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Wildfires have become an important source of particulate matter
(PM2.5 < 2.5-μm diameter), leading to unhealthy air quality index
occurrences in the western United States. Since people mainly shel-
ter indoors during wildfire smoke events, the infiltration of wildfire
PM2.5 into indoor environments is a key determinant of human ex-
posure and is potentially controllable with appropriate awareness,
infrastructure investment, and public education. Using time-resolved
observations outside and inside more than 1,400 buildings from the
crowdsourced PurpleAir sensor network in California, we found that
the geometric mean infiltration ratios (indoor PM2.5 of outdoor or-
igin/outdoor PM2.5) were reduced from 0.4 during non-fire days to
0.2 during wildfire days. Even with reduced infiltration, the mean
indoor concentration of PM2.5 nearly tripled during wildfire events,
with a lower infiltration in newer buildings and those utilizing air
conditioning or filtration.

biomass burning | PM2.5 | indoor air | exposure | low-cost PM2.5 sensors

Fine particulate matter (PM2.5) air pollution is the single largest
environmental risk factor for human health and death in the

United States (1). Wildfires are a major source of PM2.5 and are
documented to cause adverse respiratory health effects and in-
creased mortality (2). Toxicological and epidemiological studies
suggest that PM2.5 from wildfires is more harmful to the respiratory
system than equal doses of non-wildfire PM2.5 (3, 4). The number
and magnitude of wildfires in the western United States has in-
creased in recent decades due to climate change and land man-
agement (5–7). Although the annual mean level of PM2.5 has
substantially declined over this period following the implementation
of extensive air quality policies to reduce emissions from control-
lable sources, the frequency and severity of smoke episodes with
PM2.5 exceedances has increased sharply due to wildfires in the
Pacific Northwest and California (8, 9). The annual mean PM2.5 in
Northern California has increased since 2015 (SI Appendix, Fig.
S1) due to massive seasonal fire events, and these events have
become the dominant cause of PM2.5 exceedances.
People in the United States spend 87% of their time indoors

(10). However, the protection against air pollutants of outdoor
origin provided by buildings is commonly overlooked in air quality,
epidemiologic, and risk assessment studies (11). To accurately
characterize and reduce population exposures to wildfire PM2.5, it
is necessary to understand how buildings are used by their occu-
pants to mitigate exposure. Previous estimations of indoor parti-
cles of outdoor origin typically relied on measurements from a
limited number of buildings and extrapolation of these measure-
ments to other buildings based on the empirical infiltration and
removal parameters (12, 13). However, such extrapolation is not
applicable to wildfire events because it does not take into account
the distribution of protection provided by buildings (including
natural and mechanical ventilation) due to lack of data measuring
infiltration under representative conditions. The infiltration of
outdoor particles is dependent on people’s behavior (11, 14, 15),
which changes during wildfires (and in 2020 during the COVID-19

pandemic). Pollution levels during wildfire events, and knowledge
of those pollution levels through available air quality data, directly
impact human responses aimed at controlling the infiltration of
outdoor PM2.5 including reducing ventilation, using air condition-
ing, and using active filtration. Statistically robust observations of
the variability of PM2.5 infiltration during actual wildfire events across
a broad cross-section of normally occupied residences provides the
opportunity to understand the distribution of real infiltration rates
affecting human exposure and the factors controlling them, po-
tentially informing guidance toward improvement.
Here, we exploit a recent trend in air quality sensing—public

data from a network of ubiquitous crowdsourced low-cost PM2.5
sensors—to characterize how indoor air quality during wildfire
episodes is affected by buildings and their occupants. We demon-
strate that buildings provide substantial protection against wildfire
PM2.5 and that behavioral responses of building occupants con-
tribute to effective mitigation of wildfire smoke exposure. Real-
time PM2.5 sensors based on aerosol light scattering have pro-
liferated as easy to use and low-cost consumer devices in recent years,
providing a novel opportunity to explore the indoor intrusion of
wildfire PM2.5. Among various networks of devices, the crowdsourced
PurpleAir network is the most extensive public-facing network
currently available. As of June 2, 2021, there are 15,885 publicly
accessible active PurpleAir sensors reporting data from across
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the earth; 76% are outdoor (12,088), and 24% are indoor (3,797).
Of these PurpleAir sensors, 57% are installed in California
(9,072), split into 69% outdoor (6,273) and 31% indoor (2,799).
As shown in Fig. 1, California accounts for 74% of all indoor
PurpleAir sensors in the United States, with adoption increasing
most rapidly following individual wildfire episodes as noted by
prior work (16). We focus here on analyzing the data from these
sensors deployed across the metropolitan regions of San Fran-
cisco and Los Angeles, California, where the public adoption of
indoor and outdoor PurpleAir sensors is especially high, at least
partially in response to the high frequency of recent wildfire
events. Analyses are presented for the wildfire season in the San
Francisco Bay Area of Northern California (NC) during August
to September 2020 (denoted NC 2020) and November 2018 (NC
2018) and for the Los Angeles area of Southern California (SC)
in August to September 2020 (SC 2020). Maps of the measure-
ment regions are provided in SI Appendix, Figs. S2 and S3. We
analyzed the data from over 1,400 indoor sensors and their outdoor
counterparts to characterize levels of and dynamics of indoor PM2.5
and the fraction of outdoor PM2.5 that entered buildings, comparing
wildfire and non-fire periods. The vast majority (>87%) of sensors
in our dataset are in buildings that are unambiguously identified as
residential. We mainly focus on residential buildings, which is
facilitated by linking individual PurpleAir sensor locations with a
dataset of detailed home property characteristics (Zillow).

Results and Discussion
PM2.5 Inside and Outside an Example House. Fig. 2 displays the PM2.5
concentrations measured by an indoor sensor and its nearest
outdoor counterpart on wildfire days and non-wildfire days (classified
by whether the daily average PM2.5 level measured by the nearest
US Environmental Protection Agency [EPA] Air Quality Mea-
surement Station was above or below 35 μg · m−3). The outdoor
PM2.5 concentration was clearly affected by wildfire plumes for
August 14 to 28, September 6 to 15, and September 28 to 30. On
fire days, the 10-min average outdoor PM2.5 exceeded 250 μg ·m−3

several times. The indoor concentration was more than doubled in
these periods due to the infiltration of wildfire particles. We also
observed peaks of indoor PM2.5 exceeding the outdoor PM2.5 even
on the most polluted days. These peaks typically lasted between 1
and 4 h, which match well with the characteristics of cooking/
cleaning peaks, reported in studies such as Patel et al. and Tian

et al. (17, 18). Fig. 2C shows the concentration profiles of indoor
and outdoor PM2.5, and Fig. 2D shows the outdoor PM2.5 and in-
door PM2.5 with outdoor origins (after removal of identified indoor
emission events). The infiltration of outdoor wildfire smoke caused
the concentration of indoor PM2.5 to exceed 65 μg · m−3 in this
building occasionally (Fig. 2D).

Differences of Infiltration on Fire Days and Non-Fire Days. Taking all
the buildings in the NC 2020 case into consideration, we found
that the mean concentration of indoor PM2.5 nearly tripled on the
fire days compared to the non-fire days because of the infiltration
of outdoor smoke (Table 1 and SI Appendix, Fig. S4). On the fire
days, the average outdoor concentration of PM2.5 was more than
four times the mean indoor PM2.5. Fig. 3A displays the distribution
of the mean indoor/outdoor PM2.5 ratios of all the building on the
fire days and the non-fire days. The average indoor/outdoor PM2.5
ratios for many buildings exceeded 1 due to indoor emission
events, particularly on non-fire days. On fire days, the majority
of indoor PM2.5 infiltrated from outdoors, but the indoor/outdoor
PM2.5 ratios were much lower probably because people closed
their buildings and many also filtered their indoor air for protec-
tion from the smoke. Fig. 3B shows the ratio of indoor PM2.5 of
outdoor origin to outdoor PM2.5 (defined as the infiltration ratio).
The infiltration factor (Fin) is the steady-state fraction of outdoor
PM2.5 that enters the indoor environment and remains suspended
there (14). It quantifies the extent that the building provides
protection against outdoor particles (11). For particulate matter,
Fin can be obtained from the ratio of indoor/outdoor concentra-
tion when there are not additional indoor sources or loss processes
(19, 20). On fire days (outdoor PM2.5 > 35 μg · m−3), because of
the predominance of PM2.5 of outdoor origin, the infiltration ratio
approaches the infiltration factor. The infiltration factors of PM2.5
for different buildings in NC 2020 have a geometric mean (GM) of
0.23 (0.16, 0.36 for 25th and 75th percentiles, same below). On
non-fire days (outdoor PM2.5 < 35 μg · m−3), the GM infiltration
ratio increases to 0.42 (0.35, 0.56), while on days with unhealthy
air quality (outdoor PM2.5 > 55.4 μg · m−3), the GM infiltration
ratio reduces to 0.19 (0.13, 0.31) (Table 1). However, around 18%
of buildings had PM2.5 infiltration factors above 0.4 on the fire days
(Fig. 3B). The occupants of these exposure hotspot buildings could
have experienced much higher levels of wildfire smoke. For context,
infiltration factors of homes and commercial buildings measured in
the United States are usually above 0.5 (14, 21), and the infiltration
factor of office buildings with 85% American Society of Heating,
Refrigerating and Air-Conditioning Engineers filters were predicted
to be around 0.18 (22). The difference in mean infiltration ratio
between fire days and non-fire days are most apparent in the
daytime (SI Appendix, Fig. S5), consistent with more ventilation
typically occurring during daytime (23). The lower infiltration ratios
for the buildings on fire days indicates the efficacy of reduced
ventilation and enhanced removal of particles as people took
measures to protect themselves from smoke exposure and that
more behavioral changes happened in daytime. Infiltration ratios
of PM2.5 were not significantly different between fire days and
non-fire days in the SC 2020 case (Fig. 4) in contrast to the 2020
NC observations. This difference is probably because the hotter
weather in SC caused more frequent use of air conditioning sys-
tems (and shutting windows), which is implied by a higher PM2.5
mean indoor–outdoor temperature difference (∼4 °C) than
buildings in the San Francisco Bay Area (∼2 °C). Another possi-
bility is that the PM2.5 pollution levels in the Greater Los Angeles
area were not high enough to induce people to change their be-
haviors (SI Appendix, Figs. S6–S9).

Infiltration and Building Characteristics. Differences in fire day infil-
tration ratios may also stem from differences in building charac-
teristics. As shown in SI Appendix, Table S4, buildings with a fire day
infiltration ratio < 0.14 were widely distributed in the study area.

Year

Fig. 1. Number of publicly accessible indoor PurpleAir sensors in the United
States and California. The shadings show major wildfire periods (start date
to containment date of fires with >50,000 total acres burned) in California.
Wildfire periods are from the Cal Fire website (https://www.fire.ca.gov/
incidents/).
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However, buildings with a fire day infiltration ratio > 0.4 were
mostly located in San Francisco where the climate is cooler, and air
conditioning is much less common. Buildings in California Climate
Zone 12 (Northern California Central Valley) had lower infiltration
ratios than any other climate zones in the San Francisco Bay Area
(SI Appendix, Fig. S10). Due to the summer hot weather, substantial
cooling is required for buildings in this zone (24). Air conditioning
and associated filtration systems apparently decrease the indoor
PM2.5 in those buildings. In addition, since the mid-late 1990s, most
new residential buildings in the United States are equipped with air
conditioning systems (25). Since 2008, new residential buildings in
California are mandated to have mechanical ventilation systems
(26). Many of the newer buildings also have filtration systems (27).
The changes in the building stock are apparent in the resulting data,
as residences built after 2000 had significantly lower infiltration
ratios on both fire days and non-fire days compared with older
buildings (SI Appendix, Fig. S10), which is consistent with the
findings of a recent wildfire smoke infiltration study in Seattle

(28). We further classified the buildings in the NC 2020 case into
cool buildings and hot buildings based on whether the 95th per-
centile indoor temperature reached 30 °C. These cool buildings
were more likely to have air conditioning systems on. As shown in
SI Appendix, Fig. S11, the cool buildings have significantly lower
fire day infiltration ratios than the hot ones (P < 0.01), and around
17% of cool buildings had extremely low infiltration ratios (<0.1).
In sum, these results demonstrate that 1) this sensing and analysis
approach yields findings in line with mechanistic plausibility 2) and
that the diversity of building characteristics within a region leads
to substantial heterogeneity in the degree to which populations are
protected indoors from wildfire PM2.5.
Decay rate constants for PM2.5 were determined for indoor

observations using a box model (Eq. 2). The difference in the
decay rate constants of PM2.5 indoors further reveals why the
infiltration ratio was lower on fire days. Fig. 5 shows the dis-
tribution of mean total loss rate constant of PM2.5 on fire days
and non-fire days in the buildings. The mean and median total
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Fig. 2. Relationship of indoor and outdoor PM2.5 for an example house. (A) Scatterplots of calibrated PM2.5 measured at 10-min resolution by an indoor
PurpleAir sensor against the nearest outdoor PurpleAir measurement, differentiating fire days (red) and non-fire days (blue), illustrative of the levels of PM2.5

pollution of buildings in the NC 2020 case. (B) Scatterplots of calibrated indoor PM2.5 of outdoor origin against outdoor PM2.5. (C) Concentration time profile
of calibrated indoor and outdoor PM2.5 measured by the two sensors. (D) Concentration time profile of calibrated infiltrated PM2.5 and outdoor PM2.5. The
figures demonstrate the indoor PM2.5 were clearly affected by the outdoor smoke, and our algorithm can effectively remove the indoor peaks because of
indoor emissions.

Table 1. Statistics of the concentration indoor/outdoor ratios for buildings with PurpleAir sensors in August to September 2020 in the
San Francisco Bay Area

Mean outdoor concentration (μg · m−3)
Mean indoor

concentration (μg · m−3) Indoor/outdoor ratio Infiltration ratio

Mean ± SD Mean ± SD GM, GSD Mean ± SD GM, GSD Mean ± SD GM, GSD

Non-fire days 9.1 ± 4.0 4.1 ± 2.5 3.7, 1.6 0.90 ± 0.88 0.73, 1.8 0.45 ± 0.15 0.42, 1.5
Fire days 45.4 ± 17.0 11.1 ± 8.3 8.9, 2.0 0.41 ± 0.44 0.31, 2.1 0.27 ± 0.14 0.23, 1.8
Unhealthy days 61.2 ± 20.5 13.5 ± 10.6 10.3, 2.1 0.31 ± 0.42 0.23, 2.1 0.23 ± 0.14 0.19, 1.9

Note: 35 μg · m−3 daily average PM2.5 concentration measured at the nearest EPA measurement site was used as the threshold for fire days and non-fire
days. Quantile–quantile plots (SI Appendix, Fig. S4) show that the mean concentration of indoor PM2.5 in all the buildings can be satisfactorily described by the
Weibull distribution. Parameters of the Weibull fit are shown in SI Appendix, Table S5. Parameters of the SC 2020 and NC 2018 cases are not shown here due
to the small sample sizes, which are less representative of all the buildings in these areas at that time. n = 1,274. Unhealthy days are defined as days with daily
average EPA PM2.5 concentration above 55.4 μg/m3. GM: Geometric mean, GSD: Geometric SD.
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loss rate constants (λt) are 1.5 h−1 and 1.2 h−1 on fire days and
2.2 h−1 and 1.9 h−1 on non-fire days, respectively. Comparing
individual buildings on fire days and non-fire days, 67% of them
have lower particle loss rate constants on fire days, indicating a
high percentage of buildings whose occupants took effective action
to reduce PM2.5 infiltration. During the fire days, the decrease in
air exchange rate exceeded the enhanced indoor filtration, making
the total loss rate constant smaller. Since the infiltration ratio
(infiltration rate/total loss rate, aP=(a + kloss)) was also lower on
fire days, it can be inferred that the infiltration rate (air exchange
rate × penetration factor, aP) was lower on fire days (Eqs. 1 and
3). We expect both the air exchange rate and penetration factor to
drop on fire days. The closure of windows and doors will lead to a
lower air exchange rate. The usage of filtration systems on in-
coming air and the closure of openings will lead to a lower pen-
etration factor (12). For the SC 2020 case, the mean estimated
particle loss rate constants (1.3 h−1 on fire days and 1.4 h−1 on
non-fire days) are lower than in the San Francisco Bay Area (SI
Appendix, Fig. S12), which further implies that a larger fraction of
PurpleAir sensor owners in the Los Angeles area kept their windows/
doors closed.
People are more likely to open the windows when the indoor

temperature is higher than the outdoor temperature in summer
(29, 30). In the NC 2020 and SC 2020 cases, the difference in
daytime indoor/outdoor temperature alternated between positive
and negative values (SI Appendix, Fig. S13). However, in the NC
2018 case, because of the colder outdoor temperatures in No-
vember, we infer that people probably closed their windows for a
longer time, explaining the lower loss rate constants observed
compared with the NC 2020 case. This was expected to reduce the
difference between the infiltration ratio on fire days and non-fire
days. However, this ratio is still statistically significantly higher
(P < 0.05) on fire days, which suggests the widespread applica-
tion of filtration systems.
Our conclusions come with caveats. First, we treated each building

as a well-mixed box, which assumes the indoor sensor measurement
can represent the PM2.5 levels of the entire building. Second, our
algorithm to remove the indoor-source peaks could miss lower indoor
emission events. In addition, we assumed a universal quasilinear re-
sponse for all the PurpleAir sensors throughout the analysis pe-
riod. Such treatment could lead to biases, but our results should
still reflect the average trend. Indoor environments with PurpleAir
sensors may not be representative of the entire distribution of
buildings (details are provided in SI Appendix). The adoption of
PurpleAir sensors (at least ∼200 US dollars per sensor) is higher
among affluent people concerned about exposure to PM2.5. Con-
sistent with the expectation of an affluent “early adopter” effect,

PurpleAir owners live in homes with estimated average property
values 21% greater than the median property value for their cities
(SI Appendix, Table S3 and Fig. S14). The 2015 US Residential
Energy Consumption Survey shows that households with less
than $40,000 annual income are less likely to use air conditioning
equipment than other households (31). Low-income houses tend
to be older, and they are shown to have larger leakage than other
houses (32, 33). Lower-income households can therefore have
disproportionately higher exposure to wildfire smoke. Finally,
although we were not able to disentangle the influence of multiple
regionally varying parameters (such as building type, floor area,
property values) on the penetration of wildfire smoke with the
current distribution of indoor sensors, more extensive sensor
adoption in the coming years may allow future work to address
this limitation.
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This work demonstrates that crowdsourced environmental sensing
can provide valuable information about how people are protecting
themselves from the increasingly severe environmental hazard of
wildfire smoke. We find that common adaptation measures, in-
cluding reducing ventilation and active air filtration, effectively
mitigate the average indoor exposures of all the buildings by 18
and 73% relative to indoor baseline and outdoor conditions, respec-
tively. This work further suggests that such protective measures could
be enhanced through public education to substantially mitigate indoor
exposures at the population scale in the future. Given anticipated
increases in wildfire smoke in the coming decades, it is critical to
evaluate these findings in other settings, including in lower-income
communities and in other climate regions affected by wildfires.
While our data imply that early adoption of crowdsourced indoor
PurpleAir sensors seems to be propelled by wildfire events (Fig. 1),
gaining more broadly representative insight into the distribution of
indoor PM conditions might benefit from complementary approaches
to disseminating these sensors, such as targeted deployments in lower-
income communities. Overall, our results suggest the increasing ubiquity
of indoor and outdoor air pollution sensors can aid in understanding
exposures to episodic pollution sources such as wildfires.

Materials and Methods
Selection of Sensor Correction Models. The performance of low-cost PM2.5

sensors is dependent on humidity, temperature, particle size distribution,
and level of particulate matters (34–42). To evaluate the performance of the
PurpleAir sensors against reference US EPA PM2.5, we linked hourly average
measurements from all 16 reference monitors in the study domain (for the
entire study period) with surrounding (within 5 km) outdoor PurpleAir
sensors, as detailed in SI Appendix, Selection of Sensor Correction Models,
Figs. S6–S9, and Tables S1 and S2. We then evaluated the relationship be-
tween PM2.5 data from PurpleAir sensors and US EPA monitors for multiple
calibration schemes in three categories: 1) previously reported calibration
factors for wildfire smoke from the literature (35, 38), 2) parsimonious em-
pirical calibration relationships based on linear regression using this dataset,
and 3) a machine learning– (random forest) based calibration scheme using
this dataset. Our parsimonious ordinary least-square fit (correction factor =
0.53, intercept = 0) provided good agreement with the EPA measurements for
this dataset, with R2 = 0.87 and normalized root mean square error = 0.50. For

the range of increasingly complex calibration models considering extra pa-
rameters for the PurpleAir versus reference monitor that we developed, we
found moderate further improvement to sensor precision and accuracy but
with qualitatively unchanged results (SI Appendix). Accordingly, we rely on our
no-intercept linear calibration equation for its more straightforward inter-
pretability in our core analyses.

Decomposition of Indoor PM2.5. In addition to the infiltration of PM2.5 from
the outdoors, cooking, cleaning, and resuspension are the main sources of
indoor PM2.5 (17, 18, 43). Prior to assessing the amount of indoor PM2.5

resulting from the infiltration of wildfire smoke, we first identified and re-
moved the events (peaks) caused by indoor sources based on the magnitude
and duration of indoor PM2.5 peaks. Details of the algorithm can be found in
SI Appendix.
Other Quality Assurance and Quality Control. As described in detailed quality
assurance and quality control procedures in SI Appendix, we sought to en-
sure appropriate sensor selection and to exclude sensors that were likely
mislabeled.

Mass Balance Model. We explored the dynamics of indoor PM2.5 with a well-
mixed box model. When the indoor and outdoor particles are in steady state
and the indoor source is small, we have

dCin

dt
= 0 = aPCout − (a + kloss)Cin ⇒ Fin = Cin

Cout
= aP
a + kloss

, [1]

where a is the air exchange rate, P is the penetration factor of particles,
and kloss is the loss rate constant including deposition and indoor filtra-
tion. Cin and Cout are the indoor and outdoor concentrations, respectively
(14, 19). Fin is the infiltration factor (which is close to the infiltration
ratio).

Particle Loss Rate Constant Calculation. After major indoor emission events,
the indoor concentration of PM2.5 will decay following

dCin

dt
= −(a + kloss)Cin. [2]

Therefore, (a +kloss) can be estimated by fitting the curve of Cin(t) (44). We
define the total indoor particle loss rate constant (λt) as

λt = a + kloss. [3]

The details of the derivation of these equations and the algorithms are
provided in SI Appendix.

Building Information. Property data were obtained by matching coordinates
associated with the PurpleAir sensors to addresses. The list of addresses was
then inputted to Zillow, a publicly accessible website to find the publicly
available building information such as building age and livable area. Zillow
uses existing building information and a proprietary algorithm to derive an
estimate of the current (as of December 2020) price of the home or apart-
ment. More details are provided in SI Appendix.

Data Availability.All study data are included in the article and/or SI Appendix.
Data used in this work can be freely downloaded from the PurpleAir and US
EPA websites (links are provided in SI Appendix).
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