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ABSTRACT  23 

Phenology varies widely over space and time because of its sensitivity to climate. However, 24 

whether phenological variation is primarily generated by rapid organismal responses (i.e., 25 

plasticity) or local adaptation remains unresolved. Here, we used 1,038,027 herbarium specimens 26 

representing 1,605 species from the continental United States to measure flowering time 27 

sensitivity to temperature over time (‘Stime’) and space (‘Sspace’). By comparing these estimates, 28 

we inferred how adaptation and plasticity historically influenced phenology along temperature 29 

gradients and how their contributions vary among species with different phenology and native 30 

climates, and among ecoregions differing in species composition. Sspace and Stime were positively 31 

correlated (r = 0.87), of similar magnitude, and more frequently consistent with plasticity than 32 

adaptation. Apparent plasticity and adaptation generated earlier flowering in spring, limited 33 

responsiveness in late summer, and delayed flowering in fall in response to temperature 34 

increases. Nonetheless, ecoregions differed in the relative contributions of adaptation and 35 

plasticity, from consistently greater importance of plasticity (e.g., Southeastern USA Plains) to 36 

their nearly equal importance throughout the season (e.g., Western Sierra Madre Piedmont). Our 37 

results support the hypothesis that plasticity is the primary driver of flowering time variation 38 

along temperature gradients, with local adaptation having a widespread but comparatively 39 

limited role.  40 
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MAIN TEXT 41 

The timing of life-cycle events (‘phenology’) determines the environmental conditions that 42 

organisms encounter throughout development and often mediates their fitness1. Phenology 43 

usually is cued by seasonally and interannually variable climatic factors—such as temperature—44 

that enable individuals to adjust growth and reproduction plastically in response to fluctuating 45 

environmental conditions1,2. Phenology also varies within species as a result of evolutionary 46 

adaptation to local environments, which may select for different mean phenological timings 47 

among or within populations in space and time3–6. Although both plasticity and adaptation alter 48 

phenology, their relative contributions rarely have been measured within the same system largely 49 

because doing so requires experiments or spatiotemporally extensive genetic sampling7–9 (but see 50 

6). Accordingly, most studies have highlighted either plasticity or adaptation as mechanisms of 51 

phenological variation attributable to environmental change7, but their relative importance across 52 

species and ecological contexts remains unresolved. Elucidating the degree to which species 53 

have phenologically responded to historical climatic variation through plasticity or adaptation 54 

could provide important context for predicting whether organismal responses may be 55 

sufficient—or evolutionary change necessary—to maintain development synchronized with 56 

suitable climatic conditions in a warming world8. 57 

Phillimore et al.9 proposed that the relative and joint contributions of plasticity and local 58 

adaptation to spatial variation in phenology within a species can be estimated from the difference 59 

between the slopes of spatial and temporal phenology-climate relationships. This proposition 60 

rests on several observations. The effects of interannual climatic variation on phenology 61 

generally reflect plastic responses, especially among long-lived species less liable to experience 62 

microevolutionary changes from year to year10. Phenological variation over space also can be 63 

caused by phenotypic plasticity where, for example, growing-degree day (GDD) thresholds that 64 

trigger life-cycle events occur on different dates across sites11. However, among populations, 65 

local adaptation also can generate phenological variation along climatic gradients12,13. Therefore, 66 

assuming no confounding factors, and absent significant variation in phenological plasticity 67 

within and among populations, phenological variation along spatial climate gradients should 68 

reflect the joint effects of plasticity and adaptation14. 69 
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Given these observations and assumptions, plasticity and adaptation can generate five 70 

empirical patterns of sensitivity to temporal climatic variation (hereafter ‘Stime’) and to spatial 71 

climatic variation (hereafter ‘Sspace’) (Fig. 1). First, if a species does not show phenological 72 

plasticity but population-level phenological means are locally adapted across a climatic gradient, 73 

we should observe negligible sensitivity to temporal climatic variation (i.e., no plasticity; Stime = 74 

0) and a biologically significant difference between the slopes of the temporal and spatial 75 

relationships (Sspace – Stime ≠ 0 attributable to adaptation along the gradient; Figs. 1a,b). 76 

Alternatively, a phenologically plastic species whose populations are not locally adapted along 77 

the gradient should show biologically significant sensitivity to interannual climatic variation (i.e., 78 

Stime ≠ 0) and no differences between temporal and spatial slopes (Sspace – Stime = 0; Figs. 1c,d), 79 

implying that variation along the gradient can be attributed to plastic responses (i.e., Sspace = 80 

Stime). When both adaptation and plasticity drive phenological variation along the climate 81 

gradient (i.e., Stime ≠ 0 and Sspace – Stime ≠ 0), the resulting empirical pattern should depend on the 82 

relative direction of plastic and adaptive responses. Specifically, when adaptation operates in the 83 

same direction as plasticity (i.e., “co-gradient adaptation”), we should observe a greater spatial 84 

than temporal sensitivity (e.g., Stime < 0 and Sspace – Stime < 0 implies that Sspace < Stime, so Sspace is 85 

more negative; Figs. 1e, f). In turn, when adaptation operates in the opposite direction as 86 

plasticity (i.e., “counter-gradient adaptation”15,16), we should observe a lesser spatial sensitivity 87 

or one of opposite direction to the temporal relationship (e.g., Stime < 0 and Sspace – Stime > 0 88 

implies that Sspace > Stime, so Sspace is either less steep, or positive; Figs. 1g, h). Finally, if a 89 

species shows no plasticity or local adaptation along a climate gradient, we would expect 90 

biologically non-significant temporal and spatial sensitivities (Figs. 1i, j). 91 

 Phenological sensitivity to temperature often varies among species occurring in different 92 

regions or that initiate phenological events at different times throughout the growing season17–24. 93 

However, comparisons of phenological sensitivity to climate over space and time—which are 94 

necessary to evaluate the apparent contributions of plasticity and adaptation (Fig. 1)—across 95 

species differing in phenology and occupying different climates require spatiotemporally 96 

extensive datasets and therefore remain rare. Herbaria provide abundant and increasingly 97 

available data to conduct these analyses at unprecedented taxonomic, temporal, and spatial 98 

scales21,25–30. However, few studies have separately estimated sensitivity to spatial versus 99 

temporal climate variation using specimens (but see28,31–36), and none have leveraged their 100 
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unique scope to determine the ecological contexts in which plasticity or adaptation might 101 

contribute more strongly to spatial variation in phenology. 102 

Here, we analyzed a dataset of over a million flowering specimens from 1,605 species 103 

across the continental United States to compare phenological sensitivities to spatial and temporal 104 

variation in temperature (‘Sspace’ and ‘Stime’, respectively). For each species, we assessed whether 105 

its empirical sensitivity patterns were consistent with the effects of plasticity, adaptation, or both 106 

along temperature gradients (Fig. 1). Additionally, we evaluated how apparent temperature-107 

related plasticity and adaptation of flowering time varied among species with different native 108 

climates, phenological niches, and occurring within different regional floras. Together, our 109 

analyses identified ecological contexts in which plasticity or adaptation appear to have most 110 

strongly influenced spatial phenological variation, providing the most taxonomically and 111 

geographically extensive assessment of temperature-mediated variation in flowering time among 112 

North American angiosperms conducted to date. 113 

 114 

RESULTS 115 

Plasticity vs. adaptation as determinants of phenology 116 

Sspace and Stime of 93% and 79% of species, respectively, differed from 0 with at least 95% 117 

probability. Sspace and Stime agreed in direction for 94% of species and estimates of both Stime and 118 

Sspace were negative for 89% and 91% of species, indicating earlier flowering across increasingly 119 

warmer locations and in warmer-than-average years (Fig. 2a).  120 

Both apparent plasticity and adaptation were associated with clinal variation in flowering 121 

time along temperature gradients, with plasticity playing a predominant role among species. 122 

Sspace and Stime were highly positively correlated, and their magnitude tended to correspond 1-to-1 123 

for many species (Fig. 2b). Therefore, flowering shifts in warmer-than-average years typically 124 

had similar direction and magnitude (in days/°C) as those observed across increasingly warmer 125 

locations, consistent with a scenario of plasticity as the cause of phenological variation along 126 

spatial temperature gradients (Figs. 1c,d; Table 1).  127 
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More species showed sensitivity patterns consistent with plasticity (79%) than with 128 

adaptation (45%) (see Fig. 1, and a detailed classification scheme in Table 1). Apparent plasticity 129 

explained approximately 52% of the variance in flowering-time clines along temperature 130 

gradients among species (Fig. 2b). Fourty-one percent of species showed sensitivity patterns 131 

consistent with plasticity as the sole driver of phenological variation across gradients. In contrast, 132 

only 7% of species showed sensitivity patterns consistent solely with adaptation (see Figs. 1a,b). 133 

Thirty-eight percent of the species showed both apparent local adaptation and evidence of 134 

plasticity. Among these, a greater proportion showed flowering advances (and co-gradient 135 

patterns; 27%) than flowering delays (and counter-gradient patterns; 10%) resulting from 136 

apparent adaptation along temperature gradients (Fig. 2b). Fourteen percent of species showed 137 

patterns that were consistent neither with temperature-related plasticity nor with adaptation. 138 

These patterns remained consistent when analyzing only long-lived species (whose responses to 139 

yearly temperature anomalies are certain to be plastic) (Extended Data Fig. 1). 140 

  141 

Plasticity and adaptation across ecological contexts 142 

Apparent plasticity (Stime) varied substantially among species with different phenological niches 143 

and across local climates (R2 = 0.55; Fig. 3a,c). Species flowering during late winter and spring 144 

tended to show flowering advances in warmer-than-average years. Such advances decreased in 145 

magnitude throughout the season, typically reversing to flowering delays during late summer and 146 

fall (Fig. 3a,c). The timing of the transition from positive values was consistent throughout PC1 147 

(Fig. 3a), but occurred much earlier in arid regions with high temperature seasonality along PC2 148 

(Fig. 3c). Apparent adaptation (Sspace − Stime) also varied with phenological niche and native 149 

climate (R2 = 0.47, Figs. 3b,d). Apparent adaptation varied from negative to positive values 150 

throughout the growing season, indicating a transition from flowering advances to delays 151 

attributable to local adaptation. Such transitions occurred much earlier in cool, thermally 152 

seasonal regions (i.e., the low range of PC1) (Fig. 3b). Apparent adaptation also varied 153 

throughout the growing season along PC2, with transition from advances to delays under warmer 154 

conditions occurring earlier in regions with high precipitation (Fig. 3d). 155 
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 These patterns were mirrored at the regional level: throughout the season, average 156 

apparent plasticity and adaptation among species transitioned from generating flowering 157 

advances to generating delays in response to higher temperatures in all sampled ecoregions (R2 158 

for Stime = 0.44; R2 for Sspace − Stime = 0.35; Fig. 4). This transition invariably occurred during the 159 

summer months. The magnitude of apparent adaptation tended to be lower than that of apparent 160 

plasticity during most of spring and early summer for all ecoregions, but their difference tended 161 

to be less among species flowering during early spring and the magnitude of adaptation was 162 

often greater among species flowering during late summer and early fall (Figs. 4a–n). 163 

Nonetheless, we detected regional differences in the relative contributions of apparent adaptation 164 

and plasticity among species throughout the season. For example, apparent adaptation and 165 

plasticity had similar magnitudes within the Western Sierra Madre Piedmont (Fig. 4g). In 166 

contrast, mean apparent plasticity was consistently greater than adaptation among species in the 167 

Southeastern USA Plains (Fig. 4j). The difference in magnitude between apparent plasticity and 168 

adaptation was greatest among early- to mid-summer flowering species in the Western 169 

Cordilleras and Cold Deserts (Figs. 4b, c).  170 

 171 

DISCUSSION 172 

This study provides evidence that, for 1605 North American plant species, phenotypic 173 

plasticity historically has been the primary mechanism generating flowering-time variation along 174 

temperature gradients. Nonetheless, apparent adaptation and plasticity jointly generated 175 

phenological variation in a large proportion of species. Both apparent plasticity and adaptation 176 

consistently generated flowering advances in spring, lesser advances during summer, and 177 

flowering delays during early fall, and this pattern was consistent across climates and ecoregions. 178 

Whether phenological reaction norms to historical climatic conditions will remain adaptive under 179 

future climatic regimes is unclear10. Nonetheless, these results suggest that plasticity historically 180 

has enabled flowering phenology to respond quickly to a wide range of temperature conditions 181 

among North American angiosperms, with adaptation frequently playing an important but 182 

context-dependent role.  183 

Plasticity causes clinal variation in flowering time—Extensive research has documented 184 

phenological plasticity to spatial climatic variation in plants37–40 that can result in clinal 185 
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phenological variation even among short-lived taxa11,41. Our study extends these results by 186 

showing that the predominance of plasticity over adaptation associated with temperature-related 187 

variation in phenology over space might be the norm among North American species.  188 

The greater importance of plasticity found in this study does not contradict the well-189 

established role of phenological adaptation in space and time40, which can mediate rapid 190 

temporal shifts in phenology5 or facilitate ecological invasions6,42. Indeed, 45% of species in our 191 

data showed evidence of adaptation-driven phenological variation along temperature gradients 192 

(Fig. 2b). It is also possible that we did not detect non-linear or patchy adaptation patterns, or 193 

that the contributions of apparent adaptation and plasticity may be different in regions 194 

underrepresented in our data (e.g., the Great Plains and prairies; Extended Data Fig. 2). 195 

Crucially, we only assessed the apparent contributions of plasticity and adaptation to observed 196 

variation in flowering time over temperature gradients, so our results do not rule out the 197 

possibility that adaptation is the primary driver of phenological variation along gradients of 198 

different climatic variables. Finally, determining the exact environmental conditions within 199 

microsites where herbarium specimens were collected is impossible because continental-scale 200 

climate products have relatively coarse spatial resolution and because specimen coordinates 201 

typically are inexact. Climatic variation at the microsite level could confound our estimates of 202 

Sspace and our assessment of the prevalence of local adaptation if, for example, different 203 

populations along the gradient occupied distinct microsites that maintained temperatures more 204 

constant than apparent when looking at coarser pixel-level averages. However, to our 205 

knowledge, such microsite sorting across species ranges has only been reported at their trailing 206 

edges where climate is most limiting43. Nonetheless, these potential complexities underscore the 207 

ultimate need for molecular or quantitative genetic studies to corroborate the broad correlational 208 

patterns outlined in this study. 209 

Still, the strong correlation between Sspace and Stime has important implications for 210 

phenoclimatic research. For example, it suggests that temperature-related variation in flowering 211 

time among conspecific populations is a good proxy of responsiveness to interannual 212 

temperature variation. Therefore, space-for-time substitutions might be viable approaches for 213 

quantifying plastic flowering responsiveness to temperature in North American angiosperms, for 214 

most of which we lack long-term phenological records26,44. Specifically, the match between Sspace 215 
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and Stime shows that substituting space for time might reveal the direction and approximate 216 

magnitude on flowering sensitivity to temperature over time within species, or relative 217 

differences in sensitivity among species. However, co-gradient adaptation frequently generated 218 

spatial sensitivities of greater magnitudes than those over time, demonstrating that Sspace might 219 

overestimate Stime in many species. 220 

Our results also indicate that plasticity may have generated phenological variation across 221 

a temperature range (i.e., a median range of 13.7 °C) exceeding the degree of warming 222 

forecasted for most regions in coming decades. However, such historical plastic flowering shifts 223 

over space will not necessarily be mirrored by temporal shifts within populations as warming 224 

trends continue. For example, historical temperature cues may become uncorrelated from the 225 

factors mediating the fitness consequences of phenology, rendering plastic reaction norms 226 

maladaptive3,10. Plastic phenological shifts associated with warming also may be constrained by 227 

physiology45 or by other competing cueing mechanisms such as photoperiod or winter chilling 228 

that may be disrupted by phenological shifts associated with higher temperatures46–48. These 229 

complexities highlight the need for research on the fitness consequences of recent and ongoing 230 

phenological shifts49,50, and on the interrelated mechanisms underpinning associations between 231 

multiple abiotic cues (e.g., chilling, forcing, photoperiod, resources) and seasonal development 232 

beyond model systems48,51. 233 

Plasticity and adaptation vary across ecological contexts—Sensitivities transitioned from 234 

flowering advances under warming in spring to reduced or no responsiveness during summer and 235 

even flowering delays in early fall (Figs. 3, 4). This pattern implies that temperature trends will 236 

likely drive changes to the structure of the flowering season during spring and fall under global 237 

change, but that other environmental factors might play predominant roles during summer.  238 

These results support studies showing decreases in phenological sensitivity to 239 

temperature among species throughout the season in temperate biomes18,21,52,53, and others 240 

showing flowering delays among autumn-flowering species or lengthening of the growing and 241 

flowering seasons under warming23,54–56. While we cannot unambiguously identify the causes of 242 

this pattern, studies have shown that warming typically advances phenology during spring due to 243 

accelerated developmental rates, while phenophases occurring during fall are cued directly by 244 

seasonal cooling57–59. This difference would explain why fall-flowering species showed 245 
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phenological delays under warming (i.e., fall cooling occurs later in warmer-than-average years), 246 

or why the transition from advances to delays was more pronounced within cool regions with 247 

high temperature seasonality (i.e., those showing more pronounced cooling during fall; Fig. 3). 248 

Regardless of its causes, our study corroborates that transitions from spring flowering advances 249 

to fall delays because of climatic warming are consistent across thousands of species and diverse 250 

climate zones and biomes in the continental United States.  251 

Likewise, apparent adaptation throughout the season typically transitioned from 252 

generating mean flowering advances to generating delays along temperature gradients. Our 253 

results are consistent with those reported by Delgado et al.23, who found changes in the direction 254 

of apparent plasticity and adaptation throughout the growing season for multiple trophic levels 255 

(i.e., saprotrophs, primary producers, and primary and secondary consumers) in Eastern Europe. 256 

That changes in apparent plastic and adaptive responses to warming throughout the year might 257 

be robust across different phenophases, taxa, trophic levels, or climatic regimes across the 258 

temperate zone may reflect shared cueing mechanisms or selective pressures for different 259 

phenological events occurring during the same seasons56, with factors other than temperature 260 

(e.g., resources or photoperiod) likely driving phenological variation for developmental events in 261 

summer. Additionally, the greater prevalence of co-gradient adaptation as opposed to counter-262 

gradient adaptation suggests that adaptation typically operates to generate greater variation in 263 

phenology along temperature gradients than generated by plasticity alone.  264 

 265 

CONCLUSIONS 266 

Our findings indicate that phenotypic plasticity is the predominant historical mechanism of 267 

spatial phenological variation across a wide range of temperature conditions in the continental 268 

United States; adaptation plays more context-specific roles. Whether and how species-level 269 

attributes such as functional traits and life history may mediate these relative contributions or 270 

whether historical responses will tend to be adaptive under non-analog climatic conditions 271 

remain open questions and important directions for future research. Our results outline broad 272 

correlational patterns whose verification will require direct measurements of plasticity and 273 

adaptation across species and climate regions. Nonetheless, our data—across many biomes and 274 
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thousands of species—confirmed patterns of plastic and adaptive phenological advances in 275 

spring and delays in fall in response to warming observed in detailed empirical studies, 276 

highlighting the increasing utility of biological collections for studying plant responses to global 277 

change at vast taxonomic and spatiotemporal scales.  278 

 279 

METHODS 280 

Specimen data 281 

We assembled specimen records from 220 herbaria made available digitally through 16 consortia 282 

from Mexico, the United States, and Canada (accessed during July and August of 2022; Note 283 

S1). We retained only specimens explicitly recorded as bearing flowers, which we determined by 284 

summarizing all unique entries in the DarwinCore ‘reproductiveCondition’ column and 285 

identifying those that unambiguously indicated presence of flowers. After harmonizing species 286 

names using the Taxonomic Name Resolution Service60, we removed specimens lacking species-287 

level identification, GPS coordinates, or dates of collection. To match the spatial and temporal 288 

coverage of the climate data (see Climate data below), we retained only specimens collected 289 

from 1896 to 2020 within the United States. We considered as duplicates any conspecific 290 

specimens collected within 111m (i.e., 0.001 of a decimal degree) of one another on the same 291 

date. For subsequent analysis, we selected species represented by at least 300 specimens to 292 

ensure that our model was computationally tractable and that we had sufficient sample sizes for 293 

estimating temperature responses in space and time. This filtering yielded a sample of 1,038,047 294 

specimens from 1,605 species (Extended Data Fig. 2) (see 61 for additional methodological 295 

detail).  296 

We used day of year (‘DOY’) of collection of each specimen as a proxy for flowering 297 

date. Because flowering spanned year-ends for many species, we accounted for the DOY 298 

discontinuity between December 31st and January 1st using an azimuthal correction, whereby 299 

DOYs from the year prior become negative values29. 300 

Climatic data 301 
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Temperature conditions preceding and leading up to anthesis can mediate flowering time through 302 

their effects on developmental rates of preceding phenophases or by cueing floral development 303 

and anthesis. Accordingly, we used mean surface temperatures averaged over a standard period 304 

of three months18,21,53,62 leading up to (and including) the mean flowering month for each species 305 

(hereafter ‘TMEAN’) as a predictor. For each collection site, we obtained monthly TMEAN time 306 

series (January 1896 – December 2020) at a 16-km2 spatial resolution from the Parameter-307 

elevation Regressions on Independent Slopes Model (PRISM Climate Group, Oregon State 308 

University, http://prism.oregonstate.edu). We characterized each collection site by its long-term 309 

mean temperature (hereafter ‘TMEANNormal’), averaging observed TMEAN across all years 310 

between 1896 and 2020. Annual deviations from long-term TMEAN conditions (hereafter 311 

‘TMEANAnomaly’) at each site and in each year were calculated by subtracting the TMEANNormal 312 

from the observed TMEAN conditions in the year of collection. Positive and negative 313 

TMEANAnomaly values respectively reflect warmer-than-average and colder-than-average years. 314 

TMEANNormal and TMEANAnomaly were uncorrelated irrespective of the latitudinal and 315 

elevational range spanned by a species (median r = −0.04), thus representing independent axes of 316 

climatic variation (Fig. S2). TMEANNormal spanned a wider temperature range than 317 

TMEANAnomaly for most species, with respective median ranges of 13.7 °C and 5.4 °C (Fig. S3). 318 

Species occurring in cold climates tended to show later mean flowering dates than species 319 

occupying warmer regions (Fig. S4a); consequently, average TMEANNormal values were well 320 

above 0°C leading up to the mean flowering dates of all species in our data (Fig. S4b). 321 

To assess how sensitivities varied across climatic gradients (see Analyses, below), we 322 

first characterized long-term precipitation and temperature at each site of collection using a 323 

Principal Component Analysis (PCA), with mean annual temperature normal (MATNormal), mean 324 

annual precipitation normal (PPTNormal), temperature seasonality, and precipitation seasonality as 325 

input features. We obtained precipitation (hereafter ‘PPT’) data from PRISM and calculated PPT 326 

and temperature seasonality for each collection site as the difference between the months with 327 

the highest and lowest PPT and mean temperature normal, respectively. We made PPT 328 

seasonality proportional to local levels of precipitation by dividing differences in maximum 329 

versus minimum monthly precipitation normal by PPTNormal at each site. The PCA identified 2 330 

principal components accounting for more variance than its input features, jointly explaining 331 

78% of observed variation. PC1 was associated with increasing PPT seasonality (36%), 332 
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decreasing temperature seasonality (31%) and increasing MATNormal (28%) (Extended Data Fig. 333 

2). PC2 represented a gradient of decreasing PPTNormal (74%) and increasing temperature 334 

seasonality (22%). 335 

 336 

Analyses 337 

Estimating apparent plasticity and adaptation—We estimated flowering time sensitivity to 338 

TMEANNormal and TMEANAnomaly using a Bayesian mixed-effects model. The model fitted 339 

species-specific intercepts and slopes and treated them as random effects sampled from 340 

‘community-level’ distributions (defined by among-species mean and standard deviation of 341 

intercepts and slopes). This hierarchical structure improved estimation of parameters by using 342 

information and estimates from all species in the data. In turn, the Bayesian inference framework 343 

allowed for estimation of the correlations between TMEAN sensitivities over space and time and 344 

their differences for each species while propagating parameter uncertainty.  345 

 We used DOY for each observation i as a response, assuming a normal distribution with 346 

mean µi and species-specific standard deviation σsp: 347 

𝐷𝑂𝑌𝑖  ∼  𝑁(µ𝑖 , 𝜎𝑠𝑝) (1) 348 

 We modeled µi as a linear function of TMEANNormal (TMEAN Normi), and 349 

TMEANAnomaly (TMEAN Anomi) for each observation i.  350 

µ𝑖 =  𝛼𝑠𝑝  + 𝑆𝑠𝑝𝑎𝑐𝑒𝑠𝑝
× 𝑇𝑀𝐸𝐴𝑁 𝑁𝑜𝑟𝑚𝑖  +  𝑆𝑡𝑖𝑚𝑒𝑠𝑝

×  𝑇𝑀𝐸𝐴𝑁 𝐴𝑛𝑜𝑚𝑖 (2) 351 

For each species sp, the model yielded intercepts representing mean flowering dates (𝛼𝑠𝑝), 352 

sensitivities (i.e., regression slopes) for TMEAN normal (𝑆𝑠𝑝𝑎𝑐𝑒𝑠𝑝
), and sensitivities for TMEAN 353 

anomaly (𝑆𝑡𝑖𝑚𝑒𝑠𝑝
). 354 

To assess the correlation between Sspace and Stime, we modeled community-level 355 

distributions for intercepts and slopes as generated by a multivariate normal distribution with a 356 

vector of hypermeans µ and a variance-covariance matrix Σ:  357 
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(𝛼𝑠𝑝, 𝑆𝑁𝑠𝑝
, 𝑆𝐴𝑠𝑝

) ∼ 𝑁(µ, 𝛴) (3) 358 

We also calculated the difference between sensitivity types (𝑆𝑠𝑝𝑎𝑐𝑒𝑠𝑝
−  𝑆𝑡𝑖𝑚𝑒𝑠𝑝

) as a 359 

derived quantity within the model, which we interpreted as the degree of apparent local 360 

adaptation in DOY observed across the TMEAN normal gradient (Fig. 1), with negative and 361 

positive values respectively indicating advances and delays in flowering DOY across warmer 362 

locations. 363 

 We used weakly informative priors, with wide, 0-centered normal distributions for 364 

intercepts, slopes, and rate parameters for exponential distributions (used to obtain species-365 

specific variances). For the variance-covariance matrix Σ, we used a Lewandowski-Kurowicka-366 

Joe (LKJ) Cholesky covariance prior, with ŋ = 1 to allow for high correlations among 367 

parameters. Posterior distributions were obtained using Hamiltonian Monte Carlo (HMC) in Stan 368 

(code provided in Note S2) as implemented in R v.4.2.1 using the ‘rstan’ package v.2.21.263. We 369 

implemented a non-centered parameterization to improve sampling of the parameter space. 370 

Sampling was done using three MCMC chains with a training period of 1000 iterations and 371 

sampling of 4000 iterations. All Sspace, Stime, and Sspace − Stime estimates had Gelman-Rubin 372 

statistics (‘R-hat’) of less than 1.002, and visual examination of trace plots confirmed 373 

convergence.  374 

Fitting the model on simulated data (Note S3), which emulated the average range of 375 

TMEAN conditions and the signal-to-noise ratio of DOY vs. TMEAN observed within species in 376 

our data, confirmed that our model could accurately recover the parameters of interest (Stime, 377 

Sspace, and Sspace − Stime ) for a range of sample and effect sizes (Note S3; Figs. S5–7). Moreover, 378 

we found that apparent plasticity (Stime) and apparent adaptation (Sspace − Stime) could be 379 

estimated with similar degrees of precision (Fig. S8). 380 

Because our model did not include an explicit temporal predictor, it may appear to ignore 381 

widespread trends in phenology and temperature reported in recent decades. However, additional 382 

simulation analyses (Note S4) showed that our model does account for temporal trends in 383 

phenology among species that experience trends in TMEANAnomaly over time and that are 384 

responsive to TMEANAnomaly (i.e., non-zero Stime) (Fig. S9a). To evaluate the model’s implicit 385 

assumption that trends in TMEANAnomaly cause observed trends in phenology, we used the 386 
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herbarium dataset to determine empirically whether observed temporal trends in TMEANAnomaly 387 

and a species’ Stime indeed explain observed trends in DOY. We recovered the same patterns 388 

observed in the simulation (Fig. S9b), suggesting that phenology and TMEANAnomaly trends are 389 

causally related. Moreover, detrending DOY and TMEANAnomaly prior to fitting the model did 390 

not affect our results, suggesting that omitting time as a covariate was unlikely to bias our results 391 

(Extended Data Fig. 3).  392 

Finally, we evaluated the impact on our estimates of choosing alternative reference 393 

periods to calculate TMEANNormal (i.e., 1901–2020 vs. 1901–1930, 1931–1960, 1961–1990, 394 

1991–2020) (Note S5, Figs. S10–12). These analyses confirmed that period selection was 395 

unlikely to have affected our results.  396 

Exploring assumptions—Herbarium specimens rarely are collected repeatedly at the same 397 

location across years. Accordingly, we found few repeated collections over time and in close 398 

enough proximity to represent single populations. Because of this, we estimated Sspace and Stime 399 

using statistical methods different from Phillimore et al.9 and Delgado et al.23 (Note S6). 400 

Nevertheless, the interpretation of our model relied on the same simplifying assumptions: spatial 401 

slopes reflect variation in DOY among populations along a temperature gradient, temporal slopes 402 

reflect plasticity, plasticity does not vary within and among populations, and the temporal and 403 

spatial relationships between phenology and climate are not biased by confounding factors.  404 

We evaluated the plausibility of many of these assumptions. Sspace likely represented 405 

phenological variation among populations because conspecific specimens were collected over 406 

vast regions spanning median latitudinal and longitudinal ranges of 1,356  km and 1,819 km 407 

(removing outliers), respectively. In turn, Stime likely reflected the effects of plasticity and not 408 

adaptation: analyses including only long-lived perennials (unlikely to show microevolutionary 409 

changes over short periods) yielded very similar results to those presented below (Extended Data 410 

Fig. 1); moreover, detrending DOY and TMEANAnomaly prior to fitting the model—which may 411 

account for temporal confounds or microevolution64—yielded nearly identical estimates 412 

(Extended Data Fig. 3). Furthermore, we generated a single estimate of Stime per species, thus 413 

assuming uniform plastic responses within and among populations. This assumption was 414 

supported by the observation that, for a large majority of species, Stime did not vary along 415 

geographic gradients of long-term TMEAN, long-term PPT, TMEAN seasonality, PPT 416 
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seasonality, or the joint gradients described by PC1 and PC2 (Extended Data Fig. 4). Cumulative 417 

precipitation and photoperiod are unlikely to confound Sspace and Stime: accounting for cumulative 418 

PPT yielded nearly identical estimates in single-species models (Extended Data Fig. 5), and an 419 

analysis of 120 species collected withing geographic ranges restricted to narrower latitudinal 420 

bands (≤1°)—and therefore to limited geographically-driven variation in photoperiod—yielded 421 

results very similar to those based on the entire dataset (Extended Data Fig. 6). Finally, we 422 

detected no biases in Sspace or Stime due to differences in sample size among species (Extended 423 

Data Figs. 7a, b), phylogeny (Extended Data Figs. 7c, d), spatial autocorrelation (Extended Data 424 

Figs. 7e, f), non-linear phenology-temperature relationships (Extended Data Fig. 8), or difference 425 

in range size among species (Extended Data Fig. 9). 426 

Although herbarium data has many spatial and temporal collection biases and 427 

limitations—including preferential collection near roads and urban areas, and sharp decreases in 428 

collection intensity in recent decades65—such biases are likely not severe in our data (Notes S7, 429 

8, Figs. S13–20). Our estimates of Sspace, Stime, and Sspace – Stime were robust to inclusion in our 430 

models of factors such as urbanization (Fig. S14) and proximity to major roads (Figs. S17, 18), 431 

and showed no evidence of various forms of temporal non-independence (Fig. S20). Collector 432 

preferences can result in overrepresentation of certain taxa or traits among specimens65. While 433 

we cannot rule out these biases in our data, our study encompassed species from 106 families 434 

and 740 genera, capturing vast functional, evolutionary, and life history diversity. Therefore, we 435 

consider it unlikely that our results were driven by overrepresentation of taxa or traits. Finally, 436 

some herbaria obscure location data for endangered or heavily poached species. However, since 437 

we only included georeferenced specimens from well-represented species—of which only 12 438 

(0.7% of the total) are listed as endangered by the United States Department of Agriculture66—it 439 

is unlikely that our species list includes many such taxa. 440 

Categorizing sensitivity patterns—To assess the prevalence of apparent plasticity and adaptation 441 

among species, we categorized each species’ Sspace versus Stime patterns as consistent with the 442 

effects of plasticity alone (Figs. 1a,b), adaptation alone (Figs. 1c,d), the joint effects of plasticity 443 

and adaptation (co- or counter-gradient adaptation; Figs. 1e–h), or neither. Classifications were 444 

based on the proportion of the posterior probability distribution of Stime and Sspace − Stime lying in 445 

the direction of their maximum a posteriori (MAP) estimate (i.e., their “probability of direction”, 446 
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henceforth ‘PD’). PD is bound by 0.5 (maximum uncertainty about the effect of the predictor) 447 

and 1 (certainty of an effect in the direction of the MAP estimate). We subjectively considered 448 

apparent plasticity (Stime) and adaptation (Sspace − Stime) as significant when their PD was ≥ 0.95 449 

(Table 1). Apparent plasticity and adaptation showed similar levels of estimation uncertainty 450 

both empirically (SD = 0.87 ± 0.34 d/°C for Stime; SD = 0.93 ± 0.32 d/°C for Sspace − Stime) and in 451 

simulation analyses (Note S3), suggesting sensitivity patterns were not substantially more likely 452 

to be classified as consistent with plasticity than with adaptation (and vice versa) due to 453 

estimation uncertainty. 454 

 455 

Phenological niches, local climates, and ecoregions—To assess how apparent plasticity and 456 

adaptation varied with native climate and phenological niche among species, we first calculated 457 

the mean flowering DOY and the mean coordinates along the climate gradients described by PC1 458 

and PC2 among specimens of each species. We then fit two generalized additive models (GAMs) 459 

using Stime or Sspace − Stime as responses—assumed to be normally distributed—and a three-460 

variable tensor-product smooth of mean flowering DOY, mean PC1, and mean PC2 as a 461 

predictor. This design allowed us to assess how native climate and phenological niche jointly 462 

determined the apparent roles of plasticity and adaptation while accounting for possible 463 

interactions and non-linearities. Because Stime and Sspace − Stime are estimates, we accounted for 464 

parameter uncertainty by weighting each observation by the inverse of its posterior variance (i.e., 465 

its precision).  466 

 Additionally, we assessed the relative contributions of apparent plasticity and adaptation 467 

throughout the season within ecoregions of the contiguous United States. To do so, we identified 468 

the Level II Ecoregion—as classified by the USA Environmental Protection Agency 469 

(EPA)67,68—within which each specimen was collected. We used Level II Ecoregions because 470 

they provide sufficient ecological detail to distinguish regional floras while encompassing areas 471 

broad enough for each to capture multiple species in our data. To avoid inflating species overlap 472 

among regions or the influence of species that were rarely sampled within an ecoregion, we 473 

arbitrarily considered a species as present within an ecoregion if at least 10% of its collections 474 

occurred within it. We then retained only ecoregions represented by a minimum of 8 species. 475 

Under this scheme, the median species was classified as occurring within 2 ecoregions (range = 476 
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1–7), the median ecoregion was represented by 156 species (range = 17–956 for Atlantic 477 

Highlands and Western Cordilleras, respectively), and pairs of ecoregions shared, on average, 478 

4% of their species (range = 0–39%; Fig. S21). Of the 120 ecoregion pairs examined, 57 shared 479 

less than 1% of species, 100 shared less than 10% of species, and 114 shared less than 20% of 480 

species. 481 

 Once species × ecoregion combinations were identified (n = 3,570), we fitted two GAMs 482 

including apparent plasticity (Stime) or apparent adaptation (Sspace − Stime) as a response, ecoregion 483 

as a categorical predictor, mean flowering DOY as continuous predictor, and a mean flowering 484 

DOY × ecoregion spline assessing the ecoregion-specific effects of mean DOY on apparent 485 

plasticity or adaptation. Again, we accounted for parameter uncertainty by weighting each 486 

observation by the precision of its corresponding apparent plasticity or adaptation estimate. 487 

Collection locations in different ecoregions differed substantially in their long-term climatic 488 

conditions (Extended Data Fig. 10). However, we assumed no intraspecific variation in Stime 489 

across ecoregions an assumption partially supported by the observation that Stime did not tend to 490 

vary along climatic gradients within species (Extended Data Fig. 4). All GAMs were 491 

implemented using the ‘mgcv’ package v.1.8-40 in R69,70.  492 
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TABLES 516 

 517 

Biological Process Empirical Sensitivity Pattern 

Plasticity only 
1. Probability of direction for Stime ≥ 0.95 

2. Probability of direction for Sspace − Stime < 0.95 

Adaptation only 
1. Probability of direction for Sspace − Stime ≥ 0.95 

2. Probability of direction for Stime < 0.95 

P
la

s
ti
c
it
y
 a

n
d
 A

d
a

p
ta

ti
o

n
 

Co-gradient 

1. Probability of direction for Stime ≥ 0.95 

2. Probability of direction for Sspace − Stime ≥ 0.95 

3. Sspace and Stime have the same direction 
4. |Sspace| > |Stime| 

Counter-gradient 

1. Probability of direction for Stime ≥ 0.95 

2. Probability of direction for Sspace − Stime ≥ 0.95 

Case 1: 
3. Sspace and Stime have opposite direction 

Case 2: 
4. Sspace and Stime have the same direction  
5. |Sspace| < |Stime| 

Neither 
1. Probability of direction for Stime < 0.95 

2. Probability of direction for Sspace − Stime < 0.95 

 518 

Table 1—Criteria for classifying the sensitivity pattern of each species. Patterns were classified as 519 

consistent with the role of plasticity only, adaptation only, the joint effects of plasticity and adaptation in 520 

a co- or counter-gradient adaptation pattern, or neither adaptation nor plasticity. The probability that Stime 521 

or Sspace − Stime differed from 0 in the direction of its maximum a posteriori (MAP) estimate (i.e., their 522 

probability of direction) was obtained from the posterior distribution of these parameters for each species.  523 

 524 

  525 
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FIGURE LEGENDS 526 

Figure 1—Spatial and temporal relationships between flowering time and temperature 527 

resulting from plasticity and adaptation. (a) Local adaptation acting as the sole driver of 528 

flowering time along the gradient (i.e., no phenological plasticity) should result in (b) a 529 

negligible temporal relationship and a biologically significant difference between temporal and 530 

spatial slopes. In contrast, (c) plasticity acting as the sole driver of flowering time variation along 531 

the gradient (i.e., no adaptation) should result in (d) a biologically significant temporal 532 

relationship and negligible differences between spatial and temporal slopes. Local adaptation and 533 

plasticity jointly influencing flowering time should result in different empirical patterns 534 

depending on the direction of their effects. (e) Plasticity and adaptation operating in the same 535 

direction (e.g., both negative) should result in (f) a biologically significant temporal relationship 536 

and a spatial relationship of significantly greater magnitude. In contrast, (g) plasticity and 537 

adaptation operating in opposite directions (e.g., plasticity negative, adaptation positive) should 538 

result in (h) a biologically significant temporal relationship and a spatial relationship of 539 

significantly lesser magnitude (or having a different sign altogether). (i) Species exhibiting no 540 

plasticity or adaptation along the gradient would generate (j) biologically non-significant 541 

temporal and spatial slopes. Orange lines in a, c, e, and g illustrate phenological responses of 542 

spatially separated populations to temporal temperature variation, which spans a narrower 543 

temperature range than spatial temperature variation across the entire species range (segmented 544 

red lines). The biological processes in a, c, e, and g generate the empirical patterns in b, d, f, and 545 

h. In turn, the empirical patterns imply the processes that generated them. See “Methods – 546 

Exploring Assumptions” for an overview of the assumptions of this approach and the degree to 547 

which they were met by our data. For examples of species exhibiting each of these patterns, see 548 

Fig. S1. 549 

 550 

Figure 2—Distributions of, and relationship between Sspace and Stime among 1,605 North 551 

American angiosperms. Shaded regions in (a) correspond to the kernel density distributions of 552 

Stime (red) and Sspace (blue) among species. Each point in (b) represents a species whose x, y 553 

coordinates are given by the maximum a posteriori (MAP) estimates for Sspace and Stime, 554 

respectively. Colors in (b) indicate whether sensitivity patterns were consistent with plasticity 555 
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(green) or adaptation (magenta) as the sole drivers of flowering time variation along the 556 

temperature gradient, with both plasticity and adaptation in a co- or counter-gradient adaptation 557 

pattern (blue, orange), or neither (dark yellow). The straight, solid black line in (b) indicates a 558 

1:1 relationship (i.e., Sspace = Stime), whereas the curved solid line shows the observed relationship 559 

estimated from a generalized additive model (GAM). The shaded region along the curved solid 560 

line in (b) corresponds to the standard error of the predicted value of Stime. The percent of species 561 

showing each pattern is shown in parentheses in the legend. The 95% credible interval for the 562 

correlation between Sspace and Stime is provided as a text inset in (b).  563 

 564 

Figure 3—Variation in apparent plasticity (Stime) and apparent adaptation (Sspace − Stime) 565 

attributable to differences in phenological niche and native climate among species. PC1 (a, 566 

b) represents a climate gradient of increasing precipitation seasonality, decreasing temperature 567 

seasonality, and increasing mean annual temperature, whereas PC2 (c, d) corresponds to a 568 

gradient of decreasing mean annual precipitation and increasing temperature seasonality. The 569 

color gradients in each panel represents the predicted magnitude of Stime or Sspace − Stime (in 570 

days/°C) for a combination of mean flowering DOY and PC1 or PC2 values. The predicted 571 

surfaces represented by the color gradients were obtained using three-variable tensor smooths in 572 

a generalized additive modelling (GAM) framework. In each panel, the value of the third 573 

variable (the one not plotted) was fixed at its mean. 574 

 575 

Figure 4—Variation in apparent plasticity and apparent adaptation among species with 576 

varying phenological niches across ecoregions of the United States. Shaded regions in each 577 

panel represent the 95% confidence interval for the mean apparent plasticity or apparent 578 

adaptation among species predicted for a given mean flowering date. The predicted mean values 579 

for apparent plasticity and adaptation were obtained using generalized additive models (GAMs). 580 

  581 
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