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Research Article

Dysfunctional β-cell longevity in diabetes relies on energy
conservation and positive epistasis
Kavit Raval1,* , Neema Jamshidi2,* , Berfin Seyran1 , Lukasz Salwinski3 , Raju Pillai4, Lixin Yang4 , Feiyang Ma3,
Matteo Pellegrini3, Juliana Shin5, Xia Yang5, Slavica Tudzarova1

Long-lived PFKFB3-expressing β-cells are dysfunctional partly
because of prevailing glycolysis that compromises metabolic
coupling of insulin secretion. Their accumulation in type 2 dia-
betes (T2D) appears to be related to the loss of apoptotic
competency of cell fitness competition that maintains islet
function by favoring constant selection of healthy “winner” cells.
To investigate how PFKFB3 can disguise the competitive traits of
dysfunctional “loser” β-cells, we analyzed the overlap between
human β-cells with bona fide “loser signature” across diabetes
pathologies using the HPAP scRNA-seq and spatial tran-
scriptomics of PFKFB3-positive β-cells from nPOD T2D pancreata.
The overlapping transcriptional profile of “loser” β-cells was
represented by down-regulated ribosomal biosynthesis and
genes encoding for mitochondrial respiration. PFKFB3-positive
“loser” β-cells had the reduced expression of HLA class I and II
genes. Gene–gene interaction analysis revealed that PFKFB3
rs1983890 can interact with the anti-apoptotic gene MAIP1 im-
plicating positive epistasis as amechanism for prolonged survival
of “loser” β-cells in T2D. Inhibition of PFKFB3 resulted in the
clearance of dysfunctional “loser” β-cells leading to restored
glucose tolerance in the mouse model of T2D.

DOI 10.26508/lsa.202402743 | Received 27 March 2024 | Revised 11 September
2024 | Accepted 12 September 2024 | Published online 23 September 2024

Introduction

Despite the clear link between accumulation of injured and dys-
functional β-cells and type 2 diabetes (T2D), it is difficult to target
specifically these pathogenic cells in a therapeutic attempt to
modify the trajectory of T2D. We reasoned that an effective ap-
proach would be to probe the existence of a context-dependent
tissue property in health to which we can attribute the specific
recognition and clearance of all injured and/or dysfunctional cells
agnostic to their identity. As such, cell fitness competition (CFC) is

emerging as a tissue clearance mechanism that maintains function
by monitoring tissue behavior at the population scale (Merino et al,
2016) during and after development (Moreno et al, 2002; de la Cova
et al, 2004; Gibson & Perrimon, 2005) and in adult post-mitotic
tissues (Coelho & Moreno, 2019; Coelho et al, 2018; Vieira et al, 2024)
(reviewed in Bowling et al [2019]). The process relies on the dif-
ferential fitness within apparently isogenic cell population across
several levels of cellular organization—from cellular resources
(ribosomal biosynthesis, RiBi) to energy (metabolism) and infra-
structure (mitochondria) (Coelho et al, 2018; Coelho & Moreno,
2019). Under homeostatic conditions, CFC enriches the tissue
with functional and healthy cells without marked changes in tissue
mass, which is deemed a silent phenotype (Blaauw et al, 2010; Sasai
et al, 2010; Leychenko et al, 2011; Tamori & Deng, 2014). When
damaged beyond repair, a cell’s “molecular fitness fingerprint” is
marked by protein aggregates and oxidative stress (Baumgartner
et al, 2021). Mitochondrial dysfunction is common to different
“loser” cells, and it is sufficient and necessary to trigger CFC (Lima
et al, 2021). As such, “loser” epiblast cells undergo a transcriptional
program in response to the impaired mitochondrial function that
involves integrated stress response and unfolded protein response
(UPR), implicating DNA Damage Induced Transcript 3 (Ddit3), Acti-
vating Transcription Factor 3 (Atf3), Protein Phosphatase 1 Regu-
latory Subunit 15A (Ppp1r15a) (Lima et al, 2021), and NFE2 Like BZIP
Transcription Factor 2 (Nfe2l2) (Melber & Haynes, 2018; Munch, 2018;
Rosario et al, 2020). Breaking down the “loser-to-winner” trajectory
revealed that ribosomal synthesis and the targets of RPTOR In-
dependent Companion Of MTOR Complex 2 (RICTOR) and MYC
primarily fell within the down-regulated genes, constituting the
“loser” fingerprints (Lima et al, 2021).

Our previous work has demonstrated that β-cells from T2D
donors have a wide range of abnormalities that mirror those that
are found in molecular “loser fingerprints,” such as the proteo-
toxicity, UPR, and mitochondrial attenuation (Montemurro et al,
2019). Injured “loser” β-cells can escape removal by CFC (Bowling
et al, 2019; Baker, 2020; Lawlor et al, 2020) by increasing the
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competitive advantage to “winner” cells via aerobic glycolysis using
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3)
(Montemurro et al, 2019; Nomoto et al, 2020; Min et al, 2022). This
sequence of observations implied that proteotoxicity, CFC, and
functional cell regeneration could be linked, with T2D potentially
representing a disease of dysfunctional cells that supposed to die
but don’t.

The link between PFKFB3 and CFC was indicated in the human-
like murine model of T2D after β-cell depletion of PFKFB3
(PFKFB3βKO on diabetogenic stress, DS, proteotoxic stress [β-hTG],
and high-fat diet). PFKFB3 knockout led to an initial β-cell apoptotic
competency and almost complete clearance of injured β-cells
followed by near-wild-type levels of β-cell replication that resulted
in maintained β-cell mass. The glucose tolerance restoring the
phenotype of the PFKFB3βKO DS mouse (under moderate DS stress)
in connection to the elimination of injured (“loser”) cells and silent
β-cell mass phenotype closely reflected activated CFC, implicating
PFKFB3 as a gatekeeper of CFC (Min et al, 2022).

We used dual criteria to investigate human “loser” β-cells based
on (1) a bona fide “loser” signature adopted from themouse embryo
(Lima et al, 2021) and (2) PFKFB3 expression from our spatial
transcriptomic analysis. We found no evidence for differential
stress response between “loser” and “winner” β-cells. A notable
exception was the general down-regulation of genes coding for
ribosomal proteins and mitochondrial respiration, which eclipsed
the impact of any other insufficiencies. The “long-lived” PFKFB3-
positive β-cells demonstrated a complete transcriptional overlap
with “loser” β-cells with extreme energy conservation and un-
derlying aborted β-cell competition. From the available T1D and T2D
single nucleotide polymorphism (SNP) pool of the HPAP database
of Genotypes and Phenotypes (dbGAP), PFKFB3 polymorphism
rs1983890 interacted specifically with collective SNPs of ArfGAP with
GTPase domain, ankyrin repeat and PH domain 1 (AGAP1), and the
anti-apoptotic gene, the matrix AAA peptidase interacting protein 1
(MAIP1) (Opalinska & Janska, 2018).

We propose that the RiBi and mitochondrial respiration repre-
sent a “global” phenotypic interface of β-cell fitness. We also
propose that PFKFB3-MAIP1 interaction can create an epiphe-
nomenon of positive epistasis, which can be aborted by PFKFB3
inhibition. As such, inhibition of PFKFB3 led to the clearance of
dysfunctional β-cells and restored glucose tolerance in the murine
model of T2D, indicating that strategies to unlock islet CFC are viable
alternatives for functional β-cell regeneration in T2D.

Results

Elucidating the “loser” β-cell trajectory in diabetes

Selective elimination of PFKFB3-positive β-cells by reactivation of
CFC holds potential for islet enrichment by functional β-cell re-
generation (Fig 1A). Therefore, we investigated a conceptual par-
adigm that diabetogenic stress counters the clearance of
dysfunctional β-cells by a PFKFB3-dependent mechanism (Fig 1A).
β-Cell dysfunction is linked to proteotoxicity and oxidative stress,
interestingly, phenocopying the “loser” cell status established

previously (Baumgartner et al, 2021). We undertook a compre-
hensive genomic analysis of two independent datasets (67 donors
from HPAP and 3 donors from nPOD) (Fig 1B). Datasets of differ-
entially expressed genes (DEGs) were obtained by the module
score–integrated R script based on bona fide “loser” genes: DDIT3,
ATF3, PPP1R15A, RICTOR, and NFE2L2 (Lima et al, 2021) across the
disease spectrum from control (ControlHPAP), prediabetes (AABHPAP),
type 1 diabetes (T1DHPAP), to type 2 diabetes (T2DHPAP) and including
PFKFB3-expressing β-cells (T2DPFKFB3) (genomic pipeline, Fig 1B).
Interestingly, this combined approach yielded hundreds to thou-
sands of DEGs in all disease states except T1D, where DEGs (ad-
justed P < 0.05) were represented by a skewed list and were not
submitted to gene set enrichment analysis (GSEA). The T1DHPAP DEG
list comprised genes involved in immunity such as CD81, immu-
noproteasome component Proteasome 20S Subunit Beta 8
(PSMB8), cell structure regulators: Mitotic Spindle Organizing
Protein 2B (MZT2B), a part of the gamma-tubulin complex, Trans-
locase Of Outer Mitochondrial Membrane 6 (TOMM6), microsomal
glutathione S-transferase 3 (MGST3), Ribonuclease K (RNASEK),
TATA-Box Binding Protein Associated Factor 10 (TAF10), tetra-
tricopeptide repeat protein 32 (TTC32), and others (Table S3). In
addition, ControlHPAP did not yield significant enrichment in any
pathway (Table S1). For the geospatial profiling, we have applied
segmentation to document sequenced genes from 36–48 groups,
each comprised 100 regions of interest (ROIs) of PFKFB3-positive
and PFKFB3-negative β-cells (Fig S1A–F). Principal component
analysis (PCA) predictably indicated proximity between the two
β-cell subpopulations discriminated only by PFKFB3 expression (Fig
S1G).

To find out whether PFKFB3 is a gatekeeper of CFC in diabetes
(Montemurro et al, 2019; Nomoto et al, 2020), we sought to establish
whether PFKFB3-positive β-cells are identical to “loser” β-cells from
CFC. To conceptualize our objective, we considered β-cells with
different competitive traits depicted in Fig 1C. “Loser” β-cells (L) that
do not express PFKFB3 are elective for CFC. However, “loser” β-cells
that express PFKFB3 (P+L) are non-elective by CFC because of
PFKFB3 protection. Alone PFKFB3 (P) expression represents an
indolent CFC status because it does not co-occur with the “loser”
signature (Fig 1C).

GSEA based on DAVID and using Reactome as a reference
unraveled differential transcriptomes (P < 0.05) of “loser” β-cells
from ControlHPAP, AABHPAP, T1DHPAP, T2DHPAP, and T2DPFKFB3 (Fig 1D
and E). DEGs submitted to GSEA were normalized with the union of
all genes from the HPAP database or the union of all genes from the
nPOD database, respectively (Fig 1D and E and Tables S1, S2, S3, S4,
and S5). The percentage coverage (the ratio of the observed gene to
the background gene count) increased with unfolding of the T2D
phenotype, whereas the strength of enriched pathways decreased
from prediabetes (AABHPAP) to T2DHPAP with T2DPFKFB3 accounting for
an intermediate state (Figs 1D and S2). The pairwise overlap be-
tween each of the two disease states is presented in Fig S3A–C.

Enriched pathways referred to the genes encoding for proteins
involved in RiBi, protein translation, and peptide elongation pro-
cesses in all datasets, whereas enriched pathways of mitochondrial
respiration dominated the T2DHPAP dataset (Fig S4). Among the RiBi-
related enriched pathways in T2DPFKFB3, AABHPAP, and T2DHPAP, we
found specifically Protein translation, Peptide chain elongation,
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Selenoamino acid metabolism, Signaling by ROBO receptors,
Nonsense Mediated Decay (NMD), andmany others, all presented in
Fig S4 confirming alignment with the data in Fig 1D.

The DEGs from all datasets were dominated by down-regulated
genes (Tables S1, S2, S3, S4, and S5). Before filtering by adjusted P-
value, individual DEGs in AABHPAP, T2DPFKFB3, and T2DHPAP showed
global overlap in the direction of gene expression compared with
ControlHPAP as demonstrated in the heatmap (scale represents
log2FC) in Fig S5A and B. We observed a subset of inversely cor-
related DEGs including regulators of insulin secretion such as the
subunit of β-cell KATP channel, ATP Binding Cassette Subfamily C
Member 8 (ABCC8), phosphodiesterase 8B (PDE8B), a regulator of
cAMP and cGMP degradation, bone morphogenic protein 5 (BMP5),
which is involved in autophagy, BAI1 Associated Protein 3 (BAIAP3),
encoding for a Ca2-dependent and RPH3AL Rab GTP effector of late
exocytosis, the copper chaperone of superoxide dismutase, and the
Regulator Of G Protein Signaling 16 (RGS16), all of which were found
up-regulated in T2DHPAP compared with T2DPFKFB3 (Fig S5B). Folli-
culin (FLCN) was the only gene found up-regulated in T2DPFKFB3 and
down-regulated in T2DHPAP (Fig S5B). FLCN can activate mTORC1
kinase by stimulating GTP hydrolysis of Rag GTPases (Ramirez Reyes
et al, 2021). FLCN also plays a role in autophagy and modulation of
glycolysis (Ramirez Reyes et al, 2021). Down-regulation of ribosomal
genes was coordinated between the individual DEGs (adjusted P <
0.05) from ControlHPAP, AABHPAP, T2DHPAP, and T2DPFKFB3 (Fig S5C and
D). The shared and non-shared ribosomal and mito-ribosomal
DEGs between the ControlHPAP, AABHPAP, T2DHPAP, and T2DPFKFB3 are
listed in Table S6.

We performed STRING analysis (Szklarczyk et al, 2021a, 2021b) to
identify protein–protein interactions based on physical evidence
with high edge confidence (>90%) (Szklarczyk et al, 2021b) (Fig 2A–C).
We found frameworks of protein associations with clusters visu-
alizing the dominance of ribosomal genes (RiBi) in AABHPAP and
T2DPFKFB3 and mitochondrial respiration with Cytochrome-c oxidase
activity, Ubiquinol-cytochrome-c reductase activity, Electron
transfer activity, and NADH-dehydrogenase (ubiquinone) activity in
T2DHPAP datasets (Figs 2A–C and S6A–C). Interestingly, in the mi-
tochondrial respiration framework we identified one cluster related
to Mitochondrial Translation and ATP Synthases both in T2DHPAP

and in T2DPFKFB3, in the latter much less present (Fig S6A and B). The
connectivity framework of small and large ribosomal subunits was
already present in prediabetes (AABHPAP) corroborating ribosomal
genes as the origin of the β-cell “loser” status. T2DPFKFB3 repre-
sented an intermediate state between prediabetes (AABHPAP)
(where the mitochondrial respiration cluster was omitted) and
T2DHPAP (with the most prominent mitochondrial respiration

cluster). These results suggested that the natural history of the
“loser” β-cells (“loser” trajectory) is associated with RiBi, which
dominates early and mitochondrial respiration dominating the late
diabetes phenotype (Fig 2A, top right panel).

Given that T2DHPAP and T2DPFKFB3 may only differ relative to the
active and inactive CFC (protected “loser” β-cells), respectively, the
unique clusters to T2DPFKFB3 may hold a clue to CFC inactivation.
STRING analysis revealed down-regulation of human leukocyte
antigens (HLA) class I (HLA-A,HLA-B,HLA-C,HLA-E) and class II (HLA-
DRB1, HLA-DMB), Histones, and components of the Trypsinogen
pathway specifically in T2DPFKFB3 DEGs (Figs 2B and S6B). To cor-
roborate these intriguing observations, we carried out an inde-
pendent analysis.

hdWGCNA and WGCNA reveal hub genes related to RiBi in all
disease states

We applied the R package high-dimension (hd)WGCNA (Morabito
et al, 2023) on HPAP scRNA-seq data for each disease state. We
obtained various networks as an output in the form of co-
expression modules with the top 10 hub genes. Co-expression
modules in each disease condition were correlated with “meta-
cell” states of pancreatic β-cells (Tables S7, S8, S9, and S10). The
“metacells” are defined as groups of transcriptionally identical and
distinct cell states. They were created using a bootstrapped ag-
gregation (bagging) algorithm by applying the K-nearest neighbors
method (Morabito et al, 2023).

To summarize the expression of the entire module into a single
metric, module eigengenes (MEs) were created for each metacell
population. MEs are defined as the first principal component of the
module’s gene expression matrix that describes the entire co-
expression module. The turquoise co-expression module domi-
nated because of the overt number of co-expressed genes in
transcriptionally identical metacells for each disease condition
(Fig 3A–J). This was corroborated by the falling dendrograms in
which among all disease states the turquoise module was largest in
the T2DPFKFB3 (Fig 3A, C, and E). The gray modules comprised genes
that were not grouped into any co-expression module and were
therefore excluded from the subsequent analysis. To identify co-
expression networks based on the strong gene–gene co-expression
without the noise of weak correlations, soft power thresholds of 12,
16, 20, and 14 were selected for mean, median, and maximum (max)
connectivity to reach the Scale Free Topology Model Fit greater than
0.8 for ControlHPAP, AABHPAP, T1DHPAP, and T2DHPAP, respectively
(Fig S7). Feature plots of different co-expression modules are
presented in Fig S8.

Figure 1. Elucidating the “loser” β-cell trajectory in diabetes
(A) Scheme of PFKFB3-dependent loss of β-cell function and locked CFC impeding functionalβ-cell regeneration. Protein aggregates lead to up-regulation of the HIF1α-PFKFB3
pathway that delinks glucose sensing from mitochondrial respiration and insulin secretion. PFKFB3 expression promotes “loser” β-cell survival by CFC deactivation. Targeting
PFKFB3 reactivates CFC and clearance of “loser” β-cells. (B) Genomic pipeline to reveal the transcriptional profile of “loser” β-cells and PFKFB3-expressing dysfunctional human
β-cells across health, prediabetes (AAB), T1D, and T2D using HPAP scRNA-seq database and the spatial transcriptomics from nPOD T2D pancreata, respectively. (C)
Diagrammatic presentation of the anticipated effect of PFKFB3 targeting on “loser”β-cells in healthy versus diabetic islets. “Loser” (L) and “winner” (W)β-cells are part of CFC, and
CFC is active in health. However, in diabetes, “loser” β-cells that express high PFKFB3 (P+L) are nomore CFC-elective. When PFKFB3 is targeted, CFC becomes specifically unlocked
in P+L cells, whereas β-cells expressing low PFKFB3 (P) are not affected in the absence of L signatures. (D) Dot plot showing the coverage of Reactome enriched pathways of
DEGs for AABHPAP, T2DHPAP, and T2DPFKFB3. (E) Overlap of enriched pathways across ControlHPAP, prediabetes (AABHPAP), T2DHPAP, and T2DPFKFB3. Top ten shared and enriched
pathways across the ControlHPAP, prediabetes (AABHPAP), T2DHPAP, and T2DPFKFB3 are shown as a list on the left bottom corner.

Dysfunctional β-cell longevity in diabetes Raval et al. https://doi.org/10.26508/lsa.202402743 vol 7 | no 12 | e202402743 4 of 19

https://doi.org/10.26508/lsa.202402743


Figure 2. STRING analysis reveals ribosomes, mitoribosomes, and mitochondrial respiration are at the core of the “loser” signature.
(A) Experimental evidence (>90% confidence level)–based protein–protein interaction framework of DEGs with a cluster of ribosomal biosynthesis and the absence of
the cluster for mitochondrial respiration in AABHPAP. The drawing inset explains the growing presence of OxPHOS cluster from prediabetes to sincere T2D. (B) Experimental
evidence (>90% confidence level)–based protein–protein interaction framework of DEGs with clusters for ribosomal biosynthesis and mitochondrial respiration in
T2DPFKFB3. (C) Experimental evidence (>90% confidence level)–based protein–protein interaction framework of DEGs with clusters for ribosomal biosynthesis and
mitochondrial respiration in T2DHPAP.
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Figure 3. hdWGCNA and WGCNA reveal hub genes related to RiBi in all disease states.
(A, B, C, D, E, F, G, H, I, J) Falling dendrograms and module eigengenes representing transcriptionally identical “metacell” states in ControlHPAP, (C, D) in AABHPAP, (E, F) in
T1DHPAP, (G, H) in PFKFB3-positive β-cells from T2DPFKFB3, and (I, J) in “loser” β-cells in T2DHPAP. (B, D, F, H, J) Top 10 hub genes with connectivity constant for module
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The eigengene-based connectivity (kME) with each gene in the
scRNA-seq data assisted in revealing the hub genes of each
module. In Fig 3A, we presented only turquoise and brown modules
out of four types of MEs (blue, turquoise, brown, and yellow) found
in the ControlHPAP and they overlapped with the GSEA. The tur-
quoise module eigengenes comprised RiBi-related hub genes such
as Ribosomal Protein Lateral Stalk Subunit P1 (RPLP1), and Ribo-
somal Proteins (RP) L32, RPL37, RPL18A, RPS19, RPLP2, RPL37A, RPS29,
RPS27, and RPL39, constituting a shared feature between Con-
trolHPAP and other datasets. In the AABHPAP dataset, we found
turquoise and brownmodule eigengenes comprised RiBi genes and
mitochondrial genes, respectively (Fig 3C and D).

Interestingly, in T1DHPAP we found two module eigengenes
(brown and black) related to RiBi and pink module eigengenes for
the mitochondrial hub genes. This contrasted the results referring
to DEGs derived from “loser” criteria in T1D. Thus, T1D unlike other
disease states may hold different “loser” criteria for selection of
ribosomal and mitochondrial hub genes (Fig 3E and F). Surprisingly,
mitochondrial modules were found in AABHPAP and T1DHPAP, dif-
ferent from the GSEA (Fig 3D and F). Because hdWGCNA is computed
from the normalized gene expression matrix to generate metacell
expression matrices using the K-nearest neighbors parameter, hub
genes in MEs might not necessarily overlap with DEGs from the
scRNA-seq analysis.

To be able to compare the MEs between T2DPFKFB3 and T2DHPAP,
we used conventional WGCNA (Langfelder & Horvath, 2008) for
analysis of the matrix from spatial transcriptomics. We identified
brown and turquoise modules in T2DPFKFB3 comprising genes in-
volved in β-cell function (P < 0.05) and RiBi hub genes (P < 0.05),
respectively (Fig 3G and H). Similar to T2DPFKFB3, in T2DHPAP we found
a dominating turquoise ME in reference to RiBi subunits together
with Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) and
Myosin Light Chain 6 (MYL6) but not the module eigengenes for the
mitochondrial hub genes, which was different from the results of
the GSEA from T2DHPAP (Fig 3I and J). Thus, collectively, the turquoise
module for RiBi hub genes was shared across all datasets and was
not correlated to the module represented by mitochondrial hub
genes (Fig S9).

Key transcriptional drivers of “loser” signature in β-cells

We used Mergeomics weighted Key Driver Analysis to determine the
key drivers of the differential gene expression in disease by ap-
plying gene network topology and edge weight information from
DEGs (see the Materials and Methods section) (Fig 4A–F). Herein, we
identified networks of functionally related candidate hub genes
with regulatory roles in the disease gene expression networks. In
AABHPAP, key drivers were represented by genes playing an im-
portant role in the elongation step of protein synthesis, Eukaryotic
Translation Elongation Factor 2 (EEF2), and Eukaryotic Translation
Initiation Factor 2 Subunit Alpha (EIF2S1, RPL26, RPL4, and RPLS1)

with Eukaryotic Translation Elongation Factor 2 (EEF2, RPL4, and
RPLS1) making the functional connection (Fig 4A and B).

T2DPFKFB3 and T2DHPAP shared a key driver gene, the Signal
Recognition Particle 19 (SRP19). Other key drivers in T2DPFKFB3 in-
cluded Ribosomal Protein L22 Like 1 (RPL22L1), and the structural
constituent of ribosome and SERPINE1 mRNA Binding Protein 1
(SERBP1) involved in SERPINE1 mRNA stability and ribosome hi-
bernation, a process during which ribosomes are prevented from
proteasomal degradation (Shetty et al, 2023). We also identified
Signal Peptidase Complex Subunit 1 (SPCS1) that catalyzes the
cleavage of nascent proteins during their translocation in ER (Liaci
et al, 2021), and Tumor Protein Translationally Controlled 1 (TPT1)
(Chen et al, 2013). Upon glucose stimulation, TPT1 is translocated to
the mitochondria and the nucleus. Gene knockdown of TPT1 in-
duces apoptosis, and its overexpression reduces ER-stress–related
apoptosis (Diraison et al, 2011) (Fig 4C and D). Similar to TPT1,
SERBP1-dependent fatty acid synthesis is required for insulin se-
cretion at high glucose concentrations (Diraison et al, 2008). The
T2DPFKFB3 key drivers RPL22L1, SERBP1, and TPT1 formed functional
connections and are all related to increased resistance to stress
(RPL22L1 and SERBP1 partaking in ribosome hibernation [Shetty
et al, 2023], and TPT1 in resistance to oxidative and ER stress
[Diraison et al, 2011; Chen et al, 2013]).

In T2DHPAP, key drivers were presented by Mitochondrial Ribo-
somal Protein S7 (MRPS7) from mitochondrial protein synthesis;
SEC61 Translocon Subunit Alpha 2 (SEC61A2), a signal peptide–
containing precursor for co-translational translocation of nascent
polypeptides across the ER, forming an ER ribosome receptor and a
gated pore; Signal Sequence Receptor Subunit 4 (SSR4) binding
calcium and regulating ER-resident proteins; SEC61 Translocon
Subunit Gamma (SEC61G) with ATPase activity; and SRP19 enabling
7S RNA binding activity. The functionally connected key drivers in
T2DHPAP comprised SEC61 subunits and SSR4, falling under mito-
chondrial and ER regulatory genes (Fig 4E and F).

Collectively, these analyses confirmed that PFKFB3-positive
β-cells are cells with “loser” signatures that show reduced HLA
expression, evidence of potential escape from immunosurveillance
(MacLean et al, 2010; Perfeito et al, 2014; Schoustra et al, 2016).
Because PFKFB3-positive “loser” β-cells are long-lived cells carried
on from prediabetes, we asked about the mechanism by which
PFKFB3 can exert protection despite the global distortion of RiBi
and mitochondrial respiration.

SNP-SNP analysis reveals PFKFB3 rs1983890 interplay with the
anti-apoptotic gene MAIP1

The positive epistasis as an epiphenomenon that can counter the
global distortion of RiBi has been described previously in yeast
(Tutaj et al, 2023), and we set to investigate it in relation to PFKFB3
gene–gene interactions (GGI). We analyzed interactions between
the PFKFB3 polymorphic allele on the chromosome 10p15.1 locus

eigengenes (kME) of each hub gene showing dominant turquoise (RiBi) and brown (OxPHOS) modules for (B) ControlHPAP and (D) AABHPAP; (F) dominant brown and black
(RiBi), and pink (OxPHOS) modules for T1DHPAP; (H) dominant turquoise (RiBi) and brown (OxPHOS) modules in T2DPFKFB3 with marked Z-score and P-values; and (J)
dominant turquoise (RiBi) and brown (OxPHOS) modules with kME value in T2DHPAP. Each leaf on the dendrogram represents a single gene, and the color at the bottom
indicates the co-expression module assignment.
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(rs1983890) (Wallace et al, 2015) and all annotated SNPs from the
HPAP dbGAP corresponding to the list of DEGs in PFKFB3-positive
β-cells (Fig 5A). Using case (all diabetic donors) to control (non-

diabetic donors) approach, we found only two genes with signifi-
cant (adjusted P < 0.05) SNP interactions, the matrix-AAA peptidase
interacting protein 1 (MAIP1) (adj. P = 0.0113); and the ArfGAP With

Figure 4. Key transcriptional drivers of “loser” signature in β-cells.
(A, B, C, D, E, F) Network of key driver hub genes (presented as red nodes and shared genes as blue nodes) with a list of top five key driver genes (highlighted in red) in
the adjacent table and the respective protein–protein interaction network in AABHPAP, (C, D) in T2DPFKFB3, (E, F) in T2DHPAP. Please note that TPT1 anti-apoptotic gene is not
part of the depicted cluster in (D).
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Figure 5. PFKFB3 inhibition eliminates dysfunctional β-cells that are protected by positive epistasis.
(A) PFKFB3 rs1983890-SNP interaction analysis with the DEGs in PFKFB3-positive relative to PFKFB3-negative β-cells revealed by spatial transcriptomics yielded
significant interactions with collective SNPs of AGAP1 and MAIP1 (SNPs 115). Diagrammatic reconstruction of the results indicates a proposed mechanism of PFKFB3-
mediated survival of injured “loser” β-cells. MAIP1 is an anti-apoptotic gene that controls mitochondrial Ca2+ via MCU uniporter. MCU is composed of channel-forming
subunits, EMRE, and a gatekeeper subunit MICU. The gating of the MCU complex requires an association between EMRE and MICU. MAIP1 may protect EMRE from i-
AAA–mediated degradation (Opalinska & Janska, 2018) preventing constitutive activation of MCU and cell death. (B) Quantitative representation of insulin-positive and
glucagon-positive (bihormonal) injured cells (% of all β-, α-, and bihormonal cells). (C) Quantitative representation of c-Myc–positive injured β-cells (% of all β-cells).
(D) Quantitative representation of HIF1α-positive injured β-cells (% of all β-cells). (E, F, G) Representative immunofluorescence images of islets, from wild-type mice
exposed to high-fat diet, HFD (WT), mice under diabetogenic stress treated with vehicle (IAPP+HFD = DS; DS + vehicle), mice with conditional PFKFB3 knockout exposed to
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GTPase Domain, Ankyrin Repeat And PH Domain 1 (AGAP1) (adj. P =
0.0275), presented in the Tables S11 and S12. MAIP1 interacts with the
m-AAA peptidase, preventing degradation of the essential mito-
chondrial calcium uniporter (MCU) regulator (EMRE).

These results indicated that PFKFB3 may play via MAIP1 a direct
role in the survival and protection of “loser” β-cells and that tar-
geting PFKFB3 can facilitate the clearance of these cells.

Therefore, we set out to analyze the phenotypic consequences
of PFKFB3 depletion or inhibition in mice undergoing diabeto-
genic stress and the feasibility of targeting PFKFB3 at a systemic
level.

Imaging analysis of the immunostainings from the h-βTG mouse
pancreata from DS+vehicle compared with the WT controls indi-
cated accumulation of different types of injured β-cells such as
double insulin- and glucagon (bihormonal)-, cytoplasmic c-Myc–
positive, and HIF1α-positive β-cells (Fig 5B–G). We have not found a
transcriptional up-regulation of PFKFB3 in “loser” β-cells. However,
PFKFB3 could be stabilized in a post-translational fashion impli-
cating APC/Cdh1 and Emi1 (Tudzarova et al, 2011; Cappell et al, 2018).
In that sense, we found a down-regulation of APC/Cdh1 (FZR1) in
T2DHPAP (log2FC = −0.21; P = 0.004), whereas in T2DPFKFB3, the down-
regulation was not significant (log2FC = −0.004; P = 0.6) (Table S13).

PFKFB3-expressing β-cells exceeded the number of individual
injured β-cells, and PFKFB3 knockout led to the clearance of all
injured β-cells (Min et al, 2022). We separated the PFKFB3 targeting
group (n = 5) into three animals subjugated to β-cell–specific
knockout of PFKFB3 (PFKFB3βKO DS) as a positive control (Min et al,
2022) and two animals that received the PFKFB3 inhibitor AZ67.
PFKFB3βKO DS led expectedly to the diminishment of all types of
injured β-cells (Figs 5B–G, S10, S11, and S12). 7 wk of i.p. adminis-
tration of the PFKFB3 inhibitor AZ67 (DS+iPFKFB3 group) recapitu-
lated the effect of PFKFB3βKO DS as confirmed with quantification of
all injury markers positive versus all β-cells (Fig 5B–G). Bihormonal
cells (that are increased in high-fat diet [HFD]), HIF1α-positive
(dysfunctional β-cells reflecting islet inflammation induced by
HFD), and cytoplasmic c-Myc–positive β-cells (indicators of cells
undergoing hIAPP-induced calpain activation and toxicity), which
were significantly up-regulated in DS+vehicle, were depleted in
DS+iPFKFB3 mice (Fig 5B–G).

To understand the relevance of MAIP1 expression in stressed
β-cells, we immunostained serial sections of the whole pancreas
from WT control, DS+vehicle, and DS+iPFKFB3 mice with MAIP1
antibody and PFKFB3 antibody followed by a comparison of the
identical islets. We counted β-cells from all the islets in the whole
pancreas section.

High MAIP1- and PFKFB3-immunopositive β-cells in DS+vehicle
mice co-localized and overlapped in frequency showing 24.4% ±
2.2% and 29.6% ± 3.1% SEM of all β-cells, respectively, marking
β-cells with reduced insulin expression (Figs 6A–H and I, S13, and
S14). The β-cells with an overlap in high PFKFB3 and MAIP1

expression are shown as a subset in Figs 6G and H and S14. The
immunopositivity of both MAIP1 and PFKFB3 was below 1% in
WT+HFD and DS+iPFKFB3 pancreata (Fig 6I). Given that PFKFB3 in-
hibition cannot affect the PFKFB3-MAIP1 gene–gene interaction,
depletion of MAIP1-positive β-cells supports the idea of clearance
over β-cell restoration. Islet-specific MAIP1 staining was further
confirmed in the human nPOD sections from the two T2D donors
(#6255 and #6186) used in the spatial transcriptomics and one
independent T2D nPOD donor (#6300) (Fig 6J–L). As non-diabetic
controls, we immunostained nPOD donor IDs #6091, #6048, and
#6096. The strongest MAIP1 immunopositivity was associated with
β-cells with reduced insulin expression and accounted to 36.5% ±
7.4% SEM of all β-cells in T2D (Fig 6F). Unlike MAIP1, AGAP1 up-
regulation was observed in a subset of non–insulin-positive islet
cells (Fig S15) in line with the Human Protein Atlas (https://
www.proteinatlas.org/ENSG00000157985-AGAP1/tissue+cell+type)
showing AGAP1 expression in endothelial cells, fibroblasts,
macrophages, and ductal and T cells but no expression in β-cells.
When normalized with all islet non–insulin-positive cells, AGAP1
expression pertained to comparable 29.2% ± 3.6% SEM, 29.3% ±
2.4% SEM, and 27.4% ± 3.4% SEM in WT+HFD, DS+vehicle, and
DS+iPFKFB3, respectively (Figs 6M and S15).

We asked whether clearance of injured “loser” β-cells under DS
conditions would be sufficient to restore metabolic control in the
DS mice.

Systemic PFKFB3 inhibition improves metabolic performance of
h-βTG (T2D) mice

We administered the PFKFB3 inhibitor AZ67 daily (at 28 mg/kg body
weight) from day 1 of exposure to HFD for 7 wk. We performed
intraperitoneal glucose tolerance test (IP-GTT) at 4 and 6 wk of
iPFKFB3 treatment and an insulin tolerance test at 5 and 7 wk of
iPFKFB3 treatment. The experimental timeline of PFKFB3 inhibitor
(iPFKFB3) administration and metabolic measurements are
depicted in Fig 7A.

The clearance of injured β-cells by PFKFB3 inhibition correlated
with the improved glucose tolerance as demonstrated by IP-GTT
and by AUC of blood glucose (±SEM, P < 0.05) after 4 wk (n = 7–8,
±SEM, P < 0.05) (Fig 7B, D, and E) and 6 wk (two independent ex-
periments, n = 4–8/group, ±SEM, P < 0.05) (Fig 7C, G, and H). Improved
glucose tolerance led to reduced fasting blood glucose (Fig 7E and
H). Moreover, insulin sensitivity was increased although not
reaching significance in DS+iPFKFB3 mice after 5 wk (n = 7–8, ±SEM,
P < 0.05) (Fig 7F) and 7 wk (two independent experiments, n = 4–8/
group, ±SEM, P < 0.05) (Fig 7I) when compared to the DS+vehicle
group.

Collectively, these data indicated that targeting PFKFB3-positive
β-cells with “loser” signature by PFKFB3 inhibition leads to

diabetogenic stress for 6 wk (PFKFB3βKO DS), and mice under diabetogenic stress receiving the PFKFB3 inhibitor AZ67 for 6 wk (DS + iPFKFB3); (E) double immunostained
for insulin and glucagon (to reveal bihormonal cells), (F) immunostained for cytoplasmic c-Myc, and (G) HIF1α (all markers in red), insulin (green), and nuclei (blue)
showing eradication of marker-positive injured β-cells in PFKFB3βKO DS and DS + iPFKFB3 mice. The sectioning was performed across the whole pancreas. For
quantification of the markers’ frequency, the whole pancreas section per mouse from the treatment group was used. We have counted all the pancreatic islets from
each whole pancreas section (150–200 islets per treatment group) (n = 3). Scale bar: 50 μm.
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Figure 6. Overlap in β-cells with high PFKFB3 and MAIP1 expression.
(A, B, C) Representative immunofluorescence images of islets from mice as described in Fig 5, double immunostained for insulin and MAIP1 (red), insulin (green), and
nuclei (blue). The sectioning was performed across the whole pancreas. For quantification of MAIP1 frequency, we have counted all the pancreatic islets from each whole
pancreas section, that is, 122–201 islets per treatment group (n = 3). Scale bar: 50 μm; (D, E, F) Immunostained for insulin, and PFKFB3 (red), insulin (green), and nuclei (blue).
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diminishment of dysfunctional “loser” β-cells, restoring glucose
tolerance in the human-like model of T2D.

Discussion

CFC has been successfully validated in post-mitotic cells (Coelho &
Moreno, 2019; Coelho et al, 2018; Gradeci et al, 2021; Vieira et al,
2024), and here, we evaluated the hypothesis that “loser” and
“winner” cell imbalance may underlie one of the pathogenic
mechanisms in T2D.

We demonstrated that PFKFB3-positive β-cells are “loser” cells of
CFC and that targeting PFKFB3 can facilitate “loser” β-cell clearance
by reactivation of CFC. β-Cell “loser” signature emerged from the
high level of transcriptional convergence between AABHPAP, T2DHPAP,
and T2DPFKFB3. Although we have not found transcriptional up-
regulation of PFKFB3 in the “loser” HPAP datasets, we found that
APC/Cdh1 E3 ubiquitin ligase that regulates PFKFB3 stability
(Tudzarova et al, 2011) was down-regulated in T2DHPAP, in line with
PFKFB3 protein up-regulation in diabetes (Wigger et al, 2021).
PFKFB3-positive β-cells in T2D shared a global stoichiometric
distortion of RiBi with “loser” β-cells in AABHPAP and T2DHPAP. Both
RiBi and mitochondrial genes were enriched in the GSEA and
metacells from WGCNA, with global RiBi down-regulation repre-
senting a measurable metacell entity across all β-cells from pre-
diabetes to sincere T2D. These findings are interesting because
originally the “loser” status was demonstrated by one dominant
ribosomal subunit (Minute) mutation in Drosophila (Carnegie
Institution of Washington, 1923). The enrichment showing the
distortion of RiBi in ControlHPAP has not reached significance, which
may be due to an active CFC in health. Although the overlap existed
between β-cells from ControlHPAP, AABHPAP, T2DHPAP, and T2DPFKFB3,
there was no shared GSEA signature with T1D. Interestingly, met-
acells in T1D were represented by both ribosomal and mitochon-
drial hub genes, thereby not correlating with the GSEA results. The
lack of correlation may point to different CFC mechanism(s) and/or
enhanced attrition of “loser” β-cells by autoimmunity in T1D.
T2DHPAP GSEA was dominated by the down-regulation of mito-
chondrial respiration genes. T2DPFKFB3, which pertained to the
global shutdown of RiBi, had yet only one enriched category of
genes encoding mitochondrial respiration, positioning itself be-
tween AABHPAP and T2DHPAP as shown in the heatmaps (Fig S5A, C,
and D). Interestingly, the emerging difference between AABHPAP,
T2DPFKFB3, and T2DHPAP was also corroborated by down-regulation of
RPS12 in T2D. Down-regulation of RPS12 (Ji et al, 2019) shared by
T2DPFKFB3 and T2DHPAP mimics phenotypically the missense

mutations of RPS12, which can prevent attrition of T2D “loser” cells
by CFC (Kale et al, 2018).

PFKFB3-positive “loser” β-cells were dominated by GO terms that
pertain to mRNA and protein quality control during translation at the
ribosome and/or ribosome hibernation (RPL22L1, SERBP1, and TPT1),
transcriptional down-regulation of cap-dependent and cap-
independent translational machinery, and stalling of the initiation
step (Richter & Coller, 2015) complementing transcriptional suppression.

The profound down-regulation of RiBi and genes of mitochon-
drial respiration in “loser” β-cells indicates that conserving energy
by shutting down the energy-expensive process of making proteins
is a priority of long-lived dysfunctional β-cells. This could be, for
example, critical for preserving proteosynthetic machinery and
orphaned ribosomal proteins for an intact restart of RiBi once the
stress is resolved (Buchan & Parker, 2009; Wheeler et al, 2016). Why
is the energy conservation necessary in “loser” β-cells? Previously,
it was demonstrated that down-regulation of RiBi or metabolism
reduction rescued lethal Drosophila mutants during development
because of redundancy of repressor activities under those con-
ditions (Cassidy et al, 2019). Therefore, strained transcriptional
regulation and genomic stability under stress can be protected
from deleterious consequences under energy conservation. The
broader benefit of energy conservation known as hypometabolism
on an organismal level under environmental constraints was
demonstrated before with torpor or hibernation (Giroud et al, 2020)
and is currently considered as a radiation injury–preventative
approach for the human space flights (Ghosh et al, 2017).

We reasoned that breaking down T2DPFKFB3 unique genetic makeup
that differs from T2DHPAP might offer a clue to the specific role of
PFKFB3 in the long-term survival of “loser” β-cells in T2D. One of the
most remarkable features of T2DPFKFB3 DEGs was the down-regulation
of HLA class I and II (Drake et al, 2006; Adachi et al, 2022). This is in line
with the reduced haplotype frequency of HLA co-occurring with
PFKFB3 polymorphism (Chen & Chen, 2019). The unique HLA makeup
in T2DPFKFB3 poses an intriguing possibility that immunity plays a role
in the removal of PFKFB3-positive “loser” β-cells (Johnston, 2009).
Down-regulation of HLA is connected to a fail-safe response by
natural killer (NK) cells (Shi et al, 2011). Nevertheless, chronic in-
flammation in diabetes suppresses NK cells allowing potentially
PFKFB3 “loser” β-cells to bypass the immunosurveillance.

Another mechanism to explain the prolonged survival of the
PFKFB3-positive “loser” β-cells may involve epistasis and the
variations in disease outcome (Cordell, 2002). The diabetes sig-
nificant (Chen & Chen, 2019) PFKFB3 SNP at the 10p15.1 locus
(rs1983890) (Wallace et al, 2015) interacted with MAIP1 and AGAP1
collective SNPs (Fig 5A) in GGI analysis. The AGAP1 function is linked

(A, C, D, F) are showing eradication of MAIP1- and PFKFB3-positive β-cells in WT+HFD and DS+iPFKFB3 mice, respectively. The sectioning was performed across the whole
pancreas. For quantification of PFKFB3 frequency, we have counted all the pancreatic islets from each whole pancreas section, that is, 170–191 islets per treatment group
(n = 3). Scale bar: 50 μm. (G, H) Insets from identical serial sections showing MAIP1 and high PFKFB3 immunopositivity overlap. White arrows indicate β-cells with PFKFB3
and MAIP1 high expression overlap. Scale bar: 20 μm. (J, K) Representative immunofluorescence images of islets from human (J) non-diabetic (ND) and (K) T2D donors
immunostained for insulin and MAIP1. For quantification of MAIP1 frequency, we have counted all the pancreatic islets from each whole pancreas section, that is, 171–200
islets per donor group (n = 3). Scale bar: 50 μm. (I) Quantitative representation of MAIP1 (circles)- and PFKFB3 (triangles)-positive β-cells (% of all β-cells) in the treatment
groups described in Fig 5E–G. Data are represented as themean ± SEM, n = 3, P < 0.05. (L)Quantitative representation of MAIP1-positive β-cells (% of all β-cells) in human
non-diabetic (ND) and T2D donors. n = 3 from each donor group; data are represented as the mean ± SEM, P < 0.05. (M) Quantitative representation of AGAP1 non–insulin-
positive islet cells (% of all non–insulin-positive islet cells) in treatment groups previously described. n = 3; data are represented as themean ± SEM, P < 0.05. (N) Flowchart
depicting the key role of MAIP1 in the inhibition of mitochondrial-driven apoptosis.
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Figure 7. Systemic PFKFB3 inhibition (iPFKFB3) improves metabolic performance of h-βTG (T2D) mice.
(A) Experimental scheme of PFKFB3 inhibitor treatment of h-βTG mouse; PFKFB3 inhibitor was administered at 28-mg/kg dose via an intraperitoneal route for 7 wk, and
metabolic tests were performed (IP-GTT and insulin tolerance test) at indicated time points. (B, C) Intraperitoneal glucose tolerance test (IP-GTT) (B) at 4 wk and (C) at 6 wk
showed significant improvement in glucose tolerance in the DS + iPFKFB3 as compared to DS + vehicle mice. (D, E, F, G, H, I) Comparison of (D) the area under the curve
(AUC) from IP-GTT and (E) fasting blood glucose at 4 wk; and (G) the area under the curve (AUC) from IP-GTT and (H) fasting blood glucose at 6 wk showing significant
improvement in DS + iPFKFB3 as compared to DS + vehicle mice; AUC from an insulin tolerance test (F) at 5 and (I) 7 wk showing a trend of improvement in insulin sensitivity
in DS + iPFKFB3 mice as compared to DS + vehicle mice without reaching significance: n = 8 or 7, n = 7, and n = 7 biological replicates for WT+HFD, DS + vehicle, and DS +
iPFKFB3, respectively; statistical testing was performed between # WT versus DS+vehicle, and *DS+iPFKFB3 versus DS+vehicle. At 6 wk, n = 15, n = 12, and n = 11 biological
replicates from n = 2 independent experiments for WT+HFD, DS + vehicle, and DS + iPFKFB3, respectively. Data are represented as the mean ± SEM, P < 0.05.
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to endosome protein trafficking and cytoskeleton, and AGAP1-
deficient cells are susceptible to a variety of stressors (Lewis
et al, 2023). AGAP1 immunopositivity marked exclusively non–
insulin-positive islet cells and did not vary between the groups.
Therefore, we focused on the novel MAIP1 protein because of its
association with Ca2⁺ homeostasis (Fig 6N) in diabetic β-cells, which
is the convergence point of diabetic stressors. MAIP1 exerts an anti-
apoptotic function via the protective assembly of themitochondrial
Ca2+ uniporter (MCU) (Konig et al, 2016). Interestingly, MAIP1
immunopositivity marked specifically β-cells in DS+vehicle and
human T2D donors and its sharp reduction below 1% upon PFKFB3
inhibition in h-βTG mice indicated a potential elimination of MAIP1-
positive β-cells connected to the treatment (Huang et al, 2010).

CFC provides a context-dependent removal of injured or dys-
functional cells that has been proven successful in the clinical
translation of “synthetic lethality” and immune checkpoint inhi-
bition (Lucchesi, 1968; O’Neil et al, 2017; Shiravand et al, 2022). To
unlock CFC and demonstrate feasibility of PFKFB3 targeting at the
systemic level, we used the small molecule PFKFB3 inhibitor AZ67
(Boyd et al, 2015). We successfully reduced injured β-cells reca-
pitulating PFKFB3βKO DS, which led to improvement in glucose
tolerance. Our study would benefit from real-time monitoring of
injured β-cell clearance in in vivo–transplanted human islets,
which is presently a main limitation in assessing the temporal
nature and functional cell regeneration when attempting reac-
tivation of CFC.

Collectively, we reveal in this study that the RiBi andmitochondrial
respiration (cellular energy conservation) represent a “global” phe-
notypic interface of β-cell fitness that in the presence of PFKFB3 can
create an epiphenomenon of positive epistasis via MAIP1, whereas
reduced HLA expression may help bypass immunosurveillance.
Positive epistasis is necessary to suppress CFC favoring the survival
and accumulation of dysfunctional β-cells. Selective clearance of
dysfunctional “loser” β-cells agnostic of their origin (e.g., senescent
cells) by reactivation of physiologically competent CFC is an original
approach. This study predicts that T2D patients without PFKFB3
polymorphism should have a better clinical outcome, what remains to
be addressed in the future. Pharmacological targeting of PFKFB3
to abort survival of dysfunctional “loser” β-cells holds a promise to
change and prevent deterioration of early T2D trajectory given that
at this stage both the prevalence of “loser” β-cells and “loser” β-cell
survival selectively depend on PFKFB3. The therapeutic ramification
of CFC in T2D is emerging with a potential to modify this disease by
enrichment with functional β-cells at early onset where β-cell mass
is still conserved. This approach when therapeutically developed
may find application in other age-related diseases and aging itself,
given the shared feature of dysfunctional cell accumulation across
many tissues in addition to the pancreas.

Materials and Methods

Study design

We analyzed large-scale transcriptomic data of human pancreatic
β-cells from two independent datasets. We used the Human

Pancreas Analysis Program (HPAP) (Kaestner et al, 2019). HPAP is
part of the Human Islet Research Network supported by the Na-
tional Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK), which leverages deep phenotyping of the human endo-
crine pancreas, thereby accumulating, analyzing, and distributing
high-value datasets to the diabetes research community through
the HPAP-PANC-DB database. We also used formalin-fixed and
paraffin-embedded pancreata from three T2D donors from the
Network of Pancreatic Organ Donors with Diabetes (nPOD) program
(Campbell-Thompson et al, 2012).

We analyzed scRNA-seq from 31 non-diabetics (ControlHPAP), 10
prediabetics with or without dysglycemia classified based on 2 or
more autoantibodies (AABHPAP), 9 donors with type 1 diabetes
(T1DHPAP), and 17 donors with type 2 diabetes (T2DHPAP) using HPAP
annotation of pancreatic β-cells. For each condition, and based on
the module score reflecting the expression (Log2FC > 0.1) or not of
the “loser genes” DDIT3, Atf3, Ppp1r15a, RICTOR, and Nfe2l2 (Log2FC <
or = 0), cells were split into “loser signature”–positive and “loser
signature”–negative β-cells for differential expression analysis
between the two groups (Ortiz-Barahona et al, 2010; Valvona et al,
2016). “Loser” genes were adopted from bona fide “loser signatures”
established in mouse embryos in the study by Lima et al (2021).

Data processing and clustering with the module score

We analyzed the scRNA-seq data in R (v4.3.1) (URL https://www.R-
project.org/) using Seurat (v4.3.0.1) (https://www.rdocumentation.
org/packages/Seurat/versions/4.3.0.1) (Hao et al, 2021), beginning
with the PercentageFeatureSet function to identify and filter β-cells
based on HPAP annotation. A total of 44,559 β-cells were analyzed
after being classified as either “Controls” (27,160 cells), “AAB” (8,523
cells), “T1D” (715 cells), or “T2D” (8,161 cells). The NormalizeData
function was then used to perform log normalization of the data
subsample. The FindVariableFeatures function was used to cal-
culate gene variances and feature variances of standard and
clipped values. A variable called “genes.of.interest/loser signature”
was created in the module score, and candidate marker genes that
represent key determinants of the “loser” status implicated in the
UPR (DDIT3, ATF3, PPP1R15A, RICTOR) and oxidative stress NFE2L2
were then assigned to this variable. The ScaleData function was
used to center and scale the data matrix. The AddModuleScore
function was used to assign module scores to our subsample of
either Control, AAB, T1D, or T2D β-cells based on the candidate
genes specified in the “genes.of.interest/loser signature.” Two
matrices were then created: one matrix containing 0 and negative
module scores, and the other matrix containing positive module
scores. The FindMarkers function was used to find DEGs within each
disease state subsample by comparing the positive module scores’
matrix with the matrix containing 0 or negative module scores.
Post-clustering doublet removal was integral to the HPAP data
quality control.

GeoMx spatial transcriptomics

A geospatial technology platform (GeoMx from NanoString Tech-
nologies, Inc.) was used to perform targeted transcriptomic pro-
filing of β-cell populations from three pancreas donors from the
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nPOD collection based upon PFKFB3 expression at the Molecular
Pathology at City-of-Hope National Center, Duarte, California. We
used a ssDNA-labeled probe with photocleavable indexing oligos to
bind targets of interest in nPOD pancreatic sections. We also used
PFKFB3 and insulin antibodies conjugated with fluorophores as
morphology markers to visualize PFKFB3-positive β-cells. ROIs with
PFKFB3-positive and PFKFB3-negative β-cells within a single ROI
(>100 cells) were segmented and collected separately from each
slide from three T2D donors (nPOD #6186, #6255, and #6275). We
analyzed 12–16 ROIs from each T2D formalin-fixed pancreatic
section (8 PFKFB3-positive and 8 PFKFB3-negative ROIs). ROIs were
sequentially exposed to UV light to release the indexing oligos,
which were collected and subsequently enumerated via next-
generation sequencing. We performed differential profiling of
PFKFB3-positive relative to PFKFB3-negative β-cells using GeoMx
DSP software for Whole Transcriptome Atlas.

Gene enrichment analysis

To identify gene expression modules that showed clear, inter-
pretable enrichment for biological functions, we performed a gene
enrichment analysis using DAVID (Huang et al, 2009; Sherman et al,
2022) based on Reactome annotations that contained multiple
modules with significantly enriched gene ontology profiles (ad-
justed P < 0.05).

To avoid a potential bias resulting from differences between
reference cells (β-cells) from all cells, the sets of DEGs (false
discovery rate [FDR] < 5%) in Control, AAB, T1D, and T2D β-cells
were analyzed with DAVID (Huang et al, 2009; Sherman et al, 2022),
using the union of genes observed in all the samples as the
reference. Enriched Reactome pathways identified in the indi-
vidual datasets (FDR <5%) were visualized with Cytoscape
(Shannon et al, 2003).

Cell-specific gene network analysis

We analyzed two independent datasets, β-cell populations from
three pancreas donors from the nPOD collection based upon
PFKFB3 expression in spatial transcriptomics and scRNA-seq data
under four conditions from a β-cell population from the PANC-DB
data portal of the HPAP (Kaestner et al, 2019; Montemurro et al,
2019). Weighted Gene Correlation Network Analysis (WGCNA)
(Langfelder & Horvath, 2008) was used to construct correlated
gene modules. Sample quality control was performed with the
WGCNA package function, goodSampleGenes. The soft power
threshold was adjusted for each condition to reach scale-free
topology. Highly correlated modules among different blocks were
then merged to create the final network. Subsequent analysis
was focused on the significantly different modules with criteria
P < 0.05. The top 10 genes for each significant module were
highlighted. Single-cell WGCNA was performed using high-
dimension (hd)WGCNA (Morabito et al, 2023), with the PCA
used for dimensionality reduction, the maximum number of cells
shared between two metacells limited to 10, single-cell transform
of the expression data, and soft power threshold adjusted to
reach scale-free topology (12 for the β-cell subset) as a signed
networkType with different values for the individual, that is,

Control, AAB, T1D, and T2D conditions. The top 10 hub genes for
each module were highlighted. To reduce the noise of the cor-
relations in the adjacency matrix, soft power thresholds of 12, 16,
20, and 14 were picked for mean, median, and max connectivity to
reach the Scale Free Topology Model Fit greater than 0.8 for
ControlHPAP, AABHPAP, T1DHPAP, and T2DHPAP, respectively, of hub
genes in the hdWGCNA.

Gene expression analysis was performed using R (v4.3.1) (https://
www.R-project.org/). Network visualization was performed with
Mathematica (v12; Wolfram Research, Inc.) using GravityEmbedding
for the graph layout.

Mergeomics

We performed weighted Key Driver Analysis (Arneson et al, 2016;
Ding et al, 2021) on the subsets of DEGs from geospatial targeted
transcriptomic profiling of β-cell populations from three nPOD
pancreas donors and from “loser signature” transcriptomic pro-
filing of HPAP scRNA-seq on the University of California, Los Angeles
Web Server for Multidimensional Data Integration (http://
mergeomics.research.idre.ucla.edu/home.php#). We used the
Mergeomics 2.0 Web Server for Multiomics Data Integration (Ding
et al, 2021).

STRING analysis

STRING analysis was performed on the STRING Web portal https://
string-db.org using DEGs from the two independent datasets (HPAP
and nPOD) (Szklarczyk et al, 2021a, 2021b).

GGI analysis

Whole-genome sequencing data from the HPAP were down-
loaded from the NIH dbGAP. Exonic variants were annotated and
filtered for genes of interest using bcftools. We used bcftools
version 1.11, and as a reference genome, we used the Genome
Reference Consortium Human Build 39 patch release 13
(GRCh38.p13 or hg38). All variants for the gene PFKFB3 were fil-
tered out except for the variant of interest, rs1983890. To detect
all possible pairwise interactions between rs1983890 and other
genes, we used GeneGeneInteR R package and employed the PCA
method. For this method, a likelihood-ratio test is conducted to
compare two generalized linear models, Minter and M0, where
Minter includes an interaction term and is defined as

β0 + �
n1

i = 1
PCi

x1 + �
n2

i = 1
PCj

x2 + �
n1

i = 1
�
n2

i = 2
PCi

x1PC
j
x2

and M0 as

β0 + �
n1

i = 1
PCi

x1 + �
n2

i = 1
PCj

x2

For both models, PCi
x1 refers to the ith principal component of all

SNPs in gene 1, and PCj
x2 to the jth principal component of all SNPs in

gene 2. The number of principal components retained for each
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model, n1 and n2, is found by the percentage of inertia calculated by
PCA.

After interaction testing, the resulting P-values were adjusted for
multiple testing to obtain FDR using the Benjamini–Hochberg
procedure.

Animals

The study received ethical approval ARC-2019-011-AM-004 from the
UCLA Animal Research Committee.

The β-cell–specific inducible PFKFB3 knockout or PFKFB3 WT
mouse model (RIP-CreERT:PFKFB3fl/fl) on hIAPP± background (h-
βTG) and HFD (PFKFB3βKO DS) (#D12492; Research Diets Inc.) was
previously described (Min et al, 2022) and used as a positive
control. At 6–8 wk of age, all mice from the WT or DS group (h-βTG)
were assigned to receive the HFD. In addition, mice from the DS
group were randomly assigned to a group that received vehicle
(DS+vehicle) or the group that received the PFKFB3 inhibitor AZ67
(DS+iPFKFB3) (Tocris Bioscience). For the comparative evaluation
of the effect of the PFKFB3 knockdown with the effect of PFKFB3
inhibition, we used AZ67 prepared in 10% absolute ethanol in
sunflower oil, matched to the preparation of tamoxifen for the Cre-
recombinase induction and PFKFB3 knockout. We randomized the
PFKFB3 targeting group into mice (n = 3) that received tamoxifen
injection to undergo β-cell–specific PFKFB3 knockout and mice (n =
2) that received AZ67. For the rest of the experiments (two biological
replicate experiments; each n = 4–8/group), we used AZ67 prepared
in 8% wt/vol 2-hydroxypropyl-beta-cyclodextrin in PBS, pH 7.4, at 28
mg/kg body weight intraperitoneally every day for 7 wk (Fig 7A). The
mice had ad libitum access to food and water for the duration of the
study. Body weights and fasting blood glucose levels were assessed
weekly.

Intraperitoneal glucose tolerance test (IP-GTT)

An IP-GTT was performed at 4 and 6 wk after the start of the HFD
and AZ67 administration. Mice were fasted overnight in a clean
cage and with access to water before the analysis. Tail vein blood
glucose was collected before and 30, 60, and 120 min after an
injection of 20% glucose bolus (2 g/kg of body weight). Fasting
blood glucose was measured weekly after overnight fasting for
15 h. The blood glucose levels were measured in tail-drawn blood
through the use of a FreeStyle blood glucometer (Abbott Diabetes
Care Inc.).

Pancreas perfusion and isolation

Mice were euthanized by a brief isoflurane exposure before
cervical dislocation. A medial cut was made to open the abdomen
and chest cavities. A cut of the right ventricle was followed by a
poke of the left ventricle with a needle to inject 10 ml of cold PBS
slowly for perfusion of the pancreas. After perfusion, the pan-
creas was placed in cold PBS and separated from other tissues,
including the surrounding fat. The pancreas was then weighed
before and after the excess PBS had been absorbed into the lint-
free tissue.

Histological assessments

After the excision of smaller pieces, the pancreas was fixed
overnight at 4°C in 4% PFA (19202; Electron Microscopy Sciences).
The pancreas was paraffin-embedded and sectioned into 4-μm-
thick slices by the Translational Pathology Core Laboratory at UCLA.

Immunofluorescence analysis was performed using Openlab
5.5.0 software on the Leica DM6000 B research microscope. The
following antibodies were used: guinea pig anti-insulin (ab195956, 1:
400; Abcam); mouse anti-glucagon (G2654, 1:1,000; Sigma-Aldrich);
mouse anti-c-Myc (9E10, sc-40, 1:100; Santa Cruz Biotechnology Inc.);
and mouse anti-HIF1α (NB100-105, 1:50; Novus Biologicals), anti-
MAIP1 (D-12, 1:50; Santa Cruz Biotechnology), and anti-AGAP1
(MBS5312069, 1:50; MyBioSource Inc.).The following secondary an-
tibodies were used: F(ab’)2 conjugates with fluorescein iso-
thiocyanate donkey anti-guinea pig immunoglobulin G (IgG) (heavy
and light, H + L) (706-096-148, 1:200 for intrinsic factor [IF]; Jackson
ImmunoResearch) and F(ab’)2 conjugates with Cy3 donkey anti-
mouse IgG (H + L) (711-165-151, 1:200 for IF; Jackson Immuno-
Research). Vectashield containing 49,6-diamidino-2-phenylindole
(DAPI) (H1200; Vector Laboratories) was used to mount the slides.
Imaging and data analysis were performed by two observers in a
blinded fashion for each section of the experimental mouse ge-
notype. The morphometric data for PFKFB3−, MAIP1− and AGAP1
positive cells in experimental mice and MAIP1 positive β-cells in
human pancreata from nPOD is presented in Table S14.

Statistical analysis

Data are presented as errors of the means (standard error, SEM)
for the number of mice indicated in the figure legends. Mean data
were compared between groups by one-way analysis of variance
(ANOVA) followed by Tukey’s or Dunnett’s post hoc test for multiple
comparisons. P-values less than 0.05 were considered significant.

Data Availability

All data are available in the main text or the supplementary ma-
terials. The custom R script code with the module score used for
this study is available on the GitHub platform (https://github.com/
KavitRaval/Loser-Vs-Winner-beta-cells_Rscript/commit/4d7ace19
ed6bf89f49f55b0b2bb386c566623137).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202402743
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