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Abstract

Methods for nanopore genome assembly and phasing

by

Ryan M. Lorig-Roach

In this work, I present methods which aim to facilitate the generation of diverse ge-

nomic assembly data, using primarily nanopore sequencing and the Shasta assembler. First, I

describe methods for improving consensus quality in nanopore assemblies. Second, I present a

method for transforming graph representations of assemblies. Finally, I describe a graph based

phasing method which enables accurate, de novo, chromosome-scale phasing, with a total of 2

flow cells of nanopore sequence.
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Introduction

Early biochemical experiments used a combination of extracts from infectious

cultures1 to demonstrate that DNA conferred heritability of physical traits. Soon after, it was

learned that variation in a single protein complex is directly responsible for sickle cell

anemia2, which was the first time that protein structure was directly linked to a medical

condition. The full implication of DNA and its link to phenotype was later established with

the discovery of mRNA3. As an indication of its significance to our understanding of life, the

flow of information between DNA, RNA, and protein was dubbed the “central dogma” of

biology4. Future research then began to map observable traits directly to DNA, and the first

medically relevant DNA mutation was mapped in 1983 using genealogy and cloning5. This

process of mapping traits to genetic loci inevitably motivated more ambitious projects which

aimed to learn the complete sequence of the human genome, as it would be a necessary first

step to fully understanding life, and would greatly accelerate our ability to diagnose and cure

heritable diseases.

Sequencing

Having only 4 constituent components, known as nucleotides or bases, DNA can

feasibly be “sequenced” by iteratively processing it in a linear fashion, to learn its sequential

ordering of Adenine, Guanine, Cytosine, and Thymine. Early methods for accomplishing this

were based on the principle of templated polymerization of the double stranded molecule, and

have diversified into a wide variety of implementations, generally improving over the years in

terms of cost, accuracy, and length of sequences.

Sanger sequencing was the first accurate and robust protocol for

polymerization-based sequencing. It relies on the incorporation of a small fraction of

modified A,C,G, or T base, which would randomly terminate a growing strand of DNA,

producing a mixture of molecules, each with a length corresponding to the relative locus of

that base6. Repeating this style of early termination for each base yields four series which, in

combination with a size separation technique (gel electrophoresis) creates a complete

ordering of all bases. This method was relatively efficient at the time, but has a length limit of

around 1,000 bases, or as many bases as could be visually distinguished by length within a
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single gel electrophoresis experiment. Compared to modern methods, there is a large resource

and time cost associated with the polymer termination, running of the gel, and interpretation

of results. A more efficient variation of this protocol which uses 4 fluorescent labels instead

of four independent polymerization trials was eventually introduced.

To overcome the throughput limitations associated with chain terminating methods,

pyrosequencing was developed, and eventually widely distributed by Roche and Illumina7,8.

The main contribution of this method was that it eliminated the need for gel electrophoresis

by converting polymerization byproducts into a readable light signal, using an enzyme. The

polymerization reaction in this protocol is conducted in a stepwise manner, by washing fixed

polymers with one of the 4 bases at a time, and the fluorescence is readable in real time. This

method was automated and enabled scaling experiments to much larger quantities of DNA,

but it still depended on synthesis, and large populations of DNA molecules. A common pitfall

for methods such as these is the desynchronization of the stepwise reaction, which then leads

to a mixture of signals read by the machine, and results in an upper length limit of around 150

base pairs (bp) on this type of sequencing9. Illumina’s polymerization based sequencing is

still widely used as a result of its efficiency and accuracy, but its read length has been greatly

surpassed by recent methods which sequence single molecules10,11.

PacBio Single Molecule Real Time Sequencing (SMRT) uses a fixed polymerase in a

reaction chamber which localizes the fluorescent signal of 4 modified bases12. This system

allows for the accurate sequencing of individual molecules, further improving efficiency and,

perhaps more importantly, increasing the maximum readable sequence length from 150 bases

to tens of thousands of bases. Initially this method yielded a sequence accuracy of only

around 90%9,13, which was later improved to 99.9% with an alternative method to convert

double stranded DNA to a circular molecule that can be reread many times by the

sequencer14. While extremely accurate, this method is limited by length and cost in

comparison to synthesis-free methods.

Synthesis-free sequencing

Nanopore sequencing directly processes endogenous DNA strands to generate a

signal which depends on the structure and order of the nucleotides contained in the strand.

The instrument establishes a voltage across a membrane containing pores that narrowly

accommodate single stranded DNA. When a strand passes through a pore, a sensor measures
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the current, determined by the resistance of the nucleotides that occupy the pore. This process

produces a continuous time series of measurements, which varies from around 50-150

picoamps10. The time series can then be translated to find the original sequence of nucleotides

that were processed.

Figure 1: Schematic of nanopore translocation and an example of a real signal emitted from

the device. In gray (below) is the raw signal and in blue is the output of a segmenter, which

discretizes the noisy output. Note the level portion in the middle which resulted from a

Thymine homopolymer.

The signal depends nonuniformly on multiple bases which occupy the pore at any

given time. Therefore, the range of outputs from the system is much greater than 4 discrete

values, to the extent that it is essentially a continuous distribution from 50-150pA. The

system is also confounded by noise, and a stochastic rate of translocation. For these reasons,

decoding the signal is not a perfect process, and the main source of error is in the insertion

and deletion component of identity, rather than substitutions. The error rate of decoding or

“basecalling” is on the order of 4\% for older pore designs (R9) and 1\% for new pore

structures (R10).

Nanopore sequencing has unusual benefits because it directly sequences native

polymers from the cell. It does not depend on artificial replication of DNA to amplify the

signal. This simplifies sample preparation, and makes it possible to sequence longer reads,

with lengths observed up to 2 million bases15. The length distribution of nanopore libraries
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extends much further into the 100kb+ range than any other technology, greatly reducing

complications in assembly of repetitive regions or duplicated genes.

Linked reads

Short read sequencing methods have alternative means of spanning large distances.

Using adapters or barcodes during library prep, a long molecule of DNA can be sequenced by

multiple short reads which are identifiable by downstream applications as having been

derived from the same molecule. In Illumina sequencers this is accomplished with bridge

amplification.

Bridge amplification sequences the ends of a continuous molecule of DNA, and the

resulting reads are referred to as “linked” or “paired end” reads. The DNA molecule has a

known length distribution, and it can be used to improve mapping of short reads by

conditioning the mapping of each read by its pair and the expected gap size between

them8,16–18. In more recent sequencing protocols, such as the 10X Genomics Chromium

method, physical isolation of molecules in a reaction chamber is used to re-sequence long

fragments of DNA many times over with short reads19,20. As with paired end methods,

clustering can be used to map reads from the same molecule.

Hi-C is another approach to linked read sequencing which takes advantage of the

packing of chromatin in the nucleus. It uses reversible formaldehyde crosslinking to find

regions of the genome that are distant in linear sequence space, but proximal in physical

space21. This protocol is relatively more straightforward than 10X methods for producing

linked reads, because it doesn’t require a specialized machine for extracting and partitioning

genetic material. Instead, Hi-C uses the organization of DNA in the nucleus itself. Paired

reads for this method can span tens of millions of bases, effectively providing full

chromosome linkage information for genome assembly and variation detection.

Assembly

Genome assembly is the process by which chromosomal sequences are inferred from

reads that are shorter than a chromosome. In general, this process relies on redundant,

overlapping reads which are sampled randomly from the chromosome22. The initial challenge

is to then find reads which share similar sequences and therefore are likely derived from a
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common locus in the underlying genome. However, the process of naively comparing reads to

one another would have at minimum a quadratic (½n^2) complexity as a result of the need to

iterate all pairs of reads. The challenge of computing this overlap of reads is addressed

primarily in two paradigms of assembly: Overlap Layout Consensus (OLC) and De Bruijn

Graph assembly23.

De Bruijn Graph assembly is an elegant solution to the overlap problem which

reduces sequences into fixed length subsequences or “k-mers”. In this paradigm, each read

constitutes a series of k-mers which are added to a graph as nodes. Edges between k-mers are

added similarly, describing the adjacency of k-mers observed in the reads. Each k-mer is only

added to the graph once, and can have multiple in and out edges. The resulting graph is a

succinct description of all observed sequences, and given a low enough error rate, the true

genomic sequence is guaranteed to exist as a walk through this graph. However, in practice,

short k-mer lengths create a challenge, because they can be shorter than duplicated regions of

the genome, which creates cycles in the graph, and complicates traversal. In addition to this,

error in sequencing results in spurious k-mers, which need to be filtered or ignored during

traversal. The De Bruijn Graph method of assembly is well defined, and has consistently been

used in a variety of assemblers 24–27.
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Figure 2: Each step of the Overlap Layout Consensus (OLC) method for assembly is briefly

summarized. Overlap (O): Exact matches are found among reads that have been “clustered” together

via MinHash. Alignment is performed at the level of markers, and used to build a collapsed graph

representation. Layout (L): The graph representation is pruned and simplified. Only the minimum set

of edges that spans all nodes is retained. If the graph is nonlinear it is traversed to identify linear

segments. Consensus (C): Any edges which were not explicitly matched during overlap are aligned

with multiple sequence alignment and their consensus is computed.

Overlap Layout Consensus (OLC) is an alternative approach to assembly which

attempts to compute direct pairwise overlaps between reads. Generally, the challenge of

quadratic overlap complexity is averted by using approximations of overlap, which again

depend on fixed length subsequences28–32. Once an approximate overlap is computed, a more

computationally expensive evaluation of overlap can be used to further refine overlap

candidates, producing a graph that represents read adjacency. As with De Bruijn Graph

methods, the “layout” step of OLC then attempts to traverse the overlaps in a manner that

reconstructs the underlying chromosomes. Once a traversal is complete, the consensus step

ensues, which uses the distribution of observed sequences at each locus to infer an consensus

sequence. OLC methods are computationally more flexible and tunable than De Bruijn graph

methods, but they often depend on heuristics, which can make implementations more

complex.

Assembling repetitive content

The human genome is more than 50\% repetitive DNA33,34. Repetitive elements can

vary in length from several to millions of bases35. In the case of NOTCH2NL, for example,

hundred kilobase genes are duplicated 4 times, with exonic content of >99.2% similarity36.

This can complicate assembly because repeats result in false positive overlaps if the length of

a repetitive region exceeds the length of a read. False positive overlaps then result in a cyclic

or tangled graph, which is not trivially traversable, forcing the assembler to break the graph

into sub-chromosomal linear chunks, or if it attempts to detangle the region, it risks creating

misjoins.
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Figure 3: Diagram representation of the outcome of overlapping short (left) vs long reads (right).

Repetitive regions which are inseparable at a given accuracy are shown in various shades of red. False

positive overlaps are represented by red curves between short reads.

In addition to the large proportion of repetitive elements in the genome, there is a

duplicated gene for every degree of ploidy that the organism has. For humans, with a ploidy

of 2 and an average sequence variation rate of 0.12%37, every chromosome has a duplicate of

around 99.88% similarity. During assembly, this can either be addressed by separating the

repeats with phasing, or if it is ignored, a collapsed chimeric consensus is produced. When

attempting to separate haplotypes, repetitive elements which have a similarity in the same

range as the haplotype similarity can complicate methods.

Variants and phasing

The vast majority of the human genome is identical, and only 0.12% is responsible

for the phenotypic variation that we observe among humans37. Since this small fraction of

sequence is useful for identifying genetic factors in disease38, divergent sites are often isolated

from the rest of the genome as “variants” or alleles, and reported in terms of minimal

information needed to define an edit. Historically, genomes have been compared to a

common reference genome as a way to standardize allele coordinates37,39, but the existence of

large scale variations40 can sometimes make this comparison difficult, so alternative

references which use multiple individuals are in development17,33.
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Figure 4: The combinatorial outcomes of loss of function mutations occurring in a regulon of a diploid

organism. Depending on whether the loss of function occurs in one or both haplotypes, the overall

outcome is either a partial or total loss, which can have drastically different phenotype or even result in

viability in the case of total loss of function.

Conventional sequencing and assembly does not necessarily provide sufficient

information to indicate the parental origin of an allele, which means that consecutive

heterozygous variants are reported independently of one another. However, it is often

important to know which mutations share a molecule because of the combinatorial outcomes

of multiple variants in the same gene or regulon41–44. For this reason, a process called

“phasing” deals with the partitioning of parental alleles into haplotypes which indicate which

variants are derived from the same molecule.

Phasing generally begins with a set of heterozygous candidate variants, then the

constituent alleles can be clustered by a variety of means. Given a set of pairs of alleles, long

reads or linked reads inform the construction of a partition that is most consistent with the

reads which span multiple variants. Consistency can be measured by the number of reads

which share alleles, and therefore indicate that they come from the same molecule or

chromosome22,45,46.
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Chapter 1

Nanopore assembly and polishing

In the following work titled Nanopore sequencing and the Shasta toolkit enable effi-

cient de novo assembly of eleven human genomes, I describe methods which I developed and

implemented for performing Bayesian consensus calling in nanopore homopolymers. Not de-

scribed entirely in this work are several utilities I developed for assembly QC and automated

cloud monitoring, which I have summarized below.

Bayesian consensus calling

Since homopolymers produce continuous signals in the nanopore sequencer, the base-

caller often fails to infer the true number of bases. For this reason, a Bayesian model is used

for error correction in the length domain, given a distribution of repeated samples at a locus.

At the time of publication, this model was trained and deployed for inference in Marginpolish,

and later was deployed as the default consensus method in Shasta. As an additional benefit of

modeling homopolymers, it also became possible to evaluate homopolymer accuracy for any

given sequence. This enabled the creation of figure 4b.
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Cloud monitoring with TaskManager

TaskManager generates detailed CPU, RAM, and IO statistics, and sends email no-

tifications through Amazon’s Simple Email Service (SES) to ensure tasks are completed and

memory or disk-related crashes are diagnosed quickly. TaskManager was used to run and mon-

itor all software presented in this paper (except Canu), leading to figures 2f and 4d. It enabled

large scale experiments such as the one in this paper, before cloud automation such as Terra

existed.

Utilities for assembly QC

I created consensus accuracy QC and plotting software which was used to generate

data and plots for figures 1e and 1c, showing the identity of the assembly, figure panels 2a and

2b, and all panels of figure 3.
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Abstract
Present workflows for producing human genome assemblies from long-read technologies

have cost and production time bottlenecks that prohibit efficient scaling to large cohorts.
We demonstrate an optimized PromethION nanopore sequencing method for eleven human
genomes. The sequencing, performed on one machine in nine days, achieved an average
63x coverage, 42 Kb read N50, 90% median read identity and 6.5x coverage in 100 Kb+
reads using just three flow cells per sample. To assemble these data we introduce new
computational tools: Shasta - a de novo long read assembler, and MarginPolish & HELEN
- a suite of nanopore assembly polishing algorithms. On a single commercial compute
node Shasta can produce a complete human genome assembly in under six hours, and
MarginPolish & HELEN can polish the result in just over a day, achieving greater than
99.9% identity (QV30) for haploid samples from nanopore reads alone. We evaluate assembly
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performance for diploid, haploid and trio-binned human samples in terms of accuracy, cost,
and time and demonstrate improvements relative to current state-of-the-art methods in all
areas. We further show that addition of proximity ligation (Hi-C) sequencing yields near
chromosome-level scaffolds for all eleven genomes.

Introduction
Short-read sequencing reference-assembly mapping methods only assay about 90% of the current
reference human genome assembly [1], and closer to 80% at high-confidence [2]. The latest
incarnations of these methods are highly accurate with respect to single nucleotide variants
(SNVs) and short insertions and deletions (indels) within this mappable portion of the reference
genome [3]. However, short reads are much less able to de novo assemble a new genome [4], to
discover structural variations (SVs) [5, 6] (including large indels and base-level resolved copy
number variations), and are generally unable to resolve phasing relationships without exploiting
transmission information or haplotype panels [7].

Third generation sequencing technologies, including linked-reads [8, 9, 10] and long-read tech-
nologies [11, 12], get around the fundamental limitations of short-read sequencing for genome
inference by providing more information per sequencing observation. In addition to increasingly
being used within reference guided methods [1, 13, 14, 15], long-read technologies can generate
highly contiguous de novo genome assemblies [16].

Nanopore sequencing, as commercialized by Oxford Nanopore Technologies (ONT), is particularly
applicable to de novo genome assembly because it can produce high yields of very long 100+
kilobase (Kb) reads [17]. Very long reads hold the promise of facilitating contiguous, unbroken
assembly of the most challenging regions of the human genome, including centromeric satellites,
acrocentric short arms, rDNA arrays, and recent segmental duplications [18, 19, 20]. We
contributed to the recent consortium-wide effort to perform the de novo assembly of a nanopore
sequencing based human genome [17]. This earlier effort required considerable resources, including
53 ONT MinION flow cells and an assembly process that required over 150,000 CPU hours and
weeks of wall-clock time, quantities that are unfeasible for production scale replication.

Making nanopore long-read de novo assembly easy, cheap and fast will enable new research.
It will permit both more comprehensive and unbiased assessment of human variation, and
creation of highly contiguous assemblies for a wide variety of plant and animal genomes. Here
we report the de novo assembly of eleven diverse human genomes at near chromosome scale
using a combination of nanopore and proximity-ligation (HiC) sequencing [8]. We demonstrate a
substantial improvement in yields and read lengths for human genome sequencing at reduced
time, labor, and cost relative to earlier efforts. Coupled to this, we introduce a toolkit for
nanopore data assembly and polishing that is orders of magnitude faster than state-of-the-art
methods.

Results
Nanopore sequencing eleven human genomes in nine days
We selected for sequencing eleven, low-passage (six passages), human cell lines of the offspring of
parent-child trios from the 1000 Genomes Project (1KGP) [21] and Genome-in-a-Bottle (GIAB)
[22] sample collections. Samples were selected to maximize captured allelic diversity (see Online
Methods).

We performed PromethION nanopore sequencing and HiC Illumina sequencing for the eleven

14



genomes. Briefly, we isolated HMW DNA from flash-frozen 50 million cell pellets using the
QIAGEN Puregene kit, with some modifications to the standard protocol to ensure DNA integrity
(see Online Methods). For nanopore sequencing, we performed a size selection to remove fragments
<10 kilobases (Kb) using the Circulomics SRE kit, followed by library preparation using the ONT
ligation kit (SQK-LSK109). We used three flow cells per genome, with each flow cell receiving a
nuclease flush every 20-24 hours. This flush removed long DNA fragments that could cause the
pores to become blocked over time. Each flow cell received a fresh library of the same sample
after the nuclease flush. A total of two nuclease flushes were performed per flow cell, and each
flow cell received a total of three sequencing libraries. We used Guppy version 2.3.5 with the
high accuracy flipflop model for basecalling (see Online Methods).

The nanopore sequencing for these eleven genomes was performed in nine days, producing 2.3
terabases of sequence. This was made possible by running up to 15 flow cells in parallel during
these sequencing runs. Results are shown in Fig. 1 and Supplementary Tables ??, ??, and
??. Nanopore sequencing yielded an average of 69 gigabases (Gb) per flow cell, with the total
throughput per individual genome ranging between 48x (158 Gb) and 85x (280 Gb) coverage per
genome (Fig. 1a). The read N50s for the sequencing runs ranged between 28 Kb and 51 Kb (Fig.
1b). We aligned nanopore reads to the human reference genome (GRCh38) and calculated their
alignment identity to assess sequence quality (see Online Methods). We observed that the median
and modal alignment identity was 90% and 93% respectively (Fig. 1c). The sequencing data
per individual genome included an average of 55x coverage arising from 10 Kb+ reads, and 6.5x
coverage from 100 Kb+ reads (Fig. 1d). This was in large part due to size-selection which yielded
an enrichment of reads longer than 10 Kb. To test the generality of our sequencing methodology
for other samples, we sequenced high-molecular weight DNA isolated from a human saliva sample
using identical sample preparation. The library was run on a MinION (approximately one sixth
the throughput of a ProMethION flow cell) and yielded 11 Gb of data at a read N50 of 28 Kb
(Supplementary Table ??), extrapolating both are within the lower range achieved with cell line
derived DNA.

Shasta: assembling a human genome from nanopore reads in under 6
hours
To assemble the genomes, we developed a new de novo assembly algorithm, Shasta. Shasta was
designed to be orders of magnitude faster and cheaper at assembling a human-scale genome from
nanopore reads than the Canu assembler used in our earlier work [17]. A detailed description of
algorithms and computational techniques used is provided in the Online Methods section. Here
we summarize key points:

• During most Shasta assembly phases, reads are stored in a homopolymer-compressed (HPC)
form using Run-Length Encoding (RLE) [23, 24, 25]. In this form, identical consecutive
bases are collapsed, and the base and repeat count are stored. For example, GATTTACCA
would be represented as (GATACA, 113121). This representation is insensitive to errors in
the length of homopolymer runs, thereby addressing the dominant error mode for Oxford
Nanopore reads [11]. As a result, assembly noise due to read errors is decreased, and
significantly higher identity alignments are facilitated (Fig. 1e).

• A marker representation of reads is also used, in which each read is represented as
the sequence of occurrences of a predetermined, fixed subset of short k-mers (marker
representation) in its run-length representation.

• A modified MinHash [26, 27] scheme is used to find candidate pairs of overlapping reads,
using as MinHash features consecutive occurrences of m markers (default m = 4).
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Figure 1: Nanopore sequencing results. (a) Throughput in gigabases from each of three
flowcells for eleven samples, with total throughput at top. (b) Read N50s for each flowcell. (c)
Alignment identities against GRCh38. Medians in a, b and c shown by dashed lines, dotted line
in c is mode. (d) Genome coverage as a function of read length. Dashed lines indicate coverage
at 10 and 100 Kb. HG00733 is bolded as an example. (e) Alignment identity for standard and
run-length encoded (RLE) reads. Data for HG00733 chromosome 1 are shown. Dashed lines
denote quartiles.
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• Optimal alignments in marker representation are computed for all candidate pairs. The
computation of alignments in marker representation is very efficient, particularly as various
banded heuristics are used.

• A Marker Graph is created in which each vertex represents a marker found to be aligned
in a set of several reads. The marker graph is used to assemble sequence after undergoing
a series of simplification steps.

• The assembler runs on a single machine with a large amount of memory (typically 1-2 TB
for a human assembly). All data structures are kept in memory, and no disk I/O takes
place except for initial loading of the reads and final output of assembly results.

To validate Shasta, we compared it against three contemporary assemblers: Wtdbg2 [28], Flye
[29] and Canu [30]. We ran all four assemblers on available read data from two diploid human
samples, HG00733 and HG002, and one haploid human sample, CHM13. HG00733 and HG002
were part of our collection of eleven samples, and data for CHM13 came from the T2T consortium
[31].

Canu consistently produced the most contiguous assemblies, with contig NG50s of 40.6, 32.3,
and 79.5 Mb, for samples HG00733, HG002, and CHM13, respectively (Fig. 2a). Flye was the
second most contiguous, with contig NG50s of 25.2, 25.9, and 35.3 Mb, for the same samples.
Shasta was next with contig NG50s of 21.1, 20.2, and 41.1 Mb. Wtdbg2 produced the least
contiguous assemblies, with contig NG50s of 15.3, 13.7, and 14.0 Mb.

Conversely, aligning the samples to GRCh38 and evaluating with QUAST [32], Shasta had
between 4.2 to 6.5x fewer disagreements (locations where the assembly contains a breakpoint
with respect to the reference assembly) per assembly than the other assemblers (Supplementary
Table ??). Breaking the assemblies at these disagreements and unaligned regions with respect
to GRCh38, we observe much smaller absolute variation in contiguity (Fig. 2b, Supplementary
Table ??). However, a substantial fraction of the disagreements identified likely reflect true SVs
with respect to GRCh38. To address this we discounted disagreements within chromosome Y,
centromeres, acrocentric chromosome arms, QH-regions, and known recent segmental duplications
(all of which are enriched in SVs[33, 34]); in the case of HG002, we further excluded a set of known
SVs [35]. We still observe between 1.2x to 2x fewer disagreements in Shasta relative to Canu and
Wtdbg2, and comparable results against Flye (Fig. 2c, Supplementary Table ??). To account
for differences in the fraction of the genomes assembled, we analysed disagreements contained
within the intersection of all the assemblies (i.e. in regions where all assemblers produced a
unique assembled sequence). This produced results highly consistent with the prior analysis, and
suggests Shasta and Flye have the lowest and comparable rates of misassembly (Online Methods,
Supplementary Table. ??). Finally, we used QUAST to calculate disagreements between the
T2T Consortium’s chromosome X assembly, a highly curated, validated assembly [31] and the
subset of each CHM13 assembly mapping to it; Shasta has 2x to 17x fewer disagreements than
the other assemblers while assembling almost the same fraction of the assembly (Supplementary
Table ??).

Canu consistently assembled the largest genomes (avg. 2.91 Gb), followed by Flye (avg. 2.83
Gb), Wtdbg2 (avg. 2.81 Gb) and Shasta (avg. 2.80 Gb). We would expect the vast majority of
this assembled sequence to map to another human genome. Discounting unmapped sequence,
the differences are smaller: Canu produced an avg. 2.86 Gb of mapped sequence per assembly,
followed by Shasta (avg. 2.79 Gb), Flye (avg. 2.78 Gb) and Wtdbg2 (avg. 2.76 Gb) (Fig.
2d; see Online Methods). This analysis supports the notion that Shasta is currently relatively
conservative vs. its peers, producing the highest proportion of directly mapped assembly per
sample.
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Figure 2: Assembly results for four assemblers and three human samples, before
polishing. (a) NGx plot showing contig length distribution. The intersection of each line with
the dashed line is the NG50 for that assembly. (b) NGAx plot showing the distribution of aligned
contig lengths. Each horizontal line represents an aligned segment of the assembly unbroken by
a disagreement or unmappable sequence with respect to GRCh38. The intersection of each line
with the dashed line is the aligned NGA50 for that assembly. (c) Assembly disagreement counts
for regions outside of centromeres, segmental duplications and, for HG002, known SVs. (d) Total
generated sequence length vs. total aligned sequence length (against GRCh38). (e) Balanced
base-level error rates for assembled sequences. (f) Average runtime and cost for assemblers (Canu
not shown).
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For HG00733 and CHM13 we examined a library of bacterial artificial chromosome (BAC) assem-
blies (see Online Methods). The BACs were largely targeted at known segmental duplications
(473 of 520 BACs lie within 10 Kb of a known duplication). Examining the subset of BACs for
CHM13 and HG00733 that map to unique regions of GRCh38 (see Online Methods), we find
Shasta contiguously assembles all 47 BACs, with Flye performing similarly (Supplementary Table
??). In the full set we observe that Canu (411) and Flye (282) contiguously assemble a larger
subset of the BACs than Shasta (132) and Wtdbg2 (108), confirming the notion that Shasta
is relatively conservative in these duplicated regions (Supplementary Table ??). Examining
the fraction of contiguously assembled BACs of all BACs represented in each assembly we can
measure an aspect of assembly correctness. In this regard Shasta (97%) produces a much higher
percentage of correct BACs in duplicated regions vs. its peers (Canu: 92%, Flye 87%, Wtdbg2
88%). In the intersected set of BACs attempted by all assemblers (Supplementary Table ??)
Shasta: 100%, Flye: 100%, Canu: 98.50% and Wtdbg2: 90.80% all produce comparable results.

Shasta produced the most base-level accurate assemblies (avg. balanced error rate 0.98% on
diploid and 0.54% on haploid), followed by Wtbdg2 (1.18% on diploid and 0.69% on haploid),
Canu (1.40% on diploid and 0.71% on haploid) and Flye (1.64% on diploid and 2.21% on haploid)
(Fig. 2e); see Online Methods, Supplementary Table ??. We also calculated the base level
accuracy in regions covered by all the assemblies and observe results consistent with the whole
genome assessment (Supplementary Table ??).

Shasta, Wtdbg2 and Flye were run on a commercial cloud, allowing us to reasonably compare
their cost and run time (Fig. 2e; see Online Methods). Shasta took an average of 5.25 hours to
complete each assembly at an average cost of $70 per sample. In contrast, Wtdbg2 took 7.5x
longer and cost 3.7x as much, and Flye took 11.9x longer and cost 9.9x as much. The Canu
assemblies were run on a large compute cluster, consuming up to $19,000 (estimated) of compute
and took around 4-5 days per assembly (see Online Methods, Supplementary Tables ??, ??).

To assess the utility of using Shasta for SV characterization we created a workflow to extract
putative heterozygous SVs from Shasta assembly graphs (Online Methods). Extracting SVs
from an assembly graph for HG002, the length distribution of indels shows the characteristic
spikes for known retrotransposon lengths (Supplementary Fig. ??). Comparing these SVs to
the high-confidence GIAB SV set we find good concordance, with a combined F1 score of 0.68
(Supplementary Table ??).

Contiguously assembling MHC haplotypes
The Major Histocompatibility Complex (MHC) region is difficult to resolve using short reads
due to its repetitive and highly polymorphic nature [36], but recent efforts to apply long read
sequencing to this problem have shown promise [17, 37]. We analyzed the assemblies of CHM13
and HG00733 to see if they spanned the region. For the haploid assembly of CHM13 we find
MHC is entirely spanned by a single contig in all 4 assemblers’ output, and most closely resembles
the GL000251.2 haplogroup among those provided in GRCh38 (Fig. 3a; Supplementary Fig. ??
and Supplementary Table ??). In the diploid assembly of HG00733 two contigs span the large
majority of the MHC for Shasta and Flye, while Canu and Wtdbg2 span the region with one
contig (Fig. 3b; Supplementary Fig. ??). However, we note that the chimeric diploid assembly
leads to sequences that do not closely resemble any haplogroup (see Online Methods).

To attempt to resolve haplotypes of HG00733 we performed trio-binning [38], where we partitioned
all the reads for HG00733 into two sets based on likely maternal or paternal lineage and assembled
the haplotypes (see Online Methods). For all haplotype assemblies the global contiguity worsened
significantly (as the available read data coverage was approximately halved, and further, not
all reads could be partitioned), but the resulting disagreement count decreased (Supplementary
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Figure 3: Shasta MHC assemblies vs GRCh38. Unpolished Shasta assembly for CHM13
and HG00733, including HG00733 trio-binned maternal and paternal assemblies. Shaded gray
areas are regions in which coverage (as aligned to GRCh38) drops below 20. Horizontal black
lines indicate contig breaks. Blue and green describe unique alignments (aligning forward and
reverse, respectively) and orange describes multiple alignments.
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Table ??). When using haploid trio-binned assemblies, the MHC was spanned by a single contig
for the maternal haplotype (Fig. 3c, Supplementary Fig. ??, Supplementary Table ??), with
high identity to GRCh38 and having the greatest contiguity and identity with the GL000255.1
haplotype. For the paternal haplotype, low coverage led to discontinuities (Fig. 3d) breaking the
region into three contigs.

Deep neural network based polishing achieves greater than QV30 long-
read only haploid polishing accuracy
Accompanying Shasta, we developed a deep neural network based consensus sequence polishing
pipeline designed to improve the base-level quality of the initial assembly. The pipeline consists
of two modules: MarginPolish and HELEN. MarginPolish uses a banded form of the forward-
backward algorithm on a pairwise hidden Markov model (pair-HMM) to generate pairwise
alignment statistics from the RLE alignment of each read to the assembly [39]. From these
statistics MarginPolish generates a weighted RLE Partial Order Alignment (POA) graph [40] that
represents potential alternative local assemblies. MarginPolish iteratively refines the assembly
using this RLE POA, and then outputs the final summary graph for consumption by HELEN.
HELEN employs a multi-task recurrent neural network (RNN) [41] that takes the weights of
the MarginPolish RLE POA graph to predict a nucleotide base and run-length for each genomic
position. The RNN takes advantage of contextual genomic features and associative coupling of
the POA weights to the correct base and run-length to produce a consensus sequence with higher
accuracy.

To demonstrate the effectiveness of MarginPolish and HELEN, we compared them with the
state-of-the-art nanopore assembly polishing workflow: four iterations of Racon polishing [42]
followed by Medaka [43]. Here MarginPolish is analogous in function to Racon, both using
pair-HMM based methods for alignment and POA graphs for initial refinement. Similarly,
HELEN is analogous to Medaka, in that both use a deep neural network and both work from
summary statistics of reads aligned to the assembly.

Figure 4a and Supplementary Tables ??, ?? and ?? detail error rates for the four methods
performed on the HG00733 and CHM13 Shasta assemblies (see Online Methods) using Pomoxis
[44]. For the diploid HG00733 sample MarginPolish and HELEN achieve a balanced error rate of
0.388% (QV 24.12), compared to 0.455% (QV 23.42) by Racon and Medaka. For both polishing
pipelines, a significant fraction of these errors are likely due to true heterozygous variations.
For the haploid CHM13 we restrict comparison to the highly curated X chromosome sequence
provided by the T2T consortium [31]. We achieve a balanced error rate of 0.064% (QV 31.92),
compared to Racon and Medaka’s 0.110% (QV 29.59).

For all assemblies, errors were dominated by indel errors, e.g. substitution errors are 3.16x and
2.9x fewer than indels in the polished HG000733 and CHM13 assemblies, respectively. Many of
these errors relate to homopolymer length confusion; Fig. 4b analyzes the homopolymer error
rates for various steps of the polishing workflow for HG00733. Each panel shows a heatmap with
the true length of the homopolymer run on the y-axis and the predicted run length on the x-axis,
with the color describing the likelihood of predicting each run length given the true length. Note
that the dispersion of the diagonal steadily decreases. The vertical streaks at high run lengths
in the MarginPolish and HELEN confusion-matrix are the result of infrequent numerical and
encoding artifacts (see Online Methods, Supplementary Fig. ??).

Figure 4c and Supplementary Table ?? show the overall error rate after running MarginPolish
and HELEN on HG00733 assemblies generated by different assembly tools, demonstrating that
they can be usefully employed to polish assemblies generated by other tools.
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To investigate the benefit of using short reads for further polishing, we polished chromosome X
of the CHM13 Shasta assembly after MarginPolish and HELEN using 10X Chromium reads with
the Pilon polisher [45]. This led to a ~2x reduction in base errors, increase the Q score from
~QV32 (after polishing with MarginPolish and HELEN) to ~QV36 (Supplementary Table ??).
Notably, attempting to use Pilon polishing on the raw Shasta assembly resulted in much poorer
results (QV24).

Figure 4d and Supplementary Table ?? describe average runtimes and costs for the methods (see
Online Methods). MarginPolish and HELEN cost a combined $107 and took 29 hours of wall-clock
time on average, per sample. In comparison Racon and Medaka cost $621 and took 142 wall-clock
hours on average, per sample. To assess single-region performance we additionally ran the two
polishing workflows on a single contig (roughly 1% of the assembly size), MarginPolish/HELEN
was 3.0x faster than Racon (1x)/Medaka (Supplementary Table ??).

Long-read assemblies contain nearly all human coding genes
To evaluate the accuracy and completeness of an assembled transcriptome we ran the Comparative
Annotation Toolkit [46], which can annotate a genome assembly using the human GENCODE
[47] reference human gene set (Table 1, Online Methods, Supplementary Tables ??, ??, ??, and
??.).

Table 1: CAT transcriptome analysis of human protein coding genes for HG00733 and CHM13.

Sample Assembler Polisher Genes
Found %

Missing
Genes

Complete
Genes %

HG00733

Canu HELEN 99.741 51 67.038

Flye HELEN 99.405 117 71.768

Wtdbg2 HELEN 97.429 506 66.143

Shasta HELEN 99.228 152 68.069

Shasta Medaka 99.141 169 66.27

CHM13
Shasta HELEN 99.111 175 74.202

Shasta Medaka 99.035 190 73.836

For the HG00733 and CHM13 samples we found that Shasta assemblies polished with MarginPolish
and HELEN were close to representing nearly all human protein coding genes, having, respectively,
an identified ortholog for 99.23% (152 missing) and 99.11% (175 missing) of these genes. Using
the restrictive definition that a coding gene is complete in the assembly only if it is assembled
across its full length, contains no frameshifts, and retains the original intron/exon structure,
we found that 68.07% and 74.20% of genes, respectively, were complete in the HG00733 and
CHM13 assemblies. Polishing the Shasta assemblies alternatively with the Racon-Medaka pipeline
achieved similar but uniformly less complete results.

Comparing the MarginPolish and HELEN polished assemblies for HG00733 generated with Flye,
Canu and Wtdbg2 to the similarly polished Shasta assembly we found that Canu had the fewest
missing genes (just 51), but that Flye, followed by Shasta, had the most complete genes. Wtdbg2
was clearly an outlier, with notably larger numbers of missing genes (506). For comparison we
additionally ran BUSCO [48] using the eukaryote set of orthologs on each assembly, a smaller
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Figure 4: Polishing Results. (a) Balanced error rates for the four methods on HG00733 and
CHM13. (b) Row-normalized heatmaps describing the predicted run-lengths (x-axis) given true
run lengths (y-axis) for four steps of the pipeline on HG00733. (c) Error rates for MarginPolish
and HELEN on four assemblies. (d) Average runtime and cost.
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set of 303 expected single-copy genes (Supplementary Tables ?? and ??). We find comparable
performance between the assemblies, with small differences largely recapitulating the pattern
observed by the larger CAT analysis.

Comparing to a PacBio HiFi Assembly
We compared the CHM13 Shasta assembly polished using MarginPolish and HELEN with the
recently released Canu assembly of CHM13 using PacBio HiFi reads [49]; HiFi reads being based
upon circular consensus sequencing technology that delivers significantly lower error rates. The
HiFi assembly has lower NG50 (29.0 Mb vs. 41.0 Mb) than the Shasta assembly (Supplementary
Fig. ??). Consistent with our other comparisons to Canu, the Shasta assembly also contains a
much lower disagreement count relative to GRCh38 (1073) than the Canu based HiFi assembly
(8469), a difference which remains after looking only at disagreements within the intersection of
the assemblies (380 vs. 594). The assemblies have an almost equal NGAx (~20.0Mb), but the
Shasta assembly covers a smaller fraction of GRCh38 (95.28% vs. 97.03%) (Supplementary Fig.
??, Supplementary Table ??). Predictably, the HiFi assembly has a higher QV value than the
polished Shasta assembly (QV41 vs. QV32).

Assembling, polishing and scaffolding 11 human genomes at near chro-
mosome scale

Figure 5: HiRise scaffolding for 11 genomes. (a) NGx plots for each of the 11 genomes,
before (dashed) and after (solid) scaffolding with HiC sequencing reads, GRCh38 minus alternate
sequences is shown for comparison. (b) Dot plot showing alignments between the scaffolded
HG00733 Shasta assembly and GRCh38 chromosome scaffolds. Blue indicates forward aligning
segments, green indicates reverse, with both indicating unique alignments.

To achieve chromosome length sequences we scaffolded all of the polished Shasta assemblies with
HiC proximity-ligation data using HiRise [50] (see Online Methods, Fig. 5a). On average, 891
joins were made per assembly. This increased the scaffold NG50s to near chromosome scale, with
a median of 129.96 Mb, as shown in Fig. 5a, with additional assembly metrics in Supplementary
Table ??. Proximity-ligation data can also be used to detect misjoins in assemblies. In all
11 Shasta assemblies, no breaks to existing contigs were made while running HiRise to detect
potential misjoins. Aligning HG00733 to GRCh38, we find no major rearrangements and all
chromosomes are spanned by one or a few contigs (Fig. 5b), with the exception of chrY which is
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absent because HG00733 is female. Similar results were observed for HG002 (Supplementary Fig.
??).

Discussion
In this paper we demonstrate the sequencing and assembly of eleven diverse human genomes
in a time and cost efficient manner using a combination of nanopore and proximity ligation
sequencing.

The PromethION realizes dramatic improvements in yield per flow cell, allowing the sequencing
of each genome with just three flow cells at an average coverage of 63x. This represents a large
reduction in associated manual effort and a dramatic practical improvement in parallelism; a
single PromethION allows up to 48 flow cells to be run concurrently. Here we completed all
2.3 terabases of nanopore data collection in nine days on one PromethION, running up to 15
flow cells simultaneously (it is now possible to run 48 concurrently). In terms of contemporary
long-read sequencing platforms, this throughput is unmatched.

Due to the length distribution of human transposable elements, we found it better to discard
reads shorter than 10 Kb to prevent multi-mapping. The Circulomics SRE kit reduced the
fraction of reads <10 Kb to around 13%, making the majority usable for assembly. Conversely,
the right tail of the read length distribution is long, yielding an average of 6.5x coverage per
genome in 100 Kb+ reads. This represents an enrichment of around 7 fold relative to our
earlier MinION effort [17]. In terms of assembly, the result was an average NG50 of 18.5 Mb for
the 11 genomes, ~3x higher than in that initial effort, and comparable with the best achieved
by alternative technologies [12, 51]. We found the addition of HiC sequencing for scaffolding
necessary to achieve chromosome scale, making 891 joins on average per assembly. However, our
results are consistent with previous modelling based on the size and distribution of large repeats
in the human genome, which predicts that an assembly based on 30x coverage of such 100 Kb+
reads would approach the continuity of complete human chromosomes [17, 31].

Relative to alternate long-read and linked-read sequencing, the read identity of nanopore reads
has proven lower [11, 17]. However, original reports of 66% identity [11] for the original MinION
are now historical footnotes: we observe modal read identity of 92.5%, resulting in better than
QV30 base quality for haploid polished assembly from nanopore reads alone. The accurate
resolution of highly repetitive and recently duplicated sequence will depend on long-read polishing,
because short-reads are generally not uniquely mappable. Further polishing using complementary
data types, including PacBio HiFi reads [51] and 10x Chromium [52], will likely prove useful in
achieving QV40+ assemblies.

The advent of third generation technologies has dramatically lowered the cost of high-contiguity
long-read de novo assembly relative to earlier methods [53]. This cost reduction is still clearly
underway. The first MinION human assembly cost ~$40,000 in flow cells and reagents [17]. After
a little over a year, the equivalent cost per sample here was ~$6,000. At bulk with current
list-pricing, this cost would be reduced to ~$3,500 per genome. It is not unreasonable to expect
further yield growth and resulting cost reduction of nanopore and competing platforms such
that we foresee $1,000 total sequencing cost high-contiguity de novo plant and animal genome
assembly being achieved - a milestone that will likely make many ambitious comparative genomic
efforts economic [54, 55].

With sequencing efficiency for long-reads improving, computational considerations are paramount
in figuring overall time, cost and quality. Simply put, large genome de novo assembly will not
become ubiquitous if the requirements are weeks of assembly time on large computational clusters.
We present three novel methods that provide a pipeline for the rapid assembly of long nanopore
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reads. Shasta can produce a draft human assembly in around six hours and $70 using widely
available commercial cloud nodes. This cost and turnaround time is much more amenable to
rapid prototyping and parameter exploration than even the fastest competing method (Wtdbg2),
which was on average 7.5x slower and 3.7x more expensive. Connected together, the three tools
presented allow a polished assembly to be produced in ~24 hours and for ~$180, against the
fastest comparable combination of Wtdbg2, Racon, and Medaka which costs 5.3x more and is
4.3x slower while producing measurably worse results in terms of disagreements, contiguity and
base-level accuracy. Substantial further parallelism of polishing, the dominant time component
in our current pipeline, is easily possible. We are now working toward the goal of having a
half-day turn around of our complete computational pipeline. With real-time base calling, a
DNA-to-de novo assembly could be achieved in less than 96 hours with little difficulty. Such
speed could make these techniques practical for screening human genomes for abnormalities in
difficult-to-sequence regions.

All three presented computational methods employ run-length encoding of reads. By operating
on homopolymer-compressed nucleotide sequences, we mitigate effects of the dominant source of
error in nanopore reads [56] and enable the use of different models for addressing alignment and
run-length estimation orthogonally.

Shasta produces a notably more conservative assembly than competing tools, trading greater
correctness for contiguity and total produced sequence. For example, the ratio of total length
to aligned length is relatively constant for all other assemblers, where approximately 1.6% of
sequence produced does not align across the three evaluated samples. In contrast, on average just
0.38% of Shasta’s sequence does not align to GRCh38, representing a more than 4x reduction in
unaligned sequence. Additionally, we note substantially lower disagreement counts, resulting in
much smaller differences between the raw NGx and corrected NGAx values. Shasta also produces
substantially more base-level accurate assemblies than the other competing tools. MarginPolish
and HELEN provide a consistent improvement of base quality over all tested assemblers, with
more accurate results than the current state-of-the-art long read polishing workflow.

We have assembled and compared haploid, trio-binned and diploid samples. Trio binned samples
show great promise for haplotype assembly, for example contiguously assembling an MHC
haplogroup, but the halving of effective coverage resulted in ultimately less contiguous human
assemblies with higher base-error rates than the related, chimeric diploid assembly. This can
potentially be rectified by merging the haplotype assemblies to produce a pseudo-haplotype
or increasing sequencing coverage. Indeed the improvements in contiguity and base accuracy
in CHM13 over the diploid samples illustrate what can be achieved with higher coverage of a
haploid sample. We believe that one of the most promising directions for the assembly of diploid
samples is the integration of phasing into the assembly algorithm itself, as pioneered by others
[16, 57, 58]. We anticipate that the novel tools we’ve described here are suited for this next step:
the Shasta framework is well placed for producing phased assemblies over structural variants,
MarginPolish is built off of infrastructure designed to phase long reads [1], and the HELEN
model could be improved to include haplotagged features for the identification of heterozygous
sites.
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Online Methods
Sample selection
The goal of sample selection was to select a set of individuals that collectively captured the
maximum amount of weighted allelic diversity [59]. To do this, we created a list of all low-passage
lymphoblastoid cell lines that are part of a trio available from the 1000 Genomes Project collection
[60] (We selected trios to allow future addition of pedigree information, and low-passage line to
minimize acquired variation). In some cases, we considered the union of parental alleles in the
trios due to not having genotypes for the offspring. Let a weighted allele be a variant allele and
its frequency in the 1000 Genomes Project Phase 3 VCF. We selected the first sample from our
list that contained the largest sum of frequencies of weighted alleles, reasoning that this sample
should have the largest expected fraction of variant alleles in common with any other randomly
chosen sample. We then removed the variant alleles from this first sample from the set of variant
alleles in consideration and repeated the process to pick the second sample, repeating the process
recursively until we had selected seven samples. This set greedily, heuristically optimizes the
maximum sum of weighted allele frequencies in our chosen sample subset. We also added the
three Ashkenazim Trio samples and the Puerto Rican individual (HG00733). These four samples
were added for the purposes of comparison with other studies that are using them [22].

Cell culture
Lymphoblastoid cultures for each individual were obtained from the Coriell Institute Cell
Repository (coriell.org) and were cultured in RPMI 1640 supplemented with 15% fetal bovine
serum (Life Technologies). The cells underwent a total of six passages (p3+3). After expansion,
cells were harvested by pelleting at 300xg for 5 minutes. Cells were resuspended in 10 ml PBS
and a cell count was taken using a BiRad TC20 cell counter. Cells were aliquoted into 50 ml
conical tubes containing 50 million cells, pelleted as above and washed with 10 ml PBS before a
final pelleting after which the PBS was removed and the samples were flash frozen on dry ice
and stored at -80oC until ready for further processing.

DNA extraction and size-selection
We extracted high-molecular weight (HMW) DNA using the QIAGEN Puregene kit. We followed
the standard protocol with some modifications. Briefly, we lysed the cells by adding 3 ml of
Cell Lysis Solution per 10 million cells, followed by incubation at 37oC for up to 1 hour. We
performed mild shaking intermediately by hand, and avoided vortexing. Once clear, we split the
lysate into 3 ml aliquots and added 1 ml of Protein Precipitation Solution to each of the tubes.
This was followed by pulse vortexing three times for five seconds each time. We next spun this
at 2000 x g for 10 minutes. We added the supernatant from each tube to a new tube containing
3 ml of isopropanol, followed by 50x inversion. The HMW DNA precipitated and formed a dense
thread-like jelly. We used a disposable inoculation loop to extract the DNA precipitate. We then
dipped the DNA precipitate, while it was on the loop, into ice-cold 70% ethanol. After this, the
DNA precipitate was added to a new tube containing 50-250 µl 1x TE buffer. The tubes were
heated at 50oC for 2 hours and then left at room temperature overnight to allow resuspension of
the DNA. The DNA was then quantified using Qubit and NanoDrop.

We used the Circulomics Short Read Eliminator (SRE) kit to deplete short-fragments from the
DNA preparation. We size-selected 10 µg of DNA using the Circulomics recommended protocol
for each round of size-selection.
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Nanopore sequencing
We used the SQK-LSK109 kit and its recommended protocol for making sequencing libraries.
We used 1 µg of input DNA per library. We prepared libraries at a 3x scale since we performed
a nuclease flush on every flow cell, followed by the addition of a fresh library.

We used the standard PromethION scripts for sequencing. At around 24 hours, we performed a
nuclease flush using the ONT recommended protocol. We then re-primed the flow cell, and added
a fresh library corresponding to the same sample. After the first nuclease flush, we restarted
the run setting the voltage to -190 mV. We repeated the nuclease flush after another around 24
hours (i.e. around 48 hours into sequencing), re-primed the flow cell, added a fresh library, and
restarted the run setting the run voltage to -200 mV.

We performed basecalling using Guppy v.2.3.5 on the PromethION tower using the GPUs. We
used the MinION DNA flipflop model (dna_r9.4.1_450bps_flipflop.cfg), as recommended
by ONT.

Chromatin Crosslinking and Extraction from Human Cell Lines

We thawed the frozen cell pellets and washed them twice with cold PBS before resuspension
in the same buffer. We transferred Aliquots containing five million cells by volume from these
suspensions to separate microcentrifuge tubes before chromatin crosslinking by addition of
paraformaldehyde (EMS Cat. No. 15714) to a final concentration of one percent. We briefly
vortexed the samples and allowed them to incubate at room temperature for fifteen minutes.
We pelleted the crosslinked cells and washed them twice with cold PBS before thoroughly
resuspending in lysis buffer (50 mM Tris-HCl, 50 mM NaCl, 1 mM EDTA, 1% SDS) to extract
crosslinked chromatin.

The Hi-C Method

We bound the crosslinked chromatin samples to SPRI beads, washed three times with SPRI
wash buffer (10 mM Tris-HCl, 50 mM NaCl, 0.05% Tween-20), and digested by DpnII (20 U,
NEB Catalog No. R0543S) for 1 hour at 37oC in an agitating thermal mixer. We washed the
bead-bound samples again before incorporation of Biotin-11-dCTP (ChemCyte Catalog No.
CC-6002-1) by DNA Polymerase I, Klenow Fragment (10 U, NEB Catalog No. M0210L) for
thirty minutes at 25oC with shaking. Following another wash, we carried out blunt-end ligation
by T4 DNA Ligase (4000 U, NEB Catalog No. M0202T) with shaking overnight at 16oC. We
reversed the chromatin crosslinks, digested the proteins, eluted the samples by incubation in
crosslink reversal buffer (5 mM CaCl 2 , 50 mM Tris-HCl, 8% SDS) with Proteinase K (30 µg,
Qiagen Catalog No. 19133) for fifteen minutes at 55oC followed by forty-five minutes at 68oC.

Sonication and Illumina Library Generation with Biotin Enrichment

After SPRI bead purification of the crosslink-reversed samples, we transferred DNA from each to
Covaris® microTUBE AFA Fiber Snap-Cap tubes (Covaris Cat. No. 520045) and sonicated to an
average length of 400 ± 85 bp using a Covaris® ME220 Focused-Ultrasonicator™. Temperature
was held stably at 6oC and treatment lasted sixty-five seconds per sample with a peak power of
fifty watts, ten percent duty factor, and two-hundred cycles per burst. The average fragment
length and distribution of sheared DNA was determined by capillary electrophoresis using an
Agilent® FragmentAnalyzer 5200 and HS NGS Fragment Kit (Agilent Cat. No. DNF-474-0500).
We ran sheared DNA samples twice through the NEBNext® Ultra™ II DNA Library Prep
Kit for Illumina® (Catalog No. E7645S) End Preparation and Adaptor Ligation steps with
custom Y-adaptors to produce library preparation replicates. We purified ligation products
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via SPRI beads before Biotin enrichment using Dynabeads® MyOne™ Streptavidin C1 beads
(ThermoFisher Catalog No. 65002). We performed indexing PCR on streptavidin beads using
KAPA HiFi HotStart ReadyMix (Catalog No. KK2602) and PCR products were isolated by SPRI
bead purification. We quantified the libraries by Qubit™ 4 fluorometer and FragmentAnalyzer
5200 HS NGS Fragment Kit (Agilent Cat. No. DNF-474-0500) before pooling for sequencing on
an Illumina HiSeq X at Fulgent Genetics.

Analysis methods
Read alignment identities

To generate the identity violin plots (Fig. 1c/e) we aligned all the reads for each sam-
ple and flowcell to GRCh38 using minimap2 [23] with the map-ont preset. Using a custom
script get_summary_stats.py in the repository https://github.com/rlorigro/nanopore_
assembly_and_polishing_assessment, we parsed the alignment for each read and enumer-
ated the number of matched (N=), mismatched (NX), inserted (NI), and deleted (ND) bases.
From this, we calculated alignment identity as N=/(N= + NX + NI + ND). These iden-
tities were aggregated over samples and plotted using the seaborn library with the script
plot_summary_stats.py in the same repository. This method was used to generate both Figure
1c and Figure 1e. For Figure 1e, we selected reads from HG00733 flowcell1 aligned to GRCh38
chr1. The “Standard” identities are used from the original reads/alignments. To generate identity
data for the “RLE” portion, we extracted the reads above, run-length encoded the reads and
chr1 reference, and followed the alignment and identity calculation process described above.
Sequences were run-length encoded using a simple script (github.com/rlorigro/runlength_
analysis/blob/master/runlength_encode_fasta.py) and aligned with minimap2 using the
map-ont preset and –k 19.

Base-level error-rate analysis with Pomoxis

We analyzed the base-level error-rates of the assemblies using the assess_assembly tool of Po-
moxis toolkit developed by Oxford Nanopore Technology https://github.com/nanoporetech/
pomoxis. We further modified the program to avoid large insertions and deletions (>50bp) and
submitted a merge request https://github.com/nanoporetech/pomoxis/pull/37. The assess
assembly tool is tailored to compute the error rates in a given assembly compared to a truth
assembly. It reports an identity error rate, insertion error rate, deletion error rate, and an overall
error rate. The identity error rate indicates the number of erroneous substitutions, the insertion
error rate is the number of incorrect insertions, and the deletion error rate is the number of
deleted bases averaged over the total aligned length of the assembly to the truth. The overall
error rate is the sum of the identity, insertion, and deletion error rates. For the purpose of
simplification, we used the indel error rate, which is the sum of insertion and deletion error rates.

The assess_assembly script takes an input assembly and a reference assembly to compare
against. The assessment tool chunks the reference assembly to 1 Kb regions and aligns it back
to the input assembly to get a trimmed reference. Next, the input is aligned to the trimmed
reference sequence with the same alignment parameters to get an input assembly to the reference
assembly alignment. The total aligned length is the sum of the lengths of the trimmed reference
segments where the input assembly has an alignment. The total aligned length is used as the
denominator while averaging each of the error categories to limit the assessment in only correctly
assembled regions. Then the tool uses stats_from_bam, which counts the number of mismatch
bases, insert bases, and delete bases at each of the aligned segments and reports the error rate
by averaging them over the total aligned length.

The Pomoxis section in Supplementary Notes describe the commands we ran to perform this
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assessment.

Truth assemblies for base-level error-rate analysis

We used HG002, HG00733, and CHM13 for base-level error-rate assessment of the assembler and
the polisher. These three assemblies have high-quality assemblies publicly available, which are
used as the ground truth for comparison. Two of the samples, HG002 and HG00733, are diploid
samples; hence, we picked one of the two possible haplotypes as the truth. The reported error
rate of HG002 and HG00733 include some errors arising due to the zygosity of the samples. The
complete hydatidiform mole sample CHM13 is a haploid human genome which is used to assess
the applicability of the tools on haploid samples. We have gathered and uploaded all the files
we used for assessment in one place: https://console.cloud.google.com/storage/browser/
kishwar-helen/truth_assemblies/.

Table 2: The truth assembly files with download URLs.

Sample name Region File type URL

HG002 Whole genome
fasta HG002_GRCh38_h1.fa

bed HG002_GRCh38.bed

HG00733 Whole genome fasta hg00733_truth_assembly.fa

CHM13
Whole genome fasta CHM13_truth_assembly.fa

Chr-X fasta CHRX_CHM13_truth_assembly.fa

To generate the HG002 truth assembly, we gathered the publicly available Genome-in-a-bottle
(GIAB) high-confidence variant set (VCF) against GRCh38 reference sequence. Then we used
bedtools to create an assembly (FASTA) file from the GRCh38 reference and the high-confidence
variant set. We got two files using this process for each of the haplotypes, and we picked one
randomly as the truth. All the diploid HG002 assembly is compared against this one chosen
assembly. GIAB also provides a bed file annotating high-confidence regions where the called
variants are highly precise and sensitive. We used this bed file with assess_assembly to ensure
that we compare the assemblies only in the high confidence regions.

The HG00733 truth is from the publicly available phased PacBio high-quality assembly of
this sample [61]. We picked phase0 as the truth assembly and acquired it from NCBI under
accession GCA_003634895.1. We note that the assembly is phased but not haplotyped, such
that portions of phase0 will include sequences from both parental haplotypes and is not suitable
for trio-binned analyses. Furthermore, not all regions were fully phased; regions with variants
that are represented as some combination of both haplotypes will result in lower QV and a less
accurate truth.

For CHM13, we used the v0.6 release of CHM13 assembly by the T2T consortium [31]. The
reported quality of this truth assembly in Q-value is QV 39. One of the attributes of this assembly
is chromosome X. As reported by the T2T assembly authors, chromosome X of CHM13 is the
most complete (end-to-end) and high-quality assembly of any human chromosome. We obtained
the chromosome X assembly, which is the highest-quality truth assembly (QV >= 40) we have.
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QUAST / BUSCO

To quantify contiguity, we primarily depended on the tool QUAST [32]. QUAST identifies
misassemblies as major rearrangement events in the assembly relative to the reference. We use
the phrase disagreement in our analysis, as we find “misassembly” inappropriate considering
potentially true structural variation. For our assemblies, we quantified all contiguity stats against
GRCh38, using autosomes plus chromosomes X and Y only. We report the total disagreements
given that their relevant “size” descriptor was greater than 1 Kb, as is the default behavior in
QUAST. QUAST provides other contiguity statistics in addition to disagreement count, notably
total length and total aligned length as reported in Figure 2d. To determine total aligned length
(and unaligned length), QUAST performs collinear chaining on each assembled contig to find
the best set of non-overlapping alignments spanning the contig. This process contributes to
QUAST’s disagreement determination. We consider unaligned sequence to be the portions of
the assembled contigs which are not part of this best set of non-overlapping alignments. All
statistics are recorded in Supplementary Table ??. For all QUAST analyses, we used the flags
min-identity 80 and fragmented.

QUAST also produces an NGAx plot (similar to an NGx plot) which shows the aligned segment
size distribution of the assembly after accounting for disagreements and unalignable regions. The
intermediate segment lengths that would allow NGAx plots to be reproduced across multiple
samples on the same axis (as is shown in Figure 2b) are not stored, so we created a GitHub
fork of QUAST to store this data during execution: https://github.com/rlorigro/quast.
Finally, the assemblies and the output of QUAST were parsed to generate figures with an NGx
visualization script, ngx_plot.py, found at github.com/rlorigro/nanopore_assembly_and_
polishing_assessment/. For NGx and NGAx plots, a total genome size of 3.23Gb was used to
calculate cumulative coverages.

BUSCO [48] is a tool which quantifies the number of Benchmarking Universal Single-Copy
Orthologs present in an assembly. We ran BUSCO via the option within QUAST, comparing
against the eukaryota set of orthologs from OrthoDB v9.

Disagreement assessments

To analyze the QUAST-reported disagreements for different regions of the genome, we gathered
the known segmental duplication (SD) regions [7], centromeric regions for GRCh38, and known
regions in GRCh38 with structural variation for HG002 from GIAB [35]. We used a Python script
quast_sv_extractor.py that compares each reported disagreement of QUAST to the SD, SV
and centromeric regions and discounts any disagreement that overlaps with these regions. The
quast_sv_extractor.py script can be found at https://github.com/kishwarshafin/helen/
blob/master/modules/python/helper/.

The segmental duplication regions of GRCh38 defined in the ucsc.collapsed.sorted.segdups
file can be downloaded from https://github.com/mvollger/segDupPlots/.

The defined centromeric regions of GRCh38 for all chromosomes are used from the available
summary at https://www.ncbi.nlm.nih.gov/grc/human.

For GIAB HG002, known SVs for GRCh38 are available in NIST_SVs_Integration_v0.6/ under
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/. We used
the Tier1+2 bed file available at the GIAB ftp site.

We further exclude SV enriched regions like centromeres, secondary constriction regions, acro-
centric arms, large tandem repeat arrays, segmental duplications and the Y chromosome plus
10 kbp on either side of them. The file is available here https://github.com/kishwarshafin/
helen/blob/master/masked_regions/GRCh38_masked_regions.bed.
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To analyse disagreements within the intersection of the assembled sequences we performed the
following analysis. For each assembly we used minimap2 and samtools to create regions of
unique alignment to GRCh38. For minimap2 we used the options –secondary=no -a –eqx -Y
-x asm20 -m 10000 -z 10000,50 -r 50000 –end-bonus=100 -O 5,56 -E 4,1 -B 5. We
fed these alignments into samtools view with options -F 260 -u - and then samtools sort
with option -m. We then scanned 100 basepair windows of GRCh38 to find windows where
all assemblies for the given sample were aligned with a 1-1 mapping to GRCh38. We then
report the sum of disagreements across these windows. The script for this analysis is here:
https://github.com/mvollger/consensus_regions.

Trio-binning

We performed trio-binning on two samples HG002 and HG00733 [38]. For HG00733, we obtained
the parental read sample accessions (HG00731, HG00732) from 1000 genome database. Then
we counted k-mers with meryl to create maternal and paternal k-mer sets. Based on manual
examination of the k-mer count histograms to determine an appropriate threshold, we excluded
k-mers occurring less than 6 times for maternal set and 5 times for paternal set. We subtracted
the paternal set from the maternal set to get k-mers unique to the maternal sample and similarly
derived unique paternal k-mer set. Then for each read, we counted the number of occurrences of
unique maternal and paternal k-mers and classified the read based on the highest occurrence
count. During classification, we avoided normalization by k-mer set size. This resulted in 35.2x
maternal, 37.3x paternal, and 5.6x unclassified for HG00733. For HG002, we used the Illumina
data for the parental samples (HG003, HG004) from GIAB project [22]. We counted k-mers
using meryl and derived maternal paternal sets using the same protocol. We filtered k-mers that
occur less than 25 times in both maternal and paternal sets. The classification resulted in 24x
maternal, 23x paternal, and 3.5x unknown. The commands and data source are detailed in the
Supplementary Notes.

Transcript analysis with comparative annotation toolkit

We ran the Comparative Annotation Toolkit [46] to annotate the polished assemblies in order
to analyze how well Shasta assembles transcripts and genes. Each assembly was individually
aligned to the GRCh38 reference assembly using Cactus [62] to create the input alignment to
CAT. The GENCODE [63] V30 annotation was used as the input gene set. CAT was run in
the transMap mode only, without Augustus refinement, since the goal was only to evaluate the
quality of the projected transcripts. All transcripts on chromosome Y were excluded from the
analysis since some samples lacked a Y chromosome.

Run-Length Confusion Matrix

To generate run-length confusion matrices from reads and assemblies, we run-length encoded
(RLE) the assembly/read sequences and reference sequences using a purpose-built python
script, measure_runlength_distribution_from_fasta.py. The script requires a reference and
sequence file, and can be found in the GitHub repo https://github.com/rlorigro/runlength_
analysis/. The RLE nucleotides were aligned to the RLE reference nucleotides with minimap2.
As RLE sequences cannot have identical adjacent nucleotides, the number of unique k-mers is
diminished with respect to standard sequences. As minimap2 uses empirically determined sizes
for seed k-mers, we used a k-mer size of 19 to approximately match the frequency of the default
size (15) used by the presets for standard sequences. For alignment of reads and assemblies we
used the map-ont and asm20 presets respectively.

By iterating through the alignments, each match position in the cigar string (mismatched
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nucleotides are discarded) was used to find a pair of lengths (x, y) such that x is a predicted
length and y is the true (reference) length. For each pair, we updated a matrix which contains
the frequency of every possible pairing of prediction vs truth, from length 1bp to 50bp. Finally,
this matrix is normalized by dividing each element by the sum of the observations for its true
run length,

∑50
i=1(xi, y), and plotted as a heatmap. Each value represents the probability of

predicting a length for a given true length.

Runtime and Cost Analysis

Our runtime analysis was generated with multiple methods detailing the amount of time the
processes took to complete. These methods include the unix command time and a home-grown
resource tracking script which can be found in the https://github.com/rlorigro/TaskManager
repository. We note that the assembly and polishing methods have different resource requirements,
and do not all fully utilize available CPUs, GPUs, and memory over the program’s execution.
As such, we report runtimes using wall clock time and the number of CPUs the application
was configured to use, but do not convert to CPU hours. Costs reported in the figures are the
product of the runtime and AWS instance price. Because portions of some applications do not
fully utilize CPUs, cost could potentially be reduced by running on a smaller instance which
would be fully utilized, and runtime could be reduced by running on a larger instance which can
be fully utilized for some portion of execution. We particularly note the long runtime of Medaka
and found that for most of the total runtime, only a single CPU was used. Lastly, we note that
data transfer times are not reported in runtimes. Some of the data required or generated exceeds
hundreds of gigabytes, which could be potentially significant in relation to the runtime of the
process. Notably, the images generated by MarginPolish and consumed by HELEN were often
greater than 500 GB in total.

All recorded runtimes are reported in the supplement. For Shasta, times were recorded to the
tenth of the hour. All other runtimes were recorded to the minute. All runtimes reported in
figures were run on the Amazon Web Services cloud platform (AWS).

Shasta runtime reported in Fig. 2f was determined by averaging across all 12 samples. Wtdbg2
runtime was determined by summing runtimes for wtdbg2 and wtpoa-cns and averaging across
the HG00733, HG002, and CHM13 runs. Flye runtime was determined by averaging across
the HG00733, HG002, and CHM13 runs, which were performed on multiple instance types
(x1.16xlarge and x1.32xlarge). We calculated the total cost and runtime for each run and
averaged these amounts; no attempt to convert these to a single instance type was performed.
Precise Canu runtimes are not reported, as they were run on the NIH Biowulf cluster. Each run
was restricted to nodes with 28 cores (56 hyperthreads) (2x2680v4 or 2x2695v3 Intel CPUs) and
248GB of RAM or 16 cores (32 hyperthreads) (2x2650v2 Intel CPUs) and 121GB of RAM. Full
details of the cluster are available at https://hpc.nih.gov. The runs took between 219 and
223 thousand CPU hours (4-5 wall-clock days). No single job used more than 80GB of RAM/12
CPUs. We find the r5.4xlarge ($1.008 per hour) to be the cheapest AWS instance type possible
considering this resource usage, which puts estimated cost between $18,000 and $19,000 per
genome.

For MarginPolish, we recorded all runtimes, but used various thread counts that did not always
fully utilize the instance’s CPUs. The runtime reported in the figure was generated by averaging
across 8 of the 12 samples, selecting runs that used 70 CPUs (of the 72 available on the instance).
The samples this was true for were GM24385, HG03492, HG01109, HG02055, HG02080, HG01243,
HG03098, and CHM13. Runtimes for read alignments used by MarginPolish were not recorded.
Because MarginPolish requires an aligned BAM, we found it unfair to not report this time in the
figure as it is a required step in the workflows for MarginPolish, Racon, and Medaka. As a proxy
for the unrecorded read alignment time used to generate BAMs for MarginPolish, we added the
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average alignment time recorded while aligning reads in preparation for Medaka runs. We note
that the alignment for MarginPolish was done by piping output from minimap2 directly into
samtools sort, and piping this into samtools view to filter for primary and supplementary
reads. Alignment for Medaka was done using mini_align, which is a wrapper for minimap2
bundled in Medaka that simultaneously sorts output.

Reported HELEN runs were performed on GCP except for HG03098, but on instances that
match the AWS instance type p2.8xlarge in both CPU count and GPU (NVIDIA Tesla P100).
As such, the differences in runtime between the platforms should be negligible, and we have
calculated cost based on the AWS instance price for consistency. The reported runtime is the
sum of time taken by call_consensus.py and stitch.py. Unannotated runs were performed
on UCSC hardware.

Racon runtimes reflect the sum of four series of read alignment and polishing. The time reported
in the figure is the average of the runtime of this process run on the Shasta assembly for HG00733,
HG002, and CHM13.

Medaka runtime was determined by averaging across the HG00733, HG002, and CHM13 runs
after running Racon 4× on the Shasta assembly. We again note that this application in particular
did not fully utilize the CPUs for most of the execution, and in the case of HG00733 appeared
to hang and was restarted. The plot includes the average runtime from read alignment using
minialign; this is separated in the tables in the supplementary results. We ran Medaka on an
x1.16xlarge instance, which had more memory than was necessary. When determining cost,
we chose to price the run based on the cheapest AWS instance type that we could have used
accounting for configured CPU count and peak memory usage (c5n.18xlarge). This instance
could have supported 8 more concurrent threads, but as the application did not fully utilize the
CPUs we find this to be a fair representation.

Assembly of MHC

Each of the 8 GRCh38 MHC haplotypes were aligned using minimap2 (with preset asm20)
to whole genome assemblies to identify spanning contigs. These contigs were then ex-
tracted from the genomic assembly and used for alignment visualization. For dot plots,
Nucmer 4.0 [64] was used to align each assembler’s spanning contigs to the standard
chr6:28000000-34000000 MHC region, which includes 500Mb flanks. Output from this
alignment was parsed with Dot [65] which has a web-based GUI for visualization. All
defaults were used in both generating the input files and drawing the figures. Coverage plots
were generated from reads aligned to chr6, using a script, find_coverage.py, located at
(github.com/rlorigro/nanopore_assembly_and_polishing_assessment/).

The best matching alt haplotype (to Shasta, Canu, and Flye) was chosen as a reference haplotype
for quantitative analysis. Haplotypes with the fewest supplementary alignments across assem-
blers were top candidates for QUAST analysis. Candidates with comparable alignments were
differentiated by identity. The highest contiguity/identity MHC haplotype was then analyzed
with QUAST using –min-identity 80. For all MHC analyses regarding Flye, the unpolished
output was used.

BAC Analysis

At a high level, the BAC analysis was performed by aligning BACs to each assembly, quantifying
their resolution, and calculating identity statistics on those that were fully resolved.

We obtained 341 BACs for CHM13 [66, 67] and 179 for HG00733 [7] (complete BAC clones of
VMRC62), which had been selected primarily by targeting complex or highly duplicated regions.
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We performed the following analysis on the full set of of BACs (for CHM13 and HG00733), and a
subset selected to fall within unique regions of the genome. To determine this subset, we selected
all BACs which are greater than 10 Kb away from any segmental duplication, resulting in 16
of HG00733 and 31 of CHM13. This subset represents simple regions of the genome which we
would expect all assemblers to resolve.

For the analysis, BACs were aligned to each assembly with the command minimap2
–secondary=no -t 16 -ax asm20 assembly.fasta bac.fasta > assembly.sam and con-
verted to a PAF-like format which describes aligned regions of the BACs and assemblies. Using
this, we calculated two metrics describing how resolved each BAC was: closed is defined as
having 99.5% of the BAC aligned to a single locus in the assembly; attempted is defined as
having a set of alignments covering >= 95% of the BAC to a single assembly contig where all
alignments are at least 1kb away from the contig end. If such a set exists, it counts as attempted.
We furthermore calculate median and mean identities (using alignment identity metric described
above) of the closed BACs. These definitions were created such that a contig that is counted
as attempted but not closed likely reflects a disagreement. The code for this can be found at
https://github.com/skoren/bacValidation.

Short Read Polishing

Chromosome X of the CHM13 assembly (assembled first with Shasta, then polished with
MarginPolish and HELEN) was obtained by aligning the assembly to GRCh38 (using minimap2
with the –x asm20 flag). 10X Chromium reads were downloaded from the Nanopore WGS
Consortium (https://github.com/nanopore-wgs-consortium/CHM13/). These were from a
NovaSeq instrument at a coverage of approximately 50X. The reads corresponding to chromosome
X were extracted by aligning the entire read set to the whole CHM13 assembly using the
10X Genomics Long Ranger Align pipeline (v2.2), then extracting those corresponding to the
corresponding chromosome X contigs with samtools. Pilon [45] was run iteratively for a total of
three rounds, in each round aligning the reads to the current assembly with Long Ranger and
then running Pilon with default parameters.

Structural Variant Assessment

To create an assembly graph in GFA format Shasta v0.1.0 was run using the HG002
sequence data with –MarkerGraph.simplifyMaxLength 10 to reduce bubble removal and
–MarkerGraph.highCoverageThreshold 10 to reduce the removal of edges normally removed
by the transitive reduction step.

To detect structural variation inside the assembly graphs produced by Shasta, we extracted
unitigs from the graph and aligned them back to the linear reference. Unitigs are walks
through the assembly graph that do not traverse any node end that includes a bifurca-
tion. We first processed the Shasta assembly graphs (in GFA format) with gimbricate
(https://github.com/ekg/gimbricate c1c6d1a) to recompute overlaps in non run-length
encoded space and to remove nodes in the graph only supported by a single sequencing read.
To remove overlaps from the graph edges, we then "bluntified" resulting GFAs with vg find
-F (https://github.com/vgteam/vg v1.19.0 Tramutola). We then applied odgi unitig
(https://github.com/vgteam/odgi 463ba5b) to extract unitigs from the graph, with the
condition that the starting node in the unitig generation must be at least 100 bp long. To
ensure that the unitigs could be mapped back to the linear reference, we appended a random
walk of 25 Kb after the natural end of each unitig, with the expectation that even should
unitigs would yield around 50 Kb of mappable sequence. Finally, we mapped the unitigs
to GRCh38 with minimap2 with a bandwidth of 25 Kb (-r25000), and called variants in
the alignments using paftools.js from the minimap2 distribution. We implemented the
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process in a single script that produces variant calls from the unitig set of a given graph
https://github.com/ekg/shastaGFA/blob/master/shastaGFAtoVCF_unitig_paftools.sh.

The extracted variants were compared to the structural variants from the Genome In A Bottle
benchmark in HG002 (v0.6, [68]). Precision, recall and F1 scores were computed on variants not
overlapping simple repeats and within the benchmark’s high-confidence regions. Deletions in the
assembly and the GIAB benchmark were matched if they had at least 50% reciprocal overlap.
Insertions were matched if located at less than 100 bp from each other and similar in size (50%
reciprocal similarity).

Shasta
The following describes Shasta version 0.1.0 (https://github.com/chanzuckerberg/shasta/
releases/tag/0.1.0) which was used throughout our analysis. All runs were done on an AWS
x1.32xlarge instance (1952 GB memory, 128 virtual processors). The runs used the Shasta
recommended options for best performance (–memoryMode filesystem –memoryBacking 2M).
Rather than using the distributed version of the release, the source code was rebuilt locally for
best performance as recommended by Shasta documentation.

Run-length encoding of input reads
Shasta represents input reads using run-length encoding. The sequence of each input read is
represented as a sequence of bases, each with a repeat count that says how many times each
of the bases is repeated. Such a representation has previously been used in biological sequence
analysis [23, 24, 25].

For example, the following read

CGATTTAAGTTA

is represented as follows using run-length encoding:

CGATAGTA
11132121

Using run-length encoding makes the assembly process less sensitive to errors in the length of
homopolymer runs, which are the most common type of errors in Oxford Nanopore reads. For
example, consider these two reads:

CGATTTAAGTTA
CGATTAAGGGTTA

Using their raw representation above, these reads can be aligned like this:

CGATTTAAG--TTA
CGATT-AAGGGTTA

Aligning the second read to the first required a deletion and two insertions. But in run-length
encoding, the two reads become:

CGATAGTA
11132121
CGATAGTA
11122321

The sequence portions are now identical and can be aligned trivially and exactly, without any
insertions or deletions:
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CGATAGTA
CGATAGTA

The differences between the two reads only appear in the repeat counts:

11132121
11122321

* *

The Shasta assembler uses one byte to represent repeat counts, and as a result it only represents
repeat counts between 1 and 255. If a read contains more than 255 consecutive bases, it is
discarded on input. In the data we have analyzed so far such reads are extremely rare.

Some properties of base sequences in run-length encoding

• In the sequence portion of the run-length encoding, consecutive bases are always distinct.
If they were not, the second one would be removed from the run-length encoded sequence,
while increasing the repeat count for the first one.

• With ordinary base sequences, the number of distinct k-mers of length k is 4k. But with
run-length base sequences, the number of distinct k-mers of length k is 4 × 3k−1. This is a
consequence of the previous bullet.

• The run-length sequence is generally shorter than the raw sequence, and cannot be longer.
For a long random sequence, the number of bases in the run-length representation is 3/4 of
the number of bases in the raw representation.

Markers

Even with run-length encoding, error in input reads are still frequent. To further reduce sensitivity
to errors, and also to speed up some of the computational steps in the assembly process, the
Shasta assembler also uses a read representation based on markers. Markers are occurrences
in reads of a pre-determined subset of short k-mers. By default, Shasta uses for this purpose
k-mers with k = 10 in run-length encoding, corresponding to an average approximately 13 bases
in raw read representation.

Just for the purposes of illustration, consider a description using markers of length 3 in run-length
encoding. There is a total 4 × 32 = 36 distinct such markers. We arbitrarily choose the following
fixed subset of the 36, and we assign an id to each of the kmers in the subset as follows:

TGC 0

GCA 1

GAC 2

CGC 3

Consider now the following portion of a read in run-length representation (here, the repeat counts
are irrelevant and so they are omitted):

CGACACGTATGCGCACGCTGCGCTCTGCAGC
GAC TGC CGC TGC

CGC TGC GCA
GCA CGC

Occurrences of the k-mers defined in the table above are shown and define the markers in this
read. Note that markers can overlap. Using the marker ids defined in the table above, we can
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summarize the sequence of this read portion as follows:

2 0 3 1 3 0 3 0 1

This is the marker representation of the read portion above. It just includes the sequence of
markers occurring in the read, not their positions.

Note that the marker representation loses information, as it is not possible to reconstruct the
complete initial sequence from the marker representation. This also means that the marker
representation is insensitive to errors in the sequence portions that don’t belong to any markers.

The Shasta assembler uses a random choice of the k-mers to be used as markers. The length of
the markers k is controlled by assembly parameter Kmers.k with a default value of 10. Each
k-mer is randomly choosen to be used as a marker with probability determined by assembly
parameter Kmers.probability with a default value of 0.1. With these default values, the total
number of distinct markers is approximately 0.1 × 4 × 39 ≈ 7900.

The only constraint used in selecting k-mers to be used as markers is that if a k-mer is a marker,
its reverse complement should also be a marker. This makes it easy to construct the marker
representation of the reverse complement of a read from the marker representation of the original
read. It also ensures strand symmetry in some of the computational steps.

It is possible that the random selection of markers is not optimal, and that it may be best to
select the markers based on their frequency in the input reads or other criteria. These possibilities
have not yet been investigated.

Fig. 6 shows the run-length representation of a portion of a read and its markers, as displayed
by the Shasta http server.

Figure 6: Markers aligned to a run length encoded read.

Marker alignments

The marker representation of a read is a sequence in an alphabet consisting of the marker ids.
This sequence is much shorter than the original sequence of the read, but uses a much larger
alphabet. For example, with default Shasta assembly parameters, the marker representation is
10 times shorter than the run-length encoded read sequence, or about 13 times shorter than the
raw read sequence. Its alphabet has around 8000 symbols, many more than the 4 symbols that
the original read sequence uses.

Because the marker representation of a read is a sequence, we can compute an alignment of two
reads directly in marker representation. Computing an alignment in this way has two important
advantages:

• The shorter sequences and larger alphabet make the alignment much faster to compute.
• The alignment is insensitive to read errors in the portions that are not covered by any

marker.
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For these reasons, the marker representation is orders of magnitude more efficient than the
raw base representation when computing read alignments. Fig. 7 shows an example alignment
matrix.

Figure 7: A marker alignment represented as a dot-plot. Elements that are identical between
the two sequences are displayed in green or red - the ones in green are the ones that are part of
the optimal alignment computed by the Shasta assembler. Because of the much larger alphabet,
matrix elements that are identical between the sequences but are not part of the optimal alignment
are infrequent. Each alignment matrix element here corresponds on average to a 13 × 13 block in
the alignment matrix in raw base sequence.

Computing optimal alignments in marker representation

To compute the (likely) optimal alignment (example highlighted in green in Fig. 7), the Shasta
assembler uses a simple alignment algorithm on the marker representations of the two reads to
be aligned. It effectively constructs an optimal path in the alignment matrix, but using some
‘banding’ heuristics to speed up the computation:

• The maximum number of markers that an alignment can skip on either read is limited to a
maximum, under control of assembly parameter Align.maxSkip (default value 30 markers,
corresponding to around 400 bases when all other Shasta parameters are at their default).
This reflects the fact that Oxford Nanopore reads can often have long stretches in error. In
the alignment matrix shown in Fig. 7, there is a skip of about 20 markers (2 light grey
squares) following the first 10 aligned markers (green dots) on the top left.

• The maximum number of markers that an alignment can skip at the beginning or end of a
read is limited to a maximum, under control of assembly parameter Align.maxTrim (default
value 30 markers, corresponding to around 400 bases when all other Shasta parameters are
at their default). This reflects the fact that Oxford Nanopore reads often have an initial or
final portion that is not usable. These first two heuristics are equivalent to computing a
reduced band of the alignment matrix.

• To avoid alignment artifacts, marker k-mers that are too frequent in either of the two
reads being aligned are not used in the alignment computation. For this purpose, the
Shasta assembler uses a criterion based on absolute number of occurrences of marker
k-mers in the two reads, although a relative criterion (occurrences per Kb) may be
more appropriate. The current absolute frequency threshold is under control of assembly
parameter Align.maxMarkerFrequency (default 10 occurrences).
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Using these techniques and with the default assembly parameters, the time to compute an
optimal alignment is ∼ 10−3 − 10−2 seconds in the Shasta implementation as of release 0.1.0
(April 2019). A typical human assembly needs to compute 108 read alignments which results in a
total compute time ∼ 105 −106 seconds, or ∼ 103 −104 seconds of elapsed time (∼1-3 hours) on a
machine with 128 virtual processors. This is one of the most computationally expensive portions
of a Shasta assembly. Some additional optimizations are possible in the code that implement
this computation, and may be implemented in future releases.

Finding overlapping reads

Even though computing read alignments in marker representation is fast, it still is not feasible to
compute alignments among all possible pairs of reads. For a human size genome with ∼ 106 − 107

reads, the number of pairs to consider would be ∼ 1012 − 1014, and even at 10−3 seconds per
alignment the compute time would be ∼ 109 − 1011 seconds, or ∼ 107 − 109 seconds elapsed time
(∼ 102 − 104 days) when using 128 virtual processors.

Therefore some means of narrowing down substantially the number of pairs to be considered
is essential. The Shasta assembler uses for this purpose a slightly modified MinHash [26, 27]
scheme based on the marker representation of reads.

In overview, the MinHash algorithm takes as input a set of items each characterized by a set of
features. Its goal is to find pairs of the input items that have a high Jaccard similarity index -
that is, pairs of items that have many features in common. The algorithm proceeds by iterations.
At each iteration, a new hash table is created and a hash function that operates on the feature
set is selected. For each item, the hash function of each of its features is evaluated, and the
minimum hash function value found is used to select the hash table bucket that each item is
stored in. It can be proven that the probability of two items ending up in the same bucket equals
the Jaccard similarity index of the two items - that is, items in the same bucket are more likely
to be highly similar than items in different buckets [69]. The algorithm then adds to the pairs of
potentially similar items all pairs of items that are in the same bucket.

When all iterations are complete, the probability that a pair of items was found at least once
is an increasing function of the Jaccard similarity of the two items. In other words, the pairs
found are enriched for pairs that have high similarity. One can now consider all the pairs found
(hopefully a much smaller set than all possible pairs) and compute the Jaccard similarity index
for each, then keep only the pairs for which the index is sufficiently high. The algorithm does not
guarantee that all pairs with high similarity will be found - only that the probability of finding
all pairs is an increasing function of their similarity.

The algorithm is used by Shasta with items being oriented reads (a read in either original or
reverse complemented orientation) and features being consecutive occurrences of m markers in
the marker representation of the oriented read. For example, consider an oriented read with the
following marker representation:

18,45,71,3,15,6,21

If m is selected equal to 4 (the Shasta default, controlled by assembly parameter MinHash.m),
the oriented read is assigned the following features:

(18,45,71,3)
(45,71,3,15)
(71,3,15,6)
(3,15,6,21)

From the picture above of an alignment matrix in marker representation, we see that streaks of
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4 or more common consecutive markers are relatively common. We have to keep in mind that,
with Shasta default parameters, 4 consecutive markers span an average 40 bases in run-length
encoding or about 52 bases in the original raw base representation. At a typical error rate around
10%, such a portion of a read would contain on average 5 errors. Yet, the marker representation
in run-length space is sufficiently robust that these common “features” are relatively common
despite the high error rate. This indicates that we can expect the MinHash algorithm to be
effective in finding pairs of overlapping reads.

However, the MinHash algorithm has a feature that is undesirable for our purposes: namely, that
the algorithm is good at finding read pairs with high Jaccard similarity index. For two sets X
and Y , the Jaccard similarity index is defined as the ratio:

J = |X ∩ Y |
|X ∪ Y |

Because the read length distribution of Oxford Nanopore reads is very wide, it is very common
to have pairs of reads with very different lengths. Consider now two reads with lengths nx and
ny, with nx < ny, that overlap exactly over the entire length nx. The Jaccard similarity is in
this case given by nx/ny < 1. This means that, if one of the reads in a pair is much shorter than
the other one, their Jaccard similarity will be low even in the best case of exact overlap. As a
result, the unmodified MinHash algorithm will not do a good job at finding overlapping pairs of
reads with very different length.

For this reason, the Shasta assembler uses a small modification to the MinHash algorithm:
instead of just using the minimum hash for each oriented read for each iteration, it keeps all
hashes below a given threshold (this is not the same as keeping a fixed number of the lowest
hashes for each read). Each oriented read can be stored in multiple buckets, one for each low
hash encountered. The average number of low hashes on a read is proportional to its length, and
therefore this change has the effect of eliminating the bias against pairs in which one read is
much shorter than the other. The probability of finding a given pair is no longer driver by the
Jaccard similarity. The modified algorithm is referred to as LowHash in the Shasta source code.
Note that it is effectively equivalent to an indexing approach in which we index all features with
low hash.

The LowHash algorithm is controlled by the following assembly parameters:

• MinHash.m (default 4): the number of consecutive markers that define a feature.
• MinHash.hashFraction (default 0.01): The fraction of hash values that count as “low”.
• MinHash.minHashIterationCount (default 10): The number of iterations.
• MinHash.maxBucketSize (default 10): The maximum number of items for a bucket to

be considered. Buckets with more than this number of items are ignored. The goal of
this parameter is to mitigate the effect of common repeats, which can result in buckets
containing large numbers of unrelated oriented reads.

• MinHash.minFrequency (default 2): the number of times a pair of oriented reads has to
be found to be considered and stored as a possible pair of overlapping reads.

Initial assembly steps

Initial steps of a Shasta assembly proceed as follows. If the assembly is setup for best performance
(--memoryMode filesystem --memoryBacking 2M if using the Shasta executable), all data
structures are stored in memory, and no disk activity takes place except for initial loading of the
input reads, storing of assembly results, and storing a small number of small files with useful
summary information.
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• Input reads are read from Fasta files and converted to run-length representation.
• K-mers to be used as markers are randomly selected.
• Occurrences of those marker k-mers in all oriented reads are found.
• The LowHash algorithm finds candidate pairs of overlapping oriented reads.
• A marker alignment is computed for each candidate pair of oriented reads. If the marker

alignment contains a minimum number of aligned markers, the pair is stored as an aligned
pair. The minimum number of aligned markers is controlled by assembly parameter
Align.minAlignedMarkerCount.

Read graph

Using the methods covered so far, an assembly has created a list of pairs of oriented reads, each
pair having a plausible marker alignment. How to use this type of information for assembly is a
classical problem with a standard solution (Myers, 2005), the string graph.

It may be possible to adapt the prescriptions in the Myers paper to our situation in which a
marker representation is used. However, we have not attempted this here, leaving it for future
work. Instead, the approach currently used in the Shasta assembler is very simple, and can
likely be improved. In the current simple approach, the Shasta assembler creates un undirected
graph, the Read Graph, in which each vertex represents an oriented read (that is, a read in either
original orientation or reverse complemented), and an undirected edge between two vertices is
created if we have found an alignment between the corresponding oriented reads.

However, the read graph as constructed in this way suffers from high connectivity in repeat
regions. Therefore, the Shasta assembler only keeps a k-Nearest-Neighbor subset of the edges.
That is, for each vertex (oriented read) we only keep the k edges with the best alignments
(greatest number of aligned markers). The number of edges kept for each vertex is controlled
by assembly parameter ReadGraph.maxAlignmentCount, with a default value of 6. Note that,
despite the k-Nearest-Neighbor subset, it remains possible for a vertex to have degree more than
k.

Note that each read contributes two vertices to the read graph, one in its original orientation,
and one in reverse complemented orientation. Therefore the read graph contains two strands,
each strand at full coverage. This makes it easy to investigate and potentially detect erroneous
strand jumps that would be much less obvious if using approaches with one vertex per read.

Figure 8: An example of a portion of the read graph, as displayed by the Shasta http server.

An example of one strand is shown in Fig. 8. Even though the graph is undirected, edges
that correspond to overlap alignments are drawn with an arrow that points from the prefix
oriented read to the suffix one, to represent the direction of overlap. Edges that correspond to
containment alignments (an alignment which covers one of the two reads entirely) are drawn
in red and without an arrow. Vertices are drawn with area proportional to the length of the
corresponding reads.
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The linear structure of the read graph successfully reflects the linear arrangement of the input
reads and their origin on the genome being assembled.

However, deviations from the linear structure can occur in the presence of long repeats (Fig. 9),
typically for high similarity segment duplications.

Figure 9: An example of a portion of the read graph showing obviously incorrect connections

The current Shasta implementation does not attempt to remove the obviously incorrect connec-
tions. This results in unnecessary breaks in assembly contiguity. Despite this, Shasta assembly
contiguity is adequate and comparable to what other, less performant long read assemblers
achieve. It is hoped that future Shasta releases will do a better job at handling these situations.

Marker graph

Consider a read whose marker representation is:

a b c d e

We can represent this read as a directed graph that the describes the sequence in which its
markers appear (Fig. 10).

Figure 10: A marker graph representing a single read.

This is not very useful but illustrates the simplest form of a marker graph as used in the Shasta
assembler. The marker graph is a directed graph in which each vertex represents a marker and
each edge represents the transition between consecutive markers. We can associate sequence
with each vertex and edge of the marker graph:

• Each vertex is associated with the sequence of the corresponding marker.
• If the markers of the source and target vertex of an edge do not overlap, the edge is

associated with the sequence intervening between the two markers.
• If the markers of the source and target vertex of an edge do overlap, the edge is associated

with the overlapping portion of the marker sequences.
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Consider now a second read with the following marker representation, which differs from the
previous one just by replacing marker c with x:

a b x d e

The marker graph for the two reads is Fig 11(A).

Figure 11: An illustration of marker graph construction for two sequences.

In the optimal alignment of the two reads, markers a, b, d, e are aligned. We can redraw the
marker graph grouping together vertices that correspond to aligned markers as in Fig 11(B).

Finally, we can merge aligned vertices to obtain a marker graph describing the two aligned reads,
shown in Fig 11(C).

Here, by construction each vertex still has a unique sequence associated with it - the common
sequence of the markers that were merged (however the corresponding repeat counts can be
different for each contributing read). An edge, on the other hand, can have different sequences
associated with it, one corresponding to each of the contributing reads. In this example, edges
a->b and d->e have two contributing reads, which can each have distinct sequence between the
two markers.

We call coverage of a vertex or edge the number of reads “contributing” to it. In this example,
vertices a, b, d, e have coverage 2 and vertices c, x have coverage 1. Edges a->b and d->e
have coverage 2, and the remaining edges have coverage 1.

The construction of the marker graph was illustrated above for two reads, but the Shasta
assembler constructs a global marker graph which takes into account all oriented reads:

• The process starts with a distinct vertex for each marker of each oriented read. Note that
at this stage the marker graph is large (∼ 2 × 1010 vertices for a human assembly using
default assembly parameters).

• For each marker alignment corresponding to an edge of the read graph, we merge vertices
corresponding to aligned markers.

• Of the resulting merged vertices, we remove those whose coverage in too low or two high,
indicating that the contributing reads or some of the alignments involved are probably in
error. This is controlled by assembly parameters MarkerGraph.minCoverage (default 10)
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and MarkerGraph.maxCoverage (default 100), which specify the minimum and maximum
coverage for a vertex to be kept.

• Edges are created. An edge v0->v1 is created if there is at least a read contributing to
both v0 and v1 and for which all markers intervening between v0 and v1 belong to vertices
that were removed.

Note that this does not mean that all vertices with the same marker sequence are merged - two
vertices are only merged if they have the same marker sequence, and if there are at least two
reads for which the corresponding markers are aligned.

Given the large number of initial vertices involved, this computation is not trivial. To allow
efficient computation in parallel on many threads a lock-free implementation of the disjoint data
set data structure [70], is used for merging vertices. Some code changes were necessary to permit
large numbers of vertices, as the initial implementation by Wenzel Jakob only allowed for 32-bit
vertex ids (https://github.com/wjakob/dset).

Assembly graph

The Shasta assembly process also uses a compact representation of the marker graph, called the
assembly graph, in which each linear sequence of edges is replaced by a single edge (Fig. 12).

Figure 12: (A) A marker graph with linear sequence of edges colored. (B) The corresponding
assembly graph. Colors were chosen to indicate the correspondence to marker graph edges.

The length of an edge of the assembly graph is defined as the number of marker graph edges that
it corresponds to. For each edge of the assembly graph, an average coverage is also computed, by
averaging the coverage of the marker graph edges it corresponds to.

Using the marker graph to assemble sequence

The marker graph is a partial description of the multiple sequence alignment between reads
and can be used to assemble consensus sequence. One simple way to do that is to only keep
the “dominant” path in the graph, and then traverse that path from vertex to edge to vertex,
assembling run-length encoded sequence as follows:

1. On a vertex, all reads have the same sequence, by construction: the marker sequence
associated with the vertex. There is trivial consensus among all the reads contributing to a
vertex, and the marker sequence can be used directly as the contribution of the vertex to
assembled sequence.

2. For edges, there are two possible situations plus a hybrid case:
• 2.1. If the adjacent markers overlap, in most cases all contributing reads have the

same number of overlapping bases between the two markers, and we are again in a
situation of trivial consensus, where all reads contribute the same sequence, which
also agrees with the sequence of adjacent vertices. In cases where not all reads are
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in agreement on the number of overlapping bases, only reads with the most frequent
number of overlapping bases are taken into account.

• 2.2. If the adjacent markers don’t overlap, then each read can have a different sequence
between the two markers. In this situation, we compute a multiple sequence alignment
of the sequences and a consensus using the spoa library [40] (https://github.com/
rvaser/spoa). The multiple sequence alignment is computed constrained at both
ends, because all reads contributing to the edge have, by construction, identical
markers at both sides.

• 2.3. A hybrid situation occasionally arises, in which some reads have the two markers
overlapping, and some do not. In this case we count reads of the two kinds and discard
the reads of the minority kind, then revert to one of the two cases 2.1 or 2.2 above.

This is the process used for sequence assembly by the current Shasta implementation. It requires
a process to select and define dominant paths, which is described in the next section. It is
algorithmically simple, but its main shortcoming is that it does not use for assembly reads that
contribute to the abundant side branches. This means that coverage is lost, and therefore the
accuracy of assembled sequence is not as good as it could be if all available coverage was used.
Means to eliminate this shortcoming and use information from the side branches of the marker
graph could be a subject of future work on the Shasta assembler.

The process described above works with run-length encoded sequence and therefore assembles
run-length encoded sequence. The final step to create raw assembled sequence is to compute
the most likely repeat count for each sequence position in run-length encoding. After some
experimentation, this is currently done by choosing as the most likely repeat count the one that
appears the most frequently in the reads that contributed to each assembled position.

A simple Bayesian model for repeat counts resulted in a modest improvement in the quality of
assembled sequence. But the model appears to sensitive to calibration errors, and therefore it
is not used by default in Shasta assemblies. However, it is used by MarginPolish, as described
below.

Selecting assembly paths in Shasta

The sequence assembly procedure described in the previous section can be used to assemble
sequence for any path in the marker graph. This section describes the selection of paths for
assembly in the current Shasta implementation. This is done by a series of steps that “remove”
edges (but not vertices) from the marker graph until the marker graph consists mainly of linear
sections which can be used as the assembly paths. For speed, edges are not actually removed but
just marked as removed using a set of flag bits allocated for this purpose in each edge. However,
the description below will use the loose term “remove” to indicate that an edge was flagged as
removed.

This process consists of the following three steps, described in more detail in the following
sections:

• Approximate transitive reduction of the marker graph.
• Pruning of short side branches (leaves).
• Removal of bubbles and super-bubbles.

The last step, removal of bubbles and superbubbles, is consistent with Shasta’s current assembly
goal which is to compute a mostly monoploid assembly, at least on short scales.

Approximate transitive reduction of the marker graph
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The goal of this step is to eliminate the side branches in the marker graph, which are the result of
errors. Despite the fact that the number of side branches is substantially reduced thanks to the use
of run-length encoding, side branches are still abundant. This step uses an approximate transitive
reduction of the marker graph which only considers reachability up to a maximum distance,
controlled by assembly parameter MarkerGraph.maxDistance (default 30 marker graph edges).
Using a maximum distance makes sure that the process remains computationally affordable, and
also has the advantage of not removing long-range edges in the marker graph, which could be
significant.

In detail, the process works as follows. In this description, the edge being considered for removal
is the edge v0→v1 with source vertex v0 and target vertex v1. The first two steps are not really
part of the transitive reduction but are performed by the same code for convenience.

• All edges with coverage less than or equal to MarkerGraph.lowCoverageThreshold are
unconditionally removed. The default value for this assembly parameter is 0, so this step
does nothing when using default parameters.

• All edges with coverage 1 and for which the only supporting read has a large marker skip
are unconditionally removed. The marker skip of an edge, for a given read, is defined as the
distance (in markers) between the v0 marker for that read and the v1 marker for the same
read. Most marker skips are small, and a large skip is indicative of an artifact. Keeping
those edges could result in assembly errors. The marker skip threshold is controlled by
assembly parameter MarkerGraph.edgeMarkerSkipThreshold (default 100 markers).

• Edges with coverage greater than MarkerGraph.lowCoverageThreshold (default 0) and
less than MarkerGraph.highCoverageThreshold (default 256), and that were not previ-
ously removed, are processed in order of increasing coverage. Note that with the default
values of these parameters all edges are processed, because edge coverage is stored using
one byte and therefore can never be more than 255 (it is saturated at 255). For each
edge v0→v1, a Breadth-First Search (BFS) in the marker graph is performed starting at
source vertex v0 and with a limit of MarkerGraph.maxDistance (default 30) edges distance
from vertex v0. The BFS is constrained to not use edge v0→v1. If the BFS reaches v1,
indicating that an alternative path from v0 to v1 exists, edge v0→v1 is removed. Note
that the BFS does not use edges that have already been removed, and so the process is
guaranteed not to affect reachability. Processing edges in order of increasing coverage
makes sure that low coverage edges the most likely to be removed.

The transitive reduction step is intrinsically sequential and so it is currently performed in
sequential code for simplicity. It could be in principle be parallelized, but that would require
sophisticated locking of marker graph edges to make sure independent threads don’t step on
each other, possibly reducing reachability. However, even with sequential code, this step is not
computationally expensive, taking typically only a small fraction of total assembly time.

When the transitive reduction step is complete, the marker graph consists mostly of linear
sections composed of vertices with in-degree and out-degree one, with occasional side branches
and bubbles or superbubbles, which are handled in the next two phases described below.

Pruning of short side branches (leaves)

At this stage, a few iterations of pruning are done by simply removing, at each iteration, edge
v0→v1 if v0 has in-degree 0 (that is, is a backward-pointing leaf) or v1 has out-degree 0 (that
is, is a forward-pointing leaf). The net effect is that all side branches of length (number of
edges) at most equal to the number of iterations are removed. This leaves the leaf vertex
isolated, which causes no problems. The number of iterations is controlled by assembly parameter
MarkerGraph.pruneIterationCount (default 6).
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Removal of bubbles and superbubbles

The marker graph now consists of mostly linear section with occasional bubbles or superbubbles
[71]. Most of the bubbles and superbubbles are caused by errors, but some of those are due to
heterozygous loci in the genome being assembled. Bubbles and superbubbles of the latter type
could be used for separating haplotypes (phasing) - a possibility that will be addressed in future
Shasta releases. However, the goal of the current Shasta implementation is to create a monoploid
assembly at all scales but the very long ones. Accordingly, bubbles and superbubbles at short
scales are treated as errors, and the goal of the bubble/superbubble removal step is to keep the
most significant path in each bubble or superbubble.

The Fig. 13 shows typical examples of a bubble and superbubble in the marker graph.

Figure 13: (A) A simple bubble. (B) A superbubble.

The bubble/superbubble removal process is iterative. Early iterations work on short scales,
and late iterations fork on longer scales. Each iteration uses a length threshold that
controls the maximum number of marker graph edges for features to be considered for
removal. The value of the threshold for each iteration is specified using assembly parameter
MarkerGraph.simplifyMaxLength, which consists of a comma-separated string of integer
numbers, each specifying the threshold for one iteration in the process. The default value
is 10,100,1000, which means that three iterations of this process are performed. The first
iteration uses a threshold of 10 marker graph edges, and the second and third iterations use
length thresholds of 100 and 1000 marker graph edges, respectively. The last and largest
of the threshold values used determines the size of the smallest bubble or superbubble that
will survive the process. The default 1000 markers is equivalent to roughly 13 Kb. To
suppress more bubble/superbubbles, increase the threshold for the last iterarion. To see more
bubbles/superbubbles, decrease the length threshold for the last iteration, or remove the last
iteration entirely.

The goal of the increasing threshold values is to work on small features at first, and on larger
features in the later iterations. The choice of MarkerGraph.simplifyMaxLength could be
application dependent. The default value is a reasonable compromise useful if one desires a
mostly monoploid assembly with just some large heterozygous features.

Each iteration consists of two steps. The first removes bubbles and the second removes super-
bubbles. Only bubbles/superbubbles consisting of features shorter than the threshold for the
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current iteration are considered:

1. Bubble removal
• An assembly graph corresponding to the current marker graph is created.
• Bubbles are located in which the length of all branches (number of marker graph

edges) is no more than the length threshold at the current iteration. In the assembly
graph, a bubble appears as a set of parallel edges (edges with the same source and
target).

• In each bubble, only the assembly graph edge with the highest average coverage is
kept. Marker graph edges corresponding to all other assembly graph edges in the
bubble are flagged as removed.

2. Superbubble removal:
• An assembly graph corresponding to the current marker graph is created.
• Connected components of the assembly graph are computed, but only considering

edges below the current length threshold. This way, each connected component
corresponds to a “cluster” of “short” assembly graph edges.

• For each cluster, entries in the cluster are located. These are vertices that have
in-edges from a vertex outside the cluster. Similarly, out-edges are located (vertices
that have out-edges outside the cluster).

• For each entry/exit pair, the shortest path is computed. However, in this case the
“length” of an assembly graph edge is defined as the inverse of its average coverage -
that is, the inverse of average coverage for all the contributing marker graph edges.

• Edges on each shortest path are marked as edges to be kept.
• All other edges internal to the cluster are removed.

When all iterations of bubble/superbubble removal are complete, the assembler creates a final
version of the assembly graph. Each edge of the assembly graph corresponds to a path in the
marker graph, for which sequence can be assembled using the method described above. Note,
however, that the marker graph and the assembly graph have been constructed to contain both
strands. Special care is taken during all transformation steps to make sure that the marker graph
(and therefore the assembly graph) remain symmetric with respect to strand swaps. Therefore,
the majority of assembly graph edges come in reverse complemented pairs, of which we assemble
only one. It is however possible but rare for an assembly graph to be its own reverse complement.

Assembly parameters selection

The sequence of computational steps outlined above depends on a number of assembly parameters,
like for example the length and fraction of k-mers used as markers, the parameters controlling
the LowHash iteration, and so on. In Shasta, all of these parameters are exposed as command
line options and none of them are hardcoded or hidden. Our error analysis shows that the set of
assembly parameters we used (the default values for Shasta 0.1.0) gave satisfactory assembly
results for our data. However we do not claim that the same choices would generalize to other
situations. Additional work will be needed to find parameter sets that work for lower or higher
coverage, for genomes of different sizes and characteristics, or for different types of long reads.

High performance computing techniques employed by Shasta

The Shasta assembler is designed to run on a single machine with an amount of memory sufficient
to hold all of its data structures (1-2 TB for a human assembly, depending on coverage). All data
structures are memory mapped and can be set up to remain available after assembly completes.
Note that using such a large memory machine does not substantially increase the cost per CPU
cycle. For example, on Amazon AWS the cost per virtual processor hour for large memory
instances is no more than twice the cost for laptop-sized instances.
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There are various advantages to running assemblies in this way:

• Running on a single machine simplifies the logistics of running an assembly, versus for
example running on a cluster of smaller machines with shared storage.

• No disk input/output takes place during assembly, except for loading the reads in memory
and writing out assembly results plus a few small files containing summary information.
This eliminates performance bottlenecks commonly caused by disk I/O.

• Having all data structures in memory makes it easier and more efficient to exploit parallelism,
even at very low granularity.

• Algorithm development is easier, as all data are immediately accessible without the need
to read files from disk. For example, it is possible to easily rerun a specific portion of an
assembly for experimentation and debugging without any wait time for data structures to
be read from disk.

• When the assembler data structures are set up to remain in memory after the assembler
completes, it is possible to use the Python API or the Shasta http server to inspect and
analyze an assembly and its data structures (for example, display a portion of the read
graph, marker graph, or assembly graph).

• For optimal performance, assembler data structures can be mapped to Linux 2 MB pages
(“huge pages”). This makes it faster for the operating system to allocate and manage
the memory, and improves TLB efficiency. Using huge pages mapped on the hugetlbfs
filesystem (Shasta executable options --memoryMode filesystem --memoryBacking 2M)
can result in a significant speed up (20-30%) for large assemblies. However it requires root
privilege via sudo.

To optimize performance in this setting, the Shasta assembler uses various techniques:

• In most parallel steps, the division of work among threads is not set up in advance but
decided dynamically (“Dynamic load balancing”). As a thread finishes a piece of work
assigned to it, it grabs another chunk of work to do. The process of assigning work items
to threads is lock-free (that is, it uses atomic memory primitives rather than mutexes or
other synchronization methods provided by the operating system).

• Most large memory allocations are done via mmap and can optionally be mapped to Linux
2 MB pages backed by the Linux hugetlbfs. This memory is persistent until the next
reboot and is resident (non-pageable). As a result, assembler data structures can be kept in
memory and reaccessed repeatedly at very low cost. This facilitates algorithm development
(e. g. it allows repeatedly testing a single assembly phase without having to rerun the
entire assembly each time or having to wait for data to load) and postprocessing (inspecting
assembly data structures after the assembly is complete). The Shasta http server and
Python API take advantage of this capability.

• The Shasta code includes a C++ class for conveniently handling these large
memory-mapped regions as C++ containers with familiar semantics (class
shasta::MemoryMapped::Vector).

• In situations where a large number of small vectors are required, a two-pass process is used
(class shasta::MemoryMapped::VectorOfVectors). In the first pass, one computes the
length of each of the vectors. A single large area is then allocated to hold all of the vectors
contiguously, together with another area to hold indexes pointing to the beginning of each
of the short vectors. In a second pass, the vectors are then filled. Both passes can be
performed in parallel and are entirely lock-free. This process eliminates memory allocation
overhead that would be incurred if each of the vectors were to be allocated individually.

Thanks to these techniques, Shasta achieves close to 100% CPU utilization during its parallel
phases, even when using large numbers of threads. However, a number of sequential phases
remain, which typically result in average CPU utilization during a large assembly around 70%.
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Some of these sequential phases can be parallelized, which would result in increased average
CPU utilization and improved assembly performance.

MarginPolish
Throughout we used MarginPolish (https://github.com/ucsc-nanopore-cgl/MarginPolish)
version 1.0.0.

MarginPolish is an assembly refinement tool designed to sum over (marginalize) read to assembly
alignment uncertainty. It takes as input a genome assembly and set of aligned reads in BAM
format.

It outputs a refined version of the input genome assembly after attempting to correct base-level
errors in terms of substitutions and indels (insertions and deletions). It can also output a summary
representation of the assembly and read alignments as a weighted partial order alignment graph
(POA), which is used by the HELEN neural network based polisher described below.

It was designed and is optimized to work with noisy long ONT reads, although parameterization
for other, similar read types is easily possible. It does not yet consider signal-level information
from ONT reads. It is also currently a haploid polisher, in that it does not attempt to recognize or
represent heterozygous polymorphisms or phasing relationships. For haploid genome assemblies
of a diploid genome it will therefore fail to capture half of all heterozygous polymorphisms.

Algorithm Overview

MarginPolish works in overview as follows:

1. Reads and the input assembly are converted to their run-length encoding (RLE) (see Shasta
description above for description and rationale).

2. A restricted, weighted Partial Order Alignment [40] (POA) graph is constructed representing
the RLE input assembly and potential edits to it in terms of substitutions and indels.

3. Within identified regions of the POA containing likely assembly errors:

• A set of alternative sequences representing combinations of edits are enumerated by
locally traversing the POA within the region.

• The likelihood of the existing and each alternative sequence is evaluated given the
aligned reads.

• If an alternative sequence with higher likelihood than the current reference exists then
the assembly at the location is updated with this higher likelihood sequence.

4. Optionally, the program loops back to step 2 to repeat the refinement process (by default
it loops back once).

5. The modified RLE assembly is expanded by estimating the repeat count of each base given
the reads using a simple Bayesian model. The resulting final, polished assembly is output.
In addition, a representation of the weighted POA can be output.

Innovations

Compared to existing tools MarginPolish is most similar to Racon [42], in that they are comparable
in speed, both principally use small-parameter HMM like models and both do not currently use
signal information. Compared to Racon MarginPolish has some key innovations that we have
found to improve polishing accuracy:
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• MarginPolish, as with our earlier tool in the Margin series [1], uses the forward-backward
and forward algorithms for pair hidden Markov models (HMMs) to sum over all possible
pairwise alignments between pairs of sequences instead of the single most probable alignment
(Viterbi). Considering all alignments allows more information to be extracted per read.

• The POA graph is constructed from a set of weights computed from the posterior alignment
probabilities of each read to the initial assembled reference sequence (see below), the
result is that MarginPolish POA construction does not have a read-order dependence.
This is somewhat similar to that described by HGAP3 [72]. Most earlier algorithms for
constructing POA graphs have a well known explicit read order dependence that can result
in undesirable topologies [40].

• MarginPolish works in run-length encoded space, which results in considerably less alignment
uncertainty and correspondingly improved performance.

• MarginPolish, similarly to Nanopolish [73], evaluates the likelihood of each alternative
sequence introduced into the assembly. This improves performance relative to a faster but
less accurate algorithm that traces back a consensus sequence through the POA graph.

• MarginPolish employs a simple chunking scheme to break up the polishing of the assembly
into overlapping pieces. This results in low memory usage per core and simple parallelism.

Below steps 2, 3 and 5 of the MarginPolish algorithm are described in detail. In addition, the
parallelization scheme is described.

Partial Order Alignment Graph Construction

To create the POA we start with the existing assembled sequence s = s1, s2, . . . sn and for
each read r = r1, r2, . . . , rm in the set of reads R use the Forward-Backward algorithm with
a standard 3-state, affine-gap pair-HMM to derive posterior alignment probabilities using
the implementation described in [62]. The parameters for this model are specified in the
polish.hmm subtree of the JSON formatted parameters file, including polish.hmm.transitions,
and polish.hmm.emissions. Current defaults were tuned via expectation maximization [11] of
R9.4 ONT reads aligned to a bacterial reference; we have observed the parameters for this HMM
seem robust to small changes in base-caller versions. The result of running the Forward-backward
algorithm is three sets of posterior probabilities:

• Firstly match probabilities: the set of posterior match probabilities, each the probability
P (ri ⋄ sj) that a read base ri is aligned to a base sj in s.

• Secondly insertion probabilities: the set of posterior insertion probabilities, each the
probability P (ri ⋄ −j) that a read base ri is inserted between two bases sj and sj+1 in s,
or, if j = 0, inserted before the start of s, or, if j = n, after the end of s.

• Thirdly deletion probabilities, the set of posterior deletion probabilities, each the probability
P (−i ⋄ sj) that a base sj in s is deleted between two read bases ri and ri+1. (Note, because
a read is generally an incomplete observation of s we consider the probability that a base
in s is deleted before the first position or after the last position of a read as 0).

As most probabilities in these three sets are very small and yet to store and compute all the
probabilities would require evaluating comparatively large forward and backward alignment
matrices we restrict the set of probabilities heuristically as follows:

• We use a banded forward-backward algorithm, as originally described here [74]. To do this
we use the original alignment of the read to s as in the input BAM file. Given that s is
generally much longer than each read this allows computation of each forward-backward
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invocation in time linearly proportional to the length of each read, at the cost of restricting
the probability computation to a sub-portion of the overall matrix, albeit one that contains
the vast majority of the probability mass.

• We only store posterior probabilities above a threshold
(polish.pairwiseAlignmentParameters.threshold, by default 0.01), treating smaller
probabilities as equivalent as zero.

The result is that these three sets of probabilities are a very sparse subset of the complete sets.

To estimate the posterior probability of a multi-base insertion of a read substring ri, ri+1, . . . rk

at a given location j in s involves repeated summation over terms in the forward and backward
matrices. Instead to approximate this probability we heuristically use:

P (ri, ri+1, . . . rk ⋄ −j) = arg min
l∈[i,k]

P (rl ⋄ −j)

the minimum probability of any base in the multi-base insertion being individually inserted at
the location in s as a proxy, a probability that is an upper-bound on the actual probability.

Similarly we estimate the posterior probability of a deletion involving more than one contiguous
base s at a given location in a read using analogous logic. As we store a sparse subset of the
single-base insertion and deletion probabilities and given these probability approximations it is
easy to calculate all the multi-base indel probabilities with value greater than t by linear traversal
of the single-based insertion and deletion probabilities after sorting them, respectively, by their
read and s coordinates. The result of such calculation is expanded sets of insertion and deletion
probabilities that include multi-base probabilities.

To build the POA we start from s, which we call the backbone. The backbone is a graph where
each base sj in s corresponds to a node, there are special source and sink nodes (which do not
have a base label), and the directed edges connect the nodes for successive bases sj , sj+1 in s,
from the source node to the node for s1, and, similarly, from the node for sn to the sink node.

Each non-source/sink node in the backbone has a separate weight for each possible base x ∈
{A, C, G, T}. This weight:

w(j, x) =
∑

r∈R

∑

i

1x(ri)P (ri ⋄ sj)

where 1x(ri) is an indicator function that is 1 if ri = x and otherwise 0, corresponds to the
sum of match probabilities of read elements of base x being aligned to sj . This weight has a
probabilistic interpretation: it is the total number of expected observations of the base x in the
reads aligned to sj , summing over all possible pairwise alignments of the reads to s. It can be
fractional because of the inherent uncertainty of these alignments, e.g. we may predict only a
50% probability of observing such a base in a read.

We add deletion edges, which connect nodes in the backbone. Indexing the nodes in the backbone
from 0 (the source) to the source n + 1 (the sink), a deletion edge between positions j and k in
the backbone corresponds to the deletion of bases j, j + 1, . . . k − 1 in s. Each deletion edge has a
weight equal to the sum of deletion probabilities for deletion events that delete the corresponding
base(s) in s, summing over all possible deletion locations in all reads. Deletions with no weight
are not included. Again, this weight has a probabilistic interpretation: it is the expected number
of times we see the deletion in the reads, and again it may be fractional.
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We represent insertions as nodes labelled with an insertion sequence. Each insertion node has a
single incoming edge from a backbone node, and a single outgoing edge to the next backbone
node in the backbone sequence. Each insertion is labeled with a weight equal to the sum of
probabilities of events that insert the given insertion sequence between the corresponding bases
in s. The resulting POA is a restricted form of a weighted, directed acyclic graph (Fig. 14(A)
shows an example).

Figure 14: A) An example POA, assuming approximately 30x read coverage. The backbone is
shown in red. Each non-source/sink node has a vector of weights, one for each possible base.
Deletion edges are shown in teal, they also each have a weight. Finally insertion nodes are shown
in brown, each also has a weight. (B) A pruned POA, removing deletions and insertions that
have less than a threshold weight and highlighting plausible bases in bold. There are six plausible
nucleotide sequences represented by paths through the POA and selections of plausible base
labels: G;AT;A;T;A;C:A, G;AT;A;T;A;C:G, G;A;T;A;C:A, G;A;T;A;C:G, G;A;C:A, G;A;C:G.
To avoid the combinatorial explosion of such enumeration we identify subgraphs (C) and locally
enumerate the possible subsequences in these regions independently (dotted rectangles identify
subgraphs selected). In each subgraph there is a source and sink node that does not overlap any
proposed edit.

Frequently either an insertion or deletion can be made between different successive bases in s
resulting in the same edited sequence. To ensure that such equivalent events are not represented
multiple times in the POA, and to ensure we sum their weights correctly, we ‘left shift’ indels
to their maximum extent. When shifting an indel results in multiple equivalent deletion edges
or insertions we remove the duplicate elements, updating the weight of the residual element to
include the sum of the weights of the removed elements. For example, the insertion of ‘AT’ in
Fig. 14 is shifted left to its maximal extent, and could include the merger of an equivalent ‘AT’
insertion starting two backbone nodes to the right.

Local Haplotype Proposal
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After constructing the POA we use it to sample alternative assemblies. We first prune
the POA to mark indels and base substitutions with weight below a threshold, which
are generally the result of sequencing errors (Fig. 14(B)). Currently this threshold
(polish.candidateVariantWeight=0.18, established empirically) is normalized as a fraction of
the estimated coverage at the site, which is calculated in a running window around each node in
the backbone of 100 bases. Consequently if fewer than 18% of the reads are expected to include
the change then the edit is pruned from consideration.

To further avoid a combinatorial explosion we sample alternative assemblies locally. We identify
subgraphs of s containing indels and substitutions to s then in each subgraph, defined by a start
and end backbone vertex, we enumerate all possible paths between the start and end vertex
and all plausible base substitutions from the backbone sequence. The rationale for heuristically
doing this locally is that two subgraphs separated by one or more anchor backbone sites with no
plausible edits are conditionally independent of each other given the corresponding interstitial
anchoring substring of s and the substrings of the reads aligning to it. Currently, any backbone
site more than polish.columnAnchorTrim=5 nodes (equivalent to bases) in the backbone from
a node overlapping a plausible edit (either substitution or indel) is considered an anchor. This
heuristic allows for some exploration of alignment uncertainty around a potential edit. Given
the set of anchors computation proceeds by identifying successive pairs of anchors separated by
subgraphs containing the potential edits, with the two anchors considered the source and sink
vertex.

A Simple Bayesian Model for Run-length Decoding
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Figure 15: Visual representation of run length inference. This diagram shows how a
consensus run length is inferred for a set of aligned lengths (X) that pertain to a single position.
The lengths are factored and then iterated over, and log likelihood is calculated for every possible
true length up to a predefined limit. Note that in this example, the most frequent observation
(4bp) is not the most likely true length (5bp) given the model.

Run-length encoding allows for separate modelling of length and nucleotide error profiles. In
particular, length predictions are notoriously error prone in nanopore basecalling. Since ho-
mopolymers produce continuous signals, and DNA translocates at a variable rate through the
pore, the basecaller often fails to infer the true number of bases given a single sample. For this
reason, a Bayesian model is used for error correction in the length domain, given a distribution
of repeated samples at a locus.

To model the error profile, a suitable reference sequence is selected as the truth set. Reads
and reference are run-length encoded and aligned by their nucleotides. The alignment is used
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to generate a mapping of observed lengths to their true length (y, x) where y = true and
x = observed for each position in the alignment. Observations from alignment are tracked
using a matrix of predefined size (ymax = 50, xmax = 50) in which each coordinate contains the
corresponding count for (y, x). Finally the matrix is normalized along one axis to generate a
probability distribution of P (X|yj) for j in [1, ymax]. This process is performed for each of the 4
bases.

With enough observations, the model can be used to find the most probable true run length
given a vector of observed lengths X. This is done using a simple log likelihood calculation over
the observations xi for all possible true lengths yj in Y , assuming the length observations to be
independent and identically distributed. The length yj corresponding to the greatest likelihood
P (X|yj , Base) is chosen as the consensus length for each alignment position (Fig. 15).

Training
To generate a model, we ran MarginPolish with reads from a specific basecaller version aligned to
a reference (GRCh38) and specified the –outputRepeatCounts flag. This option produces a TSV
for each chunk describing all the observed repeat counts aligned to each backbone node in the
POA. These files are consumed by a script in the https://github.com/rlorigro/runlength_
analysis repository, which generates a RLE consensus sequence, aligns to the reference, and
performs the described process to produce the model.

The allParams.np.human.guppy-ff-235.json model used for most of the analysis was gener-
ated from HG00733 reads basecalled with Guppy Flipflop v2.3.5 aligned to GRCh38, with chro-
mosomes 1, 2, 3, 4, 5, 6, and 12 selected. The model allParams.np.human.guppy-ff-233.json
was generated from Guppy Flipflop v2.3.3 data and chromosomes 1-10 were used. This model
was also used for the CHM13 analysis, as the run-length error profile is very similar between
v2.3.3 and v2.3.1 (v2.3.5 has a drastically different error profile, as is shown below in Fig. 18).

Parallelization and Computational Considerations

To parallelize MarginPolish we break the assembly up into chunks of size polish.chunkSize=1000
bases, with an overlap of polish.chunkBoundary=50 bases. We then run the MarginPolish
algorithm on each chunk independently and in parallel, stitching together the resulting chunks
after finding an optimal pairwise alignment (using the default hmm described earlier) of the
overlaps that we use to remove the duplication. We can further parallelize the algorithm across
machines or processes using a provided Toil script CITE:PMID: 28398314.

Memory usage scales with thread count, read depth, and chunk size. For this reason, we
downsample reads in a chunk to polish.maxDepth=50× coverage by counting total nucleotides
in the chunk Nc and discarding reads with likelihood 1 − (chunkSize + 2 ∗ chunkBoundary) ∗
maxDepth/Nc. With these parameters, we find that 2GB of memory per thread is sufficient
to run MarginPolish on genome-scale assemblies. Across 13 whole-genome runs, we averaged
roughly 350 CPU hours per gigabase of assembled sequence.

HELEN: Homopolymer Encoded Long-read Error-corrector
for Nanopore
HELEN is a deep neural network based haploid consensus sequence polisher. HELEN employs
a multi-task recurrent neural network (RNN) [41] that takes the weights of the partial order
alignment (POA) graph of MarginPolish to predict a base and a run-length for each genomic
position. MarginPolish constructs the POA graph by performing multiple possible alignments of
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a single read that makes the weights associative to the correct underlying base and a run-length.
The RNN employed in HELEN takes advantage of the transitive relationship of the genomic
sequence and associative coupling of the POA weights to the correct base and run-length to
produce a consensus sequence with higher accuracy.

The error-correction with HELEN is done in three steps. First, we generate tensor-like images of
genomic segments with MarginPolish that encodes POA graph weights for each genomic position.
Then we use a trained RNN model to produce predicted bases and run-lengths for each of the
generated images. Finally, we stitch the chunked sequences to get a contiguous polished sequence.

Image Generation
MarginPolish produces an image-like summary of the final POA state for use by HELEN. At a
high level, the image summarizes the weighted alignment likelihoods of all reads divided into
nucleotide, orientation, and run-length.

(i)
Assembly sequence: GGAAAAAAAACATTTTAAAA
True sequence:         GGAAAAAAAA - - TTTTAAAA

Assembly sequence in run-length: G A A C A T A
2 5 3 1 1 4 4

Truth sequence in run-length: G A A - - T A
2 5 3 0 0 4 4

(ii)
Assembly sequence: ATGAAA - - CTTG
True sequence:         ATGAAAGGCTTG

Assembly sequence in run-length: A T G A C T G
1 1 1 3 1 2 1

Truth sequence in run-length: A T G A G C T G
1 1 1 3 2 1 2 1

a.

b.

(i)

(ii)

Figure 16: MarginPolish Images A graphical representation of images from two labeled regions
selected to demonstrate: the encoding of a single POA node into two run-length blocks (i), a true
deletion (i), and a true insert (ii). The y-axis shows truth labels for nucleotides and run-lengths,
the x-axis describes features in the images, and colors show associated weights.

The positions of the POA nodes are recorded using three coordinates: the position in the
backbone sequence of the POA, the position in the insert sequences between backbone nodes,
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and the index of the run-length block. All backbone positions have an insert coordinate of 0.
Each backbone and insert coordinate includes one or more run-length coordinate.

When encoding a run-length, we divide all read observations into blocks from 0 to 10 inclusive
(this length is configurable). For cases where no observations exceed the maximum run-length, a
single run-length image can describe the POA node. When an observed run-length exceeds the
length of the block, the run-length is encoded as that block’s maximum (10), and the remaining
run-length is encoded in successive blocks. For a run-length that terminates in a block, its weight
is contributed to the run-length 0 column in all successive blocks. This means that the records
for all run-length blocks of a given backbone and insert position have the same total weight. As
an example, consider three read positions aligned to a node with run-lengths of 8, 10, and 12.
These require two run-length blocks to describe: the first block includes one 8 and two 10s, and
the second includes two 0s and one 2.

The information described at each position (backbone, insert, and run-length) is encoded in
92 features: each nucleotide {A, C, T, G} and run-length {0, 1, .., 10}, plus a gap weight (for
deletions in read alignments). The weights for each of these 45 observations are separated into
forward and reverse strand for a total of 90 features. The weights for each of these features
are normalized over the total weight for the record and accompanied by an additional data
point describing the total weight of the record. This normalization column for the record is an
approximation of the read depth aligned to that node. Insert nodes are annotated with a binary
feature (for a final total of 92); weights for an insert node’s alignments are normalized over total
weight at the backbone node it is rooted at (not the weight of the insert node itself) and gap
alignment weights are not applied to them.

Labeling nodes for training requires a truth sequence aligned to the assembly reference. This
provides a genome-scale location for the true sequence and allows the its length to help in the
resolution of segmental duplications or repetitive regions. When a region of the assembly is
analyzed with MarginPolish, the truth sequences aligned to that region are extracted. If there is
not a single truth sequence which approximately matches the length of the consensus for this
region, we treat it as an uncertain region and no training images are produced. Having identified
a suitable truth sequence, it is aligned to the final consensus sequence in non-run-length space
with Smith-Waterman. Both sequences and the alignment are then run-length encoded, and true
labels are matched with locations in the images. All data between the first and last matched
nodes are used in the final training images (leading and trailing inserts or deletes are discarded).
For our training, we aligned the truth sequences with minimap2 using the asm20 preset and
filtered the alignments to include only primary and supplementary alignments (no secondary
alignments).

Fig. 16 shows a graphical representation of the images. On the y-axis we display true nucleotide
labels (with the dash representing no alignment / gap) and true run-length. On the x-axis the
features used as input to HELEN are displayed: first the normalization column (the total weight
at the backbone position), second the insert column (the binary feature encoding whether the
image is for a backbone or insert node), forty-eight columns describing the weights associated
with read observations (stratified by nucleotide, run-length, strand), and two columns describing
weights for gaps in read alignments (stratified by strand). In this example, we have reduced the
maximum run-length per block from 10 to 5 for demonstrative purposes.

We selected these two images to highlight three features of the model: the way multiple run-length
blocks are used to encode observations for a single node, and the relevant features around a true
gap and a true insert that enable HELEN to correct these errors.

To illustrate multiple run length blocks, we highlight two locations on on image (i). The first are
the nodes labeled (A,5) and (A,3). This is the labeling for a true (A,8) sequence separated into
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two blocks. See that the bulk of the weight is on the (A,5) features on the first block, with most
of that distributed across the (A,1-3) features on the second. Second, observe the nodes on (i)
labeled (T,4) and (T,0). Here we show the true labeling of a (T,4) sequence where there are
some read observations extending into a second run-length block.

To show a features of a true gap, note on (i) the non-insert nodes labeled (-,0). We know that
MarginPolish predicted a single cytosine nucleotide (as it is a backbone node and the (C,1) nodes
have the bulk of the weight. Here, HELEN is able to use the low overall weight (the lighter region
in the normalization column) at this location as evidence of fewer supporting read alignments
and can correct the call.

The position labeled (G,2) on (ii) details a true insertion. It is not detected by MarginPolish
(as all insert nodes are not included in the final consensus sequence). Read support is present
for the insert, less than the backbone nodes in this image but more than the other insert nodes.
HELEN can identify this sequence and correct it.

Finally, we note that the length of the run length blocks results in streaks at multiples of this
length (10) for long homopolymers. The root of this effect lies in the basecaller producing similar
prediction distributions for these cases (ie, the run length predictions made by the basecaller for
a true run length of 25 are similar to the run length predictions made for a true run length of 35,
see Fig. 4b Guppy 2.3.3). This gives the model little information to differentiate upon, and the
issue is exacerbated by the low occurrence of long run lengths in the training data. Because the
model divides run length observations into chunks of size 10, it tends to call the first chunks
correctly (having length 10) but has very low signal for the last chunk and most often predicts 0.
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Figure 17: The sequence-to-sequence model implemented in Helen.

The model
We use a sequence transduction model for consensus polishing. The model structure consists of
two single-layer gated recurrent neural units (GRU) for encoding and decoding on top of two
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linear transformation layers. The two linear transformation layers independently predict a base
and a run-length for each position in the input sequence. Each unit of the GRU can be described
using the four functions it calculates:

rt = Sigmoid(Wirxt + Whrh(t−1))

ut = Sigmoid(Wiuxt + Whuh(t−1))

nt = tanh(Winxt + rt ∗ (Whnh(t−1)))

ht = (1 − ut) ∗ nt + ut ∗ h(t−1)

(1)

For each genomic position t, we calculate the current state ht from the new state nt and the
update value ut applied to the output state of previous genomic position h(t−1). The update
function ut decides how much past information to propagate to the next genomic position.
It multiplies the input xt with the weight vector Wiu and multiplies the hidden state of the
previous genomic position h(t−1). The weight vectors decide how much from the previous state
to propagate to the next state. The reset function rt decides how much information to dissolve
from the previous state. Using a different weight vector, the rt function decides how much
information to dissolve from the past. The new memory state nt is calculated by multiplying the
input xt with the weight vector Win and applying a Hadamard multiplication ∗ between the reset
function value and a weighted state of the previous hidden state h(t−1). The new state captures
the associative relationship between the input weights and true prediction. In this setup, we
can see that rt and ut can decide to hold memory from distant locations while nt captures the
associative nature of the weights to the prediction, helping the model to decide how to propagate
genomic information in the sequence. The output of each genomic position ht can be then fed to
the next genomic position as a reference to the previously decoded genomic position. The final
two layers apply linear transformation functions:

Bt = ht ∗ W T

Rt = ht ∗ W T
(2)

The two linear transformation functions independently calculate a base prediction Bt and a
run-length prediction Rt from the hidden state output of that genomic position ht. The model
operates in hard parameter sharing mode where the model learns to perform two tasks in equation
2 using the same set of underlying parameters from equation 1. The ability of the model to
reduce the error rate of the assemblies from multiple samples with multiple assemblers shows the
generalizability and robustness we achieve with this method.

Sliding window mechanism
One of the challenges of this setup is the sequence length. From the functions of recurrent units
in equation 1, we see that each state is updated based on the previous state and associated weight.
Due to the noisy nature of the data, if the sequence length is too long, the back-propagation
becomes difficult over noisy regions. On the other hand, a small sequence length would make the
program very slow. We balance the run-time and accuracy by using a sliding window approach.

During the sliding-window, we chunk the sequence of thousand bases to multiple overlapping
windows of length 100. Starting from the leftmost window, we perform prediction on sequence
pileups of the window and transmit the hidden state of the current window to the next window
and slide the window by 50 bases to the right. For each window, we collect all the predicted values
and add it to a global sequence inference counter that can keep track of predicted probabilities
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of base and run-length at each position. Lastly, we aggregate the probabilities from the global
inference counter to generate a sequence. This setup allows us to utilize the minibatch feature of
the popular neural network libraries allowing inference on a batch of inputs instead of performing
inference one at a time.

Training the model
HELEN is trained with a gradient descent method. We use Adaptive Moment Estimation
(Adam) method to compute gradients for each of the parameters in the model based on a
target loss function. Adam uses both decaying squared gradients and the decaying average of
gradients, making it suitable to use with recurrent neural networks[41]. Adam performs gradient
optimization by adapting the parameters to set in a way that minimizes the value of the loss
function.

We perform optimization through back-propagation per window of the input sequence. From
equation 2, we see that we get two vectors B = [B1, B2, B3...Bn] and R = [R1, R2, R3...Rn]
containing base and run-length predictions for each window of size n. From the labeled data
we get two more such vectors TB = [TB1, TB2, TB3, ...TBn] and TR = [TR1, TR2, TR3, ...TRn]
containing the true base and true rle values of each position in the window. From these loss
function the loss L is calculated:

LB(B, TB) = −B[TB ] + log
(∑

j exp(B[j])
)

LR(R, TR) = weight[TR]
(

−R[TR] + log
(∑

j exp(R[j])
))

L = LB + LR

(3)

In equation 3, LB calculates the base prediction loss and LR calculates the rle prediction loss.
The rle class distribution is heavily biased toward lower run-length values, so, we apply class-wise
weights depending on the observation of per class to make the learning process balanced between
classes. The optimizer then updates the parameters or weights W of the model from equation 1
and equation 2 in a way that minimizes the value of the loss function. We can see that the loss
function is a summation of the two independent loss functions but the underlying weights from
the recurrent neural network belongs to the same set of elements in the model. In this setting,
the model optimizes to learn both task simultaneously by updating the same set of weights.

Sequence stitching
To parallelize the polishing pipeline, MarginPolish chunks the genome into smaller segments
while generating images. Each image segment encodes a thousand nucleotide bases, and two
adjacent chunks have 50 nucleotide bases overlap between them. During the inference step, we
save all run-length and base predictions of the images, including their start and end genomic
positions.

For stitching, we load all the image predictions and sort them based on the genomic start position
of the image chunk and stitch them in parallel processes. For example, if there are n predictions
from n images of a contig and we have t available threads, we divide n prediction chunks into
t buckets each containing approximately n/t predicted sequences. Then we start t processes
in parallel where each process stitches all the sequences assigned to it and returns a longer
sequence. For stitching two adjacent sequences, we take the overlapping sequences between the
two sequence and perform a pairwise Smith-Waterman alignment. From the alignment, we pick
an anchor position where both sequences agree the most and create one sequence. After all
the processes finish stitching the buckets, we get t longer sequences generated by each process.
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Finally, we iteratively stitch the t sequences using the same process and get one contiguous
sequence for the contig.

Generating trained models
In supplementary tables ??, ?? and ?? we report several models for HELEN. The models are
trained on different sets of data with varying Guppy base-caller versions. We discuss three trained
models r941_flip235_v001.pkl, r941_flip233_v001.pkl, and r941_flip231_v001.pkl to
use with HELEN for different versions of the ONT Guppy base-callers. Due to the difference in
the error profile of different versions of the Guppy base-caller, we trained three different models.

Table 3: Description of trained models for HELEN.

Model Name Base caller version Training sample Training region Testing region

r941_flip235_v001.pkl Guppy 2.3.5 HG002 Chr1-19, Chr21-22 Chr20

r941_flip233_v001.pkl Guppy 2.3.3 HG002 Chr1-19, Chr21-22 Chr20

r941_flip231_v001.pkl Guppy 2.3.1 CHM13 Chr1-6 Chr20

The r941_flip235_v001.pkl is trained on HG002 base called with Guppy 2.3.5. The model is
trained on the high confidence regions of all autosomes and tested on Chr20. The training script
trained the model for 80 hours on 10 epochs, which generated 10 trained models. We picked the
model that has the best performance on Chr20 as the final model.
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Figure 18: Run-length confusion in different versions of Guppy base caller

The CHM13 data from T2T consortium [31] were base called with Guppy 2.3.1. The error profile
of Guppy 2.3.1 is significantly different than Guppy 2.3.5. Figure 18 shows the difference in
underlying error profile of HG00733 sample for two different versions of Guppy. We trained
r941_flip233_v001.pkl Model on HG002 Guppy 2.3.3 data. Although the error profile of
Guppy 2.3.1 and Guppy 2.3.3 are similar, the reported base qualities are different. So, we trained
another model r941_flip231_v001.pkl on Chr1-6 of CHM13 to see further improvement in the
consensus quality of CHM13.
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Implementation notes
We have implemented HELEN using python and C++ programming language. We use PyTorch
[75] deep neural network library for the model implementation. We also use the Striped-Smith
Waterman algorithm implementation to use during stitching and Pybind11 [76] as a bridge between
C++ and python methods. The image data is saved using HDF5 file format. The implementation
is publicly available via GitHub (https://github.com/kishwarshafin/helen).
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Chapter 2

Walk-preserving transformation of overlapped

sequence graphs into blunt sequence graphs

In the following work titled Walk-preserving transformation of overlapped sequence

graphs into blunt sequence graphs with GetBlunted, I developed the core method of aligning

and duplicating sequences using POA to generate blunt ended representations of sequences. I

implemented and tested all aspects of this work except for the algorithms for computing the

biclique cover of overlaps.
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Abstract. Sequence graphs have emerged as an important tool in two
distinct areas of computational genomics: genome assembly and pange-
nomics. However, despite this shared basis, subtly different graph for-
malisms have hindered the flow of methodological advances from pange-
nomics into genome assembly. In genome assembly, edges typically in-
dicate overlaps between sequences, with the overlapping sequence ex-
pressed redundantly on both nodes. In pangenomics, edges indicate ad-
jacency between sequences with no overlap—often called blunt adjacen-
cies. Algorithms and software developed for blunt sequence graphs often
do not generalize to overlapped sequence graphs. This effectively silos
pangenomics methods that could otherwise benefit genome assembly. In
this paper, we attempt to dismantle this silo. We have developed an
algorithm that transforms an overlapped sequence graph into a blunt
sequence graph that preserves walks from the original graph. Moreover,
the algorithm accomplishes this while also eliminating most of the re-
dundant representation of sequence in the overlap graph. The algorithm
is available as a software tool, GetBlunted, which uses little enough time
and memory to virtually guarantee that it will not be a bottleneck in
any genome assembly pipeline.

Keywords: Genome assembly · Graph genome · Pangenomics.

1 Introduction

Genome assembly is the process of determining a sample’s full genome sequence
from the error-prone, fragmentary sequences produced by DNA sequencing tech-
nologies. Sequence graphs have a long history of use in this field [16, 20, 17]. In
these graphs, nodes are labeled with sequences derived from sequencing data,
and edges indicate overlaps between observed sequences, which may in turn in-
dicate adjacency in the sample’s genome (Fig. 1A). The sample genome then
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corresponds to some walk through graph. There are several specific sequence
graph articulations in wide use, including de Bruijn graphs, overlap graphs, and
string graphs. They each present computational and informational trade-offs that
make them better suited to certain configurations of sequencing technologies and
genome complexity.

The common topological features of genome assembly graphs are driven pri-
marily by the repetitiveness of the underlying genomes. In many species, a large
fraction of the genome consists of repeats (for instance, more than 50% of the
human genome [11]). Because all copies of a repeat are highly similar to each
other, the corresponding nodes in the sequence graph frequently overlap each
other. In contrast, the unique regions of the genome have few erroneous over-
laps. These two factors tend to create graphs that consist of long non-branching
paths (corresponding to the unique regions), which meet in a densely tangled
core with a complicated topology (corresponding to the repeats).

Recently, sequence graphs have also emerged into prominence in the growing
field of pangenomics, which seeks to analyze the full genomes of many individuals
from the same species [4]. In pangenomics, sequence graphs are used to represent
genomic variation between individual haplotypes. Sequences in the graph furcate
and rejoin around sites of variation so that each individual genome corresponds to
a walk through the graph (Fig. 1B). The growth of pangenomics has fueled major
advances in both formal algorithms research [21, 12] and practical genomics tools
[10, 22].

Pangenome graphs have much simpler topologies than genome assembly
graphs. Having fuller knowledge of the constituent genomes makes it possible
to distinguish different copies of a repeat. Thus, pangenome graphs tend to be
mostly non-branching, much like the portions of assembly graphs that corre-
spond to unique sequences in the genome. Moreover, most of the branching in
pangenome graphs consists of localized bubble-like motifs. In contrast to assem-
bly graphs, pangenome graphs have few if any cycles.

CTGTA

GTACAGG

GTAAAGG

AGGCC

CTGTA AGGCC
A
C

A

B

Fig. 1. A: An overlapped sequence graph. B: A blunt sequence graph.
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Intuitively, the shared basis in sequence graphs should permit the advances in
pangenomics to spill over into genome assembly. However, such cross-pollination
is stymied by a small difference in the graph formalisms. The edges in assembly
graphs indicate sequence overlaps, which are necessary because of the uncertain
adjacencies in the underlying genome. In pangenome graphs, the underlying
genomes are known, and the edges are blunt in that they indicate direct adja-
cency with no overlap. Blunt sequence graphs can be trivially converted into
overlap graphs (with overlaps of length 0), but the reverse requires nontrivial
merging operations between the overlapping sequences. As a result, methods
have remained siloed within pangenomics despite potential uses in genome as-
sembly.

In this work, we present a method to transform an overlapped sequence graph
into a blunt sequence graph. We state the formal guarantees of our formulation
and discuss their computational complexity. We then present an algorithm and
compare its results to similar methods.

2 Problem statement

In transforming an overlapped sequence graph to a blunt one, we seek to provide
two guarantees:

1. All walks in the overlapped graph are preserved in the blunt graph.
2. Every walk in the blunt graph corresponds to some walk in the overlapped

graph.

These two properties prohibit the intuitive solution of transitively merging all
overlapped sequences. Doing so can result in walks that are not present in the
overlapped graph, because walks can transition between nodes that are not con-
nected by an edge via the transitively merged sequences (Fig. 2). Because over-
lapped sequences cannot be fully merged, it is necessary to retain multiple copies
of some sequences in the blunt graph. However, excessive duplication can create
problems for downstream analysis, for instance by increasing alignment uncer-
tainty. Thus, we add one further criterion to the above formulation:

3. Minimize the amount of duplicated sequence.

3 Notation

An overlapped sequence graph consists of a set of sequences S and a set of
overlaps O ⊂ (S×{+,−}×S×{+,−}). In this notation, the symbols + and −
indicate whether the overlap involves a prefix or suffix (collectively affix ) of the
sequence. This makes the overlapped graph a bidirected graph.

In a bidirected graph, a walk consists of a sequence of nodes s1s2 . . . sN ,
si ∈ S such that 1) each pair of subsequent nodes is connected by an overlap
and 2) if si−1 and si are connected by an overlap on si’s prefix, then si and si+1
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GTC

TCATC

TGGATC

ATCCAG

TC
G

TGGA
ATC
CAG

A B

Fig. 2. A: An overlapped sequence graph, and B: the blunt sequence graph that results
from transitively merging its overlaps. The highlighted walk in the blunt graph does
not correspond to any walk in the original overlapped graph.

are a connected by an overlap on si’s suffix (or vice versa). In the case that a
walk traverses a node s ∈ S from suffix to prefix, we interpret the sequence as
its reverse complement, which is the sequence of the antiparallel strand of the
DNA molecule.

Finally, an adjacency component is a collection of affixes (in S × {+,−})
that can reach each other via a sequence of adjacent overlaps in O (Fig. 3). This
sequence need not form a valid bidirected walk.

ACATG

CAACA

TGACA

Fig. 3. An adjacency component in a larger sequence graph. Each of the indicated
affixes can reach the others by a sequence of overlaps.

4 Methods

To minimize the amount of duplicated sequence, overlapped sequences must be
merged. However, we have already mentioned that our criteria prohibit transi-
tively merging all overlaps. We must then minimize the total number of groups
within which overlaps are merged transitively, which coincides with the number
of times the sequences need to be duplicated.

Consider a group of overlaps that contains (s1, s2,+,−) and (t1, t2,+,−). For
merging to not introduce any walks that are not in the overlapped graph, the
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overlaps (s1, t2,+,−) and (t1, s2,+,−) must also be overlaps in O. Extending
this logic, the entire group of overlaps must be contained within a biclique sub-
graph of the adjacency component: two sets of affixes B1 and B2 such that every
affix in B1 is connected to every affix in B2 by an overlap. Thus, we can mini-
mize the number of duplicated sequences by minimizing the number of bicliques
needed to cover every overlap edge.

The problem of covering edges with the minimum number of bicliques is
known as biclique cover (Fig. 4), and it is known to be NP-hard [19]. However,
there are domain-specific features of overlapped sequence graphs that often make
it tractable to solve large portions of the graph optimally.

Fig. 4. A biclique cover of an adjacency component with three bicliques.

First, many adjacency components are bipartite. Consider the case that an
adjacency component is not bipartite, in which case there is cycle of overlaps
between affixes with odd parity. Each overlap indicates high sequence similarity,
so an odd cycle means that each sequence is similar to itself, reverse comple-
mented an odd number of times. Such sequences are called DNA palindromes,
and they do exist in nature. However, they comprise a small fraction of most
real genomes.

Second, most adjacency components are domino-free. This property refers to
the absence of a particular induced subgraph, the domino (Fig. 5). A sufficient
condition to prohibit dominoes is for overlapping to be a transitive property.
That is, whenever sequence s1 overlaps sequences t1 and t2, and sequence s2
overlaps t1, then s2 also overlaps t2. In reality, this is not always the case.
However, it is very often the case, since overlaps indicate sequence similarity,
and similarity is approximately transitive.

These features guided the design of the following algorithm. If an adjacency
component is bipartite and domino-free, we compute the biclique cover in poly-
nomial time with the algorithm of Amilhastre, Vilaren, and Janssen [1]. When
an adjacency component is bipartite but not domino-free, we instead use the
dual graph reduction algorithm of Ene, et al. [7], followed by their lattice-based
post-processing if the algorithm does not identify the optimal solution. Finally,
if an adjacency component is not bipartite, we first reduce it to the bipartite
case by computing an approximate solution to the maximum bipartite subgraph
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Fig. 5. The domino graph. If either of the dotted edges are present, the induced sub-
graph is not a domino.

problem using the algorithm of Bylka, Idzik, and Tuza [3]. The maximum bi-
partite subgraph problem is equivalent to max cut, which is also NP-hard [13].
This process is repeated recursively on the edges that are not included in the
bipartite subgraph.

The amount of duplicated sequence is also affected by the manner in which
sequences are merged among the overlaps of a biclique. To minimize duplicated
sequence, we must maximize matches in the alignment between the overlapped
sequences. This is the multiple sequence alignment problem, which is NP-hard.
We use the partial order alignment algorithm to approximate the optimal mul-
tiple sequence alignment [14]. Partial order alignment also has the advantage
that the alignment is expressed as a blunt sequence graph, which can be directly
incorporated in the full blunt graph.

5 Implementation

We have implemented the algorithm described here as a genomics tool called
GetBlunted. GetBlunted takes as input a GFA file (a common interchange for-
mat for sequence graphs [15]) and outputs a GFA containing a blunt graph.
In addition, it provides a translation table from sequences in the output to se-
quences in the input, which can be used to translate analyses performed on the
blunt graph into analyses on the overlapped graph. The implementation is writ-
ten entirely in C++, and it use several auxiliary libraries: GFAKludge is used
for manipulating GFA files [5], libbdsg is used to represent sequence graphs [6],
and SPOA is used for partial order alignment [24].

6 Results

We compared the performance of GetBlunted to two other tools that trans-
form overlapped sequence graphs into blunt graphs: the gimbricate/seqwish [8,
9] pipeline and Stark [18]. These are, to our knowledge, the only other such tools
besides GetBlunted. However, they are not completely comparable. Neither tool
provides the guarantees that GetBlunted does for preserving the walk space of
the graph. In addition, Stark only works with de Bruijn graphs, a restricted
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subset of overlap graphs in which all overlaps are exact matches of a uniform
length.

We profiled speed and memory usage on three assembly graphs. The first
two are assembly graphs produced by the Shasta assembler [23] for the haploid
human cell line CHM13 and for human sample HG002. Both of these were built
using Oxford Nanopore reads1. The last graph is a de Bruijn graph of Pacific
Biosciences HiFi reads of an Escherichia coli strain (SRR10382245), which was
constructed using jumboDB [2].

All of the bluntifying tools were run on a single core of a c5.9xlarge AWS
instance with an Intel Xeon Scalable Processor. Memory usage and compute
time were measured with the Unix time tool. The results of the profiling are
presented in Table 1. GetBlunted is over 1000 times faster than and compara-
bly memory-intensive to the gimbricate/seqwish pipeline. For de Bruijn graphs,
Stark is faster than either tool, although this performance comes at the cost of
limited generality.

Assembly Bluntification Tool Run Time (min) RAM (GB)

HG002
Shasta

GetBlunted 0.35 9

gimbricate/seqwish 917.5 6

CHM13
Shasta

GetBlunted 0.38 4

gimbricate/seqwish 314.6 6

E. coli de
Bruijn

GetBlunted 8.36 26

gimbricate/seqwish 10.74 4

Stark 0.65 3

Table 1. Table of speed and memory usage of bluntifing tools run on a single core of
an AWS server.

7 Discussion

In this work, we described an algorithm and software tool, GetBlunted, which
transforms overlapped sequence graphs into blunt sequence graphs. This provides
a route for sequence graph methods developed for pangenomics to be applied to
sequence graphs in genome assembly. In both fields, walks through the sequence
graph are of primary importance. In genome assembly, some walk through the
graph corresponds to the sample genome. In pangenomics, the genomes used
to construct the pangenome each correspond to a walk through the graph. Get-
Blunted provides attractive guarantees that it faithfully preserves the walk space

1 Publicly available at https://s3-us-west-2.amazonaws.com/miten-
hg002/index.html?prefix=guppy 3.6.0/
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of the input while also producing parsimonious output. Other comparable meth-
ods either do not provide these guarantees or only provide them in limited cases.
In addition, GetBlunted is (except in the case of de Bruijn graphs) faster than
alternatives that do not provide these guarantees, and it has resource require-
ments that are easily achievable in any computational environment that is used
for genome assembly. In the future, GetBlunted could serve as an step in genome
assembly pipelines to improve the quality of their overlap graphs. It could also
facilitate direct analyses of assembly graphs in metagenomics applications.
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Abstract
As a step towards simplifying and reducing the cost of haplotype resolved de novo

assembly, we describe new methods for accurately phasing nanopore data with the Shasta
genome assembler and a modular tool for extending phasing to the chromosome scale called
GFAse. We test using new variants of Oxford Nanopore Technologies’ (ONT) PromethION
sequencing, including those using proximity ligation and show that newer, higher accuracy
ONT reads substantially improve assembly quality.

Introduction
Phased genome assemblies enable a variety of clinically-motivated analyses and

population studies. For clinical and biological studies, there are many transcriptional and
translational outcomes that could result from a given set of mutations in the same gene or
regulon, depending on whether they co-occur on the same molecule of DNA1–3. Additionally,
understanding how variants are linked enables imputation, and therefore a high quality set of
phased variants can serve as a catalyst for much larger volume experiments, creating greater
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statistical power for disease association4,5. Population genetics also benefits from haplotype
information because it provides a means to estimate recombination and gene flow6. As a
consequence of its many applications, a significant portion of recent efforts in human
genomics have become focused on generating a high quality, genome-wide set of phased
variants7–9.

Methods for phasing are diverse and can use information from populations or from an
individual’s sequencing data. At the population level, variants are associated with one another
by their co-occurrence across many individuals9–13. At the individual level, variants are
phased based on co-occurrence in spanning reads. Individual-level methods can be further
subdivided into approaches that rely on mapping to an existing assembly and those that use
reads directly for creating a phased consensus. When read length or accuracy is limited,
mapping-based methods are essential, because mapping is required to find a set of candidate
variants that share reads among them. After mapping, reads are usually phased by finding a
partition which maximizes the consistency of shared reads among the alleles14–16.

In contrast to reference-based phasing, de novo methods for read-based phasing
generate candidate variants internal to the assembler, following read overlap18,19. The
advantage of assembly-based methods is that they do not fall victim to reference bias, and can
therefore identify variants that would otherwise map poorly, as with repetitive regions or
large duplications and inversions20,21. Reference-based methods can work around this issue by
using a draft assembly instead of an existing reference. When parental sequencing data is
available, the strategy of trio binning simplifies the problem by partitioning the reads using
exact subsequences (k-mers) from parental data. However, its applications have been limited
by the added need for parental information and the inability of such informative kmers to
adequately label repetitive or homozygous regions which have few haplotype-specific
k-mers17.

Despite the variety of phasing methods and the high demand for phased genomes, all
the ONT-specific genome assemblers evaluated at the time of Shasta’s original publication (3
years prior to this work), including Shasta, produced collapsed, haploid assemblies. At best,
some provided pseudo-haplotypes or alternative contigs which were not explicitly phased or
evaluated as such. Since then, none of the remaining ONT-based assemblers have adapted
their methods to generate true diploid assemblies. Instead, as a result of the emergence of
PacBio HiFi reads22, modern diploid assemblers have used shorter, more accurate reads to
infer haplotype specific overlaps or build a large-k de Bruijn graph18,19. In the case of Verkko,
ONT reads are used only to resolve regions of the genome graph which remain tangled after
construction with HiFi.

To date, there is only one published example of a nanopore assembler which claims
to produce phased haplotypes23, but its repository is not maintained and we were unable to
run it to completion. An earlier paper concluded that nanopore de novo phasing was not
practical at the time24. In contrast, the Shasta assembler has kept pace with recent advances in
nanopore, and now has a new “Mode 2” of assembly, capable of using R9 or R10 ultra long
nanopore reads to phase variation observed in its sequence graph. Following the overlap stage
of assembly, Shasta methods and data structures have been replaced in order to explicitly
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model sequence “bubbles” or local regions of heterozygous variation and their correlation to
one another (see Methods).

Since the basis of assembly phasing lies in the overlapping of reads, highly repetitive
or homozygous regions limit phasing in Shasta and other assemblers, such as Hifiasm and
Verkko18,19. While trio-based haplotagging of partially-phased assemblies produces accurate
and global phasing, parental sequencing is not always feasible, and for a variety of species it
is essentially impossible. To address this, proximity ligation data has been used for extending
phasing beyond the length of a typical read without the need for parental sequencing25.
Sequencing technologies like Hi-C and Pore-C exploit the physical packing of chromatin in
the nucleus to ligate proximal regions of DNA molecules, which can be hundreds of millions
of base pairs apart along the chromosome26,27, exceeding the longest nanopore reads
observed28. Pore-C is of particular interest because it doesn’t require parental data, it doesn’t
need a separate Illumina sequencing machine, and as a result of its protocol it produces many
more proximity-based contacts than Hi-C at the same coverage (Figure 1a).

The approach described here leverages the assembly graph to phase and extend
partial haplotypes. In this scheme, variants are not inferred from the read alignments. Instead,
graph topology or sequence homology is used to identify large scale haplotypic bubbles in the
graph, and the information from proximity linkages is used to phase bubbles relative to each
other. To find a partition of haplotypes that is consistent with the proximity information, this
work uses a new variation of the stochastic optimization methods previously described18,25.
Once phases are inferred, chaining can then make use of the information stored in the edges
of the GFA representation of the assembly graph to achieve a similar result to scaffolding
algorithms29,30. Our proximity-based phasing methods are evaluated on Shasta, Hifiasm, and
Verkko graphs, using both Hi-C and Pore-C data, demonstrating flexibility and reusability. In
addition, we show results comparing proximity ligation libraries, which are produced as part
of our automated workflow. GFAse also provides a means to do parental k-mer haplotagging
using the succinct variation graph that Shasta produces (see Methods).

Using nanopore sequencing for both long reads and proximity ligated reads (Pore-C),
we demonstrate a previously undescribed single-sequencer pipeline which is logistically
simpler alternative to hybrid and HiFi based approaches, while attaining comparable accuracy
(Figure 1b). We test the limits of cost efficiency using a single flowcell of PromethION R10,
and attempt to maximize assembly continuity with high coverage ultra-long reads.
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Figure 1: a) Diagram of Pore-C sequencing in comparison to Hi-C. In the all-vs-all contact matrix,
shaded squares represent usable contacts, which scale at a rate of 1/2n2-n for a concatemer of n
fragments or subreads. b) Summary of de novo phasing pipeline using Shasta and GFAse. Shasta
performs de novo assembly and phases to the extent that is supported by informative variants in the
nanopore reads. GFAse then takes a partially phased assembly GFA and extends phasing using
orthogonal phasing information. GFAse can perform phasing based on any alignable data type (HiC,
Pore-C, etc.). For Shasta graphs, GFAse can also use parental sequencing. The pathways with bolded
arrows and blue fill are the methods that are previously undescribed.

Results

Long read sequencing
To address variability in read length, coverage, and accuracy, these results evaluate

phasing in 6 different combinations of library preparation and chemistry. The effect of read
accuracy on phasing is addressed with differing nanopore chemistries: R9 and R10. For the
datasets evaluated, R9 has median accuracy of 95.7-96.1% (Figure 2a) and R10 has
98.3-98.9% median accuracy. In ONT R9, three different length distributions and coverages
were assembled. The datasets have minimum read lengths of 10Kbp, 35Kbp, and 100Kbp
respectively, so they have been dubbed “standard”, “ultra long” (UL), and “ultra ultra long”
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(UUL) for convenience. Nanopore datasets vary considerably in length characteristics, so
cumulative length distributions are plotted for proper comparison (Figure 2b).

For R10, a similar series of length distributions are used, with one key difference: the
lowest coverage assembly used only a single PromethION flowcell (Figure 2b). For that
dataset, reads were sheared to maximize throughput. In the R10 UL dataset, 4 flowcells of
unsheared DNA were combined for a high coverage, longer dataset. Finally, in an attempt to
maximize contiguity and find the limits of our methods with this data, we have also
assembled a dataset containing only reads longer than 165Kbp, from 11 flowcells.

Figure 2: a-b) Identity and length metrics for nanopore read sets used in the HG002 evaluation. c-f)
Pore-C and Hi-C metrics for contacts and signal ratio, measured on a per-library basis. “Alignment
length” and “alignments per read” are proxies for subread statistics. Only mappings which are usable
for phasing are shown, i.e with mapping quality (mapQ) >0 in a diploid reference. Signal ratio is
computed using a high quality trio-phased assembly to indicate the number of consistent and
inconsistent contacts (see methods).

Pore-C and Hi-C sequencing
An early version of the Pore-C protocol was performed and provided by ONT for use

in this work, and compared to existing Hi-C datasets from the HPRC Year 1 data freeze.
Notably, these Pore-C libraries do not have a larger modal alignment length than Hi-C (Figure
2c). The difference between Pore-C’s multi-contact concatemers and Hi-C’s 1-to-1 paired
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ligation are shown using alignments. Pore-C concatemers are composed of many smaller
reads, or “subreads”, analogous to Hi-Cs paired reads. As a result of having many subreads,
each Pore-C read has many alignments, and its contacts accumulate in an all-vs-all manner
among subreads. The number of subreads (usable for phasing) can be in the dozens (Figure
2d). In contrast, Hi-C accumulates at most one long range contact per pair of reads, and in
many cases, read pairs contain unmappable reads, which drastically reduces its throughput.

To demonstrate the practical differences between Pore-C and Hi-C that are
particularly relevant to phasing, these results also show the signal ratio (Figure 2e) and the
total number of contacts (Figure 2f) for reads which map to a diploid reference. Since
mapping quality is used to filter contacts during phasing, the spectrum of signal ratio and
number of contacts is plotted across observed map qualities. Signal ratio is computed using a
trio-phased diploid reference, to estimate the number of consistent and inconsistent contacts
(cis or trans w.r.t. haplotypes). In summary, contacts from Hi-C consistently have a higher
signal ratio, while Pore-C produces more contacts.

Assembers evaluated
For phasing and assembly quality evaluation, we compare to widely-used pipelines

for diploid assembly that use ONT reads, PacBio CCS, or both. For PacBio CCS and hybrid
CCS/ONT assemblers we have included Hifiasm and Verkko (Table 1). As the name implies,
Hifiasm is an assembler for PacBio CCS (HiFi) data which has built-in methods for trio and
Hi-C phasing. When comparing Shasta to Hifiasm the relative strengths of PacBio and
nanopore become apparent. GFAse is also compared to Hifiasm’s native phasing methods to
evaluate GFAse’s performance. Verkko is used in this comparison as an upper limit, since it
uses both high coverage CCS and ONT reads to generate its assemblies. In this comparison,
Hifiasm uses 30x coverage CCS and 30x coverage HiC. Verkko “production” assemblies use
42x CCS and 70x ONT >100Kbp, and trio Illumina. The “full coverage” Verkko assembly
uses 190x CCS.

For nanopore, HapDup has recently developed a combination of alignment-based and
assembly-based methods for phasing long reads31. HapDup uses a linear unphased Shasta
assembly as a starting point, phases aligned reads, and then generates a reference-free
consensus for each haplotype. HapDup is specialized for structural variant detection in low
coverage nanopore datasets, so it is a natural comparison point for phased Shasta assemblies.

ONT CCS HiC / PoreC

Assembler Label Coverage N50 (Kbp) Coverage N50 (Kbp) Coverage

HapDup
(Shasta) " 38 31

Shasta R9 Standard 37 60 45/30

Shasta R9 UL 60 80 45/30
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Shasta R9 UUL 60 150 45/30

Shasta R10 (1FC) 26 32 45/30

Shasta R10 UL (4FC) 60 130 45/30

Shasta
R10 UUL
(11FC) ~60 230 45/30

Hifiasm Trio " 30 17.5

Hifiasm Hi-C " 30 17.5 30

Verkko Trio production 185.77 81.20 42.66 14.75

Verkko Trio full coverage 971.71 50.65 169.03 17.22

Table 1: Coverage summaries for HG002 assemblies evaluated in this analysis

Phasing results
To evaluate phasing accuracy, the assemblies presented are aligned to a common

reference and their heterozygous alleles are compared using WhatsHap to an orthogonally
phased truth set, produced by NIST’s Genome In A Bottle32 consortium. Switch rate indicates
how often alleles in the sample switch phase relative to the truth set, and hamming rate
indicates the proportion of switched loci. Genotypes with allele sequences that do not both
exactly match the reference VCF are not evaluated for phasing, which is accounted for by
reporting the number of variants covered.

GFAse Trio uses k-mers from parental Illumina short reads to phase the heterozygous
bubbles in the child Shasta assembly graph. Phasing results show that Shasta + GFAse Trio
using Illumina reads outperforms Hifiasm Trio and Hifiasm HiC in terms of median switch
rate (~ 0.0005 ) and hamming error (~ 0.0005). Shasta + GFAse trio results are also within
range of the Verkko Trio ‘production’ assembly that uses both ONT and PacBio input reads.
Two chromosomes, Chr15 and Chr16, have higher hamming rates across all the R10 Shasta
assemblies, which may be due to the difficulty of resolving these chromosomes and
identifying inversions relative to the hg38 reference. This method requires short read
sequencing of both parents which, for various reasons, may not always be feasible or cost
effective. For the more contiguous Shasta assemblies, trio results closely match the phasing
results from Hi-C and PoreC phasing which don’t require any parental sequencing.
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Figure 3: Phasing metrics for HG002 assemblies, as evaluated using the GIAB v4.2.1 benchmark
VCF, phased with StrandSeq using WhatsHap (see methods). All shasta assemblies are unpolished.
Assemblies not phased with GFAse are shaded gray. Each dot represents a chromosome error rate,
generated by WhatsHap compare. Native Hifiasm HiC uses 30x coverage. Each pair of HiC is ~17x.
PoreC flowcells have ~30x yield.
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Shasta + GFAse assemblies consistently outperform native Hifiasm HiC phasing, and
in some cases, hamming rates match or beat trio-phased Hifiasm. When comparing the total
number of assessed variants, R10 assemblies drastically improve on R9, likely as a result of
its lower error rate. This effect can be seen by comparing the standard length results to UL, in
both R9 and R10. It is also evident from the HapDup results that polishing has a drastic effect
on covered variants, since it uses a single flowcell R9 Shasta assembly. UL R10 assemblies
reach nearly as many variants covered as Verkko while also producing comparable switch and
hamming rates.

Yak Trio eval, an orthogonal evaluation method that uses parental short read k-mers
to evaluate phasing accuracy, reports an order of magnitude higher switch and hamming error
for Shasta assemblies compared to Verkko (Supplementary Table 2). This could be from a
combination of greater genome coverage and systematic false positives in the switch analysis.
As one possible explanation for the discrepancy between yak and WhatsHap, we observed
that some of the yak switch blocks occur in regions of the Shasta assembly that differ from
Verkko only in homozygous variants (Supplementary Figure 4a) and this is particularly
evident in chrX of the male HG002 assembly (Supplementary Figure 4d). As an additional
source of enrichment of errors, we observe that some yak switches occur in repetitive regions
that contain homozygous homopolymer errors (Supplementary Figure 4c). When comparing
Shasta Dipcall VCFs directly to Verkko Dipcall VCFs we observe a variant coverage of
2.48M at a hamming rate of 0.0003, but the total variants from Dipcall differ significantly in
assembly specific Indels (Supplementary Table 3).

As evaluated by WhatsHap, GFAse consistently produces a median chromosomal
hamming error of <0.001% for Shasta assemblies, which is reduced from an average
chromosomal hamming of 40-50% for non-globally phased assemblies. In the single flowcell,
standard length R10 experiment, R10 produces shorter haplotype bubbles than R9, which are
then phased together at the chromosome scale with proximity ligation data (Figures 3 and
4d). In the high coverage UL R10 assembly, a large portion of the variants exist in continuous
haplotypes directly from the Shasta assembler (Figure 4e). Generally, the graphs with high
input N50 reach trio-level phasing accuracy when phased with HiC. The highly fragmented
input graphs such as the Shasta “standard” R9 or the Hifiasm PacBio graphs converge to a
less optimal phasing.

In addition to this analysis, a limited number of HG005 R9 and R10 assemblies were
evaluated (see Supplementary Figure 2 and Table 1), along with 4 HPRC R9 assemblies
(Supplementary Figure 3). A similar trend in phasing accuracy is observed across all
additional individuals, with the caveat that there is no StrandSeq-derived truth set for the
HPRC assemblies.

By comparing Pore-C and Hi-C (Supplementary Figure 1) it is evident that more
information is provided by one library of Pore-C than Hi-C. It takes 3 pairs (6x2 lanes, or
~45x) of Hi-C to reach a phasing that is roughly equivalent to 1FC Pore-C (30x). This is
likely due to the higher number of total contacts per Pore-C read. In combination with the
single-flowcell R10 assembly, we achieve an accurately phased human assembly with a total
of 2 PromethION flowcells.
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Assembly quality
Structural variants were evaluated with Truvari and the GIAB HG002 Tier1 structural

variant collection as a truth set. Shasta nanopore assemblies consistently yield structural
variant F1 scores above 90%, with a peak score of >95% in the UL 4FC and 11FC R10
assemblies. Most notably, a single flowcell of R10 400bps nanopore data can reach an F1
score of around 94% (Figure 4a). HapDup33, which starts with Shasta assembly, uses a local
realignment and polishing to recover short collapses, which is a probable cause for its greater
recall. Precisions from R10 assemblies match or exceed HiFi-based methods, but recall
values do not, most likely as a result of collapse in the repetitive regions of the genome.

A similar trend is seen in the gene level analysis performed by asmgene (Figure 4b),
in which the number of full single copy genes are comparable to HiFi or hybrid assemblies,
but multi copy genes are reduced in comparison. For gene completeness, the highest scoring
Shasta assembly reached ~75% multicopy genes at a 99% identity threshold, which is now
10% lower than Hifiasm. In terms of base level quality, R9 assemblies have base qualities
greater than Q30, while R10 assemblies are greater than Q40 and PacBio HiFi or hybrid
assemblies exceed Q50 (Figure 4c).
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Figure 4: Structural variant, base level, and gene level accuracy metrics for HG002 assemblies. a)
Base accuracy evaluated using yak with Illumina NovaSeq. b) Gene completeness measured by
asmgene using human transcript sequences. “Full single copy” genes only indicate unfragmented,
non-duplicated genes, matching transcripts by 99% or greater coverage and stratified by >97%
(translucent) or >99% identity (opaque). Multicopy genes are similarly stratified. c) SVs evaluated
using the GIAB Tier1 benchmark VCF with Truvari. d-e) NGx Plots for Shasta haplotypes, before and
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after unzipping bubble chains with GFAse. For comparison, the phased portion of the un-chained
Verkko ‘production’ assembly is shown. The vertical line indicates the NG50 for each assembly.

Shasta assemblies are chained and unzipped by GFAse to achieve greater continuity.
In theory, only 0.1% of the assembly would need to be assembled as diploid bubbles to
produce a fully phased assembly after unzipping, but in practice, mapping and optimization
with proximity ligation reads is easier when haplotypes are long. Before chaining, bubble
N50s range from <1Mbp in the low coverage experiments up to 39.7Mbp in the highest
quality assembly. For the various R9 assemblies, the chained and unzipped assemblies remain
consistent in length despite their variable input lengths, which is shown by their largely
overlapping post-GFAse NGx distributions (Figure 4d-4e). R10 sequencing protocols are
currently limited by throughput, so sheared reads were used for the single flowcell
experiment, which do not enable the same level of contiguity as the UL assemblies. However,
for the higher cost 4FC and 11FC UL experiments, the upper limit on contiguity exceeds our
previous most contiguous R9 assemblies.

Non-human assemblies
To test Shasta’s phased assembly methods outside the context of human genomes and

basecalling, two species were assembled: the dwarf cuttlefish (Sepia bandensis) and the broad
bordered yellow underwing moth (Noctua fimbriata). S. bandensis, previously unsequenced
by long reads, was sequenced for this work to a depth of ~105x with 30x >100Kbp length. N.
fimbriata was previously sequenced by the Darwin Tree of Life34 to a depth of 87x with an
N50 of 28.7Kbp.

In non-human assemblies, truth sets are limited, so this analysis relies on BUSCO to
evaluate gene completeness and extent of phasing (Table 2). By comparing the BUSCO score
for the full diploid assembly, and one haplotype of the diploid assembly, the number of
phased and unphased genes is measurable. In both species presented, complete phased genes
are estimated to range from 86% to 89% of the 954 genes in the metazoan dataset.

Complete and
single-copy (S)

Complete and
duplicated (D)

Both haps
One
hap

Both
haps

One
hap

Total
diploid

Total
Haploid

Diploid
N50

Sepia bandensis 5.97% 95.39% 90.15% 0.73% 5330371146 415993994 3794550

Noctua fimbriata 7.02% 93.29% 91.40% 4.82% 488722705 21756252 5094850

Table 2: Non-human Shasta phasing metrics, in terms of BUSCO gene completeness. These results use
the metazoan dataset, which has 954 genes.
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Resource usage
For the slowest assembly evaluated (4 flowcell R10 UL), Shasta runs in 12 hours on a

64 thread 1.2TB AWS instance. This allows for 14 assemblies to be run in the same amount
of core hours as a single Verkko assembly (Table 3). For unfragmented assemblies, GFAse
has variable run time of 2.3hr to 4.6hr using 64 threads, which depends on the number of
contacts in the alignments. In the worst case scenario, with a highly fragmented GFA such as
the unphased Hifiasm graph, and high contact dataset such as PoreC, GFAse can take up to 12
hours.

CPU hours
Est. wall hours
(64 vCPU)

Peak RAM
(GB)

Verkko 8288.57 129.5 61

Hifiasm 366.9 5.7 150

HapDup 2425.0 24.0 624

Shasta (UUL) 582.4 9.1 1283

Read alignment 307.2 4.8 140

GFAse (HiC) 75.0 2.3 84

GFAse (PoreC) 145.7 4.6 84

GFAse (Trio) 0.58 0.58 30

Table 3: Run time performance for various assemblers presented in this paper. Separate times shown
for GFAse HiC and PoreC as a result of its dependence on the number of contacts. For HapDup, CPU
hours and wall hours show the sum of multiple steps in the HapDup pipeline, including an initial

Shasta assembly, which used 96 cores. GFAse trio runs single threaded.

Discussion
In this work, we use the latest advances in nanopore sequencing to simplify the

challenge of producing phased de novo assemblies. We demonstrate accurate phasing in a two
PromethION flowcell pipeline, using one long read flowcell and one Pore-C flowcell. Phased
contiguities yielded by our higher coverage experiments are unmatched in previous nanopore
assemblies, and Pore-C as a phasing data type is unexplored in prior publications. The tools
presented are efficient and modular, and they rely on sequencing protocols which have a
relatively short turn around35, enabling rapid prototyping.

We focus on nanopore sequencing because, despite its currently lower base-level
accuracy relative to competitors, its ability to sequence native DNA means that its upper read
length is essentially limited only by the library preparation and loading procedure, which
gives it a unique advantage over methods which rely on synthesis or amplification36. With
recent changes in chemistry and computational methods, this tradeoff in accuracy has
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reduced, while cost and throughput have improved. In three years, since Shafin et al 2020, R9
median accuracy has increased from 90% to 95%, effectively reducing error by half. In the
same time span, protocols for nanopore library preparation have improved average N50s from
42Kbp to >100Kbp, more than doubling. Now, with the R10.4.1 chemistry in production, we
see yet another reduction in error, bringing accuracy into the 98-99% range.

The alternative sequence type to nanopore, PacBio HiFi (CCS), has accuracies of
>99.9%22, but its reads are size-selected, ranging from 10Kbp to 30Kbp. This means that they
have the accuracy to distinguish copies of less diverged repetitive units in the genome, but not
necessarily the length to span them. Hybrid assemblers have integrated both ONT and HiFi
data to accommodate for this, in addition to parental (“trio”) Illumina data or Illumina
proximity ligation data (Hi-C) to assist with phasing. Hybrid methods have achieved
unprecedented accuracy and contiguity by leveraging the strengths of 3-4 different
sequencers, but as a result they are also costly in terms of resources, logistics, and time.

Using technological advances in ONT sequencing, our results produce notable
improvement over the previous standards for nanopore phasing. Evaluation metrics for
phased assembly are approaching that of the hybrid assemblers in gene completeness,
contiguity, and phasing accuracy, showing promise for future single sequencer pipelines.
When considering that all Shasta assemblies generated for this paper are unpolished, it is
clear that there is room for further improvement. Contiguity and completeness are likely to
continue to grow proportionally with additional throughput of long reads. To make full use of
the longest reads, further method development is underway to address repetitive regions
which defy the diploid assumption of our current methods. The consistent trajectory of ONT
quality and throughput has motivated our work, and we aim to continue to adapt long read
assembly methods to future improvements.

From a software development perspective, the tools presented in this paper are
written with the goal of modularity, interpretability, and flexibility of usage. The fully
specified graph outputs of Shasta make it an ideal resource for downstream development and
analysis, as is demonstrated by the application of GFAse in this context. GFAse employs
transparent and reusable data structures, and similar to Shasta, produces comprehensive
outputs that describe the homology, proximity linkage, and inferred haplotype chains in the
graph. Relying directly on alignments, GFAse is capable of using any data type for phasing
which can be aligned to the assembly in BAM format. In theory, long reads, or even
conventional linked reads could be used as phasing information if their alignments span the
unphased regions of an assembly. This makes it a flexible module for future applications, as
long range linked data types continue to evolve.
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Methods

Shasta - De novo phasing with nanopore reads
Shasta is an assembler specialized for nanopore reads, and it uses the Overlap Layout

Consensus paradigm of assembly. It starts by reducing reads into vectors of fixed length
subsequences or markers, and then it computes an approximate overlap among reads using a
variation of the MinHash algorithm37. Shasta refines its candidate overlaps using alignment in
marker space, and reduces the overlap graph by filtering alignments and creating a k-nearest
neighbor graph. For more details, see the initial 2020 publication, or the online
documentation35,38.

In this updated version, Shasta performs de novo phasing internally, using only
conventional nanopore reads. Shasta uses a data structure referred to as a “phasing graph”,
built from a marker representation of the reads. The phasing graph is created following the
overlap stage of assembly, and it describes the coverage in terms of read IDs covering each
branch of a heterozygous diploid bubble found in a graph. For each pair of bubbles, a
Bayesian model computes the probability that they are either uncorrelated or in one of two
possible phased orientations with respect to each other. By iteratively aggregating bubbles
with this Bayesian criteria for correlation, groups of phased bubbles are established, while
uncorrelated error bubbles remain isolated.

Given a set of phased bubbles or a “component”, Shasta then identifies local bubble
chains within each set, which are bubbles in series, constituting collinearly traversable
regions of the graph38. These bubble chains have a strict topology in which elements in the
chain can either be homozygous unphased nodes or heterozygous phased pairs of nodes (see
Figure 4A). Bubble chains are the basis for subsequent unzipping into haplotypes. For
completeness, Shasta generates output GFAs containing the succinct representation of edits,
or “Detailed” graph, as well as the larger unzipped haplotype representation, or “Phased”
graph. Both of these representations contain bubble chains with differing length haplotype
sequences. The “Phased” representation is convenient for downstream phasing because its
sequences tend to greatly exceed the length of a read and multiple variants can be spanned
with conventional mapping. On the other hand, the “Detailed” representation summarizes the
edits between phased haplotypes, and represents longer scale phasing using a path in the
GFA. Graphs generated by Shasta contain “blunt” or non-overlapping nodes, which makes
chaining them trivial.
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Figure 4: The two types of Shasta output graphs, visualized as a 2D layout in Bandage39 at two
different scales. a) A subregion of the “Assembly-Detailed.gfa”, showing a near-variant scale nodes in
a bubble chain and their phasing indicated by colors produced by Shasta. b) A subregion of the
“Assembly-Phased.gfa” showing a phased portion of chr11 from HG002 which terminates at two
tangles, presumably caused by telomeric and centromeric sequences.

GFAse - Phasing graphs with proximity ligation data
GFAse relies on conventional mappings for phasing information. HiC, PoreC, or

other proximity-ligated reads are mapped to the GFA contigs using whichever mapper is most
appropriate for the sequence type. The strength of the proximity linkage between any two
contigs is updated as a sum, in the form of a weighted edge in a “contact graph”, where the
weight is the number of reads linking them. Uninformative mappings which do not cover a
heterozygous site are filtered by setting a map quality threshold.

To phase the graph, GFAse first identifies haplotypic bubbles. Two methods are
available in GFAse: assembler annotation and sequence similarity search. Efficient similarity
search is accomplished with a variation of MinHash37 similar to that used by Shasta35, and
then refined with full scale alignment with minimap240.

Phases are optimized using a stochastic method which approximates a solution to the
optimization variant of the max-cut problem15,18,25. The method depends on an objective
function which penalizes inconsistent contacts and rewards consistent contacts. If any two
bubbles are compared, there are four possible contacts, and only contacts linking the contigs
in matching phases have positive scores. For GFAse, a variation on existing methods was
introduced to improve reproducibility of the stochastic method and perform better on
fragmented graphs in which the state space is much larger. In short, the method takes samples
from repeated greedy optimizations of randomly initialized phase states and accumulates a
distribution of orientations, which is then used to merge bubbles that are most consistent. One
benefit of sampling many times with few iterations is that samples are independent and can
be multithreaded.
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Figure 5: Diagram of sampling method for optimizing proximity linkages in an assembly graph. Edge
weights in the contact graph are represented by teal curves. For each inner iteration, a greedily
converged phase state is used to update a distribution of orientations among bubbles. Bubbles with the
strongest signal at the end of sampling are merged for successive iterations. By the end of each round r
of merging, the largest possible bubble set is 2^r in size.

GFAse - Phasing with parental data
Homozygous parental k-mers are selected from each parent and used to phase the

“detailed” assembly GFA by counting parental k-mers in the heterozygous bubbles. To
process the parental sequence data, reads are broken into 31 base pair k-mers using kmc341.
Kmc3 subtract was used to identify k-mers that are unique to each parent. Finally, unique
homozygous k-mers are matched to child k-mers on heterozygous bubbles assigning a phase
to bubble components, using a simple majority vote. Illumina reads for the HG002 Ashkenazi
Jewish Trio sample were obtained from the publically available 1000 Genomes Project
(fc-4310e737-a388-4a10-8c9e-babe06aaf0cf/working/HPRC_PLUS/HG002/raw_data/Illumi
na/parents/HG003 and
fc-4310e737-a388-4a10-8c9e-babe06aaf0cf/working/HPRC_PLUS/HG002/raw_data/Illumin
a/parents/HG004).
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GFAse - Chaining phased graphs
With a phased assembly graph, adjacent bubbles are chained in a manner similar to

scaffolding, to extend haplotypes. GFAse first loads the GFA using the VG HandleGraph data
structure42 and identifies tractable regions as anything which follows a strict diploid bubble
chain topology. Diploid nodes have exactly one two-hop neighbor and, at most, two direct
adjacencies in each direction. Chains are then identified by traversing contiguous subgraphs
of labeled nodes. With bubble chains identified, haplotypes are labeled with paths in the GFA
formalism. Then they can be “unzipped” trivially by traversing them and duplicating the
homozygous nodes into both haplotypes. The strict definition of bubble chains used in this
method is intended to maximize fidelity to the input graph by reducing misjoins in the
chaining step.

Sequencing and data acquisition

R9 Standard
Sequencing was performed as described in Shafin et al. 2020, and re-basecalled with Guppy
v5.0.7.

R9 UL
ONT data from the GIAB consortium43 was re-basecalled with Guppy >v5.0 and combined
with the R9 Standard dataset to provide longer reads.

R9 UUL
DNA extractions from 6 million cells of HG002 were prepared using Circulomics Nanobind
CBB Kit (Pacific Biosciences, 102-301-900). Libraries were prepared using Ultra-Long DNA
Sequencing Kit (SQKULK001). The libraries were sequenced on Flowcell R9.4.1 on
PromethION for 72 hours. Flowcells were washed using the Flowcell Wash Kit
(EXP-WSH004) every 24 hours. Fresh libraries were loaded after each wash.

R10
DNA extractions from 5 million cells of HG002 were prepared using PacBio Nanobind CBB
kit (SKU 102-301-900) according to UHMW DNA Extraction Cultured Cells protocol
(EXT-CLU-001). Standard pipette tips were used to generate a homogenous sample before
DNA shearing. DNA was sheared to a target size of 50kb on Megaruptor® 3. Samples were
normalized to 100 µL volume at 50 ng/µL concentration and sheared at speed 27 using
Megaruptor shearing kit (E07010003). DNA size was assessed post shearing on Agilent
Femto Pulse System using gDNA 165kb Analysis Kit (FP-1002-0275). Post shearing, DNA
size selection was performed using PacBio SRE kit (SKU 102-208-300) following
manufacturer’s recommendations. Libraries were prepared using Oxford Nanopore Ligation
Sequencing Kit V14 (SQK-LSK114) according to Oxford Nanopore protocol
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GDE_9161_v114_revK_29Jun2022. The libraries were sequenced on Flowcell R10.4.1 on
PromethION for 96 hours. Flowcells were washed using the Flowcell Wash Kit
(EXP-WSH004) every 24 hours. Fresh libraries were loaded after each wash.

R10 UL
Nanopore sequencing dataset were generated following Oxford Nanopore protocol
ULK_9177_v114_revC_27Nov2022. DNA extractions from 6 million cells of HG002 were
prepared using Monarch® HMW DNA Extraction Kit for Tissue (New England Biolabs,
T3060). Libraries were prepared using Ultra-Long DNA Sequencing Kit (SQKULK114). The
libraries were sequenced on Flowcell R10.4.1 on PromethION for 72 hours. Flowcells were
washed using the Flowcell Wash Kit (EXP-WSH004) every 24 hours. Fresh libraries were
loaded after each wash.

Sepia bandensis
Testes tissue (3-5 mg) from an adult male dwarf cuttlefish was homogenized in PBS using a
Dounce homogenizer. This was followed by DNA extraction using Circulomics Nanobind
Tissue Kit (Pacific Biosciences, 102-302-100). Libraries were prepared using Ultra-Long
DNA Sequencing Kit (SQKULK001). The libraries were sequenced on Flowcell R9.4.1 on
PromethION for 72 hours. Flowcells were washed using the Flowcell Wash Kit
(EXP-WSH004) every 24 hours. Fresh libraries were loaded after each wash.

Noctua fimbriata
ONT data was acquired from the Darwin Tree of Life project34.

Generating assemblies

To generate nanopore assemblies, Shasta (v0.10.0 unless otherwise specified) was run with
the appropriate configuration for each data type, as follows:

R9 Standard
--config Nanopore-Phased-May2022
--Reads.minReadLength 10000
--Assembly.mode2.phasing.minLogP 30

R9 UL
--config Nanopore-UL-Phased-May2022
--Reads.minReadLength 10000
--Reads.desiredCoverage 180000000000
--Assembly.mode2.phasing.minLogP 50
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R9 UUL
--config Nanopore-UL-Phased-May2022
--Reads.minReadLength 110000
--Assembly.mode2.phasing.minLogP 50

R10 (1FC)
--config Nanopore-Phased-R10-Fast-Nov2022
--Assembly.mode2.phasing.minLogP 20

R10 UL (4FC)
Configs for Nanopore-Phased-R10-Fast-Nov2022 and Nanopore-UL-Phased-May2022 were
merged, with Nanopore-Phased-R10-Fast-Nov2022 taking precedence for any conflicting
parameters. The following parameters were then added:
--Assembly.mode2.phasing.minLogP 20
--Reads.minReadLength 50000

R10 UUL (11FC)
(Shasta v0.11.1)
--config Nanopore-Phased-R10-Fast-Nov2022
--Kmers.probability 0.05
--MinHash.minBucketSize 20
--MinHash.maxBucketSize 60
--Align.minAlignedMarkerCount 2500
--Reads.minReadLength 170000

Sepia bandensis
--config Nanopore-UL-Phased-May2022
--Reads.desiredCoverage 400G

Noctua fimbriata
--config Nanopore-Phased-May2022

Phasing with GFAse
To phase with GFAse (https://github.com/rlorigro/GFAse), reads are first aligned to contigs
using conventional mapping and alignment. Paired HiC reads were aligned using BWA-mem
(https://github.com/lh3/bwa) and PoreC concatemers were aligned using minimap2
(https://github.com/lh3/minimap2). A WDL which combines these steps can be found at
https://github.com/meredith705/gfase_wdl/tree/main .
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PoreC data was aligned using minimap2 with the following parameters:

minimap2 \
-a \
-x map-ont \
-k 17 \
-t 56 \
-K 10g \
-I 8g \
Assembly-Phased.fasta \
porec_reads.fastq.gz \
| samtools view -bh -@ 8 -q 1 - \
> porec_to_assembly.sorted_by_read.bam

HiC data was aligned using BWA with the following parameters:

bwa index Assembly-Phased.fasta \
&& \
bwa mem -t 46 -5 -S -P \
Assembly-Phased.fasta \
HG002.HiC_1_S1_R1_001.fastq \
HG002.HiC_1_S1_R2_001.fastq \
| samtools sort -n -@ 24 - -o hic_to_assembly.sorted_by_read.bam \

Shasta assemblies were phased with HiC using the following parameters:

/home/ubuntu/software/GFAse/build/phase_contacts_with_monte_carlo \
-i hic_to_assembly.sorted_by_read.bam \
-g Assembly-Phased.gfa \
-o /path/to/output/directory/ \
-m 1 \
-t 62

Shasta assemblies were phased with PoreC using the following parameters:

/home/ubuntu/software/GFAse/build/phase_contacts_with_monte_carlo \
-i porec_to_assembly.sorted_by_read.bam \
-g Assembly-Phased.gfa \
-o /path/to/output/directory/ \
-m 3 \
-t 62

101



Verkko assemblies need the parameters “--skip_unzip” and “--use_homology” in addition to
the above parameters, because bubbles are not labeled, and its homopolymer decompressed
GFA has incorrectly specified overlaps which cannot be unzipped and stitched trivially. A
map quality minimum of 3 is used for all Verkko assemblies.

Evaluation

Input data was evaluated using an alignment based QC tool called WamBam, which
iterates BAMs and produces read identity and read length stats44. PoreC statistics were
generated via a similar method using the “evaluate_contacts” executable provided in the
GFAse repository. Reads were aligned to both haplotypes of the trio phased Verkko “full
coverage” HG002 assembly, and statistics were calculated by accumulating loci and lengths
for each mapping of each read ID. For the “signal ratio” calculation, a contact map was
constructed by building a graph similar to that used in phasing methods. Any two mappings
of the same read ID constitute an edge, and they are binned by the minimum mapping quality
of the pair. Edges that cross from one haplotype to another are considered inconsistent with
the true phasing, and are used to compute a ratio of consistent to inconsistent edges.

As a truth set for phasing, chromosome-length haplotypes were generated using
Strand-seq and long reads. In order to generate haplotypes, we have used a combination of
Strand-seq data and PacBio Hifi reads from the same individual (HG005 and HG002). Sparse
and chromosome-length haplotypes were generated using Strand-seq data and R package
StrandPhaseR (version 0.99) as previously described45. Next, we detected inverted regions
using Strand-seq data and manually curated this list of inversions as previously described46.
We have used this set of inversions to correct Strand-seq phasing over these regions with the
StrandPhaseR function called ‘correctInvertedRegionPhasing’ as previously described46.
After inversion phase correction, we generated dense chromosome-length haplotypes using a
combination of Strand-seq haplotypes and PacBio long reads as previously described in the
integrative phasing framework45,47. Integrative phasing was completed using WhatsHap
(version 1.0)14. For integrative phasing, we used a defined set of variant positions (available
at,
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/ChineseTrio/HG005_NA24
631_son/NISTv4.2.1/GRCh38/HG005_GRCh38_1_22_v4.2.1_benchmark.vcf.gz and
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_N
A24385_son/NISTv4.2.1/GRCh38/HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz). To
include indels into the final callset, we have run WhatsHap with --indels parameter.

To analyze phasing accuracy, a combination of Dipcall48 and WhatsHap was used.
Dipcall is a reference-based variant caller. For a set of phased assemblies, it produces a VCF
file of single nucleotide variants (SNVs) as well as small insertions and deletions (INDELs).
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For the male HG002 sample, Dipcall was run using the GRCh38 reference, but set to treat the
PAR region as autosomal regions. Phase set tags were manually added to the Dipcall VCF file
before being used by WhatsHap. WhatsHap “compare” assesses switch error and hamming
distance in the phased assemblies by comparing the phasing of alleles in the NIST’s Genome
In a Bottle43 truth set to the Dipcall VCF file. WhatsHap “compare” only includes variants in
the analysis that have identical alleles in the truth and query VCF file, making it robust to
SNVs caused by sequencing errors. WhatsHap “stats” was run with a “chromosme_lengths”
input file to calculate phasing statistics.

Collapses and misassemblies within genes were evaluated using minimap240,
asmgene and the publically available Ensemble genes as input
(https://ftp.ensembl.org/pub/release-87/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdn
a.all.fa.gz). Ensemble cDNA was aligned to the CHM13 v2.0 reference and the HG002
assemblies with minimap2 using “-cx splice:hq” for intra-species cDNA alignment.
Asmgene, a part of minimap2, selects the longest isoform from overlapping alignments and
counts it as matching the reference if it covers >99% of the transcript length with a mapping
identity above an input threshold. To account for ONT’s sequencing error profiles, asmgene
was run with a mapping identity threshold of 97% instead of 99% used for HiFi assemblies.
Transcripts are counted as single-copy if they uniquely align to the reference and multi-copy
if they align to multiple loci.

Base quality was estimated using yak49, based on the k-mer content of Illumina short
reads. Each phased assembly was evaluated separately. K-mer in the short reads were counted
using “yak count -b 37”, and quality values (QV) were estimated using “yak qv -K 3.2g -l
100k”. For HG002, we used the 30x Illumina Novaseq PCR-free read set publically available
at the Google bucket gs://deepvariant/benchmarking/fastq/wgs_pcr_free/30x/. For the 4
samples from the HPRC (HG01993, HG02132, HG02647, and HG03669), we used 30x
Illumina short-reads from the high coverage readset of the 1000 Genomes Project samples13.

Non-human assemblies (Noctua fimbriata and Sepia bandensis) were evaluated using
default arguments for BUSCO v5.4.3, and the “metazoan_odb10” dataset. To attempt to
evaluate the number of phased genes, BUSCO was run twice: once with both haplotypes, and
once with one haplotype. For the “both haplotypes” evaluation, the entire diploid assembly
was provided to BUSCO. For the “one haplotype” evaluation, one of each haplotype from the
phased regions was removed, and the remaining sequences were evaluated by BUSCO.

Switch error in the phased assemblies was also estimated from Illumina short reads
from parents. We used yak to count the k-mer in the short reads, as above, and “yak trioeval”
to compute the estimated switch error rate. As above, the read sets for HG002’s parents were
downloaded from the same Google Bucket as for the base quality evaluation, and from the
1000 Genomes project’s dataset for the 4 HPRC samples.
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Structural variants (SVs) were called from the phased assemblies using dipdiff, a
modified version of the SVIM-ASM tool50. In HG002 assemblies, the SVs were called
against GRCh37 and evaluated with the GIAB SV truthset32 using Truvari51. Truvari’s
“bench” command was run with “--no-ref a -r 2000 -C 2000" to ignore missing homozygous
calls for the reference allele, and match variants up to 2,000 bp away from each other.
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