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CLINICAL CANCER RESEARCH | REVIEW

Designing Clinical Trials for Combination
Immunotherapy: A Framework for Glioblastoma
Kirit Singh1, Kristen A. Batich1, Patrick Y. Wen2, Aaron C. Tan3, Stephen J. Bagley4, Michael Lim5,
Michael Platten6, Howard Colman7, David M. Ashley1, Susan M. Chang8, Rifaquat Rahman2,
Evanthia Galanis9, Alireza Mansouri10, Vinay K. Puduvalli11, David A. Reardon2, Solmaz Sahebjam12,
John H. Sampson1, John Simes13, Donald A. Berry11, Gelareh Zadeh14, Tim F. Cloughesy15,
Minesh P. Mehta16, Steven Piantadosi17, Michael Weller18, Amy B. Heimberger19, and Mustafa Khasraw1

ABSTRACT
◥

Immunotherapy has revolutionized treatment for many
hard-to-treat cancers but has yet to produce significant
improvement in outcomes for patients with glioblastoma. This
reflects the multiple and unique mechanisms of immune eva-
sion and escape in this highly heterogeneous tumor. Glioblas-
toma engenders profound local and systemic immunosuppres-
sion and is remarkably effective at inducing T-cell dysfunction,
posing a challenge to any immunotherapy-based approach. To
overcome these mechanisms, multiple disparate modes of

immune-oriented therapy will be required. However, designing
trials that can evaluate these combinatorial approaches requires
careful consideration. In this review, we explore the immuno-
therapy resistance mechanisms that have been encountered to
date and how combinatorial approaches may address these.
We also describe the unique aspects of trial design in both
preclinical and clinical settings and consider endpoints and
markers of response best suited for an intervention involving
multiple agents.

Introduction
Patients with glioblastoma survive for 12 to 15 months on average

despite treatment with surgery, focal irradiation, alkylating chemo-
therapy, and tumor treating fields (1–4). Although several immu-
notherapies are currently under investigation for glioblastoma, none
have yet demonstrated a significant survival benefit (5–7). Glioblas-
toma originates in an immune privileged compartment and is adept at
escaping immune surveillance (8). Precision immunotherapy also
requires a uniformly expressed tumor-specific antigen (TSA), which
remains elusive in highly heterogeneous isocitrate dehydrogenase
(IDH) wild-type gliomas or glioblastoma (9). Further, glioblastoma

disrupts immune function both locally and systemically, degrading the
ability of immunotherapy to act (10).

Given these significant obstacles, it is clear that a single agent will be
insufficient. To unlock the true potential of immunotherapy, combi-
nations with additive and/or synergistic mechanisms of action are
required. However, testing these combinations poses unique technical,
logistical, and regulatory challenges. In this review, we will explore
current opportunities and describe strategies for conducting trials of
combination immunotherapy.

Current and Future Combinatorial
Strategies

Glioblastoma induces immune dysfunction through multiple
mechanisms (10–15). To overcome these, several immunotherapy
classes are under investigation, including immune checkpoint block-
ade (ICB), chimeric antigen receptor T cells (CAR-T), bi-specificT-cell
engagers (TCE), tumor antigen vaccination, oncolytic viruses, and
immunomodulatory cytokines (16–21). Given the large number
of permutations for combination therapy, we must rationalize the
available options.

Combinations of multiple immune checkpoint blockade
Single-agent ICB has failed to yield benefit in patients with

glioblastoma (22). Given this, studies have been performed using
multiple ICB agents, based on effective strategies in other difficult
malignancies such as melanoma or advanced renal cell carcino-
ma (23). A well-described combination in oncology is that of
nivolumab (anti–PD-1) and ipilimumab (anti–CTLA-4), which has
been explored in multiple trials (NCT02017717 – Checkmate 143,
NCT04145115, NCT03233152, NCT04003649, NCT03422094,
NCT02311920, and NCT03707457). However, subsequent work
has demonstrated that glioblastoma exhibits cancer lineage–specific
resistance to the reversal of T-cell exhaustion, which may reduce the
impact of this particular combination (24). Retrospective genomic
and transcriptomic analysis of patients who received PD-1
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inhibitors found that the degree of response to treatment was
associated with specific evolutionary pathways resulting in certain
molecular and immune expression profiles. This would indicate that
only certain subsets of patient may benefit from this form of
checkpoint blockade (25). The timing of checkpoint blockade
therapies relative to standard-of-care treatment also may play
a key role in efficacy. Cloughesy and colleagues report upregulated
T-cell and IFNg gene expression and downregulated cell-cycle gene
expression within the tumor when anti–PD-1 therapy was used in
the neoadjuvant setting. This effect was however not observed for
those patients that received adjuvant therapy alone, suggesting a
transient window of opportunity for checkpoint blockade (26).
Schalper and colleagues also found positive immune effects asso-
ciated with neoadjuvant PD-1 blockade, reporting enhanced levels
of immune-cell infiltration and greater TCR diversity among
tumor-infiltrating lymphocytes (TIL), suggesting that this may be
a useful partner with other immunotherapies (27).

Other checkpoint inhibitory molecules highly expressed by TILs
in glioblastoma include indoleamine 2,3-doxygenase (IDO1), T-cell
immunoglobulin-mucin-domain containing-3 (TIM-3), and lym-
phocyte activation gene 3 (LAG3; ref. 28). Phase I clinical trials
exploring combination approaches against both PD-1, LAG-3
(NCT02658981), and IDO1 (NCT03707457) are now underway.
Despite this, experience of combinatorial PD-1 and IDO1 blockade
in the central nervous system (CNS; albeit in metastatic melanoma)
have failed to improve outcomes in phase III studies (29). Other
combination approaches using IDO1 inhibitors with temozolomide
(TMZ; NCT02052648) remain under evaluation in glioblastoma.
Although these findings may suggest that combinatorial ICB may
still struggle in the CNS, lack of success may actually reflect
incomplete checkpoint blockade. Opitz and colleagues have
described metabolic pathways in glioma such as activation of the
aryl hydrocarbon receptor (AHR) by tryptophan catabolites, which
results in enhanced malignancy and immunosuppression (30).
Although the AHR pathway was initially associated with IDO1 or
the tryptophan-2,3-dixoygenase 2 (TDO2) enzyme, recent work has
demonstrated that IL4-induced-1 (IL4I1) is more significantly
associated with AHR activity. ICB can induce IDO1 and IL4I1,
whereas IDO1 inhibitors previously trialed in combination with
ICB do not result in IL4I1 blockade (31). Future combinatorial
pairings of ICBs should consider the potential for anti–PD-1 agents
to induce metabolic agents which upregulate metabolic pathways of
immunosuppression.

Immune checkpoint blockade and T-cell–directed
immunotherapy

Intratumoral heterogeneity in glioblastoma poses a significant
barrier to antigen-specific immunotherapies such as CAR-T cells or
bispecific T-cell engagers. CAR-T cells specific for EGFR variant III
(EGFRvIII) have proven ineffective when treating recurrent tumors
due to antigen escape (9). The intended selective targeting of cells or
spontaneous elimination of target cells at recurrence produces an
outgrowth of antigen-negative cells resulting in recurrence (9, 32, 33).
A high degree of clonality and, contrary to other cancers, a high
mutational burden in glioblastoma has also been associated with
resistance to ICB (34, 35). Of note for clinical trials, high tumor
mutational burden can be induced by TMZ, which causes defects in
DNA mismatch repair genes. One potential approach to overcom-
ing this is by targeting IDH1-R132H, a shared clonal neo-epitope in
IDH-mutated gliomas. This uniformly expressed TSA in a subset of
patients with glioma has been successfully targeted in recent phase I

trials (NCT02454634), and was found to be both safe and
immunogenic (36).

Although prior phase Ib trials (NCT02287428) of neoantigen
vaccination in glioblastoma have reported neoepitope-specific sys-
temic immune responses with increased numbers of TILs, these
have also been shown to express a profoundly exhausted pheno-
type (37). Combining ICB with a vaccine strategy targeting a shared
clonal neoepitope may therefore work synergistically to overcome
ICB resistance while enhancing the neo-epitope immune response.
This is supported by preclinical evaluation of multivalent neoanti-
gen vaccines with ICB, which generated greater antitumor
responses than monotherapy, even in models with reduced anti–
PD-L1 sensitivity (38, 39). Such an approach would therefore be
logical to evaluate for other multi-epitope vaccine-based approaches
such as that used in the GAPVAC trial (NCT02149225; ref. 40). As
mentioned previously, neoadjuvant anti–PD-1 blockade has been
associated with enhanced clonal expansion of T cells and greater
immune infiltration/TCR diversity (26, 27). This would also likely
benefit immunotherapy approaches that rely heavily on T-cell
expansion such as vaccination or CAR-T cell therapy. Further,
CAR-Ts targeting EGFRvIII have been shown to upregulate expres-
sion of PD-L1 within gliomas, contributing to CAR-T cell dysfunc-
tion and treatment failure (9). The addition of anti–PD-1 blockade
to such approaches may therefore increase both the diversity and
potency of the immune response to CAR-T therapy while reducing
T-cell exhaustion. This is supported by work by Choi and colleagues
who designed a CRISPR-Cas9 modified EGFRvIII CAR-T cell with
the endogenous PD-1 receptor knocked out, thereby preventing
PD-L1 binding. This CAR-T–EGFRvIII PD-1 construct resulted in
prolonged survival in mice bearing EGFRvIIIþ glioma compared
with CAR-T–EGFRvIII cells with an intact PD-1 receptor (41). In
this vein, trials are underway evaluating CAR-T cell therapy
(NCT04003649) and vaccination (NCT04201873, NCT02529072,
NCT02287428) alongside ICB. Newer trial designs are also being
deployed such as the AMPLIFY-NEOVAC surgical window-of-
opportunity trial (NCT03893903). This will evaluate IDH1R132H
vaccination with avelumab (anti–PD-L1) to explore predictive
biomarkers for response to ICB in patients with IDH-mutated
gliomas.

It is notable that studies such as that performed by Choi and
colleagues report prolonged survival with direct intracerebral or
intraventricular delivery of CAR-T therapy but that this therapeutic
effect is lost with peripheral administration. This finding serves to
demonstrate that transiting the blood–brain barrier (BBB) remains a
formidable obstacle for many systemically delivered immunothera-
pies (42). Even in the pathologic glioma state, regions of the BBB likely
remain intact, shielding sections of tumor from immunotherapy,
which may then act as the focal point for recurrence (43). Although
systemic anti–PD-1 therapy has been noted to induce changes in the
CNS, it is unclear where this interaction with the immune system
occurs and indeed what concentration is necessary to induce an effect
at the intracranial tumor site (44). Although one solution may be
direct intracranial delivery of agents, this highly invasive approach will
not be suitable for all patients and faces significant challenges in
achieving equal and persistent drug distribution throughout the
tumor (33, 45, 46). Another potential approach may be the use of
ex vivo activated autologous T cells combined with T-cell engaging
therapies. These activated T cells would theoretically adhere to the
brain microvascular endothelium and traffic into the brain, carrying
their immunotherapy payload on their surface (18, 47). However, this
effect has also been associated with neurotoxicity and must therefore
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be investigated with caution (48). Accordingly, such an approach is
entering phase I safety trials where a hEGFRvIII-CD3Brain Bi-Specific
T Cell Engager (BRiTE) will be evaluated alongside peripheral autol-
ogous T-cell infusion (NCT04903795).

Other strategies to enhance the T-cell repertoire and overcome
immunosuppression

Combination of immunotherapy with radiotherapy has been dem-
onstrated in melanoma to expand the compartment of effector mem-
ory T cells and TILs, while also inducing amore diverse T-cell receptor
population when combined with ICB (49). Similar promise has been
demonstrated preclinically in glioblastoma, where TIM-3 and PD-1
antibodies combined with radiotherapy achieved long-term surviv-
al (50). Other strategies to expand TCRdiversitymay involve the use of
dendritic-cell vaccines, which carry antigen from the tumor to drain-
ing lymph nodes, presenting them to effector T cells. Chemokines such
as the macrophage inflammatory protein-1 alpha (MIP-1a, CCL3)
may aid in enhancing lymph node chemotaxis of dendritic-cell subsets
both to tumor and from tumor to lymph node, resulting in greater
diversity of antigen presentation and more potent antigen-specific T-
cell responses (51). Dendritic cells may also enhance the polyfunction-
ality of adoptively transferred T cells targeting tumor-specific antigens
in glioblastoma (52).

Enhancing T-cell functionality may be supported by the use
of costimulatory agonists such as CD27, 4-1BB, OX40, or CD40,
which are now entering early clinical trials (e.g., NCT04547777,
NCT02658981, NCT03688178; refs. 53–56). Newer constructs that
combine both anti-inhibitory and prostimulatory strategies are
under development such as bispecific antibodies targeting both
CD27 and PD-L1 (NCT04440943) or TGFb and PD-L1 (57). Novel
CAR-T constructs including synNotch and armored CARs with
expression of cytokines such as IL12 have also been demonstrated to
enhance antitumor efficacy in the context of oncogenic immuno-
suppression (58, 59). When considering immunosuppression,
thought should also be given to the role of dexamethasone, which
may induce systemic depletion of memory and na€�ve CD4/CD8 T
cells, reducing the efficacy of immunotherapy (60). In this context,
agents that have failed to show efficacy when combined with
checkpoint blockade such as bevacizumab (anti-VEGF) may also
be worth re-evaluating as an adjunct, specifically for its ability to
reduce the need for immunosuppressive corticosteroids (61, 62).

A summary of potential combinatorial approaches is depicted
in Fig. 1. However, as described above, enhanced additive synergism
between immunotherapies may well extend beyond a bimodal
approach. It is reasonable to consider trial designs, which involve
three ormore elements. This will require flexible trial designs to swiftly
identify the optimal combinatorial schedule which are discussed in the
following section.

Recommendations for Combinatorial
Clinical Trial Design
Population selection

When considering any new combinatorial therapy, a proof-of-
principle study is necessary to determine efficacy. Outcome measures
in this context usually consist of specific biologic endpoints. However,
these studies are typically performed on small numbers of patientswith
late-stage disease who have received highly variable treatment courses.
This can make interpretation of said biologic endpoints difficult.
Selecting patients earlier in the disease coursewith a less heterogeneous
and slower growing pathology may make interpretation of biological

markers easier, while also allowing combination immunotherapies
sufficient time to synergize and induce maximal biological effect.
Particular consideration should also be given to patients with an
unmethylated O6-methylguanine-DNA methyltransferase (MGMT)
promoter gene, who are less likely to respond to TMZ. In such cases,
omission of TMZ entirely would be clinically justifiable and would
allow evaluation of new therapies without additional toxicities from
TMZ or inducing hypermutation as described previously (63, 64).

Regimen selection
The optimal dosing schedule may be extremely broad when design-

ing trials for two or more agents and is further complicated by the fact
that true synergy may exist at nonmaximal doses. Although it is
generally not acceptable to reduce doses of standard-of-care agents
in combination, an appreciation for the unique pharmacodynamic
interplay between combined immunotherapy agents is required.
Although this might suggest a need for extensive preclinical testing,
newer designs such as phase 0, translational, surgical “window-of-
opportunity”, or neoadjuvant trials may offer a route to bypass
potentially laborious steps (65, 66).

Phase 0 trials use a microdosing strategy to allow for assessment of
potential pharmacodynamic (PD) and pharmacokinetic (PK) prop-
erties whileminimizing risk. This allows for rapid determination of the
biological activity of a potential combination and allows for early
termination if said combination does not meet its predefined PD/PK
endpoints. Window-of-opportunity studies take an alternative route,
using a predefined therapeutic dose and typically aim to define target
engagement and/or immune modulatory endpoints. Both trial
approaches aim to determine biological and immunomodulatory
impact, rather than clinical effect, although window-of-opportunity
trials also allow for correlation with eventual patient outcomes.
Although these are both useful approaches for evaluating new com-
binations, perhaps the most sensitive way to determine synergism
between two agents is by using neoadjuvant studies in which treatment
is administered preoperatively and tumor samples are taken for
analysis at time of resection.

Neoadjuvant studies have already been used successfully to deter-
mine the effect of immune checkpoint inhibition on the intratumoral
T-cell compartment (26). The neoadjuvant approach may also be
superior to postsurgical biopsies of tissue, which are prone to sampling
error and often have limited tissue availability, resulting in a nonrep-
resentative immune analysis. A large volume of tissue will allow for not
just a determination of raw numbers of TILs but functional activity.
Such analyses would be superior to peripheral immune interrogation,
which may not be equivalent to events occurring at the tumor site.

Moving beyond phase I
If a combination proves safe and tolerable while also demonstrating

evidence of immune response, trials should proceed to phase II trials to
assess clinical benefit. However, traditional single-arm phase II trials
often use response rates (RR) based on historical controls as the main
endpoint, which may be inappropriate for combined immunotherapy.
An efficient approachwould be to use seamless phase I/II, II/III clinical
trials, whereby the protocol specifies when to transition the study from
a certain phase (e.g., phase II to III) without the need for a newprotocol
or regulatory process (67, 68). Similarly, large phase Ib trials and
“expansion baskets” of the combination in phase I trials allow for
increasing the number of patients enrolled once the recommended
phase II dose has been determined. This allows for the phase I study to
aid establishing preliminary efficacy in addition to determining the
safety of the combination. Basket and platform trial designs using
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master protocols allow for within-basket immune monitoring
depending on the approaches being evaluated (e.g., markers of
T-cell activation if blocking regulatory T-cell receptors; ref. 69).
The use of adaptive designs in this setting allows for adjustment
according to evolving data so that poorly performing combinations
can be abandoned early, while additional treatment cohorts which
test other combinations can be added.

Many basket trials to date (Lung-MAP, NCT02154490; NCI-
MATCH, NCT02465060; and My Pathway, NCT02091141) use RR
to evaluate targeted therapies, as is typical for traditional single-arm
early-phase trials. However, this may not be an appropriate endpoint
for the evaluation of immunotherapies, which can yield clinical

benefit without a high RR. Indeed, immunotherapies have been
noted to induce imaging changes interpreted as indicative of
progression (70). To address this, adaptive designs have been
initiated including the INSIGhT adaptive platform trial
(NCT02977780), the glioblastoma AGILE phase II/III adaptive
platform trial (NCT03970447; refs. 64, 71) in the United States,
and the NCT neuro master match umbrella phase I/IIa trial
(NCT03158389) in Germany. Overall survival (OS) can be used
in these trials as the primary endpoint rather than RR (72, 73).
These designs are mostly used to evaluate targeted therapies to
circumvent lengthy pauses between trial phases, but their usage still
lags behind for immunotherapy-based approaches (74).

1. TCR diversity
and clonal
expansion

PD-1

TIM-3

LAG-3

CTLA-4
PD-L1

TMZ

Chemotherapy-induced hypermutation

PD-1

IDH wild-type

2. VEGF inhibitors 3. Tumor-associated
macrophage polarization

4. Neoadjuvant checkpoint
inhibition

5. Dendritic cell costimulation

Antigen-specific CAR-T and
checkpoint inhibitors

DC activation

4-1BB
OX40
CD40

IDO inhibitors

Draining lymph nodes

Chimeric antigen
receptor (CAR) T cells

Activated microglia
(M1)

Microglia (M2)

VEGFR

Tumor-specific antigen and
neoantigen vaccines

DC

Peptide

6. Combination
immunotherapies

Figure 1.

Combination approaches using checkpoint inhibition and other therapies for glioblastoma. 1. TCR diversity and clonal expansion. Combination radiation
therapy and inhibitors of TIL exhaustion and drivers of apoptosis (PD-1, LAG-3, TIM-3) are being studied for synergistic effects on TIL expansion and clonal
diversity. 2. VEGF inhibitors. Anti-VEGF therapies such as bevacizumab are being utilized as steroid-sparing agents to harness immunotherapy-related toxicity
in the CNS. 3. Tumor-associated macrophage polarization. Glioma cells interact with and maintain a robust population of PD-1–expressing microglia
with an anti-inflammatory phenotype (M2). Selective anti–PD-1 blockade on microglia populations is capable of inducing a tumoricidal M1 phenotype (87–89).
4. Neoadjuvant checkpoint inhibition. Treatment-na€�ve, IDH wild-type glioblastoma upregulates PD-L1 and CTLA-4 offering enhanced sensitivity to immune
checkpoint combination approaches. Neoadjuvant checkpoint blockade increases clonal expansion of T cells. Chemotherapy with temozolomide can alter
tumor mutational burden resulting in both increased resistance to checkpoint blockade and increased subclone heterogeneity thus limiting the potency of
antigen-specific immunotherapies such as CAR-T cells. 5. Dendritic cell costimulation. Costimulatory agonists for 4–1BB, OX40, and CD40 and IDO inhibitors
are being evaluated with checkpoint inhibitors to polarize cytotoxic T-cell responses in the tumor microenvironment and within immunosuppressed tumor-
draining lymph nodes. 6. Combination immunotherapies. Multivalent neoantigen vaccines and CAR-T cell therapies in combination with checkpoint inhibitors
are being evaluated for superior efficacy compared with single modalities even with reduced PD-L1 sensitivity. Abbreviations: CAR, chimeric antigen receptor;
CTLA-4, cytotoxic T-lymphocyte–associated protein 4; DC, dendritic cell; IDO, indoleamine 2, 3-dioxygenase; LAG-3, lymphocyte activation gene 3 (LAG3);
M1 and M2, macrophage pro-inflammatory and anti-inflammatory phenotype; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; TCR,
T-cell receptor; TIM-3, T-cell immunoglobulin-mucin-domain containing-3; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth
factor receptor. Adapted from an image created with BioRender.com.
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Recommendations for Ensuring Safety
and Determining Outcomes

In the context of combinatorial immunotherapy, toxicity consid-
erations are complicated by the need to determine the appropriate
regimen for commencing two or more agents at once. Multiple agents
may act synergistically in both efficacy and toxicity, which could result
in potentially fatal complications such as cytokine release syndrome
(CRS; ref. 75). Model-assisted designs are a useful tool to assess the
prestudy probability of toxicity and can inform dose-escalation deci-
sions using real-time adverse event data (76, 77). These can maximize
the number of patients treated at or near the MTD and outperform
traditional designs such as 3 þ 3 dose escalation, which have yielded
inconsistent dose-toxicity or dose-escalation correlations (78, 79).
However, although the flexibility and accuracy of model-assisted
designs may be of particular use when evaluating immunotherapy
combinations, these require sustained biostatistical collaboration,
which can be time and resource intensive. A detailed evaluation of
the dose-escalation strategy and how best to determine response is
therefore vital before commencing clinical trials.

Determining the starting dose
Many combinatorial trials use agents with a known safety profile

and where the biologically active dose is known. For that reason, such

trials could begin at the optimal dose rather than using conservative
escalations. When neither component is known to be effective or
approved for the indicated use, and when neither will be effective
alone, a two-arm design comparing combination to a control agent (or
placebo) can be considered (shown in Fig. 2). However, although this
minimizes exposure of patients to inactive therapies, this design may
not demonstrate the inactivity of specific components.When the safety
profile or optimal dose is unknown for either component in a
combination, the optimal immune response may be an appropriate
endpoint for early-phase trials, providing there are no significant
toxicities. However, establishing response with multiple agents and
titrating each element to maximize efficacy may not be practical.

Measuring effect
Patients in phase I trials are likely to have relapsed or progressed on

previous therapies but preliminary signals of activity can still be noted
using RR, progression-free survival (PFS), recurrence-free survival, or
OS. However, in an advanced-disease population, immunotherapies
may not induce a strong immune effect thatmanifests as a reduction in
disease burden. Patientsmay also not survive long enough to have time
to generate the immune response that would provide a clinical benefit.
A further complication is that OS can be extended by immunotherapy
without radiologic response or pseudo-progression (80). Themodified
response assessment in neuro-oncology (mRANO) and immune-

Drug A Drug B

biological markers (blood and tumor)

Tumor-infiltrating lymphocyte and T-cell receptor
overlap (TCR immunoseq on tumor tissue and

peripheral blood mononuclear cell genomic DNA)

Immunohistochemistry measurements (PD-1, PD-L1,
CD8, CD4, iba-1, CD68, GFAP immunohistochemistry

Peripheral blood T-cell subsets and functional status
(i.e., activation) (Flow cytometry on peripheral blood

mononuclear cells taken pre and post treatment)

Gene expression signatures and somatic mutations
(RNA sequencing on tumor RNA,

circulating tumor DNA, proteomics, methylated DNA)

Imaging markers
(Immunotherapy response for neuro-oncology [iRANO]

criteria, positron emission tomography [PET] scans)

Classical clinical endpoints
(Response via tumor shrinkage, progression-free

survival [PFS], recurrence-free survival [RFS],
overall survival [OS])

A & B Control

Ongoing evaluation of
all individual agents

required against control

Can rationalize to
combination therapy
alone versus control

Drug A

Drug B

A & B

A & B

Control

Control

Can characterize
combinatorial

pharmacodynamics
OR

combination only

Cannot characterize
combinatorial

pharmacodynamics
OR

individual agents

Figure 2.

Rationalizing trial designs for combinatorial immunotherapy. Regulatory approval of combinations of therapeutic agents in medicine usually requires a
demonstration of each component’s independent contribution. The ability to evaluate pharmacodynamic effects of single agents and/or combinations may help
determine whether randomized studies require arms including both single agents and combinations. When neither component is known to be effective or approved
for its indicated use, or when neither have efficacy as a single agent by itself, a two-arm design comparing the combination to a control agent (placebo) can be
considered. Assessment of immune response must not only quantify the degree of immune activation but also the functional status of the response generated.
Adapted from an image created with BioRender.com.
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specific RANO (iRANO) aim to standardize determination of
response, but their utility in trials using experimental combinations
is yet to be validated (70). To determine response more accurately and
avoid premature treatment discontinuation, the definition of progres-
sion will need to require confirmation on two separate observations or
to not consider early progression within a prospectively defined time-
interval as per modified RANO (81). In patients who do respond after
early progression, PFS should be based on the start of therapy.

Determining potency, predicting clinical effects, and understanding
the impact of themanufacturing process on the final drug product and
stability are all required for regulatory approval. However, demon-
strating these effects in combination therapies poses practical and
ethical problems. Evaluation of purity and potency can be difficult if a
treatment is composed of a combination of heterogeneous compo-
nents (e.g., autologous blood or tumor-derived cellular therapies;
ref. 82). One approach to overcome this is to use quantitative assess-
ments such as the time to kill 50% of target tumor cells (KT50; ref. 83).
Other approaches may involve correlating outcomes with serial
immune assays to quantitatively measure the relative immunogenicity
of a combination. Statistical modeling using toxicity and antitumor
toxicity have also been considered (84, 85). However, many of the
techniques used including cytokine release, tetramer, cytotoxicity,
and the enzyme-linked immune absorbent spot (ELISpot) assays are
often only technically validated in the research laboratory, and the
frequency with which they are performed vary widely, leading to
variable results (86).

To generate valid and transferable data based on immune assays,
harmonization and standardization of techniques is required to estab-
lish the expected immune response from known effective immu-
notherapies, against which new combinations can be evaluated. Cur-
rent FDA-approved biomarkers of tumor mutational burden (TMB)
that are used to predict response to the checkpoint inhibition pem-
brolizumab in solid tumors, do not have the same predictive value in
gliomas (35) and therefore a pathology-specific assay is required.

Conclusion
Although immunotherapy holds significant promise for overcom-

ing the challenges of immune dysfunction and tumoral heterogeneity,
it is increasingly apparent that a single agent alone will not suffice.
Exploration of combinations of ICB with neo-epitope vaccination
strategies in IDHmutant gliomas is one promising approach, but IDH
is expressed in a minority of glioblastomas. Further, the cancer
lineage–specific ability of glioblastoma to drive T-cell anergy and
apoptosis poses a significant obstacle for ICB therapies. Given this,
more work is required on alternative strategies such as combinatorial
T-cell costimulation or blockade of tumoral metabolic pathways.
Evaluating potential combinations in patients who may not benefit
from TMZ and are therefore less prone to hypermutation will be
helpful to accurately determine biological activity. The timing of
administration relative to routine clinical interventions such as steroid
administration, radiation therapy, and the aforementioned alkylating
chemotherapy, all of which possess varying immuno-modulatory
effects, must also be weighed. Neoadjuvant and surgical window of
opportunity studies (where tumor tissue can be collected after com-
binatorial immunotherapy) may offer the most sensitive PD and PK
analysis, but other surrogate markers of effect such as KT50 are also
useful. Model-assisted trial designs may help assess dosage and
schedules for different combinations, but it is important to consider
that maximal synergistic effect may not occur at the maximal
therapeutic dose. Although combinatorial approaches may unlock

the true potential for immunotherapy in glioblastoma, the lack of
success in glioblastoma immunotherapy trials demands a tailor-
made combinatorial approach. International collaboration will be
necessary to develop trials, which have the scope and recruitment
necessary to integrate such biologic complexities into their design
(see summary box).

Summary Box and Key Messages

To date, immune-based monotherapies have failed to improve survival of
patients with glioblastoma.

Glioblastoma exerts cancer lineage–specific mechanisms of immune
escape and can induceprofound local and systemic immunosuppression.

Given the lack of efficacy seen when using combinations with anti–PD-1/
anti–CTLA-4 to date, cancer lineage–specific checkpoint inhibition (e.g.,
IDO1, LAG3, TIM3) and costimulatory agonistic targets (e.g., CD40,
CD27) are worth exploring.

Timing of combinatorial immunotherapy relative to standard-of-care
treatment must be carefully weighed.

TMZ may induce hypermutation and drive heterogeneity, and drive
resistance to immunotherapies and their combinations.

Bevacizumabmayhelp to reduce edema and therefore reduce the need for
immunosuppressive corticosteroids, and can be used as an adjunct to
combination immunotherapy.

Harmonization, standardization of immune technologies, and generation
of reference values will help accelerate preclinical and early clinical
development in glioblastoma.

Flexible trials such as model-assisted and adaptive designs are required to
rapidly assess potential novel combinations.

Surgical window-of-opportunity trials, neoadjuvant trials, and trials with
primary biologic (PD, PK) endpoints are recommended as theymay help
shorten lengthy pre-clinical and often futile clinical investigation.
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