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How Does Temporal Resolution Influence Geomagnetic
Reversal Statistics?
B. Buffett1 and M. S. Avery1

1Department of Earth and Planetary Science, University of California, Berkeley, CA, USA

Abstract Polarity intervals from marine magnetic anomalies exhibit variability that departs from a
Poisson process. The deficit of short polarity intervals is well represented by a Weibull distribution with a
shape parameter k > 1. Polarity intervals from a stochastic model also obey a Weibull distribution, but the
shape parameter is controlled by the temporal averaging used to approximate the resolution of the marine
record. Reducing the time averaging yields polarity intervals that are well described by a distribution with
k < 1, suggesting that short polarity intervals are missing from the marine record. All of these missing
polarity intervals are expected to occur when the dipole field is weak relative to the time average, often
during transition states. We associate many of these short polarity intervals with frequent changes in the
sign of the dipole during the transition. These short polarity intervals should be detectable in
high-resolution observations of magnetic directions.

1. Introduction
Marine magnetic anomalies (MMA) over the past 160 Myr provide a detailed record of geomagnetic polar-
ity transitions. The chronology of these transitions serves the basis of the geomagnetic polarity timescale
(Ogg, 2012). All polarity intervals 30 kyr and longer are thought to be captured in the MMA record (Gee
& Kent, 2015), although shorter, and previously unrecognized, polarity intervals are occasionally proposed
(Krijgsman & Kent, 2004; Roberts & Lewin-Harris, 2000). Counter arguments usually invoke fluctuations
in paleointensity to account for the anomalous paleomagnetic observations (Bowles et al., 2003; Lanci &
Lowrie, 1997). Distinguishing between these two interpretations is important because it affects the statistics
of geomagnetic reversals and our understanding of their physical origin.

An early investigation of the MMA record represented geomagnetic reversals as a Poisson process (Cox,
1969). The expected probability distribution for the polarity interval, 𝜏, is governed by an exponential distri-
bution, which requires the occurrence of short polarity intervals. A subsequent study (Naidu, 1971) favored
a gamma distribution to account for the perceived deficit of short polarity intervals. The gamma distribution,

g(𝜏) = 𝜆k

Γ(k)
𝜏k−1e−𝜆𝜏 , (1)

is specified by two parameters; 𝜆 defines the rate of the process and k is a shape parameter that describes
deviations from an exponential distribution. Here Γ(k) is the gamma function. An exponential distribution
is recovered by setting k = 1. Fewer short polarity intervals are expected when k > 1, whereas more short
polarity intervals are predicted when k < 1 (see Figure 1). The current MMA record favors k > 1 (Lowrie
& Kent, 2004; Naidu, 1971), and this result is supported by arguments about the finite time required for
polarity transitions to occur (Merrill & McFadden, 1994). This line of reasoning is taken as evidence that
geomagnetic reversals cannot be strictly a Poisson process.

Dynamo models have not yet clarified the most appropriate probability distribution for geomag-
netic reversals. Even the most realistic simulations (e.g., Schaeffer et al., 2017) are still very far from
Earth-like conditions, and these models are presently too computationally demanding to run for long
enough to collect statistics on geomagnetic reversals. Instead, the numerical models must adopt very high
values for fluid viscosity to allow long integrations and a sufficient sampling of polarity transitions (e.g.,
Driscoll & Olson, 2009). Such high viscosities restrict the fluid motions to large scales, so we might ques-
tion whether these models are capable of producing short polarity intervals. The study of Driscoll and Olson
(2009) reported no polarity intervals shorter than about two dipole diffusion times, which corresponds to
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Figure 1. Gamma and Weibull probability density functions for the polarity
interval, 𝜏, scaled by the rate parameter 𝜆. Both of these distributions
specify the relative occurrence of short polarity intervals using a shape
parameter k. More (less) short polarity intervals occur when k < 1 (k > 1).
An exponential distribution (k = 1) describes the polarity intervals from a
Poisson process.

roughly 100 kyr. Lhuiller et al. (2013) also reported long polarity inter-
vals in dynamo simulations, although they were able to drew several
interesting conclusions about the statistics of chron lengths. In particu-
lar, they found that the use of filtering to isolate polarity transitions in the
simulations affected the shape parameter k.

Another approach relies on stochastic models for the paleomagnetic field
(e.g., Brendel et al., 2007). These models have a physical basis (Scullard &
Buffett, 2018), and they are capable of reproducing many observed prop-
erties of the paleomagnetic field (e.g., Buffett & Puranam, 2017; Meduri
& Wicht, 2016). For this reason we use stochastic models to address the
question of reversal statistics and to quantify the extent to which these
statistics are affected by the temporal resolution of the geological record.

2. Stochastic Model for the Paleomagnetic Field
Fluctuations in the axial dipole moment, x(t), can be represented concep-
tually by the motion of a particle in a double potential well (see Figure 2).
The particle settles toward the base of one of the potential wells, but
random noise continuously disturbs the motion. The source of noise is
intended to reflect the influence of random convective fluctuations on
the dipole moment. Occasionally, a series of random fluctuations push
the particle across the barrier between the two potential wells, causing a
polarity transition. The amplitude of the random noise and the general
form of the potential well can be estimated from paleomagnetic observa-

tions. Here, we adopted the double potential well, U(x), and the noise amplitude, D(x), recovered by Buffett
and Puranam (2017) from stacks of relative paleointensity measurements from the past 2 Myr (Ziegler et al.,
2011), supplemented with higher-resolution measurements from the past 10 kyr (Constable et al., 2016). We
treat the noise amplitude as a constant, which allows us to recover a representative estimate for D from the
10-kyr CALS10k2 model. The potential is based on the 2-Myr PADM2 M model using the functional form
given in equation (27) from Buffett and Puranam (2017). Realizations of the stochastic model are computed
by numerically integrating the stochastic differential equation

dx = −
(
𝜕U
𝜕x

)
dt +

√
2DdW , (2)

Figure 2. Motion of a particle in a double potential well, U(x), is analogous
to the stochastic model for the dipole moment. The particle settles toward
the bottom of a potential well, but random noise continuously disturbs the
state x. A sequence of disturbances can occasionally send the particle over
the barrier at x = 0, causing a polarity transition.

using an Euler-Maruyama method (Risken, 1989) with a discrete time
step of Δt = 1 kyr. Here dW represents uncorrelated (white) noise drawn
from a normal distribution with mean of 0 and variance of Δt.

We assess the statistics of polarity intervals using the mean, median,
and standard deviation of 𝜏 recovered from realizations of the stochastic
model. Dividing the median and standard deviation by the mean yields
quantities that are independent of the rate, 𝜆. This choice allows us to
focus attention on the shape parameter k. We interpret the stochastic
model using a Weibull distribution

𝑓 (𝜏) = k𝜆k𝜏k−1e−(𝜆𝜏)k , (3)

where 𝜆 and k are the rate and shape parameters (analogous to the param-
eters in the gamma distribution). The Weibull and gamma distributions
are similar in many respects (see Figure 1), and they give nearly indistin-
guishable fits to the chron lengths from marine magnetic anomalies (see
Figure S1). The main advantage of the Weibull distribution is the avail-
ability of a simple closed-form expression for the median. The normalized
median is

m̃ = (ln 2)1∕k

Γ(1 + 1∕k)
, (4)
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Figure 3. Normalized median, m̃, and standard deviation, 𝜎̃, for a Weibull
distribution (red). Statistics for the observed polarity intervals are computed
from 10-Myr intervals of the marine magnetic anomaly record. The cloud of
points is generated by shifting the 10-Myr interval back in time at
increments of 1 Myr. Polarity intervals from the stochastic model follow a
Weibull distribution, where the shape parameter, k, is set by the temporal
resolution of the realization. The error bars represent the 1-sigma
uncertainty from two hundred 10-Myr realizations.

and the normalized standard deviation is

𝜎̃ =
[
Γ(1 + 2∕k)∕Γ(1 + 1∕k)2 − 1

]1∕2
. (5)

Both of these expressions are independent of the rate parameter 𝜆.

Variations in m̃ and 𝜎̃ with k for the Weibull distribution are shown in
Figure 3. Higher values of k yield lower 𝜎̃ and higher m̃. Conversely, lower
values of k give higher 𝜎̃ and lower m̃. An exponential distribution (k = 1)
has 𝜎̃ = 1 and m̃ = ln 2. Observations of the normalized median and stan-
dard deviation from the GPTS 2012 record (Ogg, 2012) are superimposed
on the predictions for the Weibull distribution in Figure 3. Each point
in Figure 3 is computed from the sample mean, median, and standard
deviation in a single 10-Myr time interval. This interval is shifted back
in time in increments of 1 Myr to produce a set of estimates that extend
back to 48 Ma. The scatter of points falls on top of the Weibull distribu-
tion between k = 0.9 and 1.2, although the majority of points lie between
1 < k < 1.2. This preference for k > 1 is consistent with a deficit of short
polarity intervals.

We compare this result with the predictions of the stochastic model by
running a series of 10-Myr realizations. We recover a single estimate for
m̃ and 𝜎̃ from each realization. Combining the results of 200 realizations
gives a reliable sample mean and variance. Each realization is filtered
in time using a running average to account for the limited temporal res-
olution of the geological observations. Distinct results for the reversal
statistics are recovered with different choices for the averaging time. Cal-

culations with an averaging time of 10, 30, and 60 kyr are shown in Figure 3, together with the 1-sigma error
bars. The normalized median and standard deviation from the stochastic model follow the trend from the
Weibull distribution, where the averaging time appears to correspond to a particular value of k. An aver-
aging time of 10 kyr corresponds roughly to k ≈ 0.8, whereas an averaging time of 60 kyr corresponds to
k ≈ 1.1. Interestingly, the stochastic model with a time average of 30 kyr has reversal statistics very close to
the predictions for an exponential distribution (k = 1). Similar values for the shape parameter have been

Figure 4. Average reversal rate, r, from two hundred 10-Myr realizations of
the stochastic model. Changes in temporal averaging cause a systematic
trend in r. An estimate of r from Kramers' formula (Risken, 1989)
corresponds most closely to an averaging time of 30 to 40 kyr. A shorter
averaging time causes a marked increase in r.

recovered from dynamo simulations using comparable levels of filtering
(see Table 2 of Lhuiller et al., 2013).

The correspondence between the predictions of the stochastic model and
a Weibull distribution suggests that the shape parameter can be inter-
preted as a measure of the temporal resolution of record. We cannot
strictly equate the averaging time to a temporal resolution because about
12% of the polarity intervals from the stochastic model are shorter than
the averaging time. Still, we can expect the temporal resolution to be pro-
portional to the averaging time. A longer averaging time yields a deficit
of short polarity intervals relative to a Poisson process, so we might rea-
sonably expect a low-resolution record to yield statistics with k > 1. This
outcome is not entirely surprising, but we can now quantitatively assess
how the statistics change when the temporal resolution is altered.

3. Consequences of Temporal Resolution
A large number of short polarity intervals are predicted by the stochastic
model when the averaging time is low (e.g., k < 1), suggesting that the
geological record is missing short polarity intervals. The direct influence
of averaging time on the rate of polarity transitions is shown in Figure 4.
We use a large ensemble of 10-Myr realizations to compute the mean
reversal rate and its uncertainty. The error bars are mainly determined
by the duration of the record; longer realizations produce smaller error
bars. A 10-Myr realization is chosen to match our analysis of the observed
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Figure 5. Realization of the stochastic model through a polarity transition.
A smooth transition between stable polarities occurs when a time average
of 30 kyr is applied to account for the temporal resolution of the marine
magnetic anomaly record (black). The actual realization (gray) exhibits
several zero crossings when the dipole moment is weak. Fluctuations in the
dipole moment during the transition can reach x = ±3 × 1022 A/m2.

polarity intervals. As we reduce the averaging time from 80 to 10 kyr, there
is a steady increase in the rate of reversals. An estimate of the reversal rate
from Kramers' formula (see equation (28) in Buffett & Puranam, 2017) is
also shown in Figure 4. Kramers' formula can be interpreted as the mean
time it takes for a particle at the bottom of one potential well to reach the
top of the barrier. The slightest nudge sends this particle sliding down
into the second potential well. The prediction of Kramers' formula agrees
well with the outcome of model realizations when the averaging time is
roughly 30 to 40 kyr. The reason for this correspondence is related to the
typical duration of polarity transitions.

When a particle is placed at the top of the barrier, it will eventually make
its way to the bottom of a potential well. We can use the stochastic model
to predict how long this descent takes, at least on average. An estimate
can be recovered from a large number of realizations, or the problem
can be formulated in terms of a solution of the Fokker-Planck equation
(Risken, 1989). In either case, we compute a recovery time of about 28 kyr
(Buffett & Puranam, 2017), which is in good agreement with the average
value inferred from the PADM2 M model of Ziegler et al. (2011). In other
words, we can expect the dipole moment to return to its time-averaged
amplitude roughly 28 kyr after a reversal. At this point the dipole begins
its next attempt to cross the barrier from a position near the bottom of a
potential well. More complicated trajectories are evident if we focus on
the evolution of the dipole while it remains near the top of the barrier
after a reversal. For example, a particle might return to the original polar-

ity shortly after moving into the reversed polarity. Most of the details of these trajectories are suppressed by
averaging over a timescale that is comparable to the recovery time (see Figure 5). We record only the dipole
arriving at the bottom of a potential after roughly 30 kyr (on average). Starting the next reversal process from
the bottom of a potential well is precisely the context that Kramers' formula was intended to approximate.

We now consider the more complicated trajectories that become possible when the temporal averaging is
reduced. A relatively small fluctuation is sufficient to send the dipole back over the barrier when the time
after a reversal is too short to allow the dipole to settle into a stable polarity. As we decrease the averaging
time below the recovery time of 28 kyr, we begin to identify reversals in the stochastic model that occur
before the amplitude of the dipole has fully recovered. Once the averaging time drops below 10 kyr, we
have nearly doubled the rate of reversals, and all of these additional reversals occur when the geomagnetic
field is weak relative to its long-term average. Detecting these reversals in the geological record would be
difficult for two reasons. First, we need sufficient temporal resolution to identify short polarity transitions.
Second, we need to detect short chrons when the amplitude of the dipole field is weak. Contributions from
the nondipole part of the field become more important when the dipole is weak, so short polarity intervals
are liable to have a complex geographic expression in paleomagnetic observations (Brown et al., 2007).

On strictly theoretical grounds we expect the reversal rate in the stochastic model to increase without limit
as the averaging time decreases. This surprising outcome is actually consistent with the predictions of the
Weibull distribution. To understand this behavior, we note that the stochastic differential equation in (2)
describes a Wiener process near x = 0 because the gradient of the potential vanishes. If we discretize the
solution by taking fixed time steps (say Δt = 1 kyr), then the number of times x(t) crosses zero, on average,
is proportional

√
n, where n is the number of 1-kyr time steps through the transition (DasGupta & Rubin,

1998). Here the transition duration is taken to mean the time needed for the dipole to settle into a stable
polarity. Decreasing the time step improves the temporal resolution, but this change increases the number
of time steps through the transition; it also increases the number of zero crossings. All of these additional
zero crossings occur at the shortest time interval permitted by the refinement in the time step. In other words
we are accumulating zero crossings with small 𝜏, consistent with the expected correspondence between a
small temporal resolution (Δt) and a small shape parameter k < 1. In the limit as Δt and k go to zero, the
normalized median in (4) also goes to zero. This means that the polarity intervals cluster without limit near
𝜏 = 0.
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In practice, we cannot allow the time step in the stochastic model to decrease without limit because the
noise term would no longer be uncorrelated. Numerical dynamo models (e.g., Buffett & Matsui, 2015; Olson
et al., 2012) suggest that the correlation time of convective fluctuations is shorter than the overturn time,
L∕Vrms = 160 years, where L = 2, 260 km is the thickness of the outer core and Vrms = 0.45 mm/s is an
estimate of the convective velocity (Holme, 2015). We can think of the correlation time as a limit on the
allowable temporal resolution for a standard stochastic model. Such a model could plausibly permit polarity
intervals as short as a few hundred years if there were no other restrictions on our ability to record the
dipole field. Of course, the amplitude of the dipole field between these transitions would be small, and such
events would not conform to our usual view of geomagnetic reversals. However, there is no simple way to
separate the continuum of behavior between low-amplitude and short-period polarity intervals and the more
conventional view of geomagnetic reversals as a transition between two states of stable polarity. In fact, our
conventional view may be partially shaped by the coincidence of dipole recovery time with the temporal
resolution of the MMA record. Under these conditions, the dipole moves smoothly from one polarity to the
other without much complexity during the transition.

4. Discussion
Several lines of evidence point to short polarity intervals in the paleomagnetic record. Confirmation of new
polarity transitions in high-resolution sediment cores, like those proposed by Roberts and Lewin-Harris
(2000), would shift the statistics of geomagnetic reversals toward lower values for k. Geomagnetic excursions
are another type of brief event that sometimes exhibit directional changes of approximately 180◦ before
returning to the direction established prior to the excursion (e.g., Laj et al., 2006). Laj and Channell (2015)
prefer to describe these events as microchrons because their duration is less than 10 kyr. These events are
too short to be detected in the MMA record, where the resolution for the fastest plate spreading rate is
about 25 kyr (Gee et al., 1996). Including microchrons in the reversal statistics would shift the distribution
to lower k. There are also indications of precursors and rebound features in magnetic directions around the
time of well-established polarity transitions (Valet et al., 2012). Magnetic directions can change by 90◦ or
more before and after the main transition. It is possible that some of these features represent short-period
polarity transitions during times when the dipole is fluctuating about a weak state. It is common for the
stochastic model to exhibit three or more sign changes during a transition from one stable state to another
(see Figure 5). The main question is whether the amplitude of the dipole field between these sign changes
is large enough to be detected in magnetic directions.

A weak dipole field allows magnetic directions to be strongly influenced by the nondipole field. These direc-
tions become increasingly aligned with the dipole when the strength of the dipole rises above the level of the
nondipole field. The strength required to align magnetic directions with the dipole depends on the amplitude
of nondipole components and on the geographic location of the observations (Quidelleur et al., 1999). The
study of Brown et al. (2007) used the nondipole components from the CALS7k.2 model (Korte & Constable,
2005) to show that magnetic directions during a polarity transition cluster around the final direction once
the dipole moment reaches x = 2.5 × 1022 A/m2. Some geographic locations have magnetic directions
aligned with the dipole when axial dipole moment is as small as x = 2 × 1022 A/m2 (Brown & Korte, 2016;
Valet & Plenier, 2008). We can use the time required for the dipole to reach to a suitable threshold to estab-
lish the duration of the shortest detectable chron in measurements of magnetic direction. An approximate
expression for the average recovery time, 𝜏 t, is (Buffett, 2015)

𝜏t =
4x2

t

D𝜋2 , (6)

where xt is the prescribed threshold and D was previously defined as the amplitude of the noise term.
This simple expression overestimates 𝜏 t when the threshold is set at the time-averaged dipole moment
(i.e., xt = 5.3 × 102 A/m2). We obtain 33 kyr from (6) compared with 28 kyr from a full solution of the
Fokker-Planck equation using D = 0.34 × 1044 A2·m4·kyr−1 (Buffett & Puranam, 2017). However, the dis-
crepancy between (6) and a more extract treatment is substantially reduced when the threshold is lowered.
For xt = 2.5 × 1022 A/m2, we obtain 𝜏 t = 7.5 kyr, which is comparable to values commonly cited for the
duration of a reversal in magnetic direction (Clement, 2004). A duration predicted from (6) represents an
ensemble average, so shorter (and longer) transitions are permitted. On the other hand, consistently shorter
durations would imply a lower threshold for establishing a stable magnetic direction. For example, taking
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xt = 2× 1022 A/m2 gives an average duration of 4.8 kyr. Any specific instance of the stochastic process could
plausibly give durations that were 50% higher or lower. This means that we might establish a new magnetic
direction on timescales as short as 2.4 kyr if a dipole moment of xt = 2 × 1022 A/m2 was sufficient to define
a stable magnetic direction.

Detectable polarity intervals with durations shorter than 10 kyr require fluctuations in the dipole about
a weak state (nominally x < 3 × 1022 A/m2). This behavior is distinct from suggestions of a correlation
between reversal rate and field intensity (e.g., Tauxe, 2006) because the field intensity in this context is
usually intended to represent the time average. Many of the short polarity intervals in the stochastic model
occur when the field intensity is decreasing into a transition state. Several changes in polarity can occur
before the magnetic field passes through the transition and reestablishes the time-averaged amplitude. The
stochastic model offers a more complicated view of magnetic reversals because we find many short polarity
intervals interspersed through a conventional reversal, based on the MMA record. Detecting these short
events would require high-resolution sedimentary records, especially at time periods with tiny wiggles in
the marine anomalies. A weak paleointensity (Bowles et al., 2003; Lanci & Lowrie, 1997) is precisely the
condition needed to allow short polarity intervals.

5. Conclusions
A statistical analysis of the observed polarity intervals in the MMA record supports the view that geomag-
netic reversals are not represented by a Poisson process. The observed record reveals a deficit of short polarity
intervals relative to the predictions of a Poisson process. Instead, the observations are better represented by
a Weibull probability density with a shape parameter k > 1. Polarity intervals from a stochastic model are
also found to obey a Weibull distribution. However, the shape parameter is controlled by the temporal aver-
aging applied to the stochastic model to represent the finite resolution of geological observations. Applying
an averaging time of 30 kyr to the stochastic model yields a distribution of polarity intervals that closely fol-
lows a Poisson process. Adopting a lower time average, or equivalently using higher-resolution observations,
gives polarity intervals that follow a Weibull distribution with a shape parameter k < 1. This result means
that short polarity intervals are preferentially generated by the stochastic model relative to the predictions
of a Poisson process. We suggest that these short polarity intervals are not captured in the MMA record, but
they may be detected in paleomagnetic observations from high-resolution sediments core. Brief geomag-
netic excursions that shift magnetic directions through 180◦ may be representative examples of this type of
short event. All of these short events should occur when the dipole field is weak relative to the time average.
Thus, we expect to find a weak dipole amplitude between closely spaced reversals in magnetic direction.
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