexing labels, the question then remains on how to design optimal maintenance
policies for each of these labels.

As discussed in [5], in practice consequence-based decision-making often relies on subjective and
experience-based expert elicitation of the probable structural state (usually defined by discrete labels).
Such probabilistic assessments can be erroneous, especially when there is little to no prior experience
or observation prior to a limit state such as catastrophic failure. Such assessments can lead to biased
conservative and uneconomical maintenance decisions over the life of the structure. Furthermore, as
discussed in [6], traditional conditioned-based maintenance practices require regular periodic inspections.
In the initial to intermediate life of the structure, most inspections confirm that the structure does not need
significant repairs. Therefore, it is crucial to develop a decision-making framework that is adaptive to the
updated structural state to recommend necessary maintenance actions, and at the same time save cost by not
recommending any unnecessary inspections, especially in the early operational life of the structure.

Inspection and maintenance planning is a very broad and widely researched area. Several contributions
in the literature have focused their attention on building optimal inspection and maintenance planning for
various structures subjected to different forms of damage like pipelines subjected to external corrosion
[7], nuclear power plant steam generators subjected to multiple degradation mechanisms [8], water main
breaks in distribution networks [9], systems subjected to stress corrosion cracking [10], optimal inspection
planning for pipeline network [11], inspection model for defense and military systems [12], offshore wind
turbine subjected to operational fatigue [13], railway track-bed maintenance [14], data-driven predictive
maintenance for automobiles [15], to name a few. Establishing optimal inspection and maintenance policy
initiates by building a physics-based model that is capable of simulating the structure’s lifecycle when
subjected to varying environmental conditions. This allows for stimulating the degradation of the structure
over time. Among all the choices of inspection and maintenance policies, an optimal maintenance strategy
maximizes the benefit for the least cost. This entire process consists of four major steps: degradation
modeling, maintenance effect modeling, maintenance policy elaboration, and performance assessment
[16]. This requires investigating the impact of several policies on the degradation curve and estimation
of remaining useful life. Needless to say that this entire process is computationally intensive. Recent
progress in computational speed, and the application of Machine Learning on building a reasonably accurate
digital twin for faster evaluation of degradation curves [17, 18], has catalyzed research in numerous areas
of optimal maintenance like condition-based maintenance policy [19], the impact of imperfect maintenance
[20, 21], impact of uncertain inspection data and condition rating protocol [4], maintenance planning multi-
components system [22, 23], inspection and maintenance for multi-state systems [24, 25], maintenance for
𝑘-out-of-𝑛 systems [26, 27], to name a few. The works by Fauriat et al. [28] and Lin et al. [29] utilize the
Value of Information as a metric to guide the inspection policies such that the cost acquired over the life of
the structure is minimal. Vega et al. [30] discuss the application of data analytics and machine learning to
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maintenance decision-making for civil infrastructure. Yang et al. [31, 32] discuss optimal sensor design
with the target of obtaining measurement data based on which a maintenance policy could be effectively
implemented. The paper by Lam et al. [6] focuses on developing a decision-policy that considers the current
structural health as an input to decide the future upcoming inspection.

In this paper, we focus on developing a framework where a finite number of maintenance actions are
to be proposed and executed (each associated with a discrete label), but at the same time, the framework
to design and choose the maintenance actions and overall strategy must account for the continuous and
uncertain nature of the updated state parameter, as well as take into account the updated state of the structure
(updated by utilizing the sensor measurements obtained through an SHM system). Another novelty of
this paper is that it integrates the risk profile of the decision-maker (or the acceptable risk intensity that
the organization demands, or by which the application is regulated), thereby quantifying the subjective
component of decision-making. Proposing an integrated consequence-based decision-making framework
is one of the primary focuses and contributions of this paper. We propose an approach to choosing a
maintenance strategy on an economic basis that minimizes the consequence/regret of making a decision (i.e.,
choosing which maintenance action to pick among the available options) given the probability distribution
of the inferred state parameter that indicates the degree of damage. Doing so requires three essential
ingredients:

1. The first ingredient requires some bounding assumptions on the problem at hand. We assume that
the state parameter sufficiently describes the degree of structural damage, and other than the state
parameter, no other quantity is needed to describe the structural health (at least to the extent that it is
assumed sufficient to make a decision and take an action). We also assume that the state parameter is
unknown and is described by its probability density function. Therefore, the results and methodology
presented in this paper are limited to such a class of problems where the state parameter is well-defined
and continuous. Moreover, the demonstration problem considers a scalar state parameter. Therefore,
the methodology presented is focused on a single state variable and could only in theory be extended
to a multi-dimensional state parameter case. In the absence of any external maintenance, because
the damage spontaneously and irreversibly increases over time, the state parameter must also have
monotonically increasing (or decreasing, depending upon how it is defined) characteristics. To capture
all the possible degrees of damage (the possible range of gap values in the present demonstration
case), we need to consider the consequence of choosing a particular maintenance action for all the
possible realizations of the state parameter. For example, choosing to do nothing (take no action)
when the gap value for the miter gate is sufficiently large may be disastrous, whereas performing
a costly repair when the gap value is sufficiently small is uneconomical. The consequence cost or
regret function is uniquely defined for each maintenance strategy and is essentially weights assigned
to the damage intensity (or the true state parameter). The consequence cost function is arrived at
for each maintenance action by estimating various costs associated with maintenance downtime,
inspection, repair, replacement, and, in case of complete failure, life safety, and capital losses, and by
investigating the state parameter evolution model using the high-fidelity finite element model.

2. The second ingredient is the requirement to arrive at the probability distribution of the state parameter.
Since the state parameter is assumed to be only indirectly observable (the most generic case of all), it
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is probabilistically inferred from measurable sensor data using Bayesian inference.

3. Once the consequence cost functions for all the maintenance actions are defined, and once we have
a reliable method to infer the posterior distribution of the state parameter, the third ingredient is
the exploitation of expected utility theory to choose the optimal maintenance set of actions (refer
to [33, 34]). When the data is broadly available, the available data can be used directly to infer the
probability distribution of the state parameter(s). For structural engineering applications such as the
current case study where the experimental data is scarce (and unavailable in the damaged states), the
posterior distribution of the state parameter may be obtained from a calibrated finite element model
or a physics-informed digital surrogate using Bayesian inference [35]. We use a finite element model
to generate the observable data (that is local strain gauge measurements) in this paper.

As a byproduct of optimally choosing a maintenance strategy, we also propose an approach to classify the
structural state discretely. It is convenient for engineers to assess the state of the structure discretely (e.g.,
undamaged, moderately damaged, and critically damaged). For simple problems where the possible discrete
states of the structure have well-defined physical definitions and sufficient examples of all realized states,
the state assessment is done using a statistical classifier, i.e., a typical detection type problem. Defining the
classifiers objectively requires a large amount of data (more specifically, features) that span the target damage
states of interest, and supervised learning may be employed to define the classifiers. However, unlike a
well-defined detection type problem encountered in data science, objectively defining a mutually exclusive
and exhaustive set of discrete structural states is challenging since the structure evolves continuously and
the state of the structure is inherently a continuous quantity. In the case of the SHM system installed on a
complex structure with numerous sensors and a continuous degree of damage, such objective well-defined
classifiers may not necessarily be obtainable. This is because, in practice, features are very unlikely to
be obtained in all possible classification states (especially higher damage or failed states). We tackle this
limitation by exploiting the fact that each maintenance action is associated with or designed for a label that
represents a level of damage. These labels can be used as a proxy for discrete state classifiers. We exploit
the following facts: (a) unlike a structural state that is inherently a continuous quantity, the maintenance
strategies are countable; (b) the consequence cost function associated with each maintenance action label
is implicitly designed by considering a level of damage; thus, choosing an optimal maintenance strategy
allows us to reasonably use the associated labels as a proxy to discrete state classifiers.

Although the consequence cost function for a set of maintenance actions may be estimated reasonably
by the structural asset owner/operator, the actual decisions made are inherently affected by the biases
and heuristics of the decision-maker (e.g., an inspection engineer) or are risk-weighted [36]. Not only
is the behavioral risk profile of an individual decision-maker affected by his/her biases, but also by any
organizational values and priorities. Additionally, as discussed in [37], although difficult to precisely
define, an organization has a risk profile based on its alignment with values, priorities, or regulations. For
example, high-consequence organizations like nuclear power plants must be extremely risk-averse towards
danger of core meltdown due to high public safety consequences (see [38]). A well-designed SHM system
can be instrumental in obtaining reliable information regarding structural health. However, utilizing this
information to select the course of action depends on the qualification, competence, and experience of the
engineer as well as the values, priorities, and guidelines set by an organization or regulations by which the
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organization must abide.
This decision-making scenario under uncertainty motivates us to model and investigate the effect of

decision-maker’s risk profile on decision-making. We achieve this by accounting for the decision-maker’s
utility, i.e., the their evaluations about the outcome of an action, using risk profiles in the decision-making
process. The utility of a decision-maker is subjective and hence considers the fact that different decision-
makers mentally assign a different importance factor (or in economic terms, the utility or risk-intensity) to the
seriousness or urgency of a given state in order to take necessary actions commensurate with the intensity of
structural damage. The approach herein incorporates a layer of human psychological behavior on selecting
appropriate maintenance strategies that not only depend on the structural state (probabilistically quantified
by the posterior distribution of the damage parameter) but also consider the risk profile of the interpreting
decision-maker(s). In the case of an organization, which might be comprised of many decision-makers, we
also investigate the collective decision-making behavior of the organization. The collective performance
of the organization depends on the distribution of the risk profiles of the agents it employs (which in turn
are impacted partly by the organization’s values, policies, and decision-making guidelines). This paper
does not elaborate on ways to psychologically evaluate and define an individual’s risk profile, nor does it
detail a methodology to evaluate the risk profile of an organization; such a thing is based on a complex array
of its values, motto, operational capabilities, overall competency of the management, the negative impact
of bureaucracy and loss of productivity in the case of large organizations, experience and qualification of
the employees, and corporate greed, to name a few (see [37]). We approach this problem by modeling
the spectrum of risk profiles (or utility functions) of various decision-makers that form the organization
and investigating the impact of different cases of risk intensities on decision-making. Assuming that an
organization is as good as its employees in an average sense, the organizational risk profile is then defined
based on the weighted average consequences of the decisions made by the employees.

Decision theory enjoys a very rich history (refer to [39]) that dates back to the work in probability theory
by Blaise Pascal and Pierre de Fermat, and the work of Bernoulli [40] on decision-making under uncertainty.
As demonstrated by the Petersburg paradox (see Chapter 7 of [41]), people do not maximize expected
monetary value while making decisions. Bernoulli [40] suggested that the decision-maker maximizes the
expected value of a cardinal utility function that represents the strength of preference for certain outcomes.
The sound theoretical foundation of expected utility theory lies in the work of John von Neumann and
Oskar Morgenstern [33] on game theory and economic behavior. However, the expected utility theory
assumed that the decision-makers are rational. This theory was extended to prospect theory (a theory of the
psychology of choice) and finally to cumulative prospect theory (a model for descriptive decision under risk
and uncertainty) by Amos Tversky and Daniel Kahneman [42, 43] who also included the irrationality and
heuristic biases of the decision-maker.

Many engineering applications involve decision-making under uncertain, risk-bearing scenarios.
Several research efforts have been made to adopt the expected utility theory and other decision-making
models in decision analysis for engineering applications. A paper by Gardoni et al. [44] mentions that
most engineering decision-making is mathematically modeled through three different methods: life cycle
cost analysis, expected utility theory, or cumulative prospect theory. As is one of the main focuses of this
paper, Gardoni et al. [44] points to the fact that the decision-maker’s preference and risk behavior plays a
crucial role in the outcome of decision analysis. A number of works [45, 46] dealt with considering and
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modeling risk-aversiveness in the decision-making process. Faber et al. [47, 48, 49, 50] investigated the
decision-making under uncertainty in SHM and structural reliability problems. More recently, approaches
quantifying the economic benefit of using an SHM system (refer to [51, 52, 53, 54]) have been investigated
by using value of information theory [55] in conjuncture with expected utility theory. Bolognani et al.
[56] extend the application of prospect theory to include irrationality in decision-making for the SHM
application.

As far as the applications of probability theory are concerned within the field of civil engineering,
the readers are referred to an excellent book (especially the last two chapters) by Benjamin and Cornell
[57]. We cautiously note that in this paper, we stick to the expected utility framework and incorporate the
risk-perception of the decision-makers using a non-linear logarithmic utility function.

As introduced above, we consider for our case study a miter gate structure, an important component
of the lock systems used for inland waterway navigation [58, 59]. The USACE spends billions of dollars
in maintaining and operating this infrastructure, where the unscheduled shutdown of these assets and
dewatering for inspection or repair is very costly [60, 61, 3]. The potential for SHM to help facilitate
maintenance and operations appears highly promising. Within the navigation lock systems, miter gates are
one of the most common locking gates used; their most common failure mechanisms include long-term
corrosion and loss of load-transferring contact in the quoin block, as discussed above [62]. As many of
these structures have been operational for over 50 years, many are presently potentially operating with
higher risk without engineers knowing their real structural residual strength capacity; current practice
involves engineering elicitation via inspection, followed by lock closures if the inspection so warrants.
Since this process is based on the varied experience and interpretation of field engineers, it bears high
uncertainty and variability [63]. The use of an SHM system coupled with a framework that decides an
optimal maintenance strategy considering the various levels of risk intensity could lead to reduced life
cycle costs including an effective increase in remaining useful life. We note that each engineering-based
decision-making problem requires customized rules/policy that considers the problem at hand. Therefore,
the proposed framework is focused on the application of consequence-based decision-making for miter gate
structures and the principles can only, in theory, be extended to other more complex problems.

The rest of the paper is arranged as follows. Section 2 reviews the general framework of expected
utility theory. Section 3 describes the demonstration case study and general decision-making framework
that we propose. Section 4 first describes the maintenance actions and their associated consequence cost
functions, and then it details the individual and organizational risk profiles. Section 5 presents posterior
decision analysis to determine the maintenance strategy and label the structure considering individual and
organizational risk behavior. Finally, Section 6 concludes the paper.

2 Consequence-based decision-making framework
Consider an SHM based decision-making problem where the decision to be made (like choosing

a maintenance action) depends on the uncertain state parameter(s) denoted by a random variable Θ and
defined over the state-parameter space ΩΘ. The decision space (for example: set of different maintenance
actions, or equivalently, the set of the corresponding damage labels) is represented by Ω𝐷. In general, Ω𝐷

and ΩΘ can be discrete or continuous. However, suitable to the present application, we assume that the



8

decision space Ω𝐷 and the state parameter(s) space ΩΘ are discrete and continuous, respectively, such that
Ω𝐷 = {𝑑0, 𝑑1,⋯ , 𝑑𝑛} and 𝜃 ∈ ΩΘ. Here, the elements of Ω𝐷, i.e., 𝑑𝑖 ∈ Ω𝐷 for 𝑖 ∈ {1, 2,⋯ , 𝑛}, represent a
damage label that has a corresponding maintenance action associated with (or designed for) it. We attempt
to answer the question: For a given probability distribution of the state parameter(s), what rating must be
assigned to the structure that leads to an optimal maintenance strategy?

To answer this question directly, we first define uncertainty in state parameter(s) 𝜃 by its probability
density function 𝑓Θ(𝜃). Let 𝜃true represent the true value(s) of state parameter(s), and we assume that they
can’t be measured. The numerical value of 𝜃true falls in the domain ΩΘ. To predict the optimal decision,
we need to minimize average loss or expected risk (also called the Bayes risk functional) arising as a
consequence of making the decision. To arrive at Bayes risk, we define consequence/regret cost function
𝐿
(

𝑑𝑖, 𝜃true
)

that defines the total loss or regret as a consequence of making decision 𝑑𝑖 considering all the
possible values of true state parameter(s) 𝜃true ∈ ΩΘ. It gives an extrinsic cost involved with decision-making.
The expected loss or the Bayes risk Ψprior is then defined as

Ψprior(𝑑𝑖) = 𝐸Θ
[

𝐿
(

𝑑𝑖, 𝜃true = 𝜃
)]

= ∫ΩΘ

𝐿
(

𝑑𝑖, 𝜃true = 𝜃
)

𝑓Θ(𝜃) d𝜃,∀𝑖 ∈ {1, 2,⋯ , 𝑛}. (1)

The optimal decision, denoted by 𝒹prior ∈ Ω𝐷, is the one that minimizes the Bayes risk, or

𝒹prior = argmin
𝑑𝑖

Ψprior(𝑑𝑖). (2)

We observe that 𝑓Θ(𝜃) embeds our prior knowledge of state parameter(s) 𝜃 before any additional information
is available (for example, obtained using sensors in SHM). Obtaining the optimal decision using Eq. (2) is
called a prior decision analysis.

We now consider a scenario where additional information (sensor measurements) is available. For
sake of argument, we assume that new information is obtained by a mechanism 𝑧 (for example an SHM
system). The newly acquired measurements are assumed to be uncertain as the sensor data is subjected
to noise. Therefore, in the Bayesian viewpoint, sensor measurements are modeled as a random variable,
denoted by 𝑋𝑧. Let Ω𝑋𝑧

represent continuous measurement space, such that 𝑥𝑧 ∈ Ω𝑋𝑧
, where 𝑥𝑧 is a

realization of the random variable 𝑋𝑧. The subscript 𝑧 denotes the mechanism by which new information
was acquired. Installing information gathering system incurs an intrinsic cost 𝐶(𝑧). Therefore, sum total of
the extrinsic and the intrinsic cost functions 𝐿𝑧(𝑑𝑖, 𝜃true) = 𝐶(𝑧) + 𝐿(𝑑𝑖, 𝜃true) is used for further decision
analysis. With the availability of additional information, we define Bayes risk Ψ𝑧 for posterior decision
analysis as:

Ψ𝑧(𝑑𝑖) = 𝐸Θ𝑋𝑧

[

𝐿𝑧(𝑑𝑖, 𝜃true)
]

= 𝐸𝑋𝑧

[

𝐸Θ|𝑋𝑧

[

𝐿𝑧(𝑑𝑖, 𝜃true = 𝜃)
]]

= ∫Ω𝑋𝑧

𝑓𝑋𝑧
(𝑥𝑧)𝑅𝑧(𝑑𝑖; 𝑥𝑧) d𝑥𝑧; (3)

where,
𝑅𝑧(𝑑𝑖; 𝑥𝑧) = 𝐸Θ|𝑋𝑧

[

𝐿𝑧(𝑑𝑖, 𝜃)
]

= ∫ΩΘ

𝐿𝑧(𝑑𝑖, 𝜃true = 𝜃)𝑓Θ|𝑋𝑧
(𝜃|𝑥𝑧) d𝜃. (4)

In the equation above, 𝑅𝑧(𝑑𝑖; 𝑥𝑧) represents conditional risk. It represents expected value of loss as a
consequence of making a decision considering the posterior distribution of state parameter(s) 𝑓Θ|𝑋𝑧

(𝜃|𝑥𝑧)
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(conditioned on new information acquired through the mechanism 𝑧) which is essentially the updated
distribution of state parameter(s) 𝜃 after new information 𝑥𝑧 is available. With this understanding, we can
write the Bayes risk and the optimal decision 𝒹𝑧 as

Ψ𝑧(𝑑𝑖) = 𝐸𝑋𝑧

[

𝑅𝑧(𝑑𝑖; 𝑥𝑧)
]

; (5a)

𝒹𝑧 = argmin
𝑑𝑖

𝑅𝑧(𝑑𝑖; 𝑥𝑧). (5b)

We assume that the new information should be such that it brings an observer closer to the true state
parameter(s) relative to what was reflected in the prior knowledge of state parameter(s). With this assumption,
the decision obtained using Eq. (5) is better than the decision obtained by prior analysis using Eq. (2)
because additional information 𝑥𝑧 reduces uncertainty and brings one closer to the true state parameter(s).
Utilizing equation set (5) to obtain the optimal decision is referred to as posterior decision analysis. The
subscript (.)prior and (.)𝑧 in Bayes risk and optimal decision are meant for prior and posterior decision analysis
(using information obtained through the mechanism 𝑧), respectively.

The posterior probability distribution 𝑓Θ|𝑋𝑧
(𝜃|𝑥𝑧) remains to be evaluated. We realize that the posterior

𝑓Θ|𝑋𝑧
(𝜃|𝑥𝑧) is non-causal. State parameter(s) can be thought of as a cause with measurement being its effect.

In this regard, inferring the state parameter(s) (cause) given the measurement (effect) is non-causal. We use
Bayes theorem to write 𝑓Θ|𝑋𝑧

(𝜃|𝑥𝑧) in a more desirable and causal form:

𝑓Θ|𝑋𝑧
(𝜃|𝑥𝑧) =

𝑓𝑋𝑧|Θ(𝑥𝑧|𝜃)𝑓Θ(𝜃)
𝑓𝑋𝑧

(𝑥𝑧)
=

𝑓𝑋𝑧|Θ(𝑥𝑧|𝜃)𝑓Θ(𝜃)

∫ΩΘ
𝑓𝑋𝑧|Θ(𝑥𝑧|𝜏)𝑓Θ(𝜏)d𝜏

. (6)

As discussed before, the likelihood 𝑓𝑋𝑧|Θ(𝑥𝑧|𝜃) is relatively easier to calculate than the posterior
𝑓Θ|𝑋𝑧

(𝜃|𝑥𝑧). The likelihood can be easily obtained using the forward simulated model of the system that
yields 𝑥𝑧 for a given value of 𝜃 (for example, the finite element model yielding measurements 𝑥𝑧 for a
given damage level 𝜃). Alternatively, the measurements 𝑥𝑧 can be obtained for various instances of the
damage parameter 𝜃 experimentally. The data set (𝑥𝑧, 𝜃) obtained through a lab-based experimental testing
can then be used to obtain the likelihood 𝑓𝑋𝑧|Θ(𝑥𝑧|𝜃). Numerical techniques like Markov Chain Monte
Carlo (MCMC), and Sequential Monte Carlo (SMC), or transitional MCMC [64] can be used for Bayesian
inference. The following section presents and discusses the demonstration problem concerning the miter
gate structure.

3 Demonstration problem

3.1 Problem description
To demonstrate the application of concepts discussed so far, we consider an example problem of the

Greenup miter gate maintained and managed by USACE located on the Ohio River, USA. Fig. 1 shows
a lock and the miter gate system (image adapted from the USACE website and Eick et al. [65]). Loss of
contact between the vertical side of a gate and the supporting concrete wall (boundary-related damage) is the
most commonly observed damage mechanism in such systems [3, 63, 62]. This loss of contact is manifested
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by the formation of a gap between the gate and the wall quoin blocks at bottom of the gate. The amount (or
length) of this loss of contact is referred to as gap length in this paper. Therefore, we treat the gap length as
a scalar continuous state parameter 𝜃 ∈ ΩΘ (refer to Fig. (2)), such that ΩΘ = [𝜃min, 𝜃max]. Here, 𝜃min is the
lower bound of the gap length, and 𝜃max is the upper bound of the gap length which indicates that the gate is
critically damaged and failure is imminent. This value is suggested by the USACE engineers based on their
experience and past inspection data. In many cases, data related to the failure of the structure may not be
available because the decision-makers are risk-averse and they do not want to see a gap length large enough
leading to failure. In such scenarios, a physics/mechanics-based high-fidelity numerical simulation should
be performed to estimate 𝜃max. Based on feedback from USACE field-engineers [62], the upper bound of
the gap length can be considered as 𝜃max = 180 inches for gates that have similar structural characteristics
as the Greenup miter gate. If no value of 𝜃min is specified, it can be taken as 0 in (indicating pristine state
of the gate). Unlike non-binary rating protocols used by USACE, i.e. (A, B, C, D, F, and CF), to build
our framework, we use a rather simplified binary labeling system that consists of two discrete damage
labels/index of the miter gate, such that the decision space reduces to Ω𝐷 = {𝑑0, 𝑑1}, where the binary
decisions are

𝑑0 ∶label indicating that the gate is undamaged with excellent operational capacity,
and requires no maintainance;

𝑑1 ∶label indicating that the gate is damaged, is not safely operational,
and requires maintainance.

(7)

Figure 1: An example of a lock and miter gate system
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Figure 2: Physics-based model of miter gate and the bearing gap

The physical location of the gap appearance is in part of the gate that is always submerged underwater
during operational conditions. Therefore, loss of contact length cannot be directly observed and measured
during operational conditions, and the gap length becomes our unknown parameter. This unknown parameter
can be estimated (or inferred) from other indirect measurements of some kind available at distributed
locations on the structure. The Greenup miter gate is equipped with an array of strain gauges indicated
by red dots in Fig. 2. These strain gauge readings are recorded in real-time and are used as the set of
measurements that will be used to infer the gap length. We simulate our data acquisition process using a
detailed high-fidelity finite element model (FEM) of the Greenup miter gate previously validated in the
undamaged condition of the gate with available actual strain gauge readings [62]. When the miter gate is
first deployed, the gap length is reasonably assumed to be zero, under the assumption of no deployment
problems. A FEM of the pristine miter gate needs to be constantly updated (as a live digital twin) as and
when new information from the strain gauge sensor array is obtained. Because a very limited amount of
actual data is available from Greenup, we turn to a physics/mechanics-based FEM of the miter gate (see Fig.
2) as the ground truth surrogate for data. In that regard, we assume that there are no measurement biases and
that the sensor readings are subject to random unbiased noise. As with any such model, its representative
predictive value is only as good as its validation based on the real structure that it represents. In this case,
the FEM was previously validated for the Greenup miter gate in the undamaged condition, as mentioned
earlier, but modeling of damage formation of the gap itself could not be validated on actual data from the
gate in a known damaged condition, so modeling bias error in the damage state could creep into the process.
That does not change or otherwise invalidate the demonstration of the proposed approach or its utility, but
rather it provides caution on interpreting the specific results for this case beyond the demonstration of the
overall approach. Since the data is acquired from the strain-gauge array constituting the SHM system, from
here on, 𝑧 denotes the SHM system. The posterior distribution 𝑓Θ|𝑋𝑧

(𝜃|𝑥𝑧) of the gap length given the strain
sensor measurements is then obtained using Bayesian inference discussed in the next Section 3.2. Here, 𝑋𝑧

denotes a random variable that represents the measurement obtained from the sensors deployed in the SHM
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system, with Ω𝑋𝑧
representing the space of those measurements.

3.2 Inferring the gap length using Bayesian inference
As discussed in the previous section, the state parameter is the gap length 𝜃, and the measurement

vector 𝑥𝑧 ∈ Ω𝑋𝑧
is the strain recorded at 𝑁sg(𝑧) number of strain gauges. Therefore, 𝑋𝑧 is a random vector.

The red dots in Fig. 2 show the locations of the 𝑁sg(𝑧) = 46 strain gauges considered for the simulation.
The measurements obtained from the strain-gauges are used to infer the gap length 𝜃 using Eq. (6) that we
recall below for the sake of continuity

𝑓Θ|𝑋𝑧
(𝜃|𝑥𝑧) =

𝑓𝑋𝑧|Θ(𝑥𝑧|𝜃)𝑓Θ(𝜃)
𝑓𝑋𝑧

(𝑥𝑧)
. (8)

In the equation above, 𝑓Θ(𝜃) is the prior probability distribution, 𝑓𝑋𝑧|Θ(𝑥𝑧|𝜃) is the likelihood function, and
𝑓Θ|𝑋𝑧

(𝜃|𝑥𝑧) is the posterior probability distribution that needs to be evaluated. In the context of inferring 𝜃,
the evidence 𝑓𝑋𝑧

(𝑥𝑧) is just a normalizing constant. Therefore, Eq. 8 can be written as

𝑓Θ|𝑋𝑧
(𝜃|𝑥𝑧) ∝ 𝑓𝑋𝑧|Θ(𝑥𝑧|𝜃)𝑓Θ(𝜃). (9)

The distribution 𝑓Θ(𝜃) reflects the prior knowledge about the parameter 𝜃 before any new information (or
measurements) are obtained. Assuming only basic geometric constraints on the gap length, we assume the
prior gap length to be a uniform distribution spanning over ΩΘ = [𝜃min, 𝜃max], such that

𝑓Θ(𝜃) =

{

(𝜃max − 𝜃min)−1 𝜃 ∈ ΩΘ;
0 otherwise.

(10)

To evaluate the posterior distribution using Eq. (9) requires the likelihood function. Constructing the
likelihood function 𝑓𝑋𝑧|Θ(𝑥𝑧|𝜃) requires a model of the measurement process. In this paper, we use the
following measurement model

𝑥𝑧 = ℎ𝑧(𝜃true, 𝑢) +𝑤𝑧. (11)

In the equation above, 𝑥𝑧 = (𝓍𝑧1,𝓍𝑧2,⋯ ,𝓍𝑧𝑁sg(𝑧)) ∈ Ω𝑋𝑧
is a realization of the random vector 𝑋𝑧 consisting

of 𝑁sg(𝑧) static strain measurements for a given water heads at each side of the miter gate, where 𝓍𝑧𝑖

represents the strain value corresponding to the 𝑖th strain gauge. The quantity ℎ𝑧(𝜃, 𝑢) defines the true strain
gauge array response obtained by the finite element model for the true gap-length value 𝜃true when subjected
to the input loading 𝑢 (consisting of upstream and downstream water heads), such that ℎ𝑧(𝜃true, 𝑢) =
(𝒽𝑧1(𝜃true, 𝑢),𝒽𝑧2(𝜃true, 𝑢),⋯ ,𝒽𝑧𝑁sg(𝑧)(𝜃true, 𝑢)). Here, 𝒽𝑧𝑖(𝜃true, 𝑢) represents the true strain value of the
𝑖th strain gauge when the true gap-length value is 𝜃true and 𝑢 is the input loading. The input loading
𝑢 = (ℎup, ℎdown) consists of the hydro-static load on the gate, where ℎup and ℎdown represents the hydro-static
head in the upstream and the downstream respectively. Finally, the random vector 𝑊𝑧 with a realization
𝑤𝑧 = (𝓌𝑧1,⋯ ,𝓌𝑧𝑁sg(𝑧)) represent the measurement noise/error vector, where 𝓌𝑧𝑖 denotes the error between
the measurement output and finite element predicted response corresponding to the 𝑖th strain gauge. We
assume that 𝑊𝑧 follows a zero-mean Gaussian distribution with independent components, i.e., the noise/error
terms of all 𝑁sg(𝑧) strain gauges are assumed to be statistically independent. In addition, we assume that all
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strain gauges have the same noise/error standard-deviation 𝜎strain, such that

𝑓𝑊𝑧
(𝑤𝑧 = (𝓌𝑧1,⋯ ,𝓌𝑧𝑁sg(𝑧))) =

𝑁sg(𝑧)
∏

𝑖=1
𝜙
(

𝓌𝑧𝑖

𝜎strain

)

. (12)

Using the measurement model defined in Eq. (11), and the description of noise in Eq. (12), the likelihood
can be written as

𝑓𝑋𝑧|Θ(𝑥𝑧|𝜃) =
𝑁sg(𝑧)
∏

𝑖=1
𝜙
(

𝓍𝑧𝑖 −𝒽𝑧𝑖(𝜃, 𝑢)
𝜎strain

)

. (13)

Having defined the prior distribution and the likelihood function in Eq. (10) and (13), we note that the
posterior distribution cannot be obtained analytically using Eq. (8). This is because the relationship between
the gap length 𝜃 and the strain measurements 𝑥𝑧 is highly nonlinear and only available numerically through
the finite element simulation. One can rely on numerical approximation techniques like Markov chain
Monte Carlo (MCMC) methods or sequential Monte Carlo (SMC) methods to solve the inference problem
(refer to [64, 66, 67, 68]). However, these numerical techniques demand evaluation of the likelihood
function 𝑓𝑋𝑧|Θ(𝑥𝑧|𝜃) at numerous values of 𝜃. Evaluating the likelihood using Eq. (13) at each value
of 𝜃 requires running the finite element model ℎ𝑧. Thus, the process of Bayesian inference becomes
extremely computationally expensive while using high-fidelity finite element models, such as in this work.
Consequently, we employ the transitional Markov chain Monte Carlo (TMCMC) algorithm to perform
Bayesian inference. The inherent architecture of the TMCMC algorithm allows for parallel computing and
hence is ideal for inference when dealing with computationally expensive high-fidelity FE models. The
algorithmic details of the TMCMC can be found in [64, 69, 67, 68]. Besides, TMCMC has been applied
to the miter gate model in [66]. Note that the TMCMC algorithm is closely related to the class of SMC
algorithms.

We simulate strain measurement data numerically. For simulating such data, we obtain response of the
FE model ℎ𝑧(𝜃true, 𝑢) parameterized by a fixed chosen value of 𝜃true subjected to a fixed chosen input loading
𝑢 = (ℎup-true, ℎdown-true). The finite element strain response is now corrupted with zero-mean Gaussian noise
of standard deviation 𝜎strain-true to simulate strain measurement noise. This noise corrupted finite element
response is now used as the measurement data 𝑥𝑧. For the posterior analysis in Section 5, we consider
five sets of measurement data resulting in five cases of a posterior distribution. Parameter values used
to simulate five sets of measurement data are shown in Table 4. During inference, it is assumed that the
input loading corresponding to each of these cases (cases 1-5) is known accurately, i.e., ℎup = ℎup-true, and
ℎdown = ℎdown-true. This is a valid assumption since the height of water upstream ℎup and downstream ℎdown

can be easily measured with fairly high certainty. On the other hand, the standard deviation of measurement
noise 𝜎strain is extremely difficult to quantify accurately when using real measurement data. To mimic this
real-world scenario, 𝜎strain in Eq. (12) is set to some non-true value for each case while inferring the gap
length 𝜃, i.e., 𝜎strain ≠ 𝜎strain-true for each case.
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4 Cost function and risk profiles

4.1 Maintenance actions
Let 𝑀0 and 𝑀1 represent the actions associated with the labels 𝑑0 (rating the structure as undamaged)

and 𝑑1 (rating the structure as damaged), respectively. That is, if the structure is labeled/rated as 𝑑𝑖, with
𝑖 ∈ {0, 1}, then we perform the maintenance 𝑀𝑖, such that

𝑀0 ∶ Do nothing;
𝑀1 ∶ Shutdown, inspect, and repair or replace if required based on the inspection results.

(14)

Choosing either 𝑀0 or 𝑀1 will have an associated consequence cost depending on what the true state of the
structure is. For instance, choosing 𝑀0 for a newly-constructed gate (with the true gap length value being
zero or negligibly small) is obviously an optimal decision. On the other hand, the same maintenance action
𝑀0 can lead to catastrophic consequences when the true value of gap length is close to 𝜃max (implying a
heavily damaged gate near critical failure). Similarly, choosing 𝑀1 for a pristine gate is unnecessary, while
it may be an optimal decision when the gate is approaching critical failure (with a larger value of the true
gap length). The next section proposes the base consequence cost functions.

4.2 Base consequence cost function
Tversky [70] noted that in order to simplify the choice between alternatives, people often disregard

components that the alternatives share and focus on the components that distinguish them, a phenomenon
referred to as the isolation effect[42]. The isolation effect also implies that the carrier of value is the
change of wealth, rather than final asset positions that include current wealth, the observation first made by
Markowitz [71]. In the maintenance action selection problem at hand, the isolation effect translates to the
fact that when designing the consequence cost function, we only consider the consequence of choosing a
particular action and ignore the current value of the asset. Since our decision-making preferences depend
on this relative change in value, we use the consequence cost in isolation to (or by ignoring) the current
value of the asset (the miter gate).

Recall the prior and posterior decision-making using equations (2) and (5), respectively. Since the
state parameter is described probabilistically, it is necessary to consider all the possible realizations of
the state parameter in the decision-making process. This is achieved by evaluating the value of Bayes
risk for each choice of maintenance actions as an expected value of consequence cost. Let 𝐿(𝑑0, 𝜃true) and
𝐿(𝑑1, 𝜃true) denote the consequence costs of performing the maintenance actions 𝑀0 and 𝑀1, respectively,
where the true degree of damage is defined by 𝜃true. The consequence cost or regret function 𝐿(𝑑𝑖, 𝜃true)
is defined for each maintenance strategy 𝑀𝑖 (corresponding to the label 𝑑𝑖) and it weighs an impact of
choosing a maintenance action 𝑀𝑖 for all the possible true degrees of damage 𝜃true ∈ ΩΘ. For example,
choosing to do nothing (𝑀0) when 𝜃true = 100 inches is more consequential than doing nothing (𝑀0) when
𝜃true = 50 inches. That is, 𝐿(𝑑0, 𝜃true = 100 inches) > 𝐿(𝑑0, 𝜃true = 50 inches).
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The functional form of the consequence cost function 𝐿(𝑑0, 𝜃true): In the absence of any external action
or maintenance (i.e., 𝑀0), the damage of the structure is a spontaneous and irreversible thermodynamic
process [72]. Therefore, for 𝑀0, the consequence function 𝐿(𝑑0, 𝜃true) should assign a higher relative
consequence weights for a higher relative damage level. That is, 𝐿(𝑑0, 𝜃true) should have monotonically
increasing functional form. We assume that the consequence cost 𝐿(𝑑0, 𝜃true) bears a linear functional form
(simplest form of monotonically increasing function) bounded by the cost of doing nothing for the extreme
cases of damage.

The functional form of the consequence cost function 𝐿(𝑑1, 𝜃true): Action 𝑀1 is a sequential mainte-
nance strategy. A simple example of the maintenance strategy 𝑀1 might be:

𝑀1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Shutdown, inspection, and no repairs 𝜃true ∈ [𝜃min, 𝜃1)
Shutdown, inspection, and minor repairs 𝜃true ∈ [𝜃1, 𝜃2)
Shutdown, inspection, and moderate repairs 𝜃true ∈ [𝜃2, 𝜃3)
Shutdown, inspection, and major repairs/replacement 𝜃true ∈ [𝜃3, 𝜃max]

Due to the sequential nature of 𝑀1, its cost increases as the damage intensity increases. An appropriate
functional form for the consequence function 𝐿(𝑑1, 𝜃true) would be a piecewise increasing step function.
Instead of evaluating the costs to these sequential actions, we simply evaluate the cost to perform the
maintenance 𝑀1 when the gate is undamaged (i.e., 𝐿(𝑑1, 𝜃true = 0)), and for the case when the gate is
damaged (i.e., 𝐿(𝑑1, 𝜃true = 180 inches)). The consequence of performing maintenance 𝑀1 for any generic
value of 𝜃true is approximately estimated by a linear function bounded by the consequence costs for extreme
cases of damage.

Consequence cost for extreme cases of damage: We estimate the real cost for both the maintenance
strategies considering the extreme values of true gap length (𝜃true = 𝜃min = 0 inches and 𝜃true = 𝜃max =
180 inches). We do this because the extreme values of the gap have interpretable physical meaning. The
value of 𝜃true = 0 inches indicates that the gate is pristine, and the value of 𝜃true = 180 inches indicates that
the gate is severely damaged and a critical failure is incipient. Under such damage conditions, the economical
consequence of choosing a maintenance action can be reasonably evaluated since the consequences of
decision-making are well-defined. When the gap length is zero, or 𝜃true = 𝜃min = 0 inches, the gate is in
pristine condition. Therefore, for 𝜃true = 0 inches, rating the gate as undamaged, or 𝑑0, and doing nothing
(or choosing action 𝑀0) is an optimal decision and costs nothing, i.e. 𝐿(𝑑0, 0) = 𝛼min = 0. However, for a
pristine gate, performing the action 𝑀1 leads to unnecessary cost (denoted by 𝐿(𝑑1, 0) = 𝛽min) due to down-
time economic losses and inspection costs. Once the pristine condition of the gate is established as a result
of inspection, no repairs are carried out. Following along a similar line of reasoning, we consider another
extreme end of gap length value of 𝜃true = 𝜃max = 180 inches that reflects a severely damaged gate. Choosing
the action 𝑀0 for such a severely damaged gate can lead to consequence costs due to structural failure, loss of
life and property, and the cost of replacement, denoted collectively by 𝐿(𝑑0, 𝜃max) = 𝛼max. This damage state
of the structure demands optimal maintenance to be 𝑀1 leading to costs associated with down-time economic
losses, inspection costs and major repairs/replacement costs, collectively denoted by 𝐿(𝑑1, 𝜃max) = 𝛽max.
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In addition to the cost 𝐿(𝑑1, 0), the cost 𝐿(𝑑1, 𝜃max) includes an additional expense of major repair or
replacement. Therefore, 𝐿(𝑑1, 𝜃max) > 𝐿(𝑑1, 0). However, the most expensive decision is choosing to do
nothing when the gate is critically damaged, making 𝐿(𝑑0, 𝜃max) the maximum cost among the four cases
discussed here, such that, 𝐿(𝑑0, 𝜃max) > 𝐿(𝑑1, 𝜃max) > 𝐿(𝑑1, 0) > 𝐿(𝑑0, 0), or 𝛼max > 𝛽max > 𝛽min > 𝛼min.

Table 1: Decision cases and their consequence-costs for the extreme values of the gap length 𝜃true
True state parameter 𝜃true = 𝜃min True state parameter 𝜃true = 𝜃max

Label/Rating: 𝑑0
Action: 𝑀0

𝐿(𝑑0, 𝜃min) = 𝛼min 𝐿(𝑑0, 𝜃max) = 𝛼max

Label/Rating: 𝑑1
Action: 𝑀1

𝐿(𝑑1, 𝜃min) = 𝛽min 𝐿(𝑑1, 𝜃max) = 𝛽max

Base consequence cost functions: For each maintenance case, we have two objectively defined conse-
quences at 𝜃true = 𝜃min and 𝜃true = 𝜃max. A linear consequence cost has following form:

𝐿(𝑑𝑖, 𝜃true) = 𝐶𝑖0 + 𝐶𝑖1𝜃true. (15)

We obtain the constants 𝐶𝑖0 and 𝐶𝑖0 using the constraints listed in table 1. The consequence cost (illustrated
in Fig. 3) functions are obtained as:

𝐿(𝑑0, 𝜃true) =𝐶00 + 𝐶01𝜃true =
(

𝜃max𝛼min − 𝜃min𝛼max

𝜃max − 𝜃min

)

+
(

𝛼max − 𝛼min

𝜃max − 𝜃min

)

𝜃true;

𝐿(𝑑1, 𝜃true) =𝐶10 + 𝐶11𝜃true =
(

𝜃max𝛽min − 𝜃min𝛽max

𝜃max − 𝜃min

)

+
(

𝛽max − 𝛽min

𝜃max − 𝜃min

)

𝜃true.
(16)

Since 𝛼max is the maximum extreme cost, the costs 𝛽min and 𝛽max can be expressed as a fraction of 𝛼max. For
the purposes of numerical simulation in this paper, we assume 𝛽min = 0.15𝛼max and 𝛽max = 0.4𝛼max. We
assign a dollar value of $1 million to 𝛼max. Under this assignment, Fig. 3 gives the cost functions 𝐿(𝑑0, 𝜃true)
and 𝐿(𝑑1, 𝜃true).

Figure 3: Cost functions 𝐿(𝑑𝑖, 𝜃true), 𝑖 ∈ {0, 1}
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Remark 1: Treating the SHM-informed decision-making as a typical data-science based traditional
detection/classification type problem, the conditional Bayes risk can be alternatively defined and evaluated
by utilizing probabilities of the discrete states (𝑑0: undamaged, and 𝑑1: damaged), such that

𝑅𝑧(𝑑0; 𝑥𝑧) =𝑃𝐷|𝑋𝑧
(𝑑0|sensor data 𝑥𝑧)𝛼min + 𝑃𝐷|𝑋𝑧

(𝑑1|sensor data 𝑥𝑧)𝛼max;

𝑅𝑧(𝑑1; 𝑥𝑧) =𝑃𝐷|𝑋𝑧
(𝑑0|sensor data 𝑥𝑧)𝛽min + 𝑃𝐷|𝑋𝑧

(𝑑1|sensor data 𝑥𝑧)𝛽max,
(17)

from which the optimal decision may then be obtained as

𝒹𝑧 = argmin
𝑑𝑖

𝑅𝑧(𝑑𝑖; 𝑥𝑧). (18)

There are several limitations and challenges with this traditional approach, especially for the structural
health monitoring type of decision making where the structural state is continuously evolving with time.
Such challenges include:

1. It is natural to define the structural state or the damage intensity as a continuous quantity, whereas,
maintenance actions (and their labels acting as a proxy discrete damaged state) are discrete. The
decision-making framework proposed in this paper utilizes continuous damage intensity (or the state
parameter) to make a maintenance decision. On the other hand, the decision-making approach using
Eq. (17) and (18) requires objectively defining discrete damaged states 𝑑𝑖 (unlike in the proposed
approach, these discrete states are linked to the maintenance strategies). In a real-world problem, it is
difficult to objectively define the discrete state of the structure since the structural state is continuous
by its very nature. Secondly, any attempt to objectively define a discrete structural state is bound to
be in terms of the continuous state parameter.

2. The current approach directly/explicitly utilizes the probability distribution of the state parameter to
make a decision. On the other hand, the traditional approach utilizes the state parameter implicitly to
make a decision. This is because the traditional approach requires establishing a classifier/detector (via
a hypothesis test) to evaluate the probability of the discrete damage state conditioned on the probability
distribution of the state parameter, which in turn is conditioned upon the strain measurements. Defining
the classifiers (or a detector criterion) objectively requires a large amount of data (more specifically,
features) that span the target damage states of interest, and supervised learning may be employed to
define the classifiers. In the case of the SHM system installed on a complex structure with numerous
sensors and an uncertain continuous degree of damage, such objective well-defined classifiers may
not necessarily be obtainable. This is because, in practice, features are very unlikely to be obtained in
all possible classification states (especially higher damage or failed states).

3. The expression of the expected cost evaluated using Eq. (17) and (18) (the traditional approach) is
not an optimal form to incorporate behavioral biases in engineering decision-making. The approach
that we have proposed was inherently designed to incorporate the behavioral psychology of the
decision-maker all the while using the continuous nature of the structural state.

We deviate from the traditional approach used in detection/classification types of problems, where it is
possible to objectively define the discrete classes and classifiers (equivalent to discrete structural states
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in SHM-based problems). Defining the classifiers objectively requires a large amount of data that spans
the target classes (or damage states). However, unlike a well-defined detection type problem, objectively
defining a mutually exclusive and exhaustive set of discrete structural states is challenging due to the lack
of data and the complexity of the problem. In turn, we solve this problem by utilizing a damaged label
associated with a maintenance strategy as a proxy to the discrete structural state.

Remark 2: We have assumed a linear form of the base costs 𝐿(𝑑𝑖, 𝜃true) for 𝑖 ∈ {0, 1} since this functional
form satisfies monotonically increasing property and only requires knowledge of extreme costs which
can reasonably estimated. In most cases, the consequence costs are reasonably obtained by estimating
the current real cost of performing maintenance and by investigating the damage evolution model using
the finite element model. As explained before, one noteworthy characteristic of the consequence cost is
that it must be a non-decreasing function of the true damage intensity. When it comes to maintenance
decisions guided by the organization’s policies or collective experience, we consider the real-world scenario
where inspection engineers are authorized to execute those decisions. These decisions are subjective to the
engineer’s experience and their thought processes but are assumed commensurate with the broader policies
or guidance provided by the organization. Therefore, the perceived consequence weights of performing
maintenance may deviate from the base consequence cost recommended by the organization, subject to
engineering judgment. For example, engineers who know that there are some approximations in the base
cost curves may want to make a more conservative maintenance decision (doing a bit more than what is
required by the maintenance guide issued by the organization). The approximate nature of the base cost
functions, and hence the underlying uncertainty in the cost, promote the inspection engineer to display
risk-aversion [45]. Another situation that demands a deviation from the base cost functions is if the SHM
system under-predicts or over-predicts the degree of damage (or the state parameter), causing the engineer
to be either risk-averse or risk-seeking. Therefore, the base consequence functions can be modified to
include risk intensity considered in the decision-making process. Recognizing that this risk perception
of the decision-makers leads to modification of the base cost curve (to include desirable risk intensity),
the organization can offer a spectrum of cost functions that can be chosen based on the desirable risk
intensity of the decision-making process. The next section explores and models the risk profiles of the
engineers. Empowered with the idea of the risk profiles, we will propose a spectrum of risk profiles
that can be interpreted in two ways: (1) forward interpretation: each risk profile represents an individual
decision-maker’s behavior; (2) inverse interpretation: each risk profile represents a risk-intensity that the
organization wants to include over the base cost to make a decision. A risk-averse profile demands a
conservative decision, i.e., a tendency to perform the maintenance 𝑀1 at a relatively lower level of damage
to avoid any disastrous and expensive consequence. On the other hand, a risk-seeker profile allows more
flexible decision-making that would recommend the maintenance 𝑀1 only when the degree of structural
damage is approaching failure, i.e., in a higher state of perceived risk.

4.3 Behavioral psychology and risk profiles
Decision-making under uncertainty is fundamental, and every decision involves consequence(s)

associated with it; thus, it is expected that decision outcomes change from one individual to another based
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on how they perceive the consequences of making that decision. This is primarily due to biases and heuristics.
The tendencies that govern our day-to-day decision-making are the very same behavioral tendencies that
make maintenance decisions subjective to the engineer in charge. We demonstrate this fact by a simple
example of representative bias. Irrespective of the true structural damage, the inspection engineers tend to
delay the maintenance of the structure that does not show a sign of damage, and they are prompted to repair
it when there is a visible form of damage. This is because the undamaged state of the structure appears safe
(irrespective of the true structural state).

Another behavioral tendency of humans is that they inherently aim at maximizing rewards and
minimizing losses. However, losing hurts more than winning brings joy. This concept of loss-aversion
was first identified by Amos Tversky and Daniel Kahneman [42] as a critique of the expected utility theory
which assumes that a rational decision-maker would weigh losses and wins equally when their absolute
values are the same. They noted that people underweight outcomes that are merely probable in comparison
with outcomes that are obtained with certainty, called the certainty effect. As a consequence of the certainty
effect, they argued that decision-maker acts risk-aversely in a situation when decision choices involve
sure gain and are happier with smaller certain gains than with larger probable gains; on the other hand,
people exhibit risk-seeker behavior when the decision choices involve certain losses and are happier to
bet on a larger but probable loss than a smaller but certain loss. This observation that risk aversion in
the positive domains is accompanied by risk-seeking in the negative domain is called the reflection effect.
As a consequence of the reflection effect, Tversky and Kahneman argued that we don’t necessarily desire
certainty, rather we “ desire to lose less” more than we “desire to win”, i.e., the certainty (or less uncertainty)
increases the aversiveness of losses, as well as the desirability of gains. Charles Krauthammer (refer to
chapter 3, pages 63-65 of [73]) wrote about loss-aversion in sports, called the Krauthammer Conjecture,
and noted: “in sports, the pleasure of winning is less than the pain of losing”. He supported his claim by
examples, including “When the Cleveland Cavaliers lost the 2015 NBA Finals to Golden State, LeBron
James sat motionless in the locker room, staring straight ahead, still wearing his game jersey, for 45 minutes
after the final buzzer.” Although humans are loss-averse, under uncertain situations a decision-maker needs
to accept a risk and possible losses with an expectation of a reward.

It is these behavioral-psychological tendencies discussed above that lead different inspection engineers
to have different expectations and intuitive/heuristic risk perception or knowledge of the possible consequence
of making a decision or choosing the maintenance action, especially for the non-extreme values of the true
degree of damage. The perceived importance of the outcome of making a decision is subjective to the
individual. In general terms, an individual’s risk profile is his/her willingness and ability to take risks and
bear losses as a consequence of making a decision. A risk can be thought of as an acceptable loss that the
individual is prepared to take for some expected return. For further discussion, we consider monetary losses.
As such, risk profiles can be classified into risk-aversion, risk-seeking, and risk-neutral. A risk-averter
decision-maker has a strong desire to not make any incorrect decisions that can lead to large losses. On
the contrary, a risk-seeker is willing to bet more and absorb high losses with an expectation of the highest
possible return. In short, a risk-averter decision-maker tends to make a safer/conservative decision settling
for a moderate reward, whereas, a risk-seeker tends to risk larger losses expecting a bigger reward. However,
we note that the willingness and the ability of a decision-maker to take risks need not necessarily match
up. For instance, an entrepreneur with the same net worth as a lottery winner may have an equal ability, or
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capacity, to take a risk. Being fully aware of the uncertainties, however, an entrepreneur might be more
willing to bet on new potential business than the lottery winner.

The risk profile of the decision-maker can be mathematically modeled by their utility vs. wealth
(or loss) function, or generally a utility function. An individual’s utility gives their evaluation of the
consequence/outcome of an action. The utility may be different from the real dollar cost (or value). Since
a risk-averse decision-maker aims at losing less (or gaining more), his/her perceived value of cost/loss is
higher than the real dollar cost. This leads to an increasing concave-down utility function. On the other
hand, a risk-seeker decision-maker is willing to risk more and hence assign a lower valuation to the real
cost, leading to an increasing concave-up utility function. The readers are recommended to read the third
essay in [74] titled: “The theory of risk-aversion”, which discusses the concept of risk aversion applied to
the area of investment, insurance, risk-sharing, and liquidity demand behavior; and read Bernstein [75] for
the history of risk and to understand the role of risk in our society.

The consequence of rating the structure as 𝑑0 leads to consequence cost 𝐿(𝑑0, 𝜃true) that ranges from
𝛼min to 𝛼max. Similarly, rating the structure as 𝑑1 leads to consequence cost 𝐿(𝑑1, 𝜃true) that ranges from 𝛽min

to 𝛽max. Let 𝑙0 ∈ [𝛼min, 𝛼max] and 𝑙1 ∈ [𝛽min, 𝛽max] represent possible values of the consequence cost functions
𝐿(𝑑0, 𝜃true) and 𝐿(𝑑1, 𝜃true), respectively. We now define two utility functions 𝑈 (𝑑0, 𝑙0) and 𝑈 (𝑑1, 𝑙1) for
decisions 𝑑0 and 𝑑1, respectively. To do so, we assume the following:

1. We assume that utility equals consequence cost at the extreme values of 𝑙0 and 𝑙1. That is, 𝑈 (𝑑0, 𝛼min) =
𝛼min, 𝑈 (𝑑0, 𝛼max) = 𝛼max, 𝑈 (𝑑1, 𝛽min) = 𝛽min and 𝑈 (𝑑1, 𝛽max) = 𝛽max. This is because these costs
represent extreme damage scenarios and are assumed to be fixed by the organization. It is a valid
assumption since different individuals can agree with the consequence-cost decided by the organization
at extreme values of the gap length. It is this constraint that requires definition of two different utility
functions for the decisions 𝑑0 and 𝑑1, respectively.

2. To model the aforementioned utility functions, we define the critical losses 𝑙𝑐0 ∈ [𝛼min, 𝛼max] and
𝑙𝑐1 ∈ [𝛽min, 𝛽max] as consequence costs at which utilities are defined as 𝑈 (𝑑0, 𝑙𝑐0) = 𝛾𝛼max+(1−𝛾)𝛼min,
and 𝑈 (𝑑1, 𝑙𝑐1) = 𝛾𝛽max + (1 − 𝛾)𝛽min for labeling scenarios 𝑑0, and 𝑑1, respectively. Here, 𝛾 ∈ [0, 1]
represents the fractional distance between extreme costs [𝛼min, 𝛼max] or [𝛽min, 𝛽max] and it satisfies the
conditions above. It is one of the two quantities that parameterize the utility function. It must be
reasonably chosen to be used for a desirable utility function. Therefore, a unique pair of (𝑙𝑐0, 𝛾) and
(𝑙𝑐1, 𝛾) yields a unique set of utility functions 𝑈 (𝑑0, 𝑙0) and 𝑈 (𝑑1, 𝑙1), respectively. We assume these
utility functions to bear the following form

𝑈 (𝑑0, 𝑙0) = 𝑎0 log((𝑙0 − 𝛼min)𝑏0 + 1) + 𝛼min;
𝑈 (𝑑1, 𝑙1) = 𝑎1 log((𝑙1 − 𝛽min)𝑏1 + 1) + 𝛽min.

(19)

The constants 𝑎0 and 𝑏0 are obtained by using the definition of the critical losses and solving the following
simultaneous non-linear equations:

𝑎0 log
(

(𝛼max − 𝛼min)𝑏0 + 1
)

= 𝑈 (𝑑0, 𝛼max) − 𝑈 (𝑑0, 𝛼min) = 𝛼max − 𝛼min;
𝑎0 log

(

(𝑙𝑐0 − 𝛼min)𝑏0 + 1
)

= 𝛾(𝑈 (𝑑0, 𝛼max) − 𝑈 (𝑑0, 𝛼min)) = 𝛾(𝛼max − 𝛼min).
(20)
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Similarly, the constants 𝑎1 and 𝑏1 can be obtained by solving the following equations:

𝑎1 log
(

(𝛽max − 𝛽min)𝑏1 + 1
)

= 𝑈 (𝑑1, 𝛽max) − 𝑈 (𝑑1, 𝛽min) = 𝛽max − 𝛽min;
𝑎1 log

(

(𝑙𝑐1 − 𝛽min)𝑏1 + 1
)

= 𝛾(𝑈 (𝑑1, 𝛽max) − 𝑈 (𝑑1, 𝛽min)) = 𝛾(𝛽max − 𝛽min).
(21)

Equations (20) and (21) are not solvable for 𝑙𝑐0 = 𝛾𝛼max + (1 − 𝛾)𝛼min and 𝑙𝑐1 = 𝛾𝛽max + (1 − 𝛾)𝛽min

respectively. However, as 𝑙𝑐0 ⟶ (𝛾𝛼max +(1− 𝛾)𝛼min) and 𝑙𝑐1 ⟶ (𝛾𝛽max +(1− 𝛾)𝛽min), the utility function
(or equivalently the risk-profile) looses its curvature and becomes linear, i.e, the utility reduces to the value
(or dollar cost), i.e, 𝑈 (𝑑0, 𝑙0) = 𝑙0 and 𝑈 (𝑑1, 𝑙1) = 𝑙1. This reflects a risk-neutral behavior. Therefore, the
three cases of risk profile can then be classified by the following:

𝑙𝑐0 < 𝛾𝛼max + (1 − 𝛾)𝛼min and 𝑙𝑐1 < 𝛾𝛽max + (1 − 𝛾)𝛽min ∶ Risk-aversion;
𝑙𝑐0 = 𝛾𝛼max + (1 − 𝛾)𝛼min and 𝑙𝑐1 = 𝛾𝛽max + (1 − 𝛾)𝛽min ∶ Risk-neutral;
𝑙𝑐0 > 𝛾𝛼max + (1 − 𝛾)𝛼min and 𝑙𝑐1 > 𝛾𝛽max + (1 − 𝛾)𝛽min ∶ Risk-seeking.

(22)

Although we have two different utility functions for decisions 𝑑0 and 𝑑1, respectively, for a given triad
(𝛾, 𝑙𝑐0, 𝑙1𝑐), an individual with his/her unique risk perception should have a unique relationship between
their utility functions. To define a unique set of utility functions for a given individual (or for a unique risk
intensity), we establish a relationship between the critical costs 𝑙𝑐0 and 𝑙𝑐1

𝜉 =
𝑙𝑐0 − 𝛼min

𝛼max − 𝛼min
=

𝑙𝑐1 − 𝛽min

𝛽max − 𝛽min
. (23)

Here, 𝜉 ∈ [0, 1] is the critical fractional distance. The constraint in Eq. 23 and the following definition of
the critical fractional distance 𝜉 allows us to uniquely parameterize a risk profile by two non-dimensional
and normalized parameters (𝛾, 𝜉) yielding a set of two unique utility functions. From here on, we denote the
utilities 𝑈 (𝑑0, 𝑙0) and 𝑈 (𝑑1, 𝑙1) as 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) and 𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉), respectively, where the parameters (𝛾, 𝜉)
characterizes the risk-profile. Based on the discussion above and Eq. (22), the three cases of risk profile are
classified as follows:

𝜉 < 𝛾 ∶ Risk-averter;
𝜉 = 𝛾 ∶ Risk-neutral;
𝜉 > 𝛾 ∶ Risk-seeker.

(24)

We have two other extreme cases. When 𝑙𝑐0 ⟶ 𝛼min and 𝑙𝑐1 ⟶ 𝛽min, it limits the constants 𝑏0 ⟶ ∞
and 𝑏1 ⟶ ∞, respectively, representing the extreme risk-averse behavior with asymptotic concave-down
utility function. Similarly, when 𝑙𝑐0 ⟶ 𝛼max and 𝑙𝑐1 ⟶ 𝛽max, it constraints the constants 𝑏0 ⟶ 1 and
𝑏1 ⟶ 1, respectively, representing the extreme risk-seeker behavior with asymptotic concave-up utility
function. The behavior of every individual with a unique risk intensity is characterized by two utility
functions 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) (plotted in Fig. 4a) and 𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉) (plotted in Fig. 4b) bound by the constraint in
Eq. (23). Using the utility functions plotted in Fig. 4a and Fig. 4b, we define 5 risk profiles (RP) obtained
using 𝛾 = 0.8 (reasonably assumed) and 𝜉 spanning from 0 to 1 in Table 2. These risk profiles will later be
used in numerical simulations.
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Table 2: Examples of different risk profiles

Risk profiles ID 𝛾 𝜉 Critical loss 𝑙𝑐0 Critical loss 𝑙𝑐1
Critical losses 𝑙𝑐0 and 𝑙𝑐1 are related by Eq. (23)

Extreme risk-averter RP1 0.8 0.25 𝑙𝑐0 = 0.25𝛼max + 0.75𝛼min 𝑙𝑐1 = 0.25𝛽max + 0.75𝛽min
Moderate risk-averter RP2 0.8 0.6 𝑙𝑐0 = 0.6𝛼max + 0.4𝛼min 𝑙𝑐1 = 0.6𝛽max + 0.4𝛽min
Neutral risk bearer RP3 0.8 0.8 𝑙𝑐0 ⟶ 𝛾𝛼max + (1 − 𝛾)𝛼min 𝑙𝑐1 ⟶ 𝛾𝛽max + (1 − 𝛾)𝛽min
Moderate risk-seeker RP4 0.8 0.95 𝑙𝑐0 = 0.95𝛼max + 0.05𝛼min 𝑙𝑐1 = 0.95𝛽max + 0.05𝛽min
Extreme risk-seeker RP5 0.8 0.999 𝑙𝑐0 = 0.999𝛼max + 0.001𝛼min 𝑙𝑐1 = 0.999𝛽max + 0.001𝛽min

We justify the functional form of utility function modeled by Eq. (19) by noting the following
properties of the utility 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) (same arguments hold for the utility 𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉)):

1. The utility function of form 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) = 𝑎0 log((𝑙0−𝛼min)𝑏0+1)+𝛼min satisfies one of the primary
tenet of expected utility theory as defined in [42], which is: all the concave-down utility function
curves with

(

𝜕2𝑙0𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) < 0
)

represent a risk-averse behavior, whereas, the concave-up curves

with
(

𝜕2𝑙0𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) > 0
)

represent a risk-seeker. This is clearly illustrated in Fig. 4c and 4d for
the utilities 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) and 𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉), respectively.

2. Pratt [76] noted that the local risk intensity factor, defined by −
(

𝜕2𝑙0
𝑈 (𝑑0,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈 (𝑑0,𝑙0;𝛾,𝜉)

)

, is the correct mea-

sure of the local intensity of the risk behavior. For two risk-averse profiles 𝑈𝑎(𝑑0, 𝑙0; 𝛾, 𝜉), and

𝑈𝑏(𝑑0, 𝑙0; 𝛾, 𝜉), if −
(

𝜕2𝑙0
𝑈𝑎(𝑑0,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈𝑎(𝑑0,𝑙0;𝛾,𝜉)

)

> −
(

𝜕2𝑙0
𝑈𝑏(𝑑0,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈𝑏(𝑑0,𝑙0𝛾,𝜉)

)

, then 𝑈𝑎(𝑑0, 𝑙0; 𝛾, 𝜉) is locally more risk-

averse than 𝑈𝑏(𝑑0, 𝑙0; 𝛾, 𝜉). On the other hand, for two risk-seeker profiles 𝑈𝑎(𝑑0, 𝑙0; 𝛾, 𝜉), and

𝑈𝑏(𝑑0, 𝑙0; 𝛾, 𝜉), if −
(

𝜕2𝑙0
𝑈𝑎(𝑑0,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈𝑎(𝑑0,𝑙0;𝛾,𝜉)

)

< −
(

𝜕2𝑙0
𝑈𝑏(𝑑0,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈𝑏(𝑑0,𝑙0;𝛾,𝜉)

)

, then 𝑈𝑎(𝑑0, 𝑙0; 𝛾, 𝜉) is locally more risk-

seeker than𝑈𝑏(𝑑0, 𝑙0; 𝛾, 𝜉). We also note that the vanishing local risk intensity factor−
(

𝜕2𝑙0
𝑈 (𝑑0,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈 (𝑑0,𝑙0;𝛾,𝜉)

)

=

0 implies constant risk, for which, the cost function is linear. The form of utility function used in this
paper clearly exhibits the discussed properties for all values of the loss as seen in Fig. 4e and 4f for
the utilities 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) and 𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉), respectively.



23

(a) Utility function 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) (b) Utility function 𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉)

(c) Second derivative of utility function 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) (d) Second derivative of utility function 𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉)

(e) Local risk intensity factor of utility function
𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉)

(f) Local risk intensity factor of utility function
𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉)

Figure 4: Risk profiles modeled by utility vs. loss, or simply utility function assuming 𝛾 = 0.8 and 𝜉 defined
in Table 2

Markowitz [71] noted the possibility that the utility function may have both concave and convex
regions for the scenarios involving both gains and losses. We cautiously note that, in this paper, we did not
account for such cases where a decision-maker exhibits varying risk behavior at different values of the gap
length. Apart from the risk profile, the discussion and approaches for decision-making remain the same.
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An organization like USACE consists of numerous maintenance action decision-makers and poli-
cymakers who share a spectrum of risk profiles. Every single action by any employee of an organization
affects the collective performance of an organization. As discussed in [37], although difficult to precisely
define, an organization has a risk profile based on its alignment with values and priorities. Assuming that an
organization is as good as its employees in an average sense, we propose that the organizational risk profile
be defined based on the weighted average consequences of the decisions made by the employees, which
in turn depends on the distribution of the risk-intensities of individual decision-makers. We refer to the
distribution of various risk profiles of decision-makers employed by the organization as the organizational
risk profile (ORP). Methodology to psychologically evaluate and define an individual’s risk profile is beyond
the scope of this paper. However, one approach to infer the individual risk profile is by analyzing their past
actions and by designing a set of questionnaires (as is very common in the field of behavioral economics)
with a goal of extracting their risk profiles.

We provide a simple example of the risk profile of collective decision makers. Just like any organization,
the performance of the stock market (quantified by the S&P500 index, for example) is governed by millions
of participants (speculators and investors) who have different risk profiles. At an individual level, the risk
profile of an investor is a direct function of their age, investing skill, and experience in investing. Additionally,
analogous to how organizational values and goals also impact the risk profiles of the engineers/managers,
the current risk profile of the market also influences the behavior of its participants. Investor George Soros
calls this feedback loop of risk behavior of the participants influencing the market, and the market conditions
influencing the behavior of the participants, as the Principle of Reflexivity [77]. In the bull market, there are
more investors betting on a growing economy and higher S&P500 prices. As the price of the S&P500 goes
up, the risk of major correction increases–that is, the market becomes a "risk-seeker". In the bear market,
there are more sellers than buyers of equities, which leads the price of S&P500 to go down, which in turn
reduces the overall risk of investments–that is, the market becomes "risk-averse".

In this paper, we focus our attention on investigating the collective performance of an organization by
considering two different organizational risk profiles–ORP1 and ORP2, detailed later in this section. Recall
that for the miter gate problem, the risk-profile of the decision-maker is parameterized by two parameters
(𝛾, 𝜉) and depends on the extreme costs 𝛼min, 𝛼max, 𝛽min, and 𝛽max. Hence, for a fixed value of 𝛾 , and the
extreme costs 𝛼min, 𝛼max (normalized to be unity), 𝛽min, and 𝛽max, the risk profile is uniquely parameterized
by 𝜉. For such a case, the organizational risk profile (here USACE) can be quantified by the distribution
of 𝜉 ∈ ΩΞ, denoted by 𝑓Ξ(𝜉). For the purpose of demonstration, we assume that the risk profiles of the
decision-makers at USACE range from Moderate Risk Aversion to Moderate Risk Seeking. Recall from
Table 2, for a fixed 𝛾 = 0.8, the value of 𝜉 in the neighborhood of 0.6 defines Moderate Risk Averse
profile, and 𝜉 in the neighborhood of 0.95 defines Moderate risk-seeker profile. Thus, we assume that the
decision-makers at USACE have risk profiles ranging from (𝛾 = 0.8, 𝜉 = 0.55) to (𝛾 = 0.8, 𝜉 = 0.975),
i.e., ΩΞ = [0.55, 0.975]. With these bounds on the risk profiles of the decision-makers, we assume two
organizational risk profiles (ORP1 and ORP2) as illustrated in Fig. 5. Since a higher value of 𝜉 implies
more risk-seeker behavior, ORP1 represents a more risk-averse behavior than ORP2. In Section 5, we
simulate and investigate the impact of individual risk profiles (RP1 to RP5), and the organizational risk
profiles (ORP1 and ORP2) on decision making.
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(a) Risk-averse organizational risk profile (ORP1) (b) Risk-seeker organizational risk profile (ORP2)
Figure 5: Organizational risk behavior as defined by 𝑓Ξ(𝜉)

4.4 Risk intensity modified cost functions
Since perceived value of a loss depends on individual’s utility (or the risk-perception, or the specified

risk-intensity), we can obtain the modified consequence-costs of performing maintenance strategies 𝑀0

and 𝑀1, respectively, by substituting the losses 𝑙0 and 𝑙1 (arguments in the utility function defined in
Eq. (19)) by the consequence-cost 𝐿(𝑑0, 𝜃true) and 𝐿(𝑑1, 𝜃true) defined in Eq. (16), respectively. We
denote 𝐿̂(𝑑0, 𝜃true; 𝛾, 𝜉) and 𝐿̂(𝑑1, 𝜃true; 𝛾, 𝜉) (distinguished by a hat (⋅̂)) as the modified consequence-costs of
performing maintenance strategies 𝑀0 and 𝑀1 respectively. This allows us to incorporate the risk-perception
into the decision making process. Using Eqs. (16) and (19), we get

𝐿̂(𝑑0, 𝜃true; 𝛾, 𝜉) = 𝑈 (𝑑0, 𝐿(𝑑0, 𝜃true); 𝛾, 𝜉) = 𝑎0 log
(

1 + 𝑏0

(

𝛼max − 𝛼min

𝜃max − 𝜃min

)

𝜃true

)

+ 𝛼min;

𝐿̂(𝑑1, 𝜃true; 𝛾, 𝜉) = 𝑈 (𝑑1, 𝐿(𝑑1, 𝜃true); 𝛾, 𝜉) = 𝑎1 log
(

1 + 𝑏1

(

𝛽max − 𝛽min

𝜃max − 𝜃min

)

𝜃true

)

+ 𝛽min.
(25)

For a given risk profile (𝛾, 𝜉), the constants 𝑎0, 𝑎1, 𝑏0, and 𝑏1 are obtained by solving Eqs. (20) and (21).
Figure 6 plots the modified cost functions for the various risk profiles defined in Table 2. We note that

𝐿̂(𝑑𝑖, 𝜃true; 𝛾, 𝜉) > 𝐿(𝑑𝑖, 𝜃true) ∶ for risk-averse profile;
𝐿̂(𝑑𝑖, 𝜃true; 𝛾, 𝜉) = 𝐿(𝑑𝑖, 𝜃true) ∶ for risk-neutral profile;
𝐿̂(𝑑𝑖, 𝜃true; 𝛾, 𝜉) < 𝐿(𝑑𝑖, 𝜃true) ∶ for risk-seeker profile.

(26)

Unlike classification-type problems in supervised machine learning, in this case, it is not possible
to define a unique classifier for deciding whether the structure should be labeled damaged or undamaged.
This is because decision-making is subjective in the current scenario, and it depends on two sources of
information: the posterior distribution of the gap length (the damage parameter) 𝜃 and the risk profile of the
engineer/decision-maker. To quantify and model the intensity of the risk behavior, we attempt to uniquely
define a classifier for a special case where the true value of the gap length is measurable (obtained by
performing a perfect experiment). Under this situation, when 𝜃true can be accurately and deterministically
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(a) Modified cost function for label 𝑑0 (b) Modified cost function for label 𝑑1
Figure 6: Risk intensity modified cost function

inferred, we define a classifier threshold 𝜃 ∈ ΩΘ as the gap length at which the consequence costs of
performing 𝑀0 and 𝑀1 are equal, i.e.,

𝜃true < 𝜃 ∶ Perform 𝑀0;
𝜃true > 𝜃 ∶ Perform 𝑀1,

(27)

where the classifier 𝜃 satisfies the following:

When risk-intensity is not included ∶ 𝐿(𝑑0, 𝜃) = 𝐿(𝑑1, 𝜃);
When risk-intensity is included ∶ 𝐿̂(𝑑0, 𝜃; 𝛾, 𝜉) = 𝐿̂(𝑑1, 𝜃; 𝛾, 𝜉).

(28)

Larger the value of 𝜃, higher the intensity of risk-seeker behavior and vice versa. Table 3 gives the classifier
𝜃 for various risk profiles. It is obvious that among the risk profiles considered in Table 2, RP5 represents
the most intense risk-seeker behavior, whereas RP1 represents the most intense risk-averse behavior. This
can also be seen in Fig. 7. Figures 7a and 7b compare the classifier for risk-averse (RP2) and risk-seeker
(RP4) profiles relative to a risk-neutral profile (RP3).

Table 3: Classifier for various risk profiles
Risk profile RP1 RP2 RP3 RP4 RP5

Classifier 𝜃 (in inches)
for 𝛾 = 0.8 0.533 12.421 35.999 81.392 146.323
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(a) Left-shift due to risk-averse behavior RP2 (b) Right-shift due to risk-seeker behavior RP4
Figure 7: Shift in the classifier due to skewed risk-perception

Remark 3: In the approach presented, we assume that any two decision-makers agree upon the prior
probability distribution of gap length, agree upon modeling the likelihood function using a Gaussian
distribution, and agree on the consequence costs at extreme values of 𝜃true. We only model risk preferences
of individuals at non-extreme values of 𝜃true through utility functions. Finally, we also assume that there are
no measurement biases and that the noise in sensor measurements is random.

5 Prior and posterior decision analysis
To acquire new information in support of decision making, we assume that an SHM system 𝑧 is

installed, as is the case with the USACE miter gate shown in Fig. 2. Since the system is already installed, this
is a posterior decision analysis and not a preposterior analysis. Installing an SHM system incurs an intrinsic
cost 𝐶(𝑧). We assume that intrinsic cost to be a fraction of the maximum cost 𝛼max, i.e., 𝐶(𝑧) = 0.05𝛼max.
The total cost function for an information-acquiring system 𝑧, denoted by 𝐿̂𝑧(𝑑𝑖, 𝜃true; 𝛾, 𝜉), is defined as the
sum total of the extrinsic (for the various risk-profiles defined in Table 2) and the intrinsic cost-functions
used for posterior decision analysis, wherein

𝐿̂𝑧(𝑑𝑖, 𝜃true; 𝛾, 𝜉) = 𝐶(𝑧) + 𝐿̂(𝑑𝑖, 𝜃true; 𝛾, 𝜉), for 𝑖 ∈ 0, 1. (29)

The cost function 𝐿̂𝑧(𝑑𝑖, 𝜃true; 𝛾, 𝜉) for various risk-profiles can be obtained by translating the curves in Fig.
6 upward of the value provided by 𝐶(𝑧). Given the following information:

1. The posterior probability distribution of the gap length 𝑓Θ|𝑋𝑧
(𝜃|𝑥𝑧) obtained by Bayesian inference

using new data acquired from the SHM system, and an updated finite element model discussed in
Section 3.2;

2. The extrinsic cost as a consequence of making a decision 𝐿̂(𝑑𝑖, 𝜃true; 𝛾, 𝜉) discussed in Section 4.3;
and

3. The intrinsic cost 𝐶(𝑧) of installing the SHM system,

the problem is to decide which maintenance strategy to perform–𝑀0 or𝑀1– or equivalently, what label/rating
shall be assigned to the miter gate, 𝑑0 or 𝑑1.
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We start with a uniform prior distribution of the gap length representing a case where no additional
information is acquirable, such that 𝑓Θ(𝜃) = (𝜃max − 𝜃min)−1. Recall here that we have assumed 𝜃min =
0 inches and 𝜃max = 180 inches. When prior analysis is performed, only the extrinsic risk-modified
consequence cost 𝐿̂(𝑑𝑖, 𝜃true; 𝛾, 𝜉) is used because the prior analysis assumes that no new information
gathering mechanism is available. When the new information 𝑥𝑧 ∈ Ω𝑋𝑧

is obtained from the sensor array
deployed on the miter gate, the posterior distribution of the gap length 𝑓Θ|𝑋𝑧

(𝜃|𝑥𝑧) is obtained using Bayesian
inference. In this case, the total cost 𝐿̂𝑧

(

𝑑𝑖, 𝜃true; 𝛾, 𝜉
)

is considered. The optimal decision is then obtained
as

𝒹prior(𝛾, 𝜉) = argmin
𝑑𝑖

Ψprior(𝑑𝑖; 𝛾, 𝜉) = argmin
𝑑𝑖

𝐸Θ
[

𝐿̂
(

𝑑𝑖, 𝜃true = 𝜃; 𝛾, 𝜉
)]

;

𝒹𝑧(𝛾, 𝜉) = argmin
𝑑𝑖

Ψ𝑧(𝑑𝑖; 𝛾, 𝜉) = argmin
𝑑𝑖

𝐸Θ|𝑋𝑧

[

𝐿̂𝑧
(

𝑑𝑖, 𝜃true = 𝜃; 𝛾, 𝜉
)]

.
(30)

Here, 𝒹prior(𝛾, 𝜉) and 𝒹𝑧(𝛾, 𝜉) denote optimal ratings arrived by using prior and posterior distribution of
the gap length, respectively, for the risk-profile parameterized by (𝛾, 𝜉).

Figure 8a and 8b illustrates the decision-tree for the prior and the posterior decision analysis, respec-
tively. Following the traditional convention of decision trees, we denote the decision nodes by squares and
the choices by circles.

(a) Prior decision analysis (b) Posterior decision analysis
Figure 8: Decision tree for prior and posterior decision analysis

We parametrically investigate the sensitivity of risk perception on decision-making by considering
the various risk profiles (RP) defined in Table 2. We consider five gap-length posterior distribution cases.
Figure 9 shows these posterior distributions of gap length with increasing mean values covering the entire
domain of the gap length. It took approximately 20 hours to obtain the posterior distribution in each case
using an Intel Xeon W-2155 @ 3.30 GHz, 10 core, 128 GB memory workstation. Parallel computing was
exploited to obtain the posterior distribution. The black dots in Fig. 9 indicate the true gap length 𝜃true which
was used to simulate the strain data. Table 4 provides the parameters of the FE model for data simulation
(i.e., true parameters), and reports the statistics of posterior distribution (mean 𝜇𝜃|𝑥𝑧 , standard-deviation
𝜎𝜃|𝑥𝑧 , and coefficient of variation 𝜌𝜃|𝑥𝑧). It also provides the standard deviation of the measurement noise
that is considered in the inference. Observe that 𝜎strain ≠ 𝜎strain-true, the reason for which is discussed at the
end of Section 3.2.



29

Figure 9: Posterior probability distribution of gap length

Table 4: Various cases of the posterior probability distribution used in the posterior decision analysis

Cases Parameters of FE model for data simulation 𝜎strain
in Eq. (13)
(×10−6)

Posterior statistics
𝜃true
(in)

ℎup-true
(in)

ℎdown-true
(in)

𝜎strain-true
(×10−6)

𝜇𝜃|𝑥𝑧
(in)

𝜎𝜃|𝑥𝑧
(in) 𝜌𝜃|𝑥𝑧 =

𝜎𝜃|𝑥𝑧
𝜇𝜃|𝑥𝑧

Case 1 10.0 551.25 166.51 30 20 10.49 2.72 0.259
Case 2 50.0 560.53 185.06 50 60 44.68 13.02 0.290
Case 3 90.0 556.57 177.15 70 60 97.70 14.21 0.145
Case 4 130.0 543.07 150.14 90 70 140.78 11.25 0.0799
Case 5 170.0 542.59 149.18 100 70 158.78 11.38 0.0716

Tables 5 and 6 present the results of prior and posterior analysis obtained using Eq. (30) for the risk
profiles defined in Table 2. Table 7 shows the optimal decisions obtained for all the posterior distributions
defined in Table 4 and all the risk profiles described in Table 2. From Tables 5, 6, and 7, we observe the
following:

1. The extreme risk-averter (RP1) avoids making any risky decision and decides to perform maintenance
𝑀1 (or label the structure 𝑑1) for all the posterior cases (even for the case where the simulated true
gap length value if 𝜃true = 10 in). Considering the other extreme, the extreme risk-seeker (RP5) rates
the gate as undamaged, or 𝑑0, for all the posterior cases except for case 4 (with simulated 𝜃true = 130
in) and case 5 (with simulated 𝜃true = 170 in). We see that as the intensity of the risk-seeking behavior
increases, or equivalently as the intensity of the risk-aversion behavior decreases, the cases with the
rating 𝑑0 increase. This is in line with the fact that the risk-seeker is willing to take his/her chances of
making a false decision for the purpose of reducing the inspection or maintenance cost that follows
with the decision 𝑑1.

2. Cases 4 and 5 represent the situation when the gap length approaches its extreme value. As expected,
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as the value of gap length approaches the extreme value of 𝜃max, all the risk profiles decide that the
gate is damaged (i.e., 𝑑1).

3. In a real-world situation, the true value of gap length 𝜃true is not known. However, since we had
simulated the posterior, we know the true value of gap length 𝜃true used for these simulations. This
allows us to predict the state of the structure using the classifier threshold 𝜃 as defined in Eq. (27).
We observe that our predictions obtained by minimizing the Bayes conditional risk using Eq. (30)
are exactly in line with the predictions made using the classifier defined in Eq. (27) (see Table 7),
implying that the presented approach is robust. If 𝜃true is not available, then it can be estimated by the
mean of the probability distribution of gap length. The predictions obtained from the prior analysis
with mean 𝜇𝜃 = 90 inches are closer to that of case 3. This is because the posterior distribution for
case 3 falls in the middle of the domain ΩΘ, and as the prior analysis, is almost symmetric about
the center of the domain ΩΘ. This leads the prior distribution and the posterior distribution case 3
to have close values of their mean. However, since no new information was available for the prior
analysis, decisions aligning with posterior decision analysis for case 3 clearly show that the results
are not useful and indicate that installing an SHM system adds to the value of decision-making. In
fact, making a decision using a uniform prior distribution is a matter of uninformed speculation or
simply guessing.

Table 5: The Bayes risk for different gap length distributions (cases 1-5) for decision 𝑑0 (undamaged rating)
Ψprior

(

𝑑0; 𝛾, 𝜉
)

and Ψ𝑧
(

𝑑0; 𝛾, 𝜉
)

in million $

Cases
extreme

risk-averter
(RP1)

𝜃 = 0.533 in

Mild
risk-averter

(RP2)
𝜃 = 12.421 in

Neutral
risk bearer

(RP3)
𝜃 = 35.999 in

Mild
risk-seeker

(RP4)
𝜃 = 81.392 in

extreme
risk-seeker

(RP5)
𝜃 = 146.323 in

Case 1 0.637 0.223 0.108 0.0704 0.0572
Case 2 0.842 0.539 0.298 0.148 0.0846
Case 3 0.960 0.810 0.592 0.312 0.145
Case 4 1.014 0.951 0.832 0.538 0.238

Posterior

Case 5 1.032 0.999 0.932 0.708 0.329
Prior 0.910 0.727 0.557 0.350 0.170
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Table 6: The Bayes risk for different gap length distributions (cases 1-5) for decision 𝑑1 (damaged rating)
Ψprior

(

𝑑1; 𝛾, 𝜉
)

and Ψ𝑧
(

𝑑1; 𝛾, 𝜉
)

in million $

Cases
extreme

risk-averter
(RP1)

𝜃 = 0.533 in

Mild
risk-averter

(RP2)
𝜃 = 12.421 in

Neutral
risk bearer

(RP3)
𝜃 = 35.999 in

Mild
risk-seeker

(RP4)
𝜃 = 81.392 in

extreme
risk-seeker

(RP5)
𝜃 = 146.323 in

Case 1 0.347 0.243 0.214 0.205 0.201
Case 2 0.398 0.322 0.262 0.224 0.208
Case 3 0.427 0.390 0.336 0.265 0.224
Case 4 0.441 0.425 0.395 0.322 0.247

Posterior

Case 5 0.445 0.437 0.420 0.364 0.270
Prior 0.415 0.369 0.327 0.275 0.230

Table 7: The optimal decision for various risk profiles.
Optimal rating

Cases
extreme

risk-averter
(RP1)

𝜃 = 0.533 in

Mild
risk-averter

(RP2)
𝜃 = 12.421 in

Neutral
risk bearer

(RP3)
𝜃 = 35.999 in

Mild
risk-seeker

(RP4)
𝜃 = 81.392 in

extreme
risk-seeker

(RP5)
𝜃 = 146.323 in

Case 1
𝜃true = 10 in 𝑑1 𝑑0 𝑑0 𝑑0 𝑑0
Case 2
𝜃true = 50 in 𝑑1 𝑑1 𝑑1 𝑑0 𝑑0
Case 3
𝜃true = 90 in 𝑑1 𝑑1 𝑑1 𝑑1 𝑑0
Case 4
𝜃true = 130 in 𝑑1 𝑑1 𝑑1 𝑑1 𝑑1

Posterior

Case 5
𝜃true = 170 in 𝑑1 𝑑1 𝑑1 𝑑1 𝑑1

Prior
𝜇𝜃 = 90 in 𝑑1 𝑑1 𝑑1 𝑑1 𝑑0

Finally, we investigate the impact of organizational risk profile (ORP) on decision-making. We recall
our discussion in Section 4.3 on ORP. We assume 𝛾 = 0.8 and ΩΞ = [0.55, 0.975]. We define the Bayes
risk and optimal decision considering the ORP for prior analysis as:

Ψprior-org(𝑑0) = 𝐸ΘΞ
[

𝐿̂(𝑑0, 𝜃true = 𝜃; 𝛾, 𝜉)
]

= 𝐸Θ
[

𝐸Ξ
[

𝐿̂(𝑑0, 𝜃true = 𝜃; 𝛾, 𝜉)
]]

;
Ψprior-org(𝑑1) = 𝐸ΘΞ

[

𝐿̂(𝑑1, 𝜃true = 𝜃; 𝛾, 𝜉)
]

= 𝐸Θ
[

𝐸Ξ
[

𝐿̂(𝑑1, 𝜃true = 𝜃; 𝛾, 𝜉)
]]

;
𝒹prior-org = argmin

𝑑𝑖

(

Ψprior-org(𝑑𝑖)
)

.
(31)

In the equation above, it is reasonably assumed that the random variablesΘ andΞ are statistically independent.
This is a logical assumption because the organizational behavioral risk profile is independent of the state of
the structure. Along similar lines, the Bayes risk and optimal decision considering the ORP for posterior
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analysis are defined as
Ψ𝑧-org(𝑑0) = 𝐸Θ|𝑋𝑧

[

𝐸Ξ
[

𝐿̂𝑧(𝑑0, 𝜃true = 𝜃; 𝛾, 𝜉)
]]

;

Ψ𝑧-org(𝑑1) = 𝐸Θ|𝑋𝑧

[

𝐸Ξ
[

𝐿̂𝑧(𝑑1, 𝜃true = 𝜃; 𝛾, 𝜉)
]]

;

𝒹𝑧-org = argmin
𝑑𝑖

(

Ψz-org(𝑑𝑖)
)

.
(32)

Fig. 10 illustrates the decision tree associated with the posterior decision analysis defined in Eq. (32).

Figure 10: Decision tree for posterior analysis considering organizational risk profile

For demonstration purposes, we perform posterior decision analysis based on the posterior probability
distribution of the gap length shown in Fig. 9 considering the risk profiles ORP1 and ORP2 portrayed
in Figures 5a and 5b, respectively. Table 8 reports the results obtained using posterior decision analysis
considering the organizational risk profiles. As mentioned at the end of Section 4.3, ORP1 is more risk-
averse than ORP2. On average, the ORP1 tends to conclude that the gate is damaged at a smaller gap length
than the ORP2.

Table 8: Posterior decision analysis considering organizational risk profiles ORP1 and ORP2.
ORP1 ORP2Cases Ψ𝑧-org(𝑑0) Ψ𝑧-org(𝑑1) 𝒹𝑧-org Ψ𝑧-org(𝑑0) Ψ𝑧-org(𝑑1) 𝒹𝑧-org

1 0.196 0.216 𝑑0 0.0905 0.207 𝑑0
2 0.489 0.258 𝑑1 0.226 0.230 𝑑0
3 0.770 0.328 𝑑1 0.462 0.277 𝑑1
4 0.930 0.385 𝑑1 0.703 0.333 𝑑1
5 0.988 0.409 𝑑1 0.838 0.372 𝑑1

Figure 11 illustrates our current approach that aims at choosing optimal maintenance actions on an
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economic basis that minimizes the cost/regret of making decisions while accounting for all sources of
uncertainties. This also allows us to rate/classify label the state of the structure because the maintenance
strategy is designed, and its consequence-cost evaluated based on a discrete set of damaged ratings. This
state-classification approach is different from the traditional machine learning-based detection problem and
is more suitable for SHM-related problems. This is because more often than not, these discrete damaged
states are hard to define in a meaningful or physical way. Secondly, even if the discrete damaged states
are defined, statistical learning requires a large amount of data relating the damaged states to the sensor
measurements. This again is challenging–if not impossible–to obtain.

Figure 11: General methodology

Remark 4: A significant part of the proposed formulation is based on the knowledge of the costs caused by
structural failure, loss of life and property, and the cost of replacement, denoted by 𝛼max. For the discussion
so far, we have assumed that 𝛼max is accurately estimated and known. However, when the failure of an asset
involves loss of property and lives (the consequence of which could be determined by the insurance payout),
it may be extremely difficult to obtain an accurate value of 𝛼max and it is reasonable to estimate a range of
𝛼max. We can include the uncertainty in 𝛼max into the decision-making framework. Let 𝑓𝐴max

(𝛼max) denote
the probability distribution of the total cost of failure of structure, and loss of life and property, where 𝐴max

denotes the random variable with a realization 𝛼max. Let 𝐿̂(𝑑𝑖, 𝜃true; 𝛼max, 𝛾, 𝜉) denote the consequence curve
which in this case is also a function of 𝛼max. The optimal decision for the prior and the posterior case is then
obtained as:

𝒹prior(𝛾, 𝜉) = argmin
𝑑𝑖

𝐸Θ
[

𝐸𝐴max

[

𝐿̂
(

𝑑𝑖, 𝜃; 𝛼max, 𝛾, 𝜉
)]]

;

𝒹𝑧(𝛾, 𝜉) = argmin
𝑑𝑖

𝐸Θ|𝑋𝑧

[

𝐸𝐴max

[

𝐿̂𝑧
(

𝑑𝑖, 𝜃; 𝛼max, 𝛾, 𝜉
)]]

.
(33)
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Remark 5: The proposed framework is focused on developing the maintenance policy for a miter gate
structure, the health of which is defined by a scalar continuous damage parameter (the gap length). De-
veloping any decision-making policy requires a case-by-case investigation of the problem at hand and is
bounded by the complexity and governing physics of the system, the target of the decision-making policy, its
alignment with the organizational values, and numerous assumptions made to simplify the decision-making
process. For instance, in the context of structural engineering applications, unlike the scalar state parameter
used in this paper, the state parameter can be a multidimensional quantity containing numerous engineering
demand parameters (EDPs) associated with more than one potential damage/failure mode of a structural
system. It is beyond the scope of this paper to tackle such problems; however, in theory, the principles
can be extended to such problems. For instance, a multi-dimensional state parameter would require a
multi-dimensional consequence cost hypersurface. Specific constraints must be imposed to establish the
correlation between various EDPs. The statistical correlations between various EDPs would be a by-product
of the propagation of uncertainties through the model of the structure.

6 Conclusion
This paper proposes an approach to determine an optimal maintenance strategy and rate/label the

structural-state taking into account the individual or organizational risk profile of the decision-makers. There
are consequences associated with making a maintenance decision. In this paper, we consider the consequence
costs of performing maintenance actions depending on what the true degree of structural damage (or true
state parameter) is. For a particular maintenance strategy (with a unique label), the relationship of the
cost-consequence to all the possible values of the true degree of damage (or the state-parameter) is defined
by the consequence cost function. The consequence cost function is derived for each maintenance strategy
by estimating various costs associated with maintenance downtime, inspection, repair or replacement, and
the cost of losing lives and property in case of catastrophic failure. It is also assumed that state-parameter
completely describes the degree of structural damage. Since the state parameter is assumed to be not directly
measurable, it is probabilistically inferred from acquired sensor data (in this paper simulated using the
FEM) using Bayesian inference. Among the available predefined set of maintenance strategies, an optimal
maintenance strategy is one that minimizes the expected value of the consequence costs. The consequence
cost associated with each maintenance label is implicitly designed by considering a true level of damage,
thus, choosing an optimal maintenance strategy allows the engineer to reasonably use the associated labels
as the state classifier.

The base cost functions are defined by the organization. In most cases, these costs are estimated
based on the available data and are approximate. When it comes to maintenance decisions, guided by
the organization’s maintenance policies, engineers are tasked to decide how to perform the maintenance.
These decisions are subjective to the engineer’s experience and their thought-process, and risk behavior.
Therefore, the maintenance decisions made onsite by the engineers, although as per the organization’s
recommendations, can have a different cost-consequence as defined by the base cost function. We model
these deviations using risk-profile. The risk profile of the decision-maker can be mathematically modeled
by their utility vs. wealth (or loss) function or simply utility function. An individual’s utility gives their
evaluation of the consequence/outcome of an action. The utility may be different from the real dollar cost
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(or value). The base cost function and the utility function can be combined to incorporate the effect of
human psychology and an individual’s risk-perception into the decision-making model. An organization
consists of many decision-makers with a spectrum of risk profiles. Apart from investigating the effect
of an individual’s risk perception, the collective risk behavior of the organization is also investigated.
Finally, the decision analysis is performed using the expected utility theory. The application of the proposed
framework to the maintenance of a miter gate validates and demonstrates the applicability of the proposed
framework and parametrically analyzes the sensitivity of the optimum decision based on the risk profiles of
the decision-maker.
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