Title
Hydro-morphological parameters generate lifespan maps for stream restoration management

Permalink
https://escholarship.org/uc/item/29t464cv

Authors
Schwindt, S.
Pasternack, G.B.
Bratovich, P.M.
et al.

Publication Date
2019-02-01

DOI
10.1016/j.jenvman.2018.11.010

Peer reviewed
Research article

Hydro-morphological parameters generate lifespan maps for stream restoration management

S. Schwindta, G.B. Pasternackb, P.M. Bratovichb, G. Rabonec, D. Simodynes

a Department of Land, Air and Water Resources, University of California at Davis, One Shields Avenue, Davis, CA, 95616-8626, USA
b HDR, 2365 Iron Point Road, Suite 300, Folsom, CA, 95630, USA
c Yuba Water Agency, 1220 F Street, Marysville, CA, 95901, USA

ARTICLE INFO

Keywords:
Eco-morphology
Habitat enhancement
River management
Stream restoration
Sustainability

ABSTRACT

Anthropogenic, eco-morphological degradation of lotic waters necessitates laws, directives, and voluntary actions involving stream restoration and habitat enhancement. Research and engineering efforts are establishing a vast number of stream restoration planning approaches, design testing frameworks, construction techniques, and performance evaluation methods. As the practice of restoration scales up from an individual action at a single site to sequences of actions at many sites in a long river segment, a primary question arises as to the lifespan of such a sequence. This study develops a new framework to identify relevant parameters, design criteria and survival thresholds for ten multidisciplinary restoration techniques, adequate for site-scale to segment-scale application, in a comprehensive review: (1) bar and floodplain grading; (2) berm setback; (3) vegetation plantings; (4) riprap placement; (5) sediment replenishment; (6) side cavities; (7) side channel and anabranches; (8) streambed reshaping; (9) structure removal; and (10) placement of wood in the shape of engineered logjams and rootstocks. Survival thresholds are applied to a sequence of proposed habitat enhancement features for the lower Yuba River in California, USA. Spatially explicit hydraulic and sediment data, together with numerical model predictions of the measures, were vetted against the survival thresholds to produce discharge-dependent lifespan maps. Discharges related to specific flood-return periods enabled probabilistic estimates of the longevity of particular design features. Thus, the lifespan maps indicate the temporal stability of particular stream restoration and habitat enhancement features and techniques. Areas with particularly low or high lifespans help planners optimise the design and positioning of restoration features.

1. Introduction

Throughout history, wide-ranging river rectifications and monotone stream patterns have been engineered for economic benefits, such as the conversion of the Rhine River into a navigable channel (Tulla, 1812). Today, many eco-morphological problems resulting from stream rectification are considered serious impacts on stream ecology, ecosystem services, and the broader economy (e.g., devastating floods) (Blackbourn, 2006; Surian and Rinaldi, 2003). Consequently, governments write laws, issue directives, and fund voluntary actions involving stream restoration and habitat enhancement (e.g., the U.S. National Environmental Policy Act 1969; Canadian Environmental Protection Act 1999; European Water Framework Directive 2000, Wohl et al. (2015) summarised the state of science and practice of stream restoration in a review of small, medium and large rivers. They identified useful paradigms for the planning of habitat enhancement projects.

Technical features of stream restoration were documented in several studies (e.g., Bernhardt et al., 2005; Morandi et al., 2014; Wohl et al., 2015) and a multitude of assessment strategies are available (e.g., Feio et al., 2016; Rinaldi et al., 2017).

Still, Wohl et al. (2015) legitimately asked, “How do we approach river restoration?” A generalised and quantitative answer to that question is not yet available, especially from a technical point of view. In addition to the scientific underpinnings, decision makers require accountability of the lifespan of restoration features for prioritising particularly relevant projects. Society is spending a lot of money to build projects, but too little effort has gone into ascertaining the longevity of such investments.

This study uses a large dataset from California’s well-documented lower Yuba River (e.g., Barker et al., 2018; Pasternack and Wyrick, 2017) to create lifespan maps for quantifying the lifetime of stream restoration features. The term “feature” denotes any one specific
technical component to achieve some beneficial stream restoration on a reach scale (10–100 times the channel width, Pasternack and Wyrick, 2017). An example of a feature is “vegetation planting” to improve habitat quality and increase channel stability.

A comprehensive and interdisciplinary literature review identifies relevant features and the fundamental data necessary for assessing their lifespans. Moreover, the literature review identifies parameter-related survival thresholds, where constructive details are listed in the supplemental material. Based on the parameter thresholds, we introduce a procedure for deriving lifespan maps and then test that approach using a proposed habitat enhancement framework for the lower Yuba River.

2. Methodology

2.1. Approach

Wohl et al. (2015) identify ten common goals of river restoration on several scales, which are achieved by applying stream restoration features. We consider only constructive features without taking into account requirements such as “land acquisition.” Moreover, we exclude “dam removal” because of the complexity and involvement of factors that cannot be assessed with hydrodynamic modelling and topographic change measurements (O’Connor et al., 2015; Foley et al., 2017). For example, dams often have multiple purposes (e.g., flood protection, hydropower generation or water supply) and they may be required for resilience and security of water resources as well as energy generation (Beatty et al., 2017; Schleiss, 2017). Therefore, dam removal or discharge releases imply higher order administrative decisions (Grant, 2001; Tullos et al., 2016; Stamou et al., 2018) beyond the scope of reach-scale stream restoration. However, we consider the removal of small structures such as sills, check dams (closed type) or bank re-inforcements in the review of reach-scale restoration features.

Table 1 lists restoration goals (Wohl et al., 2015) that can be achieved with numerically assessable features at the river reach scale. Relevant features (indicated with “x”) can potentially be numerically characterised by topographic change and hydrodynamic modelling. The listed features result from a review of habitat enhancement projects that are mainly situated in the United States (see the supplemental material for a complete list). Projects that are briefly mentioned in the literature without indication of technical details of features served for the verification of the completeness of the feature list. Moreover, this study does not consider passive actions or features that are restricted to a single project, including human employment.

The following sections introduce the study site of the lower Yuba River, parameters characterising the physical stability of features and a review of the relevant features (Table 1) with explanations of their application. The review leads to the identification of quantitative hydraulic and geomorphic parameters controlling lifespan. These parameters have threshold values. When flood flows exceed the feature-specific thresholds, the related features become physically unstable which represents termination of their lifespan. Relating parameter threshold values to flood return periods (i.e., recurrence intervals) enables estimation of a feature’s expected lifespan. Finally, we provide explanations on the creation of maps indicating the resulting lifespans of proposed restoration and habitat enhancement features for the lower Yuba River.

2.2. Study site

The Yuba River is located in Northern California. Its lower 37-km segment is being evaluated for diverse river restoration projects supporting anadromous spring-run Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss), both federally listed as threatened species. This wandering cobble-gravel bed river has coarse substrate (0.30 m) at Englebright Dam where the segment begins and much finer substrate (0.04 m) close to its confluence with the Feather River (downstream boundary) ment (Jackson et al., 2013). The average wetted baseflow width is 59.4 m and the average channel slope varies between 0.16 and 0.18%. Irrigation water (approximately 9.9 m³/s) is diverted at Daguerre Point Dam located 17.8 km upstream of the Feather River.

Several morphologically important discharges have been determined for the lower Yuba River (Abu-Aly et al., 2014). Englebright Dam controls flows below 118.9 m³/s. An environmental flow regime is in place with seasonally variable releases depending on a water-year classification. In normal to wet years, 25 m³/s is a typical baseflow discharge. Based on thorough geomorphic investigation, the bankfull discharge corresponds to a 1.2-year flow recurrence interval of 141.6 m³/s. Other relevant flows include the floodplain inundation flow (2.5-year return flow of 597.5 m³/s), double the floodplain inundation flow (a 4.7-year return flow of 1195 m³/s), quadruple the floodplain inundation flow (12.7-year return flow of 2390 m³/s) and the peak flood associated with the 2006–2008 topographic map (a 20.0-year recurrence interval flood of 3126 m³/s).

2.3. Pre-existing data used in this study

The lower Yuba River has been a testbed river segment for a variety of basic and applied hydrodynamic, geomorphic, and ecohydraulic research topics for the last 15 years, yielding abundant baseline data and hydrodynamic models vetted through independent scientific peer reviewed journal procedures and locally driven open review by

<p>| Table 1 |
| Stream restoration features and their primary goals (Bernhardt et al., 2005; Wohl et al., 2015), which are marked with “x.” |</p>
<table>
<thead>
<tr>
<th>Features</th>
<th>Bank & channel stabilisation</th>
<th>Channel reconfiguration</th>
<th>Floodplain connectivity</th>
<th>Instream habitat recovery</th>
<th>Recreation, Aesthetics</th>
<th>Fish passage</th>
<th>Flow modification</th>
<th>Species management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar & Floodplain grading</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berm setback (widening)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantings</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riprap</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment replenishment</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side cavities</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side channels</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure removal</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swale and backwater creation</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Includes groynes and bank scalloping.
* Refers to engineered log jams and rootstocks.
stakeholders (e.g., government agencies, private industry, and non-governmental organisations). The lifespan maps reported in this study build upon those existing datasets and, therefore, this article does not extensively reiterate their development.

The four primary sources of inputs to the lifespan maps consist of stream gage records, a riverbed sediment facies survey, repeated topographic surveys of the river, and a set of 2D hydrodynamic models of the river. Past literature detailing the maps and models is publicly available (Jackson et al., 2013; Abu-Aly et al., 2014; Pasternack and Wyrick, 2017). Flow data used in this study was obtained from the United States Geological Survey (USGS) stream gages that are located downstream of Englebright Dam at Smartsville (#11418000) and at Marysville (#11421000).

Given the large area of the lower Yuba River, the best way to characterise riverbed sediments for the bankfull channel involved visual facies mapping that identifies the surface pattern by classifying patches of similar grain size distributions. For each patch, a specifically trained research crew estimated the relative abundance of seven size bins (see Table A.II, supplemental material) to the nearest 10%. The training consisted in visually estimating grain size classes of known sediment samples. Size bins were designed to maximise visual difference given the specific size distribution of surface substrate particulars in the lower Yuba River (Jackson et al., 2013). Observer testing affirmed the high quality of crew performance in both properly identifying presence/absence of each class, as well as estimating their abundances. From these data, multiple rasters mapping the spatial pattern of each size class were used to produce a single weighted-mean grain size raster. For the terrain outside of the bankfull channel, each raster pixel was identified as either vegetated or unvegetated. Both types were assigned the weighted mean grain size of the ground type from the bank region (i.e., between perennial basflow and the bankfull bank top).

Topographic surveys used in this study were conducted during 2008 and 2014. The 2008 surveys cover the whole river, except for one remote, dangerous, narrow 2.0-km gorge in the Englebright Dam Reach of the lower Yuba River (Weber and Pasternack, 2017). The topographic surveys were used to produce digital elevation models (DEMs) with 1 × 1 m² pixels.

A number of derivative data products were generated from DEMs and 2D models as part of past research, and are used as the primary inputs for producing the lifespan maps. Topographic change detection and analysis is an emerging essential tool for geomorphic research, including understanding the longevity of existing landforms (Wheaton et al., 2010). This study used the pre-existing DEM of difference from 2008 to 2014, which accounts for uncertainty using a fixed minimum level of detection threshold, plus a spatially varying statistical level of detection threshold, as rigorously determined and explained in Weber and Pasternack (2017). In this study, the DEM of difference was used to identify average scour and fill rates that are, e.g., relevant for the survival of plantings.

Meter-resolution, two-dimensional hydrodynamic (2D) models were developed with the United States Bureau of Reclamation SRH-2D algorithm from the 2008 DEM. Models span the whole river, except the narrow gorge, and simulated 28 steady state flows ranging from 8.50 to 3126 m³/s (Barker et al., 2018). Model results include rasters of water surface elevation, flow depth h, depth-averaged flow velocity u and energy slope S_e.

From these model outputs, a number of derived products were created, including a depth-to-groundwater raster, a bed shear stress raster, the largest discharge-dependent representative mobile grain size, and a spatially explicit landform map. The depth-to-groundwater raster was produced by projecting the water surface elevation map for the typical baseflow discharge of 25 m³/s out under the terrain DEM and subtracting it from the terrain DEM.

Discharge-dependent and spatially variable grain mobility was predicted as a function of the dimensionless bed shear stress τ. (Du Boys, 1879; Von Karmán, 1930; Kramer, 1932). Grains can be expected to be mobilised when the dimensionless bed shear stress exceeds a threshold value of grain mobility τ_c, equal to 0.047 (Lamb et al., 2008; Shields, 1936). In gravel-bed rivers with a logarithmic vertical velocity profile (e.g., Pasternack et al., 2006), the dimensionless bed shear stress can be computed from the following equation (Keulegan, 1938; Einstein, 1950):

$$\tau_c = \frac{1}{D_{50} g (s - 1) \left[\frac{u}{5.75 \log_{10}(12.2h/(2D_{50}))} \right]^2}$$ \hspace{1cm} (1)

The variable D_{50} corresponds to the bed grain size at which 84% of the bed sediment is finer. It appears here as the relevant grain size for roughness (Rickenmann and Recking, 2011); g denotes gravitational acceleration; s is the ratio of the sediment and water densities that typically takes values of 2.6–2.7 (e.g., Rickenmann, 1990). Surface weighted-mean grain size estimates from Jackson et al. (2013) multiplied with 2.2 are used in this study for deriving D_{50} (according to Rickenmann and Recking, 2011).

2D model outputs, notably, the flow depth h and the energy slope S_e provide estimates of the largest discharge-dependent representative mobile grain size based on:

$$D_{mobile,i} = h_i S_e/[(s - 1) \tau_{c,i}]$$ \hspace{1cm} (2)

The variables h_i and S_e are the flow depth and energy slope related to a flood discharge i according to the flood return periods that are being considered.

Pasternack and Wyrick (2017) mapped the in-channel morphological units for the lower Yuba River. Overbank morphological units (floodplains, hillsides and terraces) resulted from an expert assessment. These morphological units limit the application of restoration and habitat enhancement features to reasonable locations. For example, berm setback only makes sense where berms or similar structures are present. The supplemental material contains a complete list of morphological units that were considered.

The subsequent literature review aims at revealing threshold values of the above-described parameters for assessing feature stability.

2.4. Relevant stream restoration features

2.4.1. Bar and floodplain grading

Bars and floodplains that are disconnected from the aquatic ecosystem are candidates for terrain lowering and terrace (grading), respectively. A disconnection may occur because of channel incision, when the sediment transport (supply) is insufficient to sustain (maintain) the bed level, or because of sediment deposition when the sediment supply exceeds the local transport capacity (Jaeggi, 1984; Chang, 1985; Lisle et al., 1993). Streams may experience insufficient sediment supply because of dams or excess sediment supply because of mining (e.g., Gilbert, 1917).

In the case of sediment scarcity, grading of disconnected bars and terracing of floodplains is reasonable in combination with sediment replenishment or plantings. In particular, vegetation plantings require a short distance to the groundwater table, which determines the extent of grading (required lowering level), especially in arid climates. Numerical model simulations help to identify bars and floodplains that are rarely flooded.

Thus, the distance to the groundwater table combined with the inundation frequency determine candidate sites for grading. Potentially disconnected bars and floodplains can be identify by expert assessment of morphological units (e.g., Pasternack and Wyrick, 2017). The supplemental material contains more details on the effects of terrain lowering on the channel morphology.

2.4.2. Berm setback and river widening

Existing artificial (i.e., man-made) lateral channel confinement
such as berms and dykes can be back-shifted in uninhabited areas. Such setbacks create a widened river section to increase flow passage capacity and decrease sediment transport capacity for each stage impacted by the widening. Widened river sections have more room for lateral habitat abundance and heterogeneity. Moreover, water quality improves and the longitudinal profile stabilises. All of these changes benefit aquatic organisms and riparian vegetation (Reichert et al., 2007; Weber et al., 2009; Woolsey et al., 2007). River widening additionally creates recreation areas (Bernhardt et al., 2005, 2007). Newly created splays are also an opportunity for establishing habitat enhancing side channel systems.

Consequently, berm setback and river widening are adequate features for stream restoration as long as there is no interference with existing infrastructure and flood safety. An expert assessment of morphological units (e.g., Pasternack and Wyrick, 2017) helps to identify lateral structures that are suitable for berm setback. The supplemental material contains additional information on the long-term effects of berm setback.

2.4.3. Planting of vegetation

Plants have habitat enhancing and stabilising effects on the riverbanks and floodplains. In addition, indigenous riparian vegetation provides and improves habitat because it has multiple functions such as filtering, shading, cover, and nutrient provision (e.g., Naiman and Décamps, 1997; Vehanen et al., 2000).

Complementary bioengineering techniques such as geotextiles or wattle fences protect the soil from scouring and increase the survival of plantings. Moreover, engineered logjams produce a wake that protects young plantings and increases their survivorship, particularly on gravel bars (Edwards et al., 1999; Vesipa et al., 2017) and/or with the support of native indigenous shrubs (e.g., Castro et al., 2006).

The survival of plantings depends on dimensionless bed shear stress (Friedman and Auble, 1999), sediment scour or deposition rates (Bywater-Reyes et al., 2015; Kui and Stella, 2016; Pasquale et al., 2014), flow submergence and velocity (Friedman and Auble, 1999; Vesipa et al., 2017), and particularly in arid regions, the distance to the groundwater table (Politti et al., 2018).

Plants generally increase the roughness and decelerate the flow (Abu-Aly et al., 2014; Järvelä, 2002; Ricardo, 2014) leading to higher flow depths. This results in a circular relationship between plants and hydraulic forces (e.g., Wilcox and Shafroth, 2013), which requires particular attention to ensure flood safety in populated areas. The hydraulic effects of plants decrease with decreasing leaf and plant size, stem density and sediment supply. A deficient sediment budget dampens the hydraulic effects of plants (Manners et al., 2015).

A list of country-specific databases is included in the supplemental material. In this study, we used the Calflora (2017) database and reports from local sources (SYRCL, 2013; USACE and YCWA, 2016) to identify the following indigenous species in the Northern Californian foothills, where the lower Yuba River is located: Cottonwood (Populus fremontii), Willows (Salix gooddingii, Salix laevigata and Salix lasiolepis), White Alder (Alnus rhombifolia) and Box Elder (Acer negundo). Although more indigenous species exist, we limited the analysis to those for which numeric survival criteria are available. For the lifespan maps, Table 2 lists the survival criteria for the four plant genera that were considered. The supplemental material contains details on the studies considered, but the available data on plant stability is limited, and more studies on other plant species and older plantings are desirable in the planning of stream restoration.

2.4.4. Riprap, rocks and boulders

The punctual placing of boulders (at a specific point in space) or comprehensive block cover apply to unstable banks or erosion-prone surfaces. The boulders and blocks are sometimes referred to as “riprap” with different sizes (diameters) and they reduce hydrodynamic forces on the flow boundaries (banks and channel bed). Riprap locally creates additional near-bed turbulence, which stabilises the bed and enhances habitat.

The application of riprap ranges from bank revetment and bed or toe protection to the construction of dikes and groynes, and vegetation may be incorporated. When riprap is damaged, it can be easily repaired if done promptly (Maynord and Neill, 2008).

Common failure mechanisms are the direct erosion of blocks, translational slides on steep banks, modified slumps in riprap when toe support is missing or the erosion of supporting slopes after bank overtopping (Julien, 2002). An adequate technique for riprap placing and sizing prevents such failures, where several approaches for the assessment of the adequate riprap size exist. Such design concepts result from a balance of tractive forces (Maynord and Neill, 2008) or probabilistic assessments of block density and weight (Li et al., 1976). Stevens et al. (1976) or USACE (1994) proposed popular approaches for the sizing riprap. These methods refer to 1D cross-section-averaged flow depth and velocities. The 2D models of the lower Yuba River enable an alternative assessment of required block diameters. Thus, relevant riprap sizes are estimated based on the evaluation of the 2D models for Eq. (2.). The supplemental material explains the alternative application of the 1D formulae from Stevens et al. (1976) or USACE (1994).

2.4.5. Sediment replenishment (gravel augmentation)

Dams block coarse sediment flux from the catchment, which leads to the morphological depletion of downstream reaches. In these cases, the restoration of sediment transport dynamics by sediment injections, also referred to as gravel augmentation or sediment replenishment (Bartisacco et al., 2016; Bunte, 2004; Kondolf, 1997; Pasternack et al., 2010), is crucial for the eco-morphological river state (e.g., Hassan et al., 2005). Post-injection analyses have reported on the benefits of well-designed injection programs (Bunte, 2004; McManamay et al., 2011).

The adequate choice of the grain size for sediment replenishment requires the differentiation of two different bedload transport modes (Piton and Recking, 2017): (1) travelling bedload and (2) structural bedload. Travelling bedload transits the river section and it deposits on the riverbanks during floods. Thus, overbank deposits created by floods indicate the size of travelling bedload. The sources of travelling bedload are channel-extern, i.e., fine material from the upstream catchment area or lateral slope erosion. Habitat enhancement preferably considers the size of structural bedload corresponding to the channel bed grain diameter for channel maintenance and spawning substrate replenishment.

Ock et al. (2013) propose four different possibilities for placing gravel in rivers:

- In-channel stockpiles of sediment;
- High-flow stockpiles on the floodplain;
- Point bar stockpiles on the floodplain and river banks;
- High-flow direct injections with conveyor belts.

In-channel gravel injections instantaneously create spawning habitat. Out-of-channel stockpiles should be movable by morphologically effective floods.

Thus, relevant parameters for lifespan maps are the present surface grain size related to the mobile grain size according to Eq. (2). The interpretation will require a differentiated consideration of suitable locations for in-channel gravel injections, which are located in areas of low grain mobilisation rates, and out-of-channel stockpiles, which need to be movable by the small frequent floods close to the bankfull discharge.

The ample literature on sediment replenishment is summarised in the supplemental material and indicates technical details regarding adequate locations, stockpile geometry, discharge conditions, morphological effects, grain size and sediment volumes.
Two types of side cavities: groynes and embayments (based on Juez et al., 2017). These parameters are important for estimating the probability of sedimentation of artificial side cavities (see trends in Fig. 3), where fine sediment is desired as a nutrient source (e.g., Kollongei and Lorentz, 2014) but it may cause undesired clogging of the streambed resulting in the deterioration of spawning habitat (Kondolf, 1997; Sternecker et al., 2013). The supplemental material summarises design criteria for limiting cavity sedimentation by provoking transversal oscillations, similar to lake seiches, which favour the re-suspension of fine sediment in embayments (Rockwell and Naudascher, 1978; Meile et al., 2011; Juez et al., 2017).

The lifespan maps consider side cavities as an on/off criterion because adequate sites for side cavity creation are only delineated by the morphological units “bank”, “cutbank”, “lateral bar” and “spur dike”, where the annual fill rate is smaller than 0.3 m to avoid cavity sedimentation. The supplemental material contains constructive details from the comprehensive literature.

2.4.7. Side channels and anabranches

Anabranching rivers are interesting for river restoration because they provide valuable and sustainable habitat (Riquier et al., 2017). Such multiple thread channels are categorised into stable anabranches (also: anastomosing channels, cf. Nanson and Knighton, 1996; Schumm, 1985), semi-permanent wandering gravel-bed channels (Church, 1983) and fast changing braided channels (Leopold and Wolman, 1957). Many factors are believed to contribute to the formation and stability of anabranches. There is consensus that the balance between the sediment transport capacity and sediment supply, as well as the bank stability, determine the dynamic equilibrium between side and main channels (Cittero and Piégay, 2009; Huang and Nanson, 2007; Lane, 1955; Leopold and Wolman, 1957; Kleinhans et al., 2008; Nanson and Knighton, 1996). The dynamic equilibrium imposes a superordinate morphological planform, which is conditionally stable but hard to achieve through anthropological river design in a complex system of variable (flood) discharge and sediment supply (e.g., Bliem et al., 2012; Bolla Pittaluga et al., 2003; Eaton et al., 2004; Formann et al., 2014). The supplemental material contains further information on dynamic equilibrium.

Candidate sites for creating anabranches are located in wide, shallow splays and downstream of river bends where stable banks are a fundamental requirement for anabranch longevity (Huang and Nanson, 2007; van Denderen et al., 2017).

Unstable channel banks facilitate avulsion, which is typical for semi-permanent wandering gravel-bed channels (Church, 1983). Cohesive sediment, rock and vegetation increase bank stability (Eaton et al., 2004), which favours longevity of side channels (Makaske et al., 2009; Nanson and Knighton, 1996; van Denderen et al., 2017). Moreover, the stability of artificial side channels significantly depends on the partitioning of discharge and sediment between the main and side channels.

Table 2

Survival parameters of the Populus, Salix, Alnus and Populus genera.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Parameter</th>
<th>Threshold</th>
<th>Author (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cottonwood</td>
<td>Submergence (shrub protrusion above water)</td>
<td>< 0.1 m</td>
<td>Pasquale et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Submergence (shrub protrusion above water)</td>
<td>> 0.1 m</td>
<td>Pasquale et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>Submergence (shrub protrusion above water)</td>
<td>> 0.1 m</td>
<td>Pasquale et al. (2011)</td>
</tr>
<tr>
<td>Willow</td>
<td>Submergence (shrub protrusion above water)</td>
<td>< 0.1 m</td>
<td>Politi et al. (2018)</td>
</tr>
<tr>
<td>Alder</td>
<td>Submergence (shrub protrusion above water)</td>
<td>< 0.1 m</td>
<td>Stillwater Sciences (2006)</td>
</tr>
<tr>
<td>Box elder</td>
<td>Submergence (shrub protrusion above water)</td>
<td>< 0.1 m</td>
<td>Stillwater Sciences (2006)</td>
</tr>
</tbody>
</table>

* Given a root depth of > 0.5 m and a stem height > 1.0 m.

Fig. 1. Two types of side cavities: groynes and embayments (based on Juez et al., 2017); with indication of the main channel width w, cavity width W, cavity length L and interspace l, as well as qualitative flow vectors.
Partitioning is controlled by bend flow effects, bifurcation angle (between the main and side channel axes), and transverse bed slope, as well as the relative lengths of the main and side channels (Bolla Pittaluga et al., 2015; Dutta et al., 2017; Kleinhans et al., 2008).

The design of side channels can be enhanced with stabilising elements such as riprap or plantings combined with bioengineering features. However, the current state of the science is insufficient to derive numeric parameters for lifespan maps.

2.5. Streambed reshaping

Depressions in the terrain beside the main channel, which experience only minor morphological work from floods, are potential candidates for the creation of swales, slack- and backwater zones. These features aim at habitat enhancement through the creation of calm water zones at baseflow conditions (Bolton and Shellberg, 2001).

Potential sites for calm water zone creation are characterised by low dimensionless bed shear stress with small terrain fill or scour rates and particular morphological units besides the main channel. Thus, a limit of 0.03 m per year for the annual scour or fill rates applies and relevant morphological units are “agriplain”, “backswamp”, “mining pit”, “pond”, “pool”, “slackwater” or “swale”.

2.5.1. Structure removal/replacement

The eco-morphological state of many rivers is impacted by transversal structures such as (check) dams (Comiti, 2012) or groundsills (Weitbrecht et al., 2017). Ineffective (open) check dams for sediment retention in the case of floods may be removed or replaced by more effective structures with less impact on the longitudinal river connectivity (Schwindt et al., 2018). Transversal barriers (i.e., groundsills and close-type check dams), originally for channel bed stabilisation (Piton et al., 2017), can be replaced by structured or unstructured block ramps (following the suggestions from Weitbrecht et al., 2017). Structured block ramps (artificial step-pool systems) can be used for channel slopes up to 7%, while unstructured block ramps, which are favourable regarding the hydrodynamic habitat suitability, are applicable at slopes of maximum 1–3% (Janisch et al., 2007; Schleiss and Studer, 2016; Weitbrecht et al., 2017).

The removal of lateral structures such as dykes, berms or bank reinforcements enhances the lateral habitat connectivity. These actions correspond to river widening, as described in the framework of berm setback.
Unnatural angular rocks or blocks, including rock fragments blasted during construction of hydraulic structures, may injure spawning salmon and steelhead that build redds and bury their eggs in the streambed. Results presented in Pasternack et al. (2010) suggest that "shot-rock" removal should only be undertaken if it is combined with large-scale gravel placement and spawning habitat rehabilitation. Although such sharp-edged unnatural rocks are inadequate spawning substrate, they constitute additional friction (roughness) that slows down the flow and contributes to channel stability. For this reason, several authors advise that angular blocks ("shot-rock") should not be removed (e.g., Beschta, 1979; Beschta and Jackson, 1979; Burns, 1970) and adequate spawning substrate is better achieved through sediment replenishment.

No parameters for quantifying the utility of structure removal are identifiable for the lifespan maps and every removal-candidate requires differentiated consideration.

2.5.2. Wood placement

Instream wood provides valuable habitat (e.g., Nagayama et al., 2012) and enhances sediment storage (e.g., Gallisdorfer et al., 2016). Two placement methods are distinguished, notably the placement of unsecured large woody material and the installation of (anchored) engineered logjams (e.g., Manners et al., 2007). Streams, where habitat enhancement with large woody material is reasonable, are characterised as follows (NRCS, 2001):

- Low to moderate entrenchment (ratios > 1.4, cf. Rosgen, 1994);
- Low ratios between bank height and bankfull flow depth (< 1.2, cf. Rosgen, 1994);
- Moderately steep channel slopes (0.1%–4%);
- Coarse sediment (rock, boulders, cobbles and gravel);
- Riffle-pool (e.g., Lisle, 1979) and plane bed channels (e.g., Montgomery and Buffington, 1997).

In addition, cascade, step-pool or plane bed morphologies (e.g., Montgomery and Buffington, 1997) and moderately steep channels with sandy to silty sediment are marginally suitable for unsecured large woody material introduction. Highly entrenched streams or (artificial) multiple thread or anastomosed (side) channel systems can be subjected to local logjams that are caused by mobilised logs during floods (Ruiz-Villanueva et al., 2014a,b). Such logjams are a problem (e.g., at bridges and culverts), where they can cause flooding. Hence, streams with the following characteristics are not suitable for large wood placement (NRCS, 2001):

- High entrenchment (ratios < 1.4);
- High ratios between bank height and bankfull flow depth (> 1.4);
- Multiple thread channels (cf. side channels, which may close because of jams).

During floods, loose pieces of large wood can cause serious damage at downstream structures (e.g., logjams can occur immediately upstream of bridges and prevent accumulated debris from moving downstream), which makes expensive protection measures necessary (e.g., Piton and Recking, 2016). The mobilisation of loose logs is a function of flow depth, wood diameter D_w and/or Froude number. Thus, wood is entrained when (Braudrick and Grant, 2000; Lange and Bezzola, 2006):

Fig. 3. Lifespan maps for the considered stream restoration features at lower Yuba River's Lower Gift Edge Bar (river kilometre 25 to 27.3). The maps combine several parameters, notably, the flow velocity, flow depth, landscape fill/scour rates, the depth to groundwater and morphological unit delineation.
Ruiz-Villanueva et al. (2016) estimated the probability of wood transport corresponding to $-0.18 \frac{D_m}{h} + 0.32$ in single thread and $-0.49 \frac{D_m}{h} + 0.58$ multiple-thread channels. Numerical models of wood transport (e.g., Ruiz-Villanueva et al., 2014a,b) may increase the prediction of wood mobilisation and flow paths. The risk of unwanted logjams means that loose wood features are not adequate for stream restoration. Alternative biotechnical features such as rootstock or engineered logjams provide similar or even better fish habitat and increased stability.

Addy and Wilkinson (2016) highlight that the implementation of engineered logjams requires the careful consideration of hydrodynamics to ensure stability (see also Bennett et al., 2015). In their experiments, Addy and Wilkinson (2016) conclude that only 4 out of 33 engineered logjams functioned as desired and only about 50% caused a geomorphic response. Three of their engineered logjams experienced toe scour and were damaged.

The construction of engineered logjams is not only about counter-balancing tractive hydrodynamic forces, but also about adequate placement in the channel, on banks or on the floodplain to ensure sufficient submergence depths and durations for providing fish habitat from wood (e.g., Brooks et al., 2004).

The lifespan maps highlight potentially suitable sites for wood placement based on the Froude number and the flow depth related to a log diameter of 0.6 m (USACE and YCWA, 2016).

2.5.3. Cross-application of features and soil bioengineering

Many features amplify their habitat enhancing effects in combination with other features. Table 3 indicates compatibilities among complementary features, according to the descriptions in the literature review, where side cavities are differentiated between bank embayments and groynes. The application can be further improved through bioengineering techniques, which prefer locally available, organic and inorganic construction materials (Gattie et al., 2003; Stiles, 1988). The supplemental material lists complementary bioengineering techniques with links to the features that were considered.

2.6. Concept of lifespan maps in restoration planning

The literature review of restoration features identified numeric hydro-morphodynamic stability criteria with threshold values for determining the feature longevity. Table 4 summarises applicable parameters and states threshold values for every feature considered, where associated morphological units are not explicitly repeated in the table. Some features lack numerically quantifiable hydro-morphodynamic stability criteria, and therefore, lifespan maps cannot be developed for side channels or structural removal.

The particular threshold values compared with discharge-dependent values from the numerical 2D hydrodynamic models indicate the survival of features on maps. The modelled discharges correspond to flood return periods of 1.2, 2.5, 4.7, 12.7, and 20.0 years, which serve for estimating the feature lifespan. The values for restoration feature stability thresholds were compared against 2D modelling derived rasters of the lower Yuba River at each test discharge using GIS software (ESRI, 2017 or QGIS, 2018). Such comparisons spatially indicate where survival thresholds of a particular feature are exceeded. In some cases, multiple parameters determine the feature lifespan, which requires the combination of several lifespan maps to determine the optimum location of a feature.

Fig. 2 exemplarily illustrates the procedure for obtaining lifespan maps based on the discharge-dependent grain mobility D_{mobil} (Eq. [2]) compared with the current state (grain size according to Jackson et al., 2013). The D_{mobil}-maps result from applying Map Algebra tools (ESRI, 2017) to the 2D model outputs of each of the considered flood...
3. Results

3.1. Lifespan maps

The application of the threshold values from Tab. 4 to the 2D hydrodynamic model output combined with the application of Eqs. (1) and (2), present grain sizes, the morphological unit and terrain confinement delineation leads to the lifespan maps shown in Fig. 3. These lifespan maps show the lower Yuba River's Lower Gift Edge Bar between river kilometres 25.0 and 27.3. The lifespans are stated in years with the exemption of berm setback (Fig. 3b) and side cavities (Fig. 3g) delineation, which result from discharge-independent raster combinations.

Fig. 3a shows the spatial lifespan estimates of bar and floodplain grading. These features make sense in locations where large floods with return periods of more than 12.7 years are insufficient to remodel the terrain. The lifespan estimates result from applying Eq. (1).

The lifespans of fresh Cottonwood plantings are shown in Fig. 3c. Box Elder, White Alder and Willows are mapped in the supplementary material. Once the cuttings established (i.e., having survived the first few years), their resistance against hydrodynamic forces, erosion and deposition increases. This conclusion is based on previous planting trials at Hammon Bar on the lower Yuba River (SYRCL, 2013) but to the Author's best knowledge, there are no studies that quantitatively prove this observation. If Cottonwood plantings are well established after five years, Fig. 3e indicates that there would be adequate planting areas (shown in yellow and green) corresponding to lifespan estimates of more than 4.7 years.

Fig. 3d indicates where riprap placement makes sense, as indicated by highlighting shear stress-intense regions (Eq. (1)) combined with observed high scour rates. Thus, the lifespan map shown in Fig. 3d indicates that the outer bank of the sharp right bend of the lower Yuba River (bottom of the map) may require solid toe scour protection such as riprap. In addition, the stability of riparian vegetation plantings can be enhanced in regions where planting and riprap placement delineations intersect.

Swale and backwater creation in the main channel of the lower Yuba River have expectedly low lifespans (Fig. 3e). However, Fig. 3e indicates high longevity if the pond in the upper left edge would be connected to the main channel, thereby providing valuable backwater/swale habitat.

The lifespan map of sediment replenishment (Fig. 3f) requires a differentiated consideration: Gravel stockpiles for sediment replenishment placed alongside of the baseflow channel would be frequently mobilised (i.e., nearly every year). Hence, the best locations for gravel stockpiles are in frequently mobile areas on bars, which are indicated...
by the orange surfaces in Fig. 3f. Gravel stockpiles beyond the main channel in the yellow to green regions of Fig. 3f are inefficient due to infrequent inundation and mobilisation. In contrast to gravel stockpiles, relevant zones for gravel injections required yellow to green surfaces in the main channel. Thus, gravel injections in the main channel are not reasonable in the river reach displayed in Fig. 3f. A more suitable placement site for gravel injections in the main channel is located in the most upstream reach of the lower Yuba River, immediately downstream of Englebright Dam.

Adequate locations for wood placements in the shape of engineered logjams are indicated in Fig. 3h. This lifespan map highlights potentially suitable regions for wood placement, as illustrated in green.

The results from the lifespan maps (Fig. 3) indicate that the following restoration actions are reasonable habitat enhancements that could be implemented in the section of the lower Yuba River:

- Grading of surfaces indicated in (Fig. 3a), combined with plantings (supplemental material) and engineered logjams (Fig. 3h);
- Reuse of graded material for gravel stockpiles for (bi-) annual mobilisation on the lower floodplain (Fig. 3f);
- Riparian vegetation plantings combined with engineered logjams in relevant zones (Fig. 3c and supplemental material, superposed on Fig. 3h);
- Bank protection at the outer banks of the sharp left bend (red area in the top right of Fig. 3d) and the right bend (red area in the bottom centre of Fig. 3d) through groyne-cavities created with riprap, engineered logjams and plantings;
- Connection and enhancement of the pond in the upper left corner to integrate it as calm water habitat (Fig. 3e);
- Creation of side cavities (groynes and bank embayments) next to the unimproved road that is aligned parallel to the left bank of the river, as shown on the right-hand side of Fig. 3g.

3.2. Overlay of lifespan maps and habitat suitability index rasters

The planning of ecological stream restoration projects often relies on areas where habitat suitability is low (Buijs, 2009). Lifespan maps are useful to investigate features that are also physically stable. Fig. 4 exemplarily shows an overlay of low habitat suitability (CSI < 0.4) and lifespan maps of the grading feature. The area of low habitat suitability refers to the lowest CSI value of Chinook salmon spawning, fry and juvenile lifestages. The figure reveals that overlapping of ecologically relevant (CSI < 0.4) and physically reasonable (i.e., relatively sustainable between 4.7 and 20 years) application of grading is limited to a small fraction of the area. In order to identify the percentage of overlap, Fig. 5 illustrates the ratio of areas of feature lifespans and the total area of low habitat suitability (CSI < 0.4).

A component of economic viability is introduced by dividing the sum of non-sustainable bars by the sum of sustainable bars in terms of expected lifespans as shown in Fig. 5. Thus, 19% of the ecologically reasonable grading area is not economically viable, if a lifetime of more than 10 years is desired (yellow bar divided by the sum of green bars in Fig. 5). Ecologically reasonable swale and backwater enhancements are up to 50% economically viable if a lifespan of more than 2.5 years is desired and only 85% are economically viable to achieve lifespans of more than 10 years. Thus, 85% of ecologically reasonable swale and backwater enhancement area can be excluded from restoration planning to improve the economic performance. Likewise, 94% of riprap, 68% of wood placement and 79% of plantings in the ecologically reasonable area can be excluded to achieve economical viability for 10 years.

4. Discussion

4.1. Interpretation of lifespan maps

Beyond the estimated feature sustainability in years, lifespan maps indicate more generally, where the application of particular features could be put into practice successfully.

Landscape fill and scour maps can indicate disconnected zones that are omitted by morphological river activity, and therefore, these maps indicate where bar and floodplain grading is reasonable rather than indicating the lifespan of grading features.

Increasing the available habitat through berm setback (river widening) is generally beneficial for the morphodynamics and biodiversity (Reichert et al., 2007; Weber et al., 2009; Woolsey et al., 2007) but neither 2D hydrodynamic models nor DEMs of differences can predict the long-term evolution of widened river sections.
Morphodynamic river models aim to predict terrain evolution and help evaluate the trajectory of restoration features like terrain grading or berm setback post implementation. However, the fully integrated coupling of sediment transport in hydraulic models is still in an early stage with challenges such as different velocities of water and transported sediment or the transition between the fix and mobile channel bed (Liu et al., 2015; Rosatti and Zuliani, 2015). Currently the approach applied here of coupling terrestrial scans and 2D hydrodynamic models for estimating the morphological evolution provides the most sophisticated tool, as also used in other studies of ephemeral stream morphology (Norman et al., 2017).

Sediment mobility maps that indicate mobile grain sizes for a particular restoration feature are an intermediate product of the lifespan map generation process based on Eq. (2). In the course of restoration planning, such mobile grain size maps can be reused for determining relevant grain sizes for gravel augmentation or riprap design once suitable sites are identified. For this purpose, there is one relevant discharge for which mobile grain size maps will always refer. For gravel stockpiles on the river banks that are desired to be moved downstream periodically within a timespan of management relevance to make stockpiling worthwhile, the single flow for which sediment mobilisation matters is bankfull discharge. On the lower Yuba River with mostly non-cohesive banks that is roughly the annual matters is bankfull discharge. On the lower Yuba River with mostly non-cohesive banks that is roughly the annual.

By contrast, riprap needs to be stable at much higher floods, so that the required stable grain sizes refer to a high flood discharge. In the case of the lower Yuba River, the highest simulated discharge of 3126 m3/s multiplied with a safety factor of 1.3 applies for riprap. Fig. 6 shows an example of minimum block sizes for riprap in a narrow 2.0 km gorge section of the Englebright Dam Reach of the lower Yuba River. According to Fig. 6, blocks of a diameter up to 5 m would be required in the centre of the channel to achieve stability. Thus, it is not surprising that the actual channel bed of the lower Yuba River in this gorge section is characterised by bedrock (e.g., Pasternack and Wyrick, 2017), which bears witness to the important tractive flow forces during floods. As a comparison, the Stevens et al. (1976) approach indicates that required riprap sizes of 0.9 m (using a cross-section-averaged velocity of 5 m/s, a channel bottom slope of 0.2% and a safety factor of 1.3, see computation script in the supplemental material). This comparison shows that 2D hydrodynamic models provide higher planning safety compared with 1D approaches, because they yield higher velocities in the fastest core of flow and lower velocities flanking instead of averaging across this natural variability.

Artificial swales or backwater directly in the streambed itself may be reversed or otherwise modified by morphologically active discharges, which can be associated to the bankfull or dominant discharge (cf. Williams, 1978; Wolman and Miller, 1960). The return period of morphologically effective discharges (floods) of natural rivers typically varies between 1 and 3 years in a temperate clime and in the absence of strong bed armouring, artificial bed reinforcement or bed rock (Crowder and Knapp, 2005; Hassan et al., 2014; Wohl, 2000). These numbers are confirmed by the lifespans of calm water zones in the main channel on Fig. 3e and other instream features (Fig. 3c, f and h). Thus, the return of investment of terrain reshaping at the baseflow level can be limited in morphologically dynamic streams, which is at the same time a benchmark of ecologically healthy streams (e.g., Moyle and Mount, 2007). Decelerated flow zones in the main river channel are preferably achieved through strategically placed punctual features such as engineered logjams or riprap. Also, side cavities (groynes or embayments) can sustainably create calm water zones. On the lower Yuba River, natural undulations in channel width, floodplain width, and valley width yield the same effect naturally in many places. Consequently, suitable sites for artificial backwater zones, swales or slackwaters are created besides the main river channel.

To assess side channel stability, Huang and Nanson (2007) use a classification scheme based on the comparison of the valley slope against the energy slope for determining the superordinate channel planform. Fig. 7 documents the closure and reactivation of a side channel of the lower Yuba River downstream of Daguerre Point Dam, which indicates the importance of the superordinate planform. However, any existing theory on channel stability (e.g., Rosgen, 1994; Huang and Nanson, 2007) is adequate for explaining these changes quantitatively. The classification scheme from Huang and Nanson (2007), and also other approaches for the assessment of bifurcation stability (e.g., van Denderen et al., 2017), are based on 1D cross-section averaged flow characteristics. However, flow separation at bifurcations is a three-dimensional problem that needs to consider, among others, transverse bed slope (Bolla Pittaluga et al., 2003) and bend flow (Kleinians et al., 2008). The literature (e.g., van Denderen et al., 2017) provides reasonable criteria for the construction of artificial side channels (see supplemental material) but the formation processes are not sufficiently understood and it is not possible to produce lifespan maps for this feature.

Structure removal (i.e., the removal of barriers for aquatic species and sediment transport continuity) cannot be quantified with lifespan maps. O’Hanley (2011) introduces an approach for the prioritisation of barriers to be removed based on fish benefits. However, this model lacks coupled hydro-morphological functions for predicting channel adjustments. Small transversal barriers with multi-purpose utility, such as irrigation, flood protection (sediment retention) or hydropower generation, can be alternatively improved with sophisticated fish passage and guiding strategies (e.g., King et al., 2016; Radinger et al., 2018).

4.2. Quantitative accuracy and validation

Uncertainties in accuracy occur at several stages in the process of creating lifespan maps. For example, imprecision originates from the exactness of the measuring instruments that were used for the exploration of survival thresholds (e.g., flow velocity), the precision of DEMs, hypotheses made in numerical modelling (e.g., usage of depth-averaged flow parameters) or discharge measurements and statistical methods for estimating flood return periods. The uncertainty is tangible in absolute numbers by using error propagation methods (e.g., DIN 1319-3, 1996) that require the knowledge of single errors and error functions. The number and complexity of error sources, as well as the difficulties in estimating errors in a large, multidisciplinary dataset make absolute quantification of lifespan map error challenging to assess. One of the major mitigating factors in potential error is the fact that the maps are not computing exact times with high precision. The use of broad bins spanning several years means that it is only required to be in the right bin, not yield an exact lifetime. Brown and Pasternack (2009) showed a similar beneficial effect on error impact when binning.

Fig. 6. Mobile grain size maps based on a discharge of 3126 m3/s (multiplied with a safety factor of 1.3) for riprap downstream of Englebright dam at river kilometre 36.5.
microhabitat and shear stress results from 2D models, which helps to reduce error. If the bins are reduced further to just a simple concept of low or high sustainability, then lifespan maps are even more resilient; the key is to not require any more precision than just necessary to answer the question at hand. When absolute numbers are relevant (e.g., for the diameter of riprap), safe assumptions are overestimated, such as values of D_{mobil}, (i.e., an overestimation of the flow depth and velocity). By contrast, when restoration success is defined through grain mobilization, as for example, in the case of gravel stockpiles, it is advantageous to underestimate grain sizes, flow depth and flow velocity.

The numeric validation of the computed lifespans as a function of the multiple parameters analysis requires the real implementation and observation of proposed features. Then, repetitive high-resolution satellite images can regularly provide information on the feature survival. Vegetation plantings may be followed-up with landscape complexity analysis (e.g., Papadimitriou, 2012). The stability of terraforming features and sediment replenishment can be analysed with landscape evolution models and the internal complexity of self-organizing erosion/deposition pattern (e.g., Schoorl et al., 2014).

4.3. Flood protection

The advantages of stream restoration for flood protection is well documented, particularly the attenuation of flood peaks through berm setback (e.g., Konrad et al., 2008; Opperman et al., 2010; Wohl et al., 2015). However, the additional roughness that constitute plantings or riprap slows down the flow and enhances sediment deposition (Järvelä, 2002). This happened, for example, after the flow of the Swiss tributary “Arbogne”, where fine sediment deposits in a restored river section caused regular flooding of neighboring agricultural zones (De Cesare et al., 2016). 2D hydrodynamic models can indicate where sediment deposition occurs, when the roughness attributes are adapted to vegetation to account for the additional flow resistance that can cause fine sediment deposition (cf. descriptions in Järvelä, 2002).

Unsecured large woody material risks clogging at bridges during floods, which may cause inundation of infrastructure or even the entrapment of bridges (Piton and Recking, 2016). Where such concerns are present, stream restoration should consider sufficient anchoring of artificially placed wood (i.e., the installation of engineered logjams is preferable over placing loose logs).

4.4. Trade-off of lifespan maps

The current practice often uses ecological criteria for stream restoration planning (Buijs, 2009). Fig. 5 shows that important shares of ecologically relevant restoration area have a low expected lifespans. This comparison suggests that the combination of morphological sustainability based on lifespan maps and the ecological relevance based on habitat suitability criteria help to identify ecologically and physically stable features. Thus, lifespan maps are a new and pertinent tool to foster the planning of eco-financially reasonable stream restoration.

5. Conclusions

Lifespan maps are an important tool for vetting ecological relevance against physical stability in stream restoration and habitat enhancement projects.

In agreement with the existing semantic framework of stream restoration goals, we parametrized and analysed the expected lifespans of restoration features at the Yuba River, California. The quantifiable parameters constitute, “survival thresholds” that determine the feature’s lifespans based on their physical stability. A comprehensive supplemental document summarises details.

The comparison of 2D hydrodynamic model results, morphological assessments and terrain DEMs with survival thresholds produces the lifespan maps. Thus, the lifespan maps indicate the potential site-specific longevity of particular restoration and habitat enhancement features.

Validated hydraulic and topographic input data ensure reasonable lifespan estimates. The validation of the accuracy of the estimated lifespans as a function of complex parameter interactions requires a follow-up of constructed features in the future.

Acknowledgement

This work is funded by the Yuba Water Agency (Marysville, California, USA; (Award #201016094 and Award #10446)). This project was also supported by the USDA National Institute of Food and Agriculture, Hatch project number CA-D-LAW-7034-H. We thank Pete Moniz for his explanations regarding the creation of habitat suitability criteria maps. Special thanks goes to Lukas Schmocker, Isabella Schalko, Virginia Ruiz-Villanueva, Carmelo Juez, Fabian Friedl and John Stella for their inputs regarding wood introduction, side cavity dynamics, sediment replenishment and riparian vegetation plantings in riverine environments. Gregory Pasternack, the Principal Investigator for this research project, has a financial interest in Yuba Water Agency, the entity sponsoring and co-authoring this study. Specifically, Yuba Water Agency pays Dr. Pasternack an hourly consulting fee to help apply scientific research in Yuba River management. Consulting is done independently of academic research. The consulting income Dr. Pasternack receives is in addition to his salary from the University of California.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jenvman.2018.11.010.

References

