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Abstract

Aim—Pharmacokinetics have historically been assessed using drug concentration data obtained 

via blood draws and bench-top analysis. The cumbersome nature of these typically constrains 

studies to at most a dozen concentration measurements per dosing event. This, in turn, limits 

our statistical power in the detection of hours-scale, time-varying physiological processes. Given 

recent advent of in-vivo electrochemical aptamer-based (EAB) sensors, however, we can now 

obtain hundreds of concentration measurements per administration. Our aim in this paper is to 

assess the ability of these time-dense datasets to describe time-varying pharmacokinetic models 

with good statistical significance.
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Methods—Here we use seconds-resolved measurements of plasma tobramycin concentrations in 

rats to statistically compare traditional one- and two-compartmental pharmacokinetic models to 

new models in which the proportional relationship between a drug’s plasma concentration and its 

elimination rate varies in response to changing kidney function.

Results—We find that a modified one-compartment model in which the proportionality between 

the plasma concentration of tobramycin and its elimination rate falls reciprocally with time either 

meets or is preferred over the standard two-compartment pharmacokinetic model for half of the 

datasets characterized. When we reduce the impact of the drug’s rapid distribution phase on 

the model, this one-compartment, time-varying model is statistically preferred over the standard 

one-compartment model for 80% of our datasets.

Conclusions—Our results highlight both the impact that simple physiological changes (such 

as varying kidney function) can have on drug pharmacokinetics and the ability of high-time-

resolution EAB sensor measurements to identify such impacts.

Keywords

Aminoglycosides; renal function; nonlinear least squares regression; Bayesian Information 
Criterion; compartment models; animal models

Introduction

Pharmacokinetics, which describe the time-dependent evolution of drug concentrations in 

blood or other bodily fluids, are typically approximated using simple, compartmental models 

in which systems of ordinary differential equations (ODEs) represent the rates with which 

drugs are removed from or transported between one or more (often somewhat abstract) 

bodily compartments. In a single compartment model, for example, it is assumed that the 

concentration of the drug is the same throughout the body, rendering the entire subject 

a single “compartment” from which drug is removed via metabolism or excretion at a 

rate of which is first-order in (i.e., proportional to) drug concentration. In the next level 

of model sophistication, the “two-compartment” model, the body is approximated as two 

compartments which have distinct pharmacokinetic properties. One of these comprises 

the blood and all rapidly perfused tissues, while the other represents all tissues in which 

the drug concentration equilibrates more slowly, together leading to pharmacokinetics that 

are approximated as the sum of two exponential processes. Although simple, these one 

and two-compartment models are generally adequate to describe the behavior of the drug-

concentration time-profile data produced in previous studies. This said, this may only be true 

because, having relied on cumbersome, labor-intensive blood draws and laboratory analysis 

for their measurements, these prior studies were typically limited to collecting ten or fewer 

time points per subject per dosing interval. With so few data points, the ability of such 

studies to identify other physiological processes affecting pharmacokinetics is likely limited.

As an example of the subtle physiological effects likely missed by prior studies, we note 

that standard compartmental models employed assume that the rate constants describing the 

disposition of drugs into and out of the various compartments are, as their name implies, 

constant over the few-hour time course of the elimination of small molecule drugs. This, 
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however, is an approximation. For a drug that is excreted via the kidneys, for example, the 

rate constant for elimination (and thus the drug’s half-life; t1/2 = ln 2 /rate constant) depends 

on kidney function, which varies from hour to hour (e.g., Wang et al., 2010; Arroyo-Currás 

et al., 2017, 2018b). However, while time-varying pharmacokinetics have been reported over 

weeks to months timescales have been seen for many drugs (Fontova et al., 2021; Kuypers 

et al., 2004; Mao et al., 2021; Petitcollin et al., 2020; Wahlby et al., 2004; Wilkins et al., 

2019), and changes over days have been seen for the aminoglycosides in ill human patients 

(Gaskin & Duffull, 1997; Ritchie & Duffull, 1998), we are not aware of any detailed studies 

of variations occurring over hours. This omission is presumably due to the unduly small 

number of concentration measurements pharmacokinetic studies have traditionally relied on. 

Simply put, the time resolution of traditional pharmacokinetic datasets is likely too poor 

to justify the application of models employing rate parameters that vary over timescales as 

short as hours at the individual level.

Recently a solution to the problem of limited-density pharmacokinetic datasets has 

arisen due to advances in in-vivo molecular monitoring. Specifically, the development of 

electrochemical, aptamer-based (EAB) sensors (Xiao et al., 2005) has, for the first time, 

enabled the collection of seconds-resolved pharmacokinetic datasets comprising hundreds 

or thousands of drug concentration measurements per dosing interval (Arroyo-Currás et al., 

2017, 2018a; Dauphin-Ducharme et al., 2019; Idili et al., 2019; Vieira et al., 2019), with 

coefficients of variation of better than 10% (Downs et al., 2022) and without detectable 

time-dependent variations in accuracy (Arroyo-Curras et al., 2017; Leung et al., 2021). And, 

unlike all prior in-vivo molecular measurement approaches, EAB sensors are independent 

of the chemical (or enzymatic) reactivity of their targets, and thus the technology is a 

general platform that can be used to measure a wide variety of drug molecules in the 

body. Motivated by the potential of such time-dense measurements, we have performed a 

preliminary exploration of what can be done with them using the currently largest dataset of 

EAB measurements of a drug (Vieira et al., 2019). Specifically, we evaluate pharmacokinetic 

models employing time-varying elimination rate parameters (i.e., time-varying elimination 

half-lives) in describing tobramycin plasma concentration profiles in individual rats.

We note that no new animal experiments were conducted in this work. The data used, 

however, were collected in accordance with animal ethics. Specifically, the housing and care 

of all rats were conducted in accordance with the guidelines set forth by the “Guide for the 

Care and Use of Laboratory Animal, 8th edition” (National Research Council (U.S.) et al., 

2011) and all experiments were approved by the UCSB Institutional Animal Care and Use 

Committee.

Results and discussion

As our test case we have employed equally spaced plasma tobramycin concentration 

measurements collected in situ in the jugulars of anesthetized rats with time resolution 

ranging from 18 to 27 s (Vieira et al., 2019). Prior, in vivo studies with the same tobramycin-

detecting EAB sensor (Arroyo-Currás et al., 2017) as well as with in vivo EAB sensors 

directed against other drugs (Arroyo-Currás et al., 2017; Chamorro-Garcia et al., 2022; 

Dauphin-Ducharme et al., 2019) exhibit excellent return to expected, zero drug baselines 
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after periods in excess of 5 h in vivo. Likewise, EAB sensors exhibit good, drift-free 

operation and retain good measurement accuracy and precision for runs in excess of 24 

h when challenged in whole blood in vitro at 37°C (e.g., Leung et al., 2021). Together, 

these reports suggest that the magnitude of any uncorrected EAB sensor drift, which could 

otherwise mask time-dependent change in pharmacokinetics, is quite small.

The dataset we employed includes plasma concentrations for fourteen individual animals, 

each dosed with a single, intravenous bolus of tobramycin (20 mg/kg) over a one-

minute injection duration. After peak plasma concentrations of tobramycin were observed 

(presumably denoting the end of the injection), between 63 and 525 concentration 

measurements were collected on each individual, creating datasets spanning periods of 0.3 to 

4 h post-injection. As our study focused on datasets with high time-resolution, we excluded 

data from four animals reported in Vieira et al. (rats FR5, MR6, MR7, and MR9) that each 

had less than 1 h of observations after drug administration, and fewer than 167 tobramycin 

concentrations. The median period of observation in the remaining ten datasets (for four 

female and six male rats) was 2 h, over which an average of 282 tobramycin concentration 

measurements were observed per animal. We also excluded data collected more than 2.2 

h after administration, as by this time plasma tobramycin concentrations have effectively 

dropped to zero. Specifically, the plasma half-life of tobramycin in rats is 0.5 h (Reinhard 

et al., 1994; Wasfi, 1993), and thus, concentrations obtained 2 h after the cessation of drug 

administration are far below the limit of detection for the EAB sensor employed and are no 

longer meaningful.

As the basis for the study reported here, we have employed one- and two-compartment 

pharmacokinetic models with intravenous bolus drug delivery (Loftsson, 2015). In these, 

the drug is allowed to enter and exit the system of compartments in these models, 

rendering them “open” models. The one-compartment model treats the entire body as 

a single compartment (Fig. 1A), termed here the “plasma compartment,” in which the 

drug is assumed to behave uniformly. In contrast, the two-compartment model (Fig. 1B) 

separates the body into a first compartment, also termed here the “plasma compartment” (but 

commonly known as the “central compartment”), that represents the blood plasma and the 

fluids of any rapidly perfused tissues, and a second, termed the “tissue compartment” (often 

referred to as the “peripheral compartment”) that represents tissues for which equilibrium 

is reached more slowly (Loftsson, 2015). In the case of intravenous injection, drugs are 

assumed to enter the body through the plasma compartment. And drugs that are eliminated 

unmetabolized via the kidneys, such as tobramycin, also exit the body via this compartment.

In traditional one- and two-compartment models, the rate of change of the plasma 

concentration at time t includes an elimination component that is proportional to the plasma 

drug concentration at that time, where the proportionality constant is time-invariant (kE

in subsequent Equations 1 and 3). Here we describe both these traditional models and 

extensions of the one-compartment model in which the elimination proportionality is time-

varying.

The standard one-compartment model describes drug elimination by a first-order, linear 

ordinary differential equation (ODE) with an initial condition:
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dCP t
dt = − kE · CP t with CP 0 = D0

V P

(1)

Here CP t  represents the plasma concentration of the drug (in nmol/mL = μmol/L = μM) at 

time t; kE represents the rate proportionality constant for the elimination of the drug from 

the plasma compartment (with units h−1); D0 is the initial dose of the drug (in nmol). V P

represents the theoretical plasma volume (in mL; this is theoretical because, for example, 

protein binding reduces the free drug concentration, leading to the theoretical plasma 

volume being larger than the true plasma volume) (Loftsson, 2015). The negative sign 

preceding kECP t  reflects the fact that drug is being removed from the body (for tobramycin 

this removal is via the kidneys). The solution to Equation 1 is (Aplevich, 2000):

CP t = D0
V 0

· exp −kE · t

(2)

The observed tobramycin plasma concentrations across time are noisy observations of CP t .
For each dosing event, we estimated the unknown parameters V P and kE, in Equation 2 based 

on these data (D0 is known).

The standard two-compartment model describes drug elimination by a system of two 

first-order linear ODEs:

dCP t
dt = kDP · V D

V P
· CD t − kPD + kE · CP t

dCD t
dt = kPD · V P

V D
· CP t − kDP · CD t

(3)

with initial conditions CP t = D0/V P and CD t = 0. Here CP t , V P, kE, and D0 are defined as 

in the standard one-compartment model, CD t  represents the drug concentration in the tissue 

compartment at time t (in μM), V D the theoretical volume of the tissue compartment, and kPD

and kDP the rate constants for drug distribution from the plasma compartment to the tissue 

compartment and vice versa, respectively (with units h−1). The closed form solution to this 

model is well-known and is given as (Chen et al., 2014):

CP t = D0
V P α − β α − kDP e−αt + kDP − β e−βt (4a)

CD t = D0 · kPD
V D α − β e−βt − e−αt (4b)

where
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α = 1
2 kPD + kDP + kE + kPD + kDP + kE

2 − 4 · kDP · kE

β = 1
2 kPD + kDP + kE − kPD + kDP + kE

2 − 4 · kDP · kE

Of note, the drug concentration measurements used to constrain two-compartment models 

almost always are obtained from only the plasma compartment, rendering system (4) 

incompletely observed. Given this, we estimated four system parameters for each dosing 

interval considering only the CP t  equation in (4); namely V P, kE, kPD, and kDP.

To fit the one- and two-compartment models to the observed tobramycin concentrations we 

used nonlinear least squares regression (Seber & Wild, 2003), and to select between models 

we used the Bayesian Information Criterion (BIC) (Schwarz, 1978). We used nonlinear 

least squares regression to estimate the system parameters because CP t  is (1) a nonlinear 

function in each of Equations 2 and 4a, and (2) is subject to measurement error. For model 

selection, we employed the BIC, which uses the log-likelihood of the candidate model as 

a goodness-of-fit measure, while simultaneously penalizing model complexity (i.e., in our 

case, the number of estimated parameters). (Note that the calculation of the log-likelihood 

here is based on the assumption that the observed concentration measurements equal the true 

plasma concentration plus random noise perturbations that are independent and normally 

distributed with a mean of zero and constant variance for each dosing interval.) We chose 

BIC as our model selection criteria since it increasingly selects the true model (if that model 

is in the set of candidate models) as the sample size approaches infinity (Warne et al., 2019). 

Simply put, the candidate model with the lowest BIC is the preferred model, albeit models 

within two units of the lowest BIC are generally considered to be indistinguishably good 

descriptions of the system (Fabozzi, 2014). Although here we employ BIC as our primary 

criterion, for completeness we also report each model’s Akaike Information Criterion (AIC) 

(Akaike, 1974) and in-sample root-mean-square error (RMSE).

Fitting the standard one- and two-compartment models to the observed tobramycin 

concentrations from a representative female rat (denoted FR1) we find that the one-

compartment model (Fig. 2, black curve) fits the concentration-time profile rather poorly 

at the start and the end of the experiment. In contrast, the standard two-compartment model 

(Fig. 2, blue curve) fits the data more closely, appropriately capturing an initially rapid 

decrease in concentration (typically thought to reflect the distribution of the drug from 

the plasma to the tissues) followed by a slower phase (thought to be elimination of the 

drug from the body). Consistent with this, the BIC favors (i.e., is lower for) the standard 

two-compartment model over the one-compartment model for this dataset. I.e., despite the 

greater complexity of the standard two-compartment model, the smaller BIC it produces 

indicates that it is preferred over the simpler one-compartment model as a description of 

these data (shown in Table 2).
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We next considered time-varying one-compartment models that encompass our hypothesis 

that the relationship between the drug’s plasma concentration and its elimination rate is 

time-dependent. In these we allow the proportionality factor kE in Equation 1 to be a 

function of time t, kE t ; giving

dCp t
dt = − kE t · CP t with CP 0 = D0

V P
.

(6)

Such models are justified by prior studies indicating that, presumably due to changes in 

kidney function, the relationship between the plasma concentration and its rate of change 

varies over the course of just hours in our animal model of tobramycin pharmacokinetics 

(Arroyo-Currás et al., 2017, 2018b). As the pharmacokinetic data we are exploring were 

collected on anesthetized animals not on an intravenous drip, we generally expect kidney 

function and, with this, the proportionality that relates the elimination rate to the drug 

concentration, to fall monotonically over time (Arroyo-Currás et al., 2017). Given this, 

we limited our exploration of time-varying one-compartment models to three models in 

which the proportionality between drug concentration and the elimination rate changes 

monotonically with time.

The three one-compartment time-varying models we have considered include elimination 

proportionalities that vary linearly, exponentially, or reciprocally with time. (The three 

resulting solutions to Equation 6 are shown in Table 1.) We considered the first of 

these, in which the relationship varies linearly with respect to time, because it is the 

simplest mathematical extension of the constant proportionality assumed in the standard 

one-compartment model of Equation 1. In this linear proportionality case, bE is the rate of 

change of the elimination term (in h−2), kE0 (in h−1) defines the relationship between drug 

concentration and the elimination rate at time zero. A weakness of this “linearly-varying” 

one-compartment model is that, under this model, the rate of transport out of the body 

can become negative, implying the physiologically implausible return of drug to the body 

from the kidneys. Thus, as two physiologically less naïve time-varying one-compartment 

models, we allowed the proportionality between drug concentration and elimination rate 

to fall exponentially or reciprocally over time; we refer to these as the “exponentially-

varying one-compartment” and “reciprocally-varying one-compartment” models. In these, 

bE (in h−1) controls the rate of change of the proportionality, and kE0 (in h−1) defines 

its value at time zero. If the parameter values in each of these models (bE and kE0) are 

positive, we naturally preserve the elimination behavior we desire: the proportionality 

decreases monotonically while also remaining nonnegative over all time-points. Of note, 

while these one-compartment time-varying models are more complex than the standard 

one-compartment model, they are less complex than the standard two-compartment model. 

Specifically, the time-varying models (Table 1) contain three unknown parameters, V P, kE0, 

and bE, whereas the standard two-compartment model (Equation 4a) contains four.

Fitting our three time-varying one-compartment models to our initial dataset (Fig. 3), we 

find that all are preferred over both the standard one- and two-compartment models. For 
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example, these time-varying models also produce substantially lower in-sample root-mean-

square errors (RMSEs) than the standard one-compartment model, and similar RMSEs 

to the standard two-compartment model (Table 2). And while the greater complexity of 

the time-varying models may render this latter result perhaps unsurprising relative to the 

standard one-compartment model, the BIC values indicate that the resulting improvements 

in fit are statistically meaningful. Specifically, the BIC of the exponentially varying model 

is the smallest by more than two units, thus rendering this the single preferred model to 

describe the dataset among the five models we have studied.

In all three of our time-varying model fits for FR1, the estimated time-varying elimination 

proportionalities remained positive over the observation period while nevertheless falling 

monotonically over time (Fig. 4). Both behaviors match our physiology-based expectations. 

First, the drug is eliminated via the kidneys and not re-absorbed from them, and thus 

the proportionality should always remain positive. Second, we expect the elimination 

proportionality to fall during the experiment as kidney function is reduced by dehydration 

(the animals were not under an intravenous drip) and reduced blood pressure (due to several 

hours sedation).

Having used dataset FR1 to hone our thinking, we next fitted all five of our models to 

the observed concentration-time profiles of the remaining nine animals (Fig. 5; Table 3). 

From this analysis we draw several conclusions, some expected, others less so. For example, 

given that prior high-time-resolution studies of tobramycin pharmacokinetics reported good 

fits to two-compartment models (Arroyo-Currás et al., 2017), it is not surprising that the 

standard one-compartment model is only (tied for being) the preferred model in one out 

of the ten datasets (Table 3). This said, however, the standard two-compartment model is 

only ranked the preferred (or tied for being the preferred) model in half of our ten datasets. 

This is because two of the time-varying one-compartment models, the exponentially- and 

reciprocally-varying models, perform quite well. In contrast, the linearly-varying model, 

which we feel is physiologically naïve, is not the preferred model in any of our datasets, and 

is outperformed by the standard two-compartment model in nine of ten datasets. Reported 

parameter estimates in Table 3 return similar results as those seen in Lin et al. (1994), 

a previous tobramycin study in rats. Standard graphical checks and plots illustrating the 

estimated time-variance of the elimination proportionality are presented for all models 

across all animals in the SI.

The reciprocally time-varying single-compartment model matches or outperforms (in terms 

of BIC) the standard two-compartment model in half of our ten datasets, suggesting that 

time dependence of the proportionality between drug concentration and drug elimination 

is an important component of tobramycin pharmacokinetics in this animal model. Both 

extensive prior literature and straightforward physiological considerations, however, suggest 

that highly-time-resolved plasma drug measurements such as these should, as noted 

previously, exhibit two exponential phases: a fairly rapid (but easily seen, given the high 

time resolution of these datasets) phase that captures the distribution of the drug into the 

tissues (e.g., solid organs), and a slower phase associated with elimination via the kidneys 

(Loftsson, 2015). Consistent with this, the standard two-compartment model is generally the 

preferred model for our rat datasets for which the estimated distribution rates (kPD and kDP) 
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under the standard two-compartment model are larger (Fig. 5 and Table 3). In contrast, the 

time-varying one-compartment model is generally preferred for the datasets associated with 

smaller estimated distribution rates.

Tobramycin pharmacokinetics are most often described using two compartment models 

(Arroyo-Currás et al., 2017; Vieira et al., 2019), in which there is a significant, rapid 

distribution phase (representing equilibration between the blood and the slowly equilibrating 

tissues) prior to the slower elimination phase. Because of this, we suspected that datasets 

for which the standard two-compartment model was preferred over the one-compartment 

models might be those exhibiting larger distribution phases, as this phase is not captured 

by our time-varying one-compartment models. To investigate this possibility, we reanalyzed 

our datasets after masking (excluding) data corresponding to one distribution lifetime (i.e., 

1/α  in Equation 4) of observations, thereby reducing the impact of the (relatively fast) 

distribution phases. Consistent with our hypothesis, after this masking, the reciprocally 

time-varying one-compartment model (which was our most competitive time-varying model 

in the full data) is preferred over or matches the standard one-compartment model in eight 

of the ten datasets (Table 4). (Note: in one case the nonlinear least squares estimation did 

not converge – presumably due to some models being too complex to fit based on remaining 

data after masking. Any models for which estimation did not converge we considered 

non-preferred.) Further details of masking are presented in the SI.

Prior studies of tobramycin in an analogous rat animal models indicate that the 

proportionality describing the relationship between plasma drug concentration and the 

elimination rate can change several-fold over the course of hours (Arroyo-Currás et 

al., 2017, 2018b). For example, using the standard two-compartment model to fit 

sequential intravenous, bolus tobramycin injections in individual rats, the elimination 

proportionalities were seen to fall by 10 to 55% over ~2 h (Arroyo-Currás et al., 

2017). Likewise, during the course of the feedback-controlled maintenance of constant 

plasma tobramycin concentrations, the elimination proportionality was estimated to have 

increased approximately three-fold over the course of 4 h (Arroyo-Currás et al., 2018b). 

Fits of the reciprocally time-varying model to our masked datasets (which we believe 

reduces the contributions of the distribution phase) produce similar magnitude changes 

in the elimination proportionality. To demonstrate, we compare the estimated elimination 

proportionalities of our reciprocally time-varying fits at each of their respective masked, 

start times (i.e., immediately after the masked data ends) to their estimates 1 h later (Fig. 

6). For eight of our ten datasets the estimated kE t  proportionality decreases (by 19 to 

88%) over this time period (FR1, FR3, FR4, MR1, MR2, MR3, MR4, MR8). For one 

of the remaining two datasets (FR2) the reciprocally varying model estimates that the 

proportionality increases by 41%, and for the second (MR5) this model does not converge. 

Presumably these latter observations reflect the fact that, while a time-varying model is 

arguably a better approximation of the physiology of a rat than assuming its kidney function 

is constant, the reciprocally-varying model nevertheless fails to capture the time-varying 

physiology of some individual animals.

The observed inter-animal variability in the time dependence of the elimination 

proportionality could stem from a number of sources. For example, prior to the start of 
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injection, different rats may have been under anesthesia for different lengths of time, and 

we often see the greatest change in the elimination proportionality early after the start of 

our measurements. Unfortunately, information regarding the duration of anesthesia prior 

to the start of infusion is not available. Irrespective, however, of the origins of these inter-

animal differences, the strength of the reciprocally time-varying model relative to standard 

models suggests that time-varying kidney function, a hitherto largely ignored physiological 

effect, can contribute substantially to the pharmacokinetics of tobramycin, and presumably 

other (e.g., Dauphin-Ducharme et al., 2019), renally cleared drugs. This said, the clinical 

implications of this pharmacokinetic variability, such as its impact on clinical decisions 

based on individualize drug dosing, remain to be explored.

The hour-scale, time-varying physiological effects we identify in tobramycin 

pharmacokinetics are difficult to identify using the low-time-density datasets traditionally 

employed in pharmacokinetic studies. To illustrate this difficulty, we also “sparsified” our 

original datasets by selecting ten equally spaced time-points over the observation period. 

Fitting the five models described previously to these ten data points, we find that, according 

to BIC, the one-compartment models are preferred (and are indistinguishable from one 

another) relative to the standard two-compartment model for rat FR1 (Fig. 7; Table 5). All 

models except the standard one-compartment model, however, contain at least one parameter 

with approximate 95% confidence interval spanning zero, implying these sparsified (lower 

time-density) data do not support the use of models more complex than the standard 

one-compartment model. Applying this same logic to the remaining nine rats (Table SI5) 

we see a similar pattern: at least three models are indistinguishable for the majority of 

rats according to the BIC, and many models produce parameter estimates characterized by 

excessively wide confidence bounds. We observe similar results (by BIC) when considering 

alternative sampling schemes in which the majority of the ten samples are collected at either 

the beginning or the end of the observation period (See SI for data and results).

The results described here strongly suggest that the high time-density and good signal-

to-noise of these newly available, EAB-derived pharmacokinetic measurements may 

justify the use of compartment models more complex than those presented here for 

tobramycin pharmacokinetics. Unfortunately, however, high-dimensional, time-varying 

ordinary differential equations are notoriously difficult to solve in closed form, with only 

a handful of special cases having known analytical solutions (Aplevich, 2000). And any 

extension of the standard two-compartment ordinary differential equation systems to models 

that include a time-varying elimination proportionality in Equation 3 (that is, kE being 

time-dependent) would result in a system that does not have a known analytical solution 

analogous to Equation 4a. Without such a known solution, the standard nonlinear least 

squares methods by which we estimated parameters in this paper cannot be applied.

Conclusions

EAB sensors provide an unprecedented route to seconds-resolved pharmacokinetic data. 

Here we have used statistical methods to explore the ability of the resulting high-density 

pharmacokinetic datasets to describe with good statistical significance time-varying models 

that encompass subtle, hour-to-hour changes in the ability of the kidneys to eliminate the 
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drug. Doing so we have found that time-varying one-compartment models describe the 

data just as well as, and often better than, the standard two-compartment model. Moreover, 

when the impact of the initial, rapid distribution phase is reduced by masking the data, 

the reciprocally time-varying model becomes preferred over the standard one-compartment 

model for eight of the ten datasets. These results suggest that the inclusion of time-varying 

elimination can improve the accuracy with which we can model the pharmacokinetics 

of tobramycin, and presumably other, renally cleared drugs, an observation that matches 

our intuition that varying kidney function can be a significant contributor to their 

pharmacokinetics. Looking to the future, extending these same time-varying ideas for 

the two-compartment model may improve the accuracy of pharmacokinetic modeling still 

further; while analytical solutions may not exist, numerical approaches may prove a fruitful 

means to this end. We close by noting that the recent, rapid expansion of the number of 

drugs for which EAB-derived, seconds-resolved pharmacokinetics are available, suggests 

that further exploration of such models would be timely.
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What is already known about this subject:

• While the pharmacokinetics of many drugs are known to vary over 

weeks to months timescales, until recently the possibility of hours-scale 

pharmacokinetic variability has not been experimentally addressable.

• New in-vivo molecular measurement approaches, however support seconds-

resolved pharmacokinetic characterization, providing a new opportunity to 

detect far more rapid changes in pharmacokinetics.

• The first studies using these approaches, which characterized the clearance 

of successive bolus intravenous injections, suggested that changing kidney 

function can measurably alter the elimination kinetics of renally cleared drugs 

over just hours.
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What this study adds:

• Using time-dense (equally spaced, seconds-resolved) in-vivo measurements 

of plasma tobramycin concentrations we have identified statistically 

significant, hour-scale variations in the proportionality between elimination 

rate and plasma drug levels in the majority of animals studied.
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Figure 1. 
Shown are schematics of traditional one- and two-compartment pharmacokinetic models 

with intravenous bolus drug delivery. (A) The one-compartment model is the simplest 

approximation of the drug elimination process after an intravenous bolus delivery, treating 

the body as a single entity (compartment). (B) The two-compartment model increases 

the complexity, by adding a second compartment (the tissue compartment) for the 

drug to distribute through. CP and CD represent the plasma and tissue concentrations 

respectively (subsequently written CP t  and CD t  to indicate time t . V P and V D represent 

the corresponding theoretical volumes of distribution. kE represents the elimination rate of 

drug leaving the compartmental system, while kPD and kDP represent the drug exchange rates 

between the two compartments.
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Figure 2. 
As seen by deviations at the extrema, the nonlinear least squares regression fit for the 

standard one-compartment model (Equation 2) fails to adequately capture the concentration-

time profile for Female Rat 1 (FR1). In contrast, the standard two-compartment model fit 

captures both the rapid decrease during the initial distribution phase and the slower decrease 

during elimination phase seen towards the end of the experiment (Equation 4a). Data and fits 

for the remaining rats are presented in Figure 5.
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Figure 3. 
When applied to the pharmacokinetics of tobramycin in Female Rat 1, all three time-varying 

one-compartment models (Table 1) outperform both the standard one- and two-compartment 

models when judged using BIC (shown in Table 2). Indeed, as shown, the fits of all 

three time-varying models are visually almost indistinguishable from that of the standard 

two-compartment model, with only subtle differences being seen at the tail ends of the fits.
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Figure 4. 
When applied to the FR1 dataset, the time-varying one-compartment models produce 

monotonically decreasing elimination proportionality estimates. This matches physiological 

intuition, which is that kidney function, and thus the renal elimination of this drug, falls 

with time due to the dehydration and loss of blood pressure that occurs for animals under 

anesthesia without an intravenous drip.
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Figure 5. 
The fits of the time-varying one-compartment models are almost indistinguishable from 

those of the standard two-compartment model. To illustrate this, here we present the 

observed concentrations (dots) versus time profiles with fitted pharmacokinetic profiles 

for all five model we have considered (solid curves). For the majority of our datasets, the 

time-varying one-compartment model fits (red, orange, yellow curves) visually are almost 

indistinguishable from those of the standard two-compartment model (blue curve). The 

constant-elimination rate one-compartment model (black curve) is the preferred model for 

only one dataset (FR2). The high variability seen in the FR4 observations is presumably due 

to a noisy sensor; the signal-to-noise of these handmade devices sometimes varies due to 

placement (i.e., nearer or farther from the heart), residual animal motion, poor connections, 

or variations in sensor size.
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Figure 6. 
Estimated proportionalities kE t  (solid curves) from fitting reciprocally time-varying one-

compartment models to our masked data (in which data corresponding to one estimated 

distribution lifetime has been removed from the beginning of the data run), suggest 

significant intra- and inter-animal variability in kidney function. The left plot illustrates 

female rats, and the right male rats. Approximate 95% pointwise confidence bands are 

shown for each animal’s respective observation period (dotted curves, shaded area), 

excluding MR5 due to non-convergence.
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Figure 7. 
The sparse datasets traditionally employed in pharmacokinetic studies are insufficient to 

capture subtle, time-varying physiological effects of the type described here. To illustrate 

this, we selected ten equally spaced time-points from FR1 data (displayed in Fig. 3), and 

fitted our five models to the resulting, sparser dataset. Although all of our one-compartment 

models describe this sparse dataset equally well (according to BIC), all of the models except 

the standard one-compartment model contain at least one parameter with approximate 95% 

confidence interval encompassing zero, implying these sparser data do not support the use 

of models more complex than the standard one-compartment model. In the SI we present 

similar analyses employing unequally spaced sparse datasets (Fig. SI2–SI3).
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Table 1:

The time-varying one-compartment models explored here

Model Elimination Proportionality ODE Solution

Linear kE t = bE · t + kE0 CP t = D0
V P

· exp − bE
2 · t + kE0 t

Exponential kE t = kE0e−bE · t CP t = D0
V P

· exp kE0
bE

e−bE · t − 1

Reciprocal kE t = kE0
bE · t + 1 CP t = D0

V P
· exp − kE0

bE
ln bE · t + 1
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Table 2:

BIC, AIC, RMSE, parameter estimates and 95% approximate confidence bounds for Female Rat 1

Parameters and Model 
Measures

One-compartment Two-compartment No. Obs. Dur. (h)

Standard Linear Exponential Reciprocal Standard

V P (mL) 106 ± 3 95 ± 2 94 ± 2 93 ± 3 94 ± 3 178 1.26

kE (h−1) 1.59 ± 0.07 - - - 1.2 ± 0.5

kE0 (h−1) - 2.4 ± 0.1 2.7 ± 0.2 3.1 ± 0.3 -

bE (h−1 or h−2) - −1.8 ± 0.2 1.2 ± 0.2 2.4 ± 0.6 -

kPD (h−1) - - - - 1.4 ± 0.3

kDP (h−1) - - - - 1.5 ± 1.2

BIC a 1133.6 1007.7 1005.5 1008.4 1011.4

AIC a 1124.1 995.0 992.7 995.6 995.5

RMSEa(μM) 5.59 3.87 3.85 3.88 3.85

a
For definitions of BIC (Bayesian Information Criterion), AIC (Akaike Information Criterion), and RMSE (root-mean-squared error), see SI.

The preferred model as selected by the BIC is shaded in grey.
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Table 3:

BIC. AIC. RMSE. parameter estimates and approximate 95% confidence bounds for all models/all animals

Rat Parameters and 
Model Measures

One-compartment Two-compartment No. 
Obs.

Dur. 
(h)Standard Linear Exponential Reciprocal Standard

FR1 V P (mL) 106 ± 3 95 ± 2 94 ± 2 93 ± 3 95 ± 3 178 1.26

kE (h−1) 1.59 ± 0.07 - - - 1.2 ± 0.5

kE0 (h−1) - 2.4 ± 0.1 2.7 ± 0.2 3.1 ± 0.3 -

bE (h−1 or h−2) - −1.8 ± 0.2 1.3 ± 0.2 2.4 ± 0.6 -

kPD (h−1) - - - - 1.4 ± 0.3

kDP (h−1) - - - - 1.5 ± 1.2

BIC a 1133.6 1007.7 1005.5 1008.4 1011.4

AIC a 1124.1 995.0 992.7 995.6 995.5

RMSEa(μM) 5.59 3.87 3.85 3.88 3.85

FR2 V P (mL) 67.9 ± 1.3 68 ± 2 68 ± 2 68 ± 2 63 ± 3 293 1.5

kE (h−1) 1.51 ± 0.05 - - - 1.57 ± 0.09

kE0 (h−1) - 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 -

bE (h−1 or h−2) - −0.01 ± 
0.23

0.0 ± 0.2 0.01 ± 0.16 -

kPD (h−1) - - - - 0.9 ± 1.3

kDP (h−1) - - - - 10.4 ± 12

BIC a 2071.4 2077.1 2077.1 2077.1 2070.6

AIC a 2060.3 2062.3 2062.3 2062.3 2052.2

RMSEa(μM) 8.06 8.06 8.06 8.06 7.89

FR3 V P (mL) 191 ± 8 168 ± 8 162 ± 8 154 ± 10 153 ± 11 245 1.74

kE (h−1) 1.29 ± 0.09 - - - 1.4 ± 0.16

kE0 (h−1) - 2.1 ± 0.2 2.5 ± 0.4 3.4 ± 0.8 -

bE (h−1 or h−2) - −1.3 ± 0.3 1.2 ± 0.3 3.5 ± 1.5 -

kPD (h−1) - - - - 2.1 ± 0.9

kDP (h−1) - - - - 3.9 ± 2.0

BIC a 1574.6 1519.1 1511.6 1506.0 1512.7

AIC a 1564.1 1505.1 1497.6 1492.0 1495.2

RMSEa(μM) 5.82 5.14 5.06 5 5.01

FR4 V P (mL) 88 ± 8 75 ± 8 70 ± 8 64 ± 10 67 ± 9 291 2.2

kE (h−1) 1.0 ± 0.1 - - - 1.0 ± 0.4

kE0 (h−1) - 1.8 ± 0.4 2.4 ± 0.8 4.2 ± 2.6 -

bE (h−1 or h−2) - −1.0 ± 0.4 1.4 ± 0.6 5.9 ± 5.5 -
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Rat Parameters and 
Model Measures

One-compartment Two-compartment No. 
Obs.

Dur. 
(h)Standard Linear Exponential Reciprocal Standard

kPD (h−1) - - - - 1.9 ± 1.3

kDP (h−1) - - - - 2.3 ± 2.3

BIC a 2801.3 2783.9 2781.1 2779.3 2787.0

AIC a 2790.3 2769.2 2766.4 2764.6 2768.6

RMSEa(μM) 28.94 27.81 27.68 27.59 27.69

MR1 V P (mL) 280 ± 15 232 ± 13 179 ± 10 126 ± 7 129 ± 6 268 1.98

kE (h−1) 1.2 ± 0.1 - - - 2.4 ± 0.1

kE0 (h−1) - 2.3 ± 0.2 5.3 ± 0.6 28 ± 6 -

bE (h−1 or h−2) - −1.4 ± 0.3 2.8 ± 0.4 57 ± 14 -

kPD (h−1) - - - - 16 ± 2

kDP (h−1) - - - - 9.5 ± 1.0

BIC a 1868.3 1800.4 1715.2 1491.2 1379.2

AIC a 1857.5 1786.0 1700.8 1476.8 1361.3

RMSEa(μM) 7.66 6.67 5.69 3.75 3.01

MR2 V P (mL) 131 ± 4 123 ± 4 121 ± 4 116 ± 4 92 ± 6 373 2.07

kE (h−1) 1.44 ± 0.06 - - - 2.0 ± 0.1

kE0 (h−1) - 1.8 ± 0.1 1.99 ± 0.18 2.4 ± 0.3 -

bE (h−1 or h−2) - −0.6 ± 0.2 0.5 ± 0.2 1.2 ± 0.4 -

kPD (h−1) - - - - 8 ± 3

kDP (h−1) - - - - 16 ± 4

BIC a 2534.6 2508.0 2500.0 2487.3 2391.4

AIC a 2522.8 2492.3 2484.3 2471.6 2371.8

RMSEa (m.M) 7.06 6.76 6.69 6.58 5.74

MR3 V P (mL) 165 ± 12 136 ± 10 84 ± 6 48.3 ± 1.8 50 ± 2 326 2.17

kE (h−1) 1.8 ± 0.2 - - - 5.3 ± 0.2

kE0 (h−1) - 3.0 ± 0.3 11± 2 124 ± 18 -

bE(h−1 or h−2) - −1.8 ± 0.4 4.7 ± 0.6 247 ± 42 -

kPD (h−1) - - - - 60 ± 5

kDP (h−1) - - - - 19± 1

BIC a 2552.3 2501.3 2405.6 1922.8 1779.7

AIC a 2541.0 2486.2 2390.4 1907.6 1760.8

RMSEa(μM) 11.81 10.83 9.35 4.46 3.55

MR4 V P (mL) 383 ± 10 339 ± 6 327 ± 7 314 ± 7 312 ± 7 273 1.4
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Rat Parameters and 
Model Measures

One-compartment Two-compartment No. 
Obs.

Dur. 
(h)Standard Linear Exponential Reciprocal Standard

kE (h−1) 2.07 ± 0.08 - - - 2.25 ± 0.09

kE0 (h−1) - 3.2 ± 0.1 3.8 ± 0.2 4.8 ± 0.4 -

bE (h−1 or h−2) - −2.5 ± 0.2 1.51 ± 0.13 3.8 ± 0.6 -

kPD (h−1) - - - - 2.6 ± 0.4

kDP (h−1) - - - - 4.9 ± 0.9

BIC a 1281.2 1038.7 999.8 967.3 980.0

AIC a 1270.4 1024.3 985.4 952.9 962.0

RMSEa(μM) 2.45 1.56 1.45 1.37 1.38

MR5 V P (mL) 1531±59 1276 ± 45 1180 ± 48 1092 ± 60 1147±56 290 2.06

kE (h−1) 0.87 ± 0.06 - - - 0.8 ± 0.1

kE0 (h−1) - 1.7 ± 0.1 2.5 ± 0.3 4.4 ± 1.0 -

bE (h−1 or h−2) - −1.1 ± 0.1 1.6 ± 0.2 7.4 ± 2.5 -

kPD (h−1) - - - - 2.0 ± 0.4

kDP (h−1) - - - - 2.3 ± 0.7

BIC a 952.5 802.3 769.9 758.2 770.6

AIC a 941.5 787.6 755.2 743.6 752.3

RMSEa(μM) 1.21 0.93 0.88 0.86 0.87

MR8 V P (mL) 402 ± 12 366 ± 12 346 ± 12 278 ± 13 242 ± 8 283 2.02

kE (h−1) 0.85 ± 0.04 - - - 1.31 ± 0.05

kE0 (h−1) - 1.3 ± 0.1 1.7 ± 0.2 5.4 ± 1.1 -

bE (h−1 or h−2) - −0.5 ± 0.1 0.9 ± 0.2 10 ± 3 -

kPD (h−1) - - - - 9.6 ± 1.3

kDP (h−1) - - - - 11.5 ± 1.2

BIC a 1547.0 1501.9 1477.3 1393.1 1089.1

AIC a 1536.0 1487.4 1462.7 1378.5 1070.8

RMSEa(μM) 3.61 3.3 3.16 2.72 1.58

Times model is best or matches 
best

1/10 0/10 2/10 4/10 5/10

Times model betters or matches 
two-compartment model

1/10 1/10 4/10 5/10

a
For definitions of BIC (Bayesian Information Criterion), AIC (Akaike Information Criterion), and RMSE (root-mean- squared error), see SI. The 

preferred model or models for each rat (by the BIC) are shaded grey.
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Table 4:

BIC, AIC, RMSE, parameter estimates and approximate 95% confidence bounds, based on all observations 

after removing estimated distribution phase of each rat

Rat
Parameters and Model Measures One-compartment

No. Obs. Dur. (h)
Standard Reciprocal

FR1 V P (mL) 139 ± 7 78 ± 42 138 0.98

kE (h−1) 1.16 ± 0.07 -

kE0 (h−1) - 4.5 ± 4.9

bE (h−1 or h−2) - 4.5 ± 6.7

kPD (h−1) - -

kDP (h−1) - -

BIC a 762.4 743.8

AIC a 753.6 732.1

RMSEa(μM) 3.6 3.3

FR2 V p (mL) 70 ± 2 74 ± 3 275 1.41

kE (h−1) 1.46 ± 0.05 -

kE0 (h−1) - 1.2 ± 0.1

bE (h−1 or h−2) - −0.3 ± 0.1

kPD (h−1) - -

kDP (h−1) - -

BIC a 1926.6 1921.9

AIC a 1915.8 1907.5

RMSEa(μM) 7.8 7.7

FR3 V P (mL) 229 ± 14 178 ± 37 223 1.59

kE (h−1) 1.0 ± 0.1 -

kE0 (h−1) - 2.2 ± 1.3

bE (h−1 or h−2) - 1.7 ± 1.8

kPD (h−1) - -

kDP (h−1) - -

BIC a 1377.2 1368.6

AIC a 1367.0 1355.0

RMSEa(μM) 5.1 5.0

FR4 V P (mL) 118 ± 18 94 ± 52 262 1.98

kE (h−1) 0.7 ± 0.2 -

kE0 (h−1) - 1.5 ± 2.5
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Rat
Parameters and Model Measures One-compartment

No. Obs. Dur. (h)
Standard Reciprocal

bE (h−1 or h−2) - 1.3 ± 4.2

kPD (h−1) - -

kDP (h−1) - -

BIC a 2515.5 2518.6

AIC a 2504.8 2504.3

RMSEa(μM) 28.5 28.4

MR1 V P (mL) 344 ± 12 263 ± 19 262 1.93

kE (h−1) 0.97 ± 0.05 -

kE0 (h−1) - 2.8 ± 0.7

bE (h−1 or h−2) - 3.1 ± 1.3

kPD (h−1) - -

kDP (h−1) - -

BIC a 1459.6 1403.7

AIC a 1448.9 1389.4

RMSEa(μM) 3.8 3.4

MR2 V P (mL) 142 ± 4 136 ± 5 365 2.02

kE (h−1) 1.33 ± 0.05 -

kE0 (h−1) - 1.5 ± 0.2

bE (h−1 or h−2) - 0.2 ± 0.2

kPD (h−1) - -

kDP (h−1) - -

BIC a 2340.4 2340.3

AIC a 2328.7 2324.7

RMSEa(μM) 5.8 5.8

MR3 V P (mL) 205 ± 7 132 ± 7 324 2.15

kE (h−1) 1.35 ± 0.07 -

kE0 (h−1) - 6.5 ± 1.1

bE (h−1 or h−2) - 7.8 ± 1.9

kPD (h−1) - -

kDP (h−1) - -

BIC a 1963.6 1732.8

AIC a 1952.3 1717.7

RMSEa(μM) 4.9 3.4
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Rat
Parameters and Model Measures One-compartment

No. Obs. Dur. (h)
Standard Reciprocal

MR4 V P (mL) 474 ± 14 351 ± 31 249 1.27

kE (h−1) 1.65 ± 0.06 -

kE0 (h−1) - 3.6 ± 0.7

bE (h−1 or h−2) - 2.3 ± 0.9

kPD (h−1) - -

kDP (h−1) - -

BIC a 961.6 873.2

AIC a 951.0 859.1

RMSEa(μM) 1.6 1.3

MR5 V P (mL) 1948±98

DNC b

260 1.85

kE (h−1) 0.63 ± 0.05

kE0 (h−1) -

bE (h−1 or h−2) -

kPD (h−1) -

kDP (h−1) -

BIC a 718.9

AIC a 708.3

RMSEa(μM) 0.9

MR8 V P (mL) 444 ± 8 429 ± 12 276 1.97

kE (h−1) 0.75± 0.02 -

kE0 (h−1) - 0.9 ± 0.1

bE (h−1 or h−2) - 0.2 ± 0.2

kPD (h−1) - -

kDP (h−1) - -

BIC a 1161.3 1159.9

AIC a 1150.4 1145.4

RMSEa(μM) 1.9 1.9

Times model is best or matches bestc 3/10 8/10

a
For definitions of BIC (Bayesian Information Criterion), AIC (Akaike Information Criterion), and RMSE (root-mean-squared error), see SI. The 

preferred model as selected by the BIC is shaded in grey.

b
DNC stands for “did not converge.” This occurs when the convergence criteria is not met within the set iteration limit. For more detail, see the SI.

c
We treat models where estimation did not converge as non-preferred in the model selection process.
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Table 5:

BIC, AIC, RMSE, parameter estimates and approximate 95% confidence bounds for Female Rat 1 when the 

dataset is reduced to ten equally spaced data points

Parameters and Model Measures
One-compartment Two-compartment

No. Obs. Dur. (h)
Standard Linear Exponential Reciprocal Standard

V P (mL) 120 ± 13 112 ± 14 111 ± 16 111 ± 18 112 ± 20 10 1.14

kE (h−1) 1.3 ± 0.2 - - - 1 ± 17

kE0 (h−1) - 1.9 ± 0.7 2.0 ± 1.0 2.1 ± 1.4 -

bE (h−1 or h−2) - −1.1 ± 1.3 0.8 ± 1.1 1.2 ± 2.5 -

kPD (h−1) - - - - 1 ± 15

kDP (h−1) - - - - 1 ± 11

BIC a 65.0 64.0 64.1 64.3 66.2

AIC a 64.1 62.8 62.9 63.1 64.7

RMSEa(μM) 4.4 3.8 3.8 3.8 3.7

a
For definitions of BIC (Bayesian Information Criterion), AIC (Akaike Information Criterion), and RMSE (root-mean-squared error), see SI. The 

preferred models for this rat (by the BIC) are shaded grey.
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