
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Tracking Multiple Objects without Indexes

Permalink
https://escholarship.org/uc/item/29x6398w

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45)

Authors
Ayare, Shubhamkar
Srivastava, Nisheeth

Publication Date
2023
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/29x6398w
https://escholarship.org
http://www.cdlib.org/


Tracking Multiple Objects without Indexes
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Abstract
Computational models of multiple object tracking (MOT) pre-
suppose the existence of non-conceptual indexes in visual per-
ception, and as a result predict that ID (identification) perfor-
mance on MOT tasks should be no worse than tracking perfor-
mance for the same stimuli. However, empirical evidence sug-
gests that ID performance is worse than tracking performance
in MOT. We propose a computational model of MOT that is
able to account for several empirical results related to tracking
performance without the use of indexes and thus avoids yok-
ing tracking performance to ID performance. We also test our
model empirically, contrasting it with an existing index-based
model, and show that an assumption that avoids indexes and
instead incorporates an explicit (rather than an implicit) mech-
anism for identity maintenance accounts well for the variation
in ID performance with increasing number of targets in MOT
with visually identical objects.
Keywords: Visual Indexing Theory; Multiple Object Track-
ing; Computational Modeling

Introduction
Computational models of Multiple Object Tracking (MOT) of
visually identical objects are often premised on the existence
of non-conceptual pre-attentive indexes in the visual system
(Alvarez & Franconeri, 2007; Oksama & Hyönä, 2008; Sri-
vastava & Vul, 2016). This assumption is supported in such
models by reference to Pylyshyn’s FINgers of INSTantiations
(Pylyshyn & Storm, 1988; Pylyshyn, 2009) which, theoreti-
cally, are meant to act as indexes, enabling models to establish
a correspondence between the representation of an object that
is being noticed at the current point of time to earlier ones.

While Pylyshyn’s work indicated the number of FINSTs
available in human visual perception to be between 3-4,
Alvarez and Franconeri (2007) has subsequently shown that,
MOT task participants are able to track not just 4 but even
8 objects at sufficiently low movement speeds, suggesting ei-
ther that the number of FINSTs is larger than Pylyshyn found,
or that MOT is possible without using FINSTs.

Further, because FINSTs provide an incorruptible mecha-
nism to establish a correspondence between two visual ele-
ments, one being accessed currently while the other that was
present at an earlier point of time, they do not offer a natural
explanation for errors in identifying objects in such tasks. In
particular, since incorruptible indexing makes the identifica-
tion problem trivial, respondents should be able to identify
correctly any objects that they are able to successfully track
in MOT tasks. However, empirical evidence suggests a dis-
parity between the two. Participant’s ability to identify which

particular target had which particular ID (ID performance) is
known to be worse than their ability to correctly identify the
targets (tracking performance) (Pylyshyn, 2004). And while
it is always possible to explain the errors by positing that the
indexes are fallible or corruptible, it has been argued (Scholl,
2009) that doing so deprives indexes of the critical capacity
they were supposed to provide.

In contrast to the identity maintenance involved in the
tracking of visually distinct objects, our discussion concerns
only the nonconceptual index-based identity maintenance in-
volved in the tracking of visually identical objects. That there
is a difference in the tracking of visually distinct objects vs
visually identical objects is also noted by Horowitz et al.
(2007); Li, Oksama, and Hyönä (2019).

This paper then provides a computational account of what
Scholl (2009) has described as ”Tracking in the Present”. We
propose a computational model of multiple object tracking -
MOTUAL - that is able to account for several empirical re-
sults related to tracking performance without using indexes,
and thus avoids yoking ID performance with tracking perfor-
mance.

The model’s basic mechanism is straightforward. It as-
sumes access to a fixed grid of locations on a retinotopic
map indicating if an object is present in each grid, and if
so how many, and maintains and updates a set of certain lo-
cations - the attended locations - indicating which particular
grids supposedly contain the targets. The process of updating
is assumed to consume resources from a limited pool. The
greater the number of such locations, the less frequently are
individual location maps updated, resulting in worse track-
ing performance with increasing number of targets, as seen
in Alvarez and Franconeri (2007) and Vul, Alvarez, Tenen-
baum, and Black (2009). We describe this model in more
detail below.

MOTUAL: Multiple Object Tracking as
Updates of Attended Locations

MOTUAL comprises basically of two retinotopic grid maps,
one representing parallelized low-level object detection
mapped to a location map, and one an isomorphic map of
attended locations, and an account of their interactions. That
the position representations of targets are distinct from actual
target locations has also been suggested by Howard, Masom,
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Figure 1: An illustration of our model with the shaded grids in the retinotopic grid map indicating the attended aka target
locations, along with the presence / absence of objects at each location. While indexes provide a location-independent means
to individuate two objects, there exist no such location-independent way to distinguish between two attended locations.

and Holcombe (2011). While we make no commitments to
the actual structure of these maps, for purposes of compu-
tational modeling, we assume that the two maps comprise of
equal-sized grids indexed by cartesian coordinates (Figure 1).
At time t, let the matrix Ot denote the first of these, with each
entry (Ot)yx in the matrix indicating the number of objects,
and thus their presence (count > 0) or absence (count = 0), in
that particular grid cell yx. Similarly, let the matrix At denote
the second of these at the same time t, with each entry (At)yx
indicating whether or not a particular grid cell is being at-
tended to on the retinotopic grid map. (At)yx takes larger val-
ues when the underlying grid cell contain multiple objects at
any point in time, and end up focusing attention more to that
grid cell in the immediately succeeding time steps through an
update process we describe below.

At the start of the trial, at time t0, attended locations are
identical to the locations of the targets. That is, for each loca-
tion where (At0)yx is non-zero, (Ot0)yx is also non-zero. But
as the trial progresses, the attended locations may or may not
correspond to the exact locations of the objects. At an ar-
bitrary point of time t during the trial, some (At)yx may be
non-zero even though (Ot)yx is zero. This is the main dif-
ference with respect to the FINST theory, which considers
locations as being accessed through the indexed objects thus
disallowing attention to locations without objects.

Given these two maps, tracking comprises of maintenance
of attended locations so that they keep corresponding to ob-
jects as far as possible. Such maintenance involves an update
of attended locations which no longer correspond to an object
to other locations which are occupied by an object.

The update from t to t ′ > t maintain the following relation
between the entries in At and At ′ :

(At)yx = 1⇒

{
(At ′)yx = 1 if (Ot ′)yx ̸= 0
(At ′)nearest-object-location(x,y) = 1 if (Ot ′)yx = 0

The rest of the entries in At ′ are 0. The above update as-
sumes binary values of the entries in At for simplicity; but
the model allows for larger values of both O and A grid cells
arising in cases when objects overlap within grid cells.

This update is assumed to be an expensive constrained re-
source process characterized by a frequency of location up-
dates floc. This denotes the total number of updates across
all attended locations happening in every unit time, so that
greater the number of attended locations, less frequent are the
updates to each location and thus worse is the maintenance.
This assumption is a specialization of more generic resource
constraints found in earlier models (Alvarez & Franconeri,
2007; Srivastava & Vul, 2016).

Note that while Pylyshyn and Storm (1988) has shown that
a serial tracking algorithm based on a spotlight of attention
moving between the objects at finite speeds could not ac-
count for the tracking performance on the task of tracking
multiple identical objects, they did not rule out the case of
quantal updates, as discussed by Egeth and Yantis (1997).
Serial switching theory also naturally accounts for variation
in temporal resolution of tracking with the number of targets
(Holcombe & Chen, 2013). Following VanRullen, Reddy,
and Koch (2005), we expected the frequency of such updates
to lie between 10 and 20 Hz.
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Most importantly, unlike FINST (Pylyshyn, 1989, 2009)
and MOT models based on FINSTs that enable individuat-
ing objects without considering their visual features or even
their locations, all attended locations in our model are indis-
tinguishable from each other except by virtue of their loca-
tions themselves.

Further, following Alvarez and Franconeri (2007), we as-
sume that the total number of attended locations can vary
within an individual based on task requirements. We expect
there to be an upper limit to the number of attended locations;
it is certainly above 4 given the evidence illustrating that sub-
jects can track as many as 8 objects moving at low velocities.
We speculate that the limit should be related to one’s work-
ing memory capacity, but leave the exact number open as a
question for future work to address.

MOTUAL Attention Updates

Here, we describe the process of updating the attention map
based on object locations in more detail. For purposes of no-
tation, let the superscripts denote one particular location on
the retinotopic map, and let the subscripts correspond to the
particular instance of time for which these are being consid-
ered. According to this notation, a1

t , a2
t , ..., an

t will be the
non-zero grids in At at time point t, with n being the number
of targets.
1. We note that an attended location ai

t corresponds to the ex-
act location of some object only immediately after an up-
date at time t caused it to be non-zero.

2. Suppose the next update corresponding to ai
t ′ = ai

t happens
at time t ′, so that ai

t ′+1 once again corresponds to some
object.

3. At time t ′, the attended location ai
t ′ = ai

t may no longer
correspond to an object, since during the time from t to t ′,
the object would have moved from the location ai

t to a new
location l. While updating ai

t ′ = ai
t to ai

t ′+1 at time t ′, the
model finds a nearest object in the vicinity of ai

t ′ . To do so,
it looks for a location that is occupied by some object with
increasing distance from ai

t ′ ; thus it avoids considering all
the objects on display to find the nearest object. This local
search is also characterized by another parameter called the
nearest object bound nob since it is unreasonable to assume
that recovering the object could work if they have moved
too far away from the attended locations. The search is
aborted and the location is no longer stored if no object is
found within a distance of nob from ai

t ′ .
4. Suppose this new location where some object is present is

l′. Then, the update is performed so that ai
t ′+1 = l′ holds.

In general, l′ may not be the same as l. For small velocities
and if the time elapsed since the last update was small, l′

will more likely be the same as l, and in these cases the
model will not lose track of the target; but otherwise, the
locations l and l′ will be different and correspond to differ-
ent objects. According to the model then, this is the way
in which spatial interference occurs resulting in tracking
errors.

Reproducing earlier MOT results
As Srivastava and Vul (2016) point out, explaining the degra-
dation of accuracy with an increase in the number of targets is
the stiffest challenge for computational MOT models. In this
section, we show how MOTUAL successfully reproduces this
trend across in silico reproductions of four different experi-
ments, PS1988 (Pylyshyn & Storm, 1988), AF2007 (Alvarez
& Franconeri, 2007), FR2008 (Franconeri, Lin, Enns,
Pylyshyn, & Fisher, 2008) and SV2016 (Srivastava & Vul,
2016).

Methods
For all simulations reported here, as well as for the design of
stimuli used in the experiment described in the next section,
MOT objects follow the exact same dynamics as described in
Vul et al. (2009)1.

Also, following Vul et al. (2009), tracking accuracy is de-
fined as the percentage of the tracked objects that are targets
at the end of the trial. Because we assume that the number
of targets is the same as the number of tracked objects, this is
also the same as the percentage of targets that are tracked.

For purposes of tracking, floc and nob constitute the free
parameters of the model. In contrast, the free parameters
of the environment and simulations include the grid size, σ,
MOT simulation update rate, and the total number of simula-
tion updates carried out (or equivalently the number of time
steps).

By equating the average duration taken by an object to
travel from one end of the MOT window to another, one
obtains the following relationship between the parameters
that are usually reported in the MOT literature, and the
environment-simulation parameters that our formulation re-
quires2:

θ

d
=

D
1.8ησ

D
s

Here,
• d degrees per second is the average speed of the object
• θ degrees is the angle subtended by the MOT window
• η is the frequency of simulation updates
• s is the side of the grid (in pixels)
• L is the actual distance of the screen from the participant
• D is the actual width of the grid in units identical to L

Solving for σ, one obtains σ = 0.555× s ·d
η ·θ

.

In our simulations, the size of the retinotopic grid map of
the model equals the size of the MOT window on the display
(in pixels). This is reasonable because the amount of infor-
mation available to a model is indeed limited by the MOT
display.

1Following the same notation as (Vul et al., 2009), we set the
spring constant parameter to k = 0.0005 and the inertia parameter
λ = 0.9.

2For k = 0.0005 and λ = 0.9 one simulation update covers an
average of 1.8σ pixels.
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Table 1: MOTUAL simulation parameters corresponding to data from previous empirical results.

Parameters \ Paper PS1988 AF2007 SV2016 FR2008-small FR2008-large
Visual Angle of MOT Window 21.5◦ 30◦ x 24◦ 16◦ 20.5◦ x 9.1◦ 82◦ x 36.4◦

- display resolution not given not given 720x720 175x078 700x310
- grid-size for MOTUAL 360x360 720x720 720x720 180x180 720x720
Retinal Speed 1.25 - 9.4◦/s 0.1 - 16◦/s not given in ◦/sec 5 - 25◦/sec 20-100◦/sec
- sigma for simulations 1.5 1.1 - 6 0.9 - 2.3 0.73 - 3.65 2.9 - 14.6
No. of OU updates (trial duration) 300 (10 sec) 150 (5 sec) 150 (5 sec) 180 (6 sec) 180 (6 sec)
Minimum Object Distance 15 (0.75◦) 80 (4◦) 0 (0◦) 24 (2.8◦) 96 (11.3◦)
- actual value used for simulations 60 80 0 24 96
MOTUAL Free Parameters ( floc, nob) (20Hz, 59) (20Hz, 60) (20Hz, 60) (20Hz, 58) (20Hz, 145)

Results
Figure 2 summarizes MOTUAL’s behavior vis-a-vis data
from all the four experiments we evaluated. Table 1 enumer-
ates the experiment specific parameters and free parameter
values used to produce these results. MOTUAL, with only
two free parameters, successfully reproduces the qualitative
trends seen in all the four experiments, with some interest-
ing exceptions, which we detail below. We imposed an up-
per limit of floc = 20Hz following VanRullen et al. (2005)
which suggests an attention-driven sampling frequency to be
between 10 and 20Hz.

In Pylyshyn and Storm (1988), while the empirical data in-
dicated a minimum separation of 0.75 degrees between any
two objects on a display subtending a visual angle 21.5 de-
grees, that is 15 units on a 360x360 units, our model required
about 60 units to obtain comparable error rates.

Also, the model continued to perform poorly compared to
the human empirical data from Srivastava and Vul (2016),
whereas it was able to match the human performance re-
ported in Alvarez and Franconeri (2007). Interestingly, the
experiments in Alvarez and Franconeri (2007) never allowed
objects to cross each other and always maintained a sepa-
ration of 4 degrees between them, while the experiments in
Srivastava and Vul (2016) allowed objects to overlap freely.
We suspect our model’s inability to handle object overlaps
may explain its inability to jointly explain both datasets.

Similarly, our model is able to reproduce the general trend
from Franconeri et al. (2008) that tracking accuracy can be
high even for higher retinal speeds if the space available for
objects to move is large. However, relying purely on instan-
taneous retinotopic locations of the objects for the updates
results in MOTUAL performance being worse than humans
at higher velocities. It might be possible to augment this with
a retinotopic velocity map with velocities in each grid cell
being computed based only on local information.

Multiple identity tracking with MOTUAL
Given that at time t, the system only has access to the loca-
tions a1

t , ...,a
n
t but not the locations at other points of time,

the information it has so far is insufficient to make conclu-
sions about the target IDs.

To keep track of IDs, we therefore propose that at time t,
there also exists a separate sequence p1

t , ..., pn
t of IDs. One

possible strategy for maintaining such a sequence is to keep
reciting the sequence. With this, in order to match objects to
IDs, one needs to go over the attended objects in some spatial
sequence while reciting their IDs in that same sequence.

One particular sort order (but not the only one) could be to
sort the locations in the non-decreasing order of x-and-y co-
ordinates. With this, at the start of the trial at time t0, the se-
quence of attended locations is monotonic in their x-and-y co-
ordinates, so that for m < n, am

t0 ≡ (xm
t0 ,y

m
t0) and an

t0 ≡ (xn
t0 ,y

n
t0)

are such that (xm
t0 < xn

t0 ) or (xm
t0 = xn

t0 and ym
t0 ≤ yn

t0 ). Given this
order of a1

t0 , ...,a
n
t0 , the system now has the ID of the object at

ak
t0 in pk

t0 for k ∈ 1, ...,n, and it is through this correspondence
that the system can infer the IDs of the objects.

At the end of the trial at time te, the system again sorts
the sequence of attended locations a1

te , ...,a
n
te using the same

sorting-rule that it had used at the start of the trial, in our
particular example, this is non-decreasing order of x-and-y
coordinates. It then assigns the ID pk

te to the object that is at
or nearest the location ak

te .

The strong assumption is that the sequence of IDs is never
updated. In the general case, and as one’s intuition would
suggest, it should be possible to update the ID sequence aka
do a ”correspondence update” especially if the objects move
sufficiently slowly. This can be characterized by an additional
parameter for the model, which we call the frequency of cor-
respondence updates aka fcorr. So, as opposed to the fre-
quency of location updates floc, fcorr can be understood as a
frequency relative to floc and will be such that 0 ≤ fcorr ≤ 1.

Assuming fcorr = 1, aka correspondence updates occur
whenever location updates occur, MOTUAL (like FINST)
predicts ID performance being identical to tracking perfor-
mance across any trial duration (see Figure 3 (right)). Setting
this correlation to less extreme values produces a disparity
between tracking and ID performance, as anticipated in the
literature (Pylyshyn, 2004). For example, assuming fcorr = 0
reproduces the empirical results seen in Pylyshyn (2004) (see
Figure 3 (center)) very precisely (see Figure 3 (left)).
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number of targets corresponding with a fixed average speed of MOTUAL plotted against data from Pylyshyn and Storm (1988).
Center: Velocity threshold vs number of targets patterns for MOTUAL plotted against data from AF2007 (Alvarez & Fran-
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information, in order to perform as well as humans at higher velocities.
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An experimental test

While Pylyshyn (2004) have previously shown an ID-
tracking performance disparity with respect to tracking du-
ration, no earlier work has examined how this relationship
is affected by changing the number of targets in the experi-
ment. MOTUAL makes a non-trivial prediction that because
the participants will not be able to do correspondence up-
dates as rapidly as required by the changing spatial sequence
of targets, ID performance would degrade more rapidly than
tracking performance with increasing number of targets. As a
strong test of its validity, we decided to test both these predic-
tions against data from human participants performing both
ID and tracking tasks in an MOT experiment, varying the
number of targets across the trials.

Based on MOTUAL’s predictions, with task (tracking vs
ID) and number of targets as factors of a within-subjects
ANOVA, we expected a significant interaction effect, as well
as significant main effects of task as well as number of targets.

Participants

13 participants (5F) participated in the experiment. All had
normal or corrected to normal vision, and none were color-
blind. An IRB approved the protocol for the experiment.

Procedure

10 practice trials, followed by 80 main trials were employed.
The number of targets varied from 1 to 8 across the trials. 10
trials for each case of number of targets from 1 to 8 accounted
for the 80 trials. Each trial had 14 objects. The tracking dura-
tion in each trial was 5 seconds but the trials were self-paced
and randomized. In each trial, the participant had to select all
the targets and indicate the ID number for each of the target.
This procedure was similar to that employed in Experiment 4
of Pylyshyn (2004).

Materials

For the purposes of the experiment, the visually identical ob-
jects comprised of small circles with a diameter of 10 pixels.
The participants sat at a distance of about 60 cm from the dis-
play. Thus, each object subtended an angle of 0.23◦ at the
retina, and the objects were allowed to move in a 720x720
pixels square area whose diagonal subtended an angle of
23.5◦ at the retina.

Results

Repeated measures two-way ANOVA was conducted with
tracking-vs-ID accuracy as one factor, and the number of
targets as the second factor. The results were as per the
expectations discussed above (Figure 4, left) - there was a
significant interaction effect [F(3.46,41.47) = 37.638, p <
0.001] as well as significant main effects for number of tar-
gets [F(7,84) = 70.845, p < 0.001] and task [F(1,12) =
113.476, p < 0.001].

Model-based Analysis
We minimized the mean-square error (MSE) between the
tracking performance of humans and MOTUAL for floc rang-
ing from 0 to 60Hz, and for nob varying from 0 to 120.

For lowest MSE (Figure 4, center), floc = 19Hz, nob =
27, MSE = 2.9× 10−4, r2 = 0.989. However, we note that
floc and nob trade-off against each other around 10 to 20Hz
range, and we also obtained comparable fits with floc = 10Hz:
nob = 52, MSE = 7.5×10−4, r2 = 0.983.

Comparing the model’s ID performance with human ID
performance (Figure 4, center-dotted), one notes that assum-
ing fcorr = 0 results in the model’s ID performance being
worse than the human ID performance (r2 = 0.947). Calcu-
lating the MSE scores between the model’s ID performance
and human ID performance for different fcorr yielded a low-
est MSE for fcorr = 0.7 (r2 = 0.964) (Figure 4, center-solid).

However, even with fcorr = 0.7, one notes that human ID
performance exceeds model’s ID performance for number of
targets up to four, and it is worse than model’s ID perfor-
mance for number of targets more than four. We discuss this
very interesting discrepancy further below.

MOMIT (Oksama & Hyönä, 2008) is an index-based
model designed for tracking visually distinct objects. We
adapted it for tracking visually identical objects by letting go
of its corrective attention shift. Figure 4 (right) shows this
model’s fit to our data. Despite a still-reasonable (r2 = 0.877)
fit for tracking accuracy, we note that MOMIT is intrinsically
predisposed to align ID accuracy with tracking accuracy as
with the fcorr = 1 case (Figure 4, center-dashed).

Conclusion
The empirical success of MOTUAL demonstrates that it is
possible to explain human MOT behavior without postulat-
ing incorruptible pre-attentive indexes. Indexes are needed
if we assume that solving the correspondence problem is a
prerequisite to performing the MOT task (Pylyshyn, 2004;
Luo et al., 2021). We show that MOT is possible without
having to computationally maintain one tracker per object.
This opens up the possibility of producing fast multiple object
tracking algorithms scalable to large sets of objects, particu-
larly in combination with neuromorphic vision sensors (van
De Burgt, Melianas, Keene, Malliaras, & Salleo, 2018; Pan-
tho, Bhowmik, & Bobda, 2018), as well as the possibility of
entertaining embodied cognition proposals requiring substan-
tial metacognitive insight into attention allocation at the level
of saccadic planning (Chandrasekharan et al., 2015).

In light of the discrepancy observed in our model-based
analysis, where we found that fewer targets than 4 were ID’d
better by humans than MOTUAL, it would be premature to
conclude that FINSTs play no role in MOT. It may be that
fewer targets than 4 (Pylyshyn’s estimate of FINST count)
could be tracked using FINSTs, and larger targets tracked by
the MOTUAL mechanism. It is also possible that MOTUAL
reduces to FINSTs while tracking fewer targets. Investigating
this relationship presents an exciting avenue for future work.
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