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ABSTRACT

The vast majority of disease-associated single
nucleotide polymorphisms (SNP) identified from
genome-wide association studies (GWAS) are local-
ized in non-coding regions. A significant fraction
of these variants impact transcription factors bind-
ing to enhancer elements and alter gene expression.
To functionally interrogate the activity of such vari-
ants we developed snpSTARRseq, a high-throughput
experimental method that can interrogate the func-
tional impact of hundreds to thousands of non-
coding variants on enhancer activity. snpSTARRseq
dramatically improves signal-to-noise by utilizing a
novel sequencing and bioinformatic approach that
increases both insert size and the number of vari-
ants tested per loci. Using this strategy, we interro-
gated known prostate cancer (PCa) risk-associated
loci and demonstrated that 35% of them harbor SNPs
that significantly altered enhancer activity. Combin-
ing these results with chromosomal looping data we
could identify interacting genes and provide a mech-
anism of action for 20 PCa GWAS risk regions. When

benchmarked to orthogonal methods, snpSTARRseq
showed a strong correlation with in vivo experimental
allelic-imbalance studies whereas there was no cor-
relation with predictive in silico approaches. Over-
all, snpSTARRseq provides an integrated experimen-
tal and computational framework to functionally test
non-coding genetic variants.

INTRODUCTION

Germline genetic variants contribute to numerous diseases
from COVID-19 (1) to cancer development (2–6). Disease-
associated SNPs are primarily identified from GWAS (7).
While those SNPs that occur in protein-coding regions have
a predictable impact on protein sequence, the vast major-
ity of disease-associated SNPs are located in non-coding
regions (8,9). There is increasing evidence that these non-
coding variants affect disease initiation and progression by
altering critical cis-regulatory elements (CRE) that are in-
volved in the spatiotemporal expression of target genes (10–
14). These variants commonly occur at enhancers where
they can alter transcription factors (TF) binding and gene
transcription (15–19). For instance, a SNP in the PCAT19
locus disrupts NKX3.1 and YY1 binding which alters
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enhancer activity causing dysregulation of oncogene ex-
pression and prostate cancer (PCa) progression (14,20,21).
While most SNPs identified from GWAS studies are found
within the non-coding region of the genome, it remains diffi-
cult to mechanistically characterize the impact of these vari-
ants (22,23).

Several in silico and experimental approaches are com-
monly used to characterize potential pathogenic non-
coding variants. Current in silico methods apply machine
learning that is trained on previously published data to
predict activity without experimental input (23–26). Given
their relative ease, these bioinformatic approaches are used
to stratify candidates for validation. Yet, they do have
several major limitations. Previous benchmarking studies
demonstrated considerable variability between each com-
putational method (27) with a very high error rate (28–30).
In contrast, experimental approaches are much more ro-
bust. One promising method utilizes in vivo chromatin im-
munoprecipitation with sequencing (ChIPseq) to measure
the impact of non-coding variants on allelic-imbalance of
TF binding (31–34). Demonstrating the potential utility, re-
cent work combined >7000 ChIPseq from 649 cell lines and
identified 270 000 SNPs with altered TF binding affinity
(25). While promising, this experimental approach is lim-
ited by the frequency of each variant in the tested popula-
tion which requires a substantial number of clinical sam-
ples for accurate functional genomic testing. These chal-
lenges, therefore, limit allelic-imbalance studies to only a
handful of specific experimental models, tissues, and disease
states (35). To overcome these challenges, massively paral-
lel reporter assay (MPRA) (36) including self-transcribing
active regulatory region sequencing (STARRseq) (37) has
been used to directly quantify the activity of thousands of
non-coding sequences in a single experiment (38–41). Im-
portantly, these methodologies do not require clinical sam-
ples and are amenable to functional perturbations. Several
studies have adopted STARRseq to systematically screen
the impact of SNPs on enhancer function (42–52). These
methods can be broadly separated based on the source of
the target non-coding sequence with variants. While a few
obtained mutant and variant sequences from mixed DNA
libraries (43,47), many used oligonucleotide synthesis to ob-
tain enhancer sequences (42,44,45,49–53). While synthesis-
based methods can generate sequences harboring targeted
variants that allow fine-mapping of complex haplotypes
(51,52), pooled methods incorporate longer fragments that
provide additional sequence context of co-regulator bind-
ing (54) and produce more reproducible enhancer activity
quantification (55). Despite the feasibility of the large-scale
functional screens, their performance has been limited by
library representation which causes poor signal-to-noise,
false positives, or limited statistical robustness. Further, it
is unclear how these plasmid-based methods compare to in
silico predictions and other experimental approaches.

In this work, we developed a standardized experimen-
tal and computational STARRseq framework to identify
disease-associated genetic variants that impact enhancer ac-
tivity. To address the previous limitations due to short en-
hancer sequences, we developed asymmetrical Illumina se-
quencing and covered enhancer fragments up to 841 bp

(mean: 543 bp). This can accurately identify critical non-
coding SNPs and test hundreds to thousands of variants
in a single experiment Using this approach we function-
ally tested 68 SNPs from known prostate cancer (PCa) risk-
associated loci and demonstrated that 36 (51%) of them sig-
nificantly altered enhancer activity. Combining these results
with chromosomal looping we provided a mechanism of
action for 20 PCa GWAS risk regions. Our methodology,
snpSTARRseq, provides streamlined bioinformatic analy-
sis and is amenable to different genomic regions, diseases,
and sequencing approaches including PacBio Long Reads.
Overall, snpSTARRseq functionally characterizes hits from
GWAS studies and provides a mechanistic understanding of
critical genetic variants.

MATERIALS AND METHODS

Detailed information can be found in Supplementary Meth-
ods.

snpSTARRseq capture library design and additional SNP ex-
pansion

We tested disease-associated 252 SNPs (Supplementary Ta-
ble S1), which are located in enhancer regions that have
H3K27Ac signal and chromosomal looping to a gene pro-
moter (56) as well as 50 control regions (25 positive and
25 negative control). Positive control regions (strong en-
hancers) were identified from previously published whole
genome STARRseq (57). Negative-control regions con-
tained an androgen response element (ARE) motif but no
AR binding or enhancer activity in published work (41).
Chromosomal locations of all capture regions can be found
in (Supplementary Table S2).

Generation of snpSTARRseq capture library

Pooled human genomic DNA (NA13421; consisted of 27
males and 27 females from CEPH Utah pedigrees) ob-
tained from Coriell Institute for Medical Research (58)
(Supplementary Table S3) was fragmented (500–800 bp),
end-repaired and ligated with xGen stubby adaptors (IDT)
containing random i7 3bp UMI. The captured regions were
enriched using xGen biotinylated oligonucleotide probe
pool (IDT) (59) and Dynabeads M-270 Streptavidin beads
(IDT). Post-capture was PCR-amplified with STARR in-
fusion F primer and STARR in-fusion R primer, and then
cloned into AgeI-HF (NEB) and SalI-HF (NEB) digested
hSTARR-ORI plasmid (Addgene plasmid #99296) with
NEBuilder HiFi DNA Assembly Master Mix (NEB). The
snpSTARRseq capture library was then transformed into
MegaX DH10B T1R electrocompetent cells (Invitrogen)
and the plasmid DNA was extracted using the Qiagen Plas-
mid Maxi Kit. The sequences of all the primers used for gen-
erating the snpSTARRseq capture library were listed (Sup-
plementary Table S4).

Experimental method for snpSTARRseq and sequencing

The cloned snpSTARRseq library (100 ug plasmid
DNA/replica) was transiently transfected into LNCaP
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cells (5 × 107 cells/replica; three biological replicas) using
the Neon Transfection System (Invitrogen). Cells were
grown in Roswell Park Memorial Institute (RPMI) 1640
medium (Gibco) supplemented with 10% fetal bovine
serum (FBS) and collected 48hrs post electroporation.
These cells were lysed with Precellys CKMix Tissue Ho-
mogenizing Kit (Bertin Technologies) and total RNA was
extracted using RNeasy Maxi Kit (Qiagen). mRNA was
isolated with Oligo (dT) 25 Dynabeads (Thermo Fisher)
and the reverse transcription was done with the plasmid-
specific primer. The synthesized snpSTARRseq cDNA was
treated with RNaseA (Thermo Fisher) and amplified by a
junction PCR (15 cycles) with the RNA jPCR f primer and
the jPCR r primer. The snpSTARRseq capture library was
PCR-amplified with DNA-specific junction PCR primer
(DNA jPCR f primer) and jPCR r primer. All primer
sequences were listed in Supplementary Table S4. After
purification with Ampure XP beads (Beckman Coulter),
both the snpSTARRseq samples were PCR-amplified
with TruSeq dual indexing primers (Illumina) to generate
Illumina-compatible libraries. RNA samples were se-
quenced with a HiSeq4000 (150 bp; paired-end (PE)) while
the DNA STARRseq capture library was asymmetrically
sequenced with Illumina MiSeq PE reads. In the latter
sequencing, we did two rounds of PE sequencing with
round 1 being forward 75 cycles/reverse 425 cycles reverse
and round 2 being forward 425 cycles/reverse 75 cycles
reverse.

PacBio long-read sequencing

snpSTARRseq input DNA library was digested with NotI-
HF (NEB) enzyme for linearization of the plasmid DNA.
After that sequence library was sequenced by the PacBio
SMRT link. Raw sequencing data (subreads.bam) was pro-
cessed by the ccs function of SMRT tools (version 9.03).
Output CCS file was processed by our pipeline (see the sec-
tion below) to validate reconstructed enhancer fragments.

Reconstruction of enhancer sequences

We developed our computational framework to reconstruct
enhancer sequencing by using ‘long’ pairs of asymmetrical
reads that cover the full enhancer sequence. Briefly, UMI
attached reads from ‘long-short’ and ‘short-long’ asym-
metrical sequencing are first clustered with Calib’s clus-
ter (60) based on their UMI and sequence context (Fig-
ure 1B-Clustering). This step gathers reads belonging to
the same enhancer fragments from each independent run.
This step is followed up by consensus sequence genera-
tion to correct any random error due to sequencing (Fig-
ure 1B-Consensus). Having the high-quality reads gener-
ated for each enhancer fragment, in the next step, ‘long’
reads of ‘long-short’ and ‘short-long’ were matched us-
ing 12 bp sequences from 5’ and 3’ of the enhancer frag-
ments. These short sequences represent enhancer fragments
and are used as unique barcodes (Figure 1B-Match). Con-
sequently, matched long reads then collapsed to recon-
struct enhancer fragment (Figure 1B-Collapse) using bb-
merge software (61). A detailed explanation of each step
of the analysis pipeline can be found in the Supplementary

Methods section. The asymmetrical processing pipeline can
be found at https://github.com/mortunco/snp-starrseq.

Testing bi-allelic activity

To identify SNPs with allelic-specific enhancer activity,
we conducted a Negative-Binomial Regression analysis
to compare the expression of alternative allele-supporting
fragments with reference allele-supporting fragments. Frag-
ments overlapping at a SNP position were assigned as alter-
native or reference types based on the allele they carry. Only
those SNPs with >15 unique plasmids for both alternative
and reference type alleles were included for analysis. For
each SNP, a negative Binomial regression was performed
with the following model by using the glm.nb() function in
the MASS R package (version 7.3–54) (62):

log (E (Yi )) = βoj + βi j Xi j + log (Pi )

where Yi is the RNA read counts of fragment i, Xi j is the al-
lele type of SNP j carried by fragment i, where Xi j=0 when
the allele on fragment i is the reference allele-supporting
type and Xi j=1 when the allele on fragment i is an alterna-
tive allele-supporting type, βoj is the log expression per plas-
mid of the reference allele and β1 j is the log fold change
of expression per plasmid comparing alternative type al-
lele versus reference type allele, Pi is the plasmid DNA read
count of the barcode serving as an offset term.

Empirical type-I error for NBR

As the fragment enhancer activity can be affected by not
only the variants they carry but also the specific genomic
region they cover, therefore, enough coverage of the SNP
to be tested is required to reduce the impact of the position
bias. We conducted an empirical analysis to investigate the
relationship between the number of fragments and FDR.
First, we selected 10 independent SNPs randomly with at
least 30 fragments for each of the VAR and REF alleles, ab-
solute alternative allele effect smaller than 0.1, and p-value
larger than 0.5 to treat them as true null SNPs. For each
SNP, we downsampled the fragments of each allele type to
N (where N = 5, 10, 15, 20, 25, 30) and conducted the NBR
to test the allelic-specific enhancer activity. We repeated the
process 100 times to compute the proportion of tests with
p-value < 0.05 as the empirical type-I error at a significance
level of 0.05.

In silico method comparisons

We obtained five different prediction scores tables for each
method (ncER (23), CADD (24), DVAR (63), LINSIGHT
(64), deltaSVM (26)) and compared them with respect to
snpSTARRseq absolute allelic effect abs(Log2(ALT/REF))
and adjusted P-values (FDR). Detailed information about
every step can be found in Supplementary Methods
and the visualization code can be found at https://
github.com/mortunco/snp-starrseq. We stored correspond-
ing snpSTARRseq allelic-effect and in silico impact scores
in supplementary table (Supplementary Table S5).

https://github.com/mortunco/snp-starrseq
https://github.com/mortunco/snp-starrseq
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Figure 1. Schematic representation of enhancer fragment sequence reconstruction. (A) Experimental steps of snpSTARRseq method. (B) Computational
analysis of asymmetrical reads. (C) Following the clustering step, the number of reads supporting each reconstructed fragment was investigated for each
asymmetric run. The top histogram demonstrates the number of single reads supported fragments that are removed before the consensus step whereas the
bottom histogram represents those reads included in the further analysis. (D) DNA input library was sequenced by PacBio CCS sequencing to validate the
presence of reconstructed sequences
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Comparison with in vivo methods

We obtained pre-processed allelic imbalance datasets from
three different studies such as H3K27Ac ChIPseq (n = 200)
(65), AR ChIPseq (n = 131) (65) or ATACseq (n = 26)
(66). We matched all datasets (H3K27Ac and AR ChIPseq,
ATACseq, and snpSTARRseq) using rsID therefore, we
dropped 12 Coriell DNA SNPs which did not have the cor-
responding rsID in dbsnp150 common VCF. We shared cor-
responding AF for snpSTARRseq and in vivo methods as
well as significance annotation (Supplementary Table S6).

PCa risk loci analysis

We extracted 147 index SNPs from (5) manuscript’s Supple-
mentary Table S7 (European SNPs only) and Supplemen-
tary Table S8. Using rsID (rsXXX), we extracted SNP po-
sitions from dbsnp150 common VCF file (hg19). Later in-
tersected with 252 custom capture probe locations. We ac-
cepted all interactions within a 150 kb distance (Supplemen-
tary Table S7).

SNP and gene overlap analysis

We obtained HiChIP-H3k27Ac chromosome interaction
data paired-end BED file (BEDPE) from previous work (67)
and used it for annotating our SNPs. In addition to this,
from the same study, we also obtained COLOC annota-
tion based TCGA (prostate) and (68) FUSION annotation
based on TWAS genes. The final SNP-gene association ta-
ble is deposited in (Supplementary Table S8).

RESULTS

Design considerations and enhancements

To develop a methodology that functionally characterizes
the impact of genetic variants on enhancer activity we
adopted STARRseq, given both the ease of use and demon-
strated experimental feasibility (47–49). We designed our
experimental approach with the following features: (i) to
scale efficiently allowing hundreds or thousands of variants
to be tested, (ii) to maintain a large insert size to ensure a
high enhancer signal, (iii) to have a high experimental sig-
nal to noise ratio by increasing the number of tested plas-
mids, (iv) to reduce systemic false-positives associated with
the earlier STARR plasmids. With this framework, we op-
timized several key parameters with the following improve-
ments. To reduce false-positives we utilized the second-
generation STARRseq plasmid and ensured that the exper-
imental models had minimal IFN-gamma response, which
can strongly influence STARRseq signal (69). Next, we uti-
lized a DNA-capture to enrich the number of plasmids per
variant and increase the signal to noise. Given that insert
size influences enhancer signal, testing a low number of
plasmids per variant is extremely error-prone as you can-
not separate the impact of insert size from the impact of the
genetic variant (69,70). Further, the use of DNA capture
also solves the fragment size limitations that are intrinsic
to oligonucleotide synthesis (150–200 bp) (71,72). Increas-
ing the library insert size leads to an increase in relative
signal strength, which reduces false positives and negatives

(50,70,73). We also incorporated a unique molecular iden-
tifier (UMI) for each cloned fragment to increase statistical
strength and limit amplification artifacts. Finally, we used
pooled genomic material from a healthy population (Coriell
DNA library; (58), n = 54) to introduce genetic diversity
and increase the number of SNPs tested.

SNP selection criteria

With the modified design we chose to test 252 PCa risk-
associated SNPs, which are located on 184 non-overlapping
segments that include 52% (68/130) of the previously pub-
lished PCa risk-associated loci (Supplementary Table S1;
Supplementary Table S7) (5). These regions were selected as
they are potential enhancers that have both H3K27Ac and
chromosomal looping to a gene promoter (56). In addition
to these risk-associated SNPs we designed the DNA capture
to also target 25 strong enhancers (57) (positive control)
and 25 inactive regions (negative control) as experimen-
tal controls (Figure 1.A; Supplementary Table S2; Meth-
ods). Using this capture approach, we enriched randomly
fragmented DNA (400–600 bp) that was hybridized with
adapters each containing flanking 3bp UMI (59). This was
PCR amplified and then cloned into a second-generation
STARRseq plasmid. Due to the relatively large size of the
insert (median = 543 bp), it was not feasible to use conven-
tional short-read Illumina paired-end sequencing as vari-
ants in these larger inserts potentially will not be sequenced.
Therefore, to ensure that the entire insert is sequenced,
we modified a 500-cycle Illumina sequencing protocol and
did two rounds of asymmetric sequencing to include both
a ‘long (425)-short (75)’ and ‘short (75)-long (425)’ reads
(Figure 1B, top) (48). As we sequenced the same plasmid li-
brary twice, both asymmetric runs covered opposite ends of
the potential enhancer fragments. We hypothesized that the
full enhancer sequence could be reconstructed by match-
ing the long sequences of the same fragment. To process
this complex dataset, we developed a novel computational
pipeline that clusters, collapses, and matches asymmetrical
reads (Figure 1B, bottom). We first clustered the enhancer
fragments using the UMI (6 bp) and sequence context of
the enhancers to group the reads supporting each enhancer
fragment. Next, we collapsed the short and long mates of
asymmetric runs and took the consensus sequence (median
36 reads/enhancer; SEM = 0.03) (Figure 1C). By match-
ing the unique fragment barcode from the UMI (6bp) and
randomly captured insert (18 bp), we clustered each pair
of asymmetric reads to obtain the full enhancer sequence.
In total, we reconstructed 32 620 fragments that were lo-
cated in the capture regions. These asymmetric sequencing
results were confirmed with PacBio circular consensus se-
quencing (CCS) long reads, with 90% (29106/32620) of re-
constructed fragments found with PacBio (Figure 1D). In
addition to the PCa risk-associated germline variants, cap-
tured enhancer fragments also included variants from com-
mon population SNPs (dbSNP150 common VCF) (9) as
well as SNPs that were specific to the Coriell DNA pop-
ulation (58). Overall, our library was represented by a me-
dian of 67 unique plasmids per SNP containing 41 reference
(REF) alleles and 26 alternative alleles (ALT) respectively.
We failed to capture 50 SNPs that were either not present
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in the Coriell DNA library (3/50) or were not sufficiently
represented to pass variant filtration (47/50) (Supplemen-
tary Figure S1A). To limit the impact of the potential en-
hancer position and size bias we modelled the impact of
unique plasmids thresholds on experimental data (Mate-
rials and Methods). We found that > 15 unique plasmids
for both REF and ALT SNP minimizes the Type-I error to
0.05. Therefore, we focused our analysis on the 308 SNPs
that have > 30 unique plasmids with REF and ALT al-
lele supporting inserts (Supplementary Figure S1B; Table
S9) and also a minimum of 1000 mRNA reads, which is
100× higher than previous work (47). These SNPs include
102 (of 252) PCa risk-associated SNPs (PCa), 194 SNPs
commonly found in the 1000 Genome Project (G5), and
12 Coriell DNA library-specific SNPs (Supplementary Ta-
ble S10). When we compared the variant-allele frequency
(VAF) with these SNPs we observed a higher but not signif-
icant VAF of PCa risk-associated SNPs (P = 0.56) and G5
SNPs (P = 0.18) compared to Coriell SNP (Supplementary
Figure S1C).

Characterization of genetic variants that impact enhancer ac-
tivity

To test the impact of PCa-associated SNPs on enhancer
activity, we electroporated the snpSTARRseq library into
LNCaP, an androgen receptor (AR)-dependent prostate
cancer cell line, and harvested at 24, 48 and 72 h (n = 3
biological replicas). With this, we quantified the insert self-
transcription, a surrogate for enhancer activity, at all high-
confidence REF and ALT fragments. Following normaliza-
tion to the input library, we observed a clear increase in
self-transcription at known enhancers (positive control) but
not negative controls with a high correlation of allelic en-
hancer activity across each experimental time point (Fig-
ure 2A; Supplementary Figure S2A). Principal component
analysis (PCA) of all samples demonstrated that 48- and
72-h samples had a closer enhancer profile compared to
the 24-h samples (Supplementary Figure S2B). We next in-
vestigated how each SNP affected the activity of the en-
hancers. Using a differential allelic enhancer activity test
based on a negative binomial regression model (NBR) we
identified 78 unique SNPs across the three-time points that
showed bi-allelic activity at the nominal significance level
(P-value < 0.05) (60, 63 and 43 at 24, 48 and 72 h, respec-
tively) (Figure 2B; Supplementary Figure S2C; Table S11).
Of these a total of 31 (39%) nominally significant SNPs
passed multiple hypothesis testing correction (FDR < 0.05)
with 23 being PCa disease-associated SNPs identified from
GWAS. Interestingly, the majority of SNPs that affected
enhancer activity (36/78) were PCa risk-associated SNPs.
Supporting our PCA analysis, we observed a higher cor-
relation in bi-allelic activity across all significant SNPs in
the 48 and 72 h samples (Pearson = 0.94) (Supplemen-
tary Figure S2D). Focusing on the 48 h samples we ob-
served a similar frequency of activating (n = 31) and re-
pressive (n = 32) events. Of the specific PCa-associated
SNPs we observed that rs11083046 (chr18:51781019) alter-
native C allele had a 30% increased enhancer activity (P-
value = 0.00367) compared to the reference T allele (Fig-
ure 2C). In contrast, the enhancer activity of rs13215402

(chr6:153447550) decreased by 50% (P-value = 0.00349)
when the reference allele G was substituted with the alter-
native allele A (Figure 2C). Supporting these plasmid-based
results, the SNPs with bi-allelic enhancer activity commonly
affected target gene expression. Using previously published
enhancer-promoter interactions from H3K27Ac-HiChIP in
LNCaP cells (56), 20 of 36 ‘hit’ PCa risk-associated SNPs
correlated with altered expression of the target gene (Sup-
plementary Table S8). We found that these 20 SNPs also
overlapped with PCa-specific expression quantitative trait
loci (eQTL) identified by both tumor-adjacent normal sam-
ples (n = 471) and multi-tissue transcriptome-wide associ-
ation study (TWAS) (n-tissue = 45, n-individual = 4448),
using COLOC (74) and FUSION (75) tools, respectively
(Supplementary Table S8). Interestingly, we found two sig-
nificant SNPs (rs13265330; 2.2-fold, FDR = 9.25 × 10−6,
rs11782388; 1.47-fold FDR = 0.07) that were located ∼10
kb downstream of NKX3-1, a gene involved in early prostate
tumorigenesis (76). While not significant, we also found
supporting evidence of two risk loci enhancers that loop to
the PCa-associated genes CTBP2 and PCAT19. Similar to
published work the two SNPs (rs11672691 and rs887391)
near PCAT19 caused increased enhancer activity in all of
the time points (14). At the CTBP2 loci, rs4962416 and
rs12769019 caused repression and activation respectively in
accordance with previous work (19). Taken together, these
results demonstrate that snpSTARRseq can identify those
SNPs that alter enhancer activity. When combined with
chromosomal confirmation data these results can provide
a mechanism of action for non-coding disease-associated
SNPs.

Comparison of snpSTARRseq to in silico methodologies

In silico based pathogenicity predictions are commonly used
to stratify non-coding variants for functional characteriza-
tion studies (44,77,78). To benchmark the performance of
these methods to snpSTARRseq, we obtained the variant
impact scores at the tested PCa disease-associated SNPs
from ncER (23), CADD (24), DVAR (63), LINSIGHT
(64) and deltaSVM (26). When comparing these in sil-
ico predictions to our experimental snpSTARRseq results
we observed no positive correlation between the delete-
riousness (CADD and DVAR), impact on chromatin ac-
cessibility (deltaSVM), or essentiality score (ncER, LIN-
SIGHT) to the experimental (snpSTARRseq) bi-allelic ef-
fect (log2(ALT/REF)) or statistical significance (FDR)
(Figure 3A, Supplementary Figure S3A, Supplementary
Figure S3.B). In addition, we observed low negative cor-
relation with ncER (Pearson = –0.12; P-value = 0.023)
(Figure 3A). Further, when we separated SNPs into binary
groups based on in silico annotations there were no signifi-
cant changes in the enhancer activity (Supplementary Fig-
ure S3C). Our findings are consistent with the current liter-
ature (28,29) highlighting the challenges of in silico methods
to accurately predict how variants predict enhancer activity
(Supplementary Table S5).

snpSTARRseq correlates with clinical allelic-imbalance

We next compared our experimental snpSTARRseq results
with in vivo allelic-imbalance from H3K27Ac (n = 200)
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Figure 2. Characterisation of genetic variants that impact enhancer activity. (A) Quality control analysis of 48-hour time point demonstrates the SNP,
positive control and negative control capture regions normalized count (mRNA/input DNA) distribution. Each black dot represents a single SNP capture
region, whereas the density plot on the right-hand side represents the control capture regions (blue = positive control, red = negative control). (B) NBR
model was used to determine SNPs with significant bi-allelic activity. As a result of the calculation, 78 unique SNPs were found among all time points. The
number of overlapping SNPs from each time point is depicted by the Venn diagram. (C) Activating (rs11083046) and repressive (rs13215402) SNPs that
cause bi-allelic enhancer activity were visualized.

and AR (n = 131) ChIPseq (65), as well as the assay for
transposase-accessible chromatin using sequencing (ATAC-
seq) (n = 26) in prostate tumors (66). This approach uti-
lizes the endogenous heterogeneous allelic pool from clin-
ical functional genomic studies to determine if there is an
allelic preference for specific histone modifications, TFs,
and chromosome accessibility. Of the 308 SNPs tested by
snpSTARRseq, H3K27Ac ChIPseq had the highest cov-
erage and captured 50% (148/308) of all SNPs while AR
ChIPseq and ATACseq only captured 18% (57/308) of all
SNPs tested. Based on our initial comparison without fil-
tration, we observed low to moderate correlation between
samples (Pearson; H3K27Ac = 0.17, AR = 0.44, ATAC-
seq = 0.42) (Figure 3B, top; Supplementary Table S6).
However, when non-significant SNPs were filtered out we
observed a marked increase in correlation among all com-
parisons (Pearson; H3K27Ac = 0.31, AR = 0.75, ATAC-
seq = 0.80) (Figure 3B, bottom; Supplementary Table S6).
Based on 48 hr sample, 33% (26/78) of significant bi-allelic
SNPs were supported by one, 24% (19/78) by two, and
2% (2/78) were supported by all of the allelic-imbalance
in vivo methods. Those two SNPs that were captured by all
methodologies (rs13215402 and rs11083046) demonstrated
parallel repression (Figure 3C, left) or activation (Figure
3C, right) of enhancer activity and allelic imbalance. Over-
all, the in vitro snpSTARRseq results broadly correlate with

in vivo allelic imbalance but not in silico predictions, high-
lighting the need for experimental validation of non-coding
variants.

DISCUSSION

The impact of genetic variants on protein-coding amino
acid sequences is generally well understood. However, the
diversity of activity greatly limits large-scale testing, as each
protein requires a specialized assay. Paradoxically, while
non-coding variants are poorly understood, the common
activity of enhancer CREs makes them extremely amenable
to high-throughput screening. In a single experiment, hun-
dreds to thousands of non-coding variants can be function-
ally tested. Further, when combined with chromosome con-
formation capture methods these massively multi-parallel
assays offer a promising approach to systematically char-
acterize the mechanism of disease-associated non-coding
SNPs. However, previous adaptations were either designed
to identify new variants (48,49) or were prone to false-
positives (47). Therefore, we optimized snpSTARRseq to
functionally test non-coding genetic variants.

In this work, we utilized a larger insert fragment (400–
600 bp; ∼543 bp) to maximize TF and co-regulator inter-
actions on CREs. This is the longest average fragment used
in comparable MPRA methodologies (Supplementary Ta-
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Figure 3. Comparison of snpSTARRseq to orthogonal methodologies. (A) snpSTARRseq allelic-effects (ALT/REF; Method; Log2FoldChange) was
compared to DeltaSVM (Essentiality Score), ncER (Essentiality Score) and CADD (PHRED score) and no significant relation found. (B) snpSTARRseq
allele frequency (AF) values were compared against in-vivo AF obtained by H3k27Ac and AR ChIPseq and ATACseq. The top row contains all SNP values
without any filtration whereas the bottom row has only significant SNPs found by snpSTARRSeq (nominal p-value < 0.05). Two anecdotal examples of
repressive (purple) and activating (blue) SNPs were colored to which were found by all 4 methodologies. (C) SNPs with activating and repressive effects
found by previous in vivo work and snpSTARRseq were demonstrated. snpSTARRseq captures the bi-allelic effect of these SNPs accurately.
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ble S12). While larger fragments (>600 bp) increase sig-
nal strength, they cannot be fully sequenced with stan-
dard short-read Illumina sequencing. To address this lim-
itation, we modified existing Illumina technology to allow
sequencing of DNA fragments lengths up to 850 bp using an
asymmetric approach. Next, our design utilized a second-
generation STARRseq plasmid, which provides a reduced
background signal as compared to earlier reporter assays
(69). Most importantly, by using a capture-based enrich-
ment of specific genomic loci, we significantly increased the
number of target fragments per genetic variant. This is criti-
cal as the unique number of plasmids can strongly influence
Type-I error due to both position and insert size hetero-
geneity (Supplementary Figure S1B). To reduce these prob-
lems, we filtered all SNPs with less than 15 REF and ALT
unique plasmids from our library. As a result, SNPs tested
by our method had a minimum of 30 (REF + ALT) unique
plasmids supported by >1000 mRNA reads. This is sig-
nificantly higher than previous work (44,45,51,53), exclud-
ing one publication (45) (Supplementary Table S12; Figure
S1A). This increased plasmid coverage dramatically reduces
the overall noise caused by variable insert size (47). Overall,
these modifications provide a robust platform for functional
testing of GWAS hits.

With this approach, we targeted the bi-allelic enhancer
activities of 252 PCa risk-associated SNPs from 184 non-
overlapping regions that contain both a H3K27Ac mark
and a chromatin loop to a gene promoter. Due to our
very conservative threshold of REF + ALT plasmids (>30),
we covered 35% (102/252) of PCa risk-associated variants.
This could be improved with increased plasmid numbers
during library generation. With this threshold, we observed
that bi-allelic SNPs were highly concordant across mul-
tiple time points with minor differences between the ear-
lier (24 h) and later (48 and 72 h) time points. Poten-
tially, this may be due to cells reaching equilibrium in the
later time points between snpSTARRseq mRNA transcrip-
tion and degradation. From the PCa risk-associated SNPs
tested we observed that 35% (36/102) had significantly al-
tered enhancer activity. Many of these significant SNPs
were located in 26 previously published PCa risk-associated
loci (5). Moreover, 55% (20/36) of those with altered en-
hancer activity were associated with previously published
eQTL (Supplementary Table S8). Consistent with the litera-
ture, we found supporting evidence for previously published
SNPs that alter enhancer activity which impacts the ex-
pression of NKX3-1 (rs13215045 and rs11782388) (80–82),
CTBP2 (rs4962416 and rs12769019), PCAT19 (rs11672691
and rs887391) and RGS17 (rs13215045, 6p25 RGS17 intron
variant) genes (79).

We also compared the performance of snpSTARRseq
to multiple in silico methodologies. While several of these
approaches were designed to predict protein-coding muta-
tions, we compared these results as we observed that in silico
pathogenicity scores are commonly implemented for sup-
porting enhancer variant annotation (80), GWAS prioriti-
zation (78,81,82) and driver gene calculation (83). This is
particularly concerning as our experimental results did not
strongly correlate with any in silico method. These differ-
ences could be potentially attributed to methodological dif-
ferences (30) or a paucity of datasets that represent our ex-

perimental conditions. Specifically, there is an overall lack
of representation of prostate models in public databases.
For instance, ncER was trained on 38 databases that con-
tain 9 targeted enhancer activity screens. However, none
of these enhancer quantifications were based on PCa cell
lines. Regardless of the cause, the low correlation between
different in silico techniques (∼1%) suggests that there is a
need for improved accuracy with these approaches (84). Re-
cent studies have utilized semi-supervised methods to im-
prove results by calibrating calculations and generating cell-
type-specific predictions (85). For instance, MPRA datasets
were incorporated to optimize feature weights for maximum
tissue-specific separation (85,86). Contrasting these in sil-
ico methods, we observed a significant correlation between
snpSTARRseq and clinical allelic imbalance of ATACseq,
H3K27Ac and AR ChIPseq from tumor tissues. Overall,
this supports the necessity of experimental validation of
non-coding variants.

There are limitations to this methodology. Specifically,
we missed 18% (47/252) of the targeted PCa risk-associated
SNPs due to the low VAF of these variants in the DNA pop-
ulation. This can be easily overcome by increasing the num-
ber of plasmids during the cloning of the STARRseq library
or genetic diversity of individuals in the DNA library (45).
Further, as we are working with a pooled population, link-
age disequilibrium (LD) makes GWAS traits to be harder
to be finely mapped. Those events with low LD, conserved
loci, and overlapping TF binding regions are more likely to
be validated (87). To identify such complex events or multi-
allelic events that are not present in the population, mutant
enhancer sequences were previously generated either with
saturation mutagenesis (29,88) or oligonucleotide synthesis
(45,89). However, these methods lack control over the posi-
tion of the mutations or lower enhancer activity due to the
short fragment size. Shorter synthesized oligonucleotides
can be used to characterize TF binding and co-regulator
proteins on the target variants (90,91). For example, the
binding affinity of TFs to oligonucleotides with reference
and alternative alleles (26–40 bp) have been used to infer bi-
allelic TF binding using SELEX (90,91). While there is lit-
tle correlation between motifs and enhancer activity, these
methods could be potentially incorporated to characterize
the mechanism of variants identified from snpSTARRseq
(41). Lastly, we did not characterize 36 INDELS as our
snpSTARRseq computational pipeline exclusively focused
on SNPs due to the ambiguity in INDELs calling (92).

Functionally characterization of non-coding variants is
an emerging field, and we are now just beginning to learn
the strengths and limitations of the various methodolo-
gies. For instance, in this work, 55% (20/36) of our PCa
risk-associated variants were identified as eQTL. Given
the availability of public databases (GTEx (93), eQTLgen
(94)), these orthogonal results are important to validate
our snpSTARRseq findings. However, eQTL-based stud-
ies also have limitations. For instance, eQTL studies only
measure steady-state transcript levels. Consequently, the lit-
erature is now reporting that eQTLs explain only 11% of
the heritability for an average trait (95,96) or up to 25%
when transcription is profiled in disease-relevant tissue (97).
Moreover, steady-state eQTLs are depleted near genes that
are likely to contribute to complex phenotypes, including
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transcription factors, developmental genes, and highly con-
served or essential genes (98). Finally, recent work demon-
strated GWAS and eQTL studies are systematically biased
toward different types of variants (99). Because of these lim-
itations, there is a need for robust experimental approaches
that can complement eQTL studies. In addition, the in vitro
STARRseq can measure the activity of the enhancers gen-
erated by functional perturbations that can delineate com-
plex regulatory mechanisms which is not possible in eQTL
tissue-based approaches.

Herein, we developed snpSTARRSeq to improve the sen-
sitivity and accuracy of large-scale non-coding enhancer
assays. By increasing fragment length and reducing signal
to noise, this approach can precisely identify functional
variants. Potentially, the insert sizes could be further in-
creased with long-read PacBio CCS sequencing (100,101).
While not the goal of this work, genetic perturbations of
snpSTARRseq systems could be used to identify how spe-
cific transcription factor binding is altered by SNPs. Fur-
ther while focused on germline genetic variants, this same
approach can be adopted to study somatic variants. Overall,
snpSTARRseq offers an integrated experimental and com-
putational approach to test the bi-allelic activity of hun-
dreds to thousands of genetic variants in a single experi-
ment.
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processed files are available at SRA under accession
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