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58bDipartimento di Fisica, Università di Perugia, I-06100 Perugia, Italy

59aINFN Sezione di Pisa, I-56127 Pisa, Italy
59bDipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
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We study the reaction eþe� ! eþe��0 in the single tag mode and measure the differential cross

section d�=dQ2 and the ��� ! �0 transition form factor in the momentum transfer range from 4 to

40 GeV2. At Q2 > 10 GeV2 the measured form factor exceeds the asymptotic limit predicted by

perturbative QCD. The analysis is based on 442 fb�1 of integrated luminosity collected at PEP-II with

the BABAR detector at eþe� center-of-mass energies near 10.6 GeV.

DOI: 10.1103/PhysRevD.80.052002 PACS numbers: 14.40.Aq, 13.40.Gp, 12.38.Qk

I. INTRODUCTION

In this paper we study the process

eþe� ! eþe��0; (1)

where the final state �0 is produced via the two-photon
production mechanism illustrated by Fig. 1. We measure
the differential cross section for this process in the single
tag mode where one of the outgoing electrons1 (tagged) is
detected while the other electron (untagged) is scattered at
a small angle. The �0 is observed through its decay into
two photons. The tagged electron emits a highly off-shell
photon with the momentum transfer q21 � �Q2 ¼
ðp� p0Þ2, where p and p0 are the four momenta of the
initial and final electrons. The momentum transfer to the
untagged electron is near zero. The differential cross sec-
tion for pseudoscalar meson production d�ðeþe� !
eþe��0Þ=dQ2 depends on only one form factor, FðQ2Þ,
which describes the ��� ! �0 transition. To relate the
differential cross section to the transition form factor we
use the formulas for the eþe� ! eþe��0 cross section in
Eqs. (2.1) and (4.5) of Ref. [1].

At large momentum transfer, Q2, perturbative QCD
(pQCD) predicts that the transition form factor can be
represented as a convolution of a calculable hard-scattering
amplitude for ��� ! q �q with a nonperturbative pion dis-
tribution amplitude, ��ðx;Q2Þ [2]. The latter can be inter-
preted as the amplitude for the transition of the pion with
momentum P into two quarks with momenta Px and Pð1�
xÞ. In lowest order pQCD the transition form factor is
obtained from

Q2FðQ2Þ ¼
ffiffiffi
2

p
f�
3

Z 1

0

dx

x
��ðx;Q2Þ þOð�sÞ

þO

��2
QCD

Q2

�
; (2)

where f� ¼ 0:131 GeV is the pion decay constant. The
pion distribution amplitude (DA) plays an important role in
theoretical descriptions of many hard-scattering QCD pro-
cesses. Since the evolution of ��ðx;Q2Þ with Q2 is pre-

dicted by pQCD, experimental data on the transition form
factor can be used to determine its unknown dependence
on x [3–10].
The pion transition form factor was measured in the

CELLO [11] and CLEO [12] experiments in the momen-
tum transfer ranges 0:7–2:2 GeV2 and 1:6–8:0 GeV2, re-
spectively. In this paper we study the form factor in the Q2

range from 4 to 40 GeV2.

II. THE BABAR DETECTOR AND DATA SAMPLES

We analyze a data sample corresponding to an integrated
luminosity of about 442 fb�1 recorded with the BABAR
detector [13] at the PEP-II asymmetric-energy storage
rings. At PEP-II, 9-GeV electrons collide with 3.1-GeV
positrons to yield a center-of-mass energy of 10.58 GeV
[the �ð4SÞ resonance]. Additional data (� 43 fb�1) re-
corded at 10.54 GeV for the purpose of �ð4SÞ background
studies are included in the present analysis.
Charged-particle tracking is provided by a five-layer

silicon vertex tracker (SVT) and a 40-layer drift chamber
(DCH), operating in a 1.5-T axial magnetic field. The
transverse momentum resolution is 0.47% at 1 GeV=c.
Energies of photons and electrons are measured with a
CsI(Tl) electromagnetic calorimeter (EMC) with a resolu-
tion of 3% at 1 GeV. Charged-particle identification is
provided by specific ionization (dE=dx) measurements in
the SVT and DCH, and by an internally reflecting ring-
imaging Cherenkov detector (DIRC).
Signal and background eþe� ! eþe��0�0 processes

are simulated with the Monte Carlo (MC) event generator
GGRESRC. It uses the formula for the differential cross

e±(p) e±
tag(p

/)

q1 π0

q2e−+ e−+

FIG. 1. The Feynman diagram for the eþe� ! eþe��0 two-
photon production process.

1Unless otherwise specified, we use the term ‘‘electron’’ for
either an electron or a positron.
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section from Ref. [1] for �0 production and the Budnev-
Ginzburg-Meledin-Serbo formalism [14] for the two pion
final state. Because theQ2 distribution is peaked near zero,
the MC events are generated with a restriction on the
momentum transfer to one of the electrons: Q2 ¼ �q21 >
3 GeV2. This restriction corresponds to the limit of detec-
tor acceptance for the tagged electron. The second electron
is required to have momentum transfer �q22 < 0:6 GeV2.
The experimental criterion providing this restriction for
data events is described in Sec. III. The pseudoscalar
form factor is fixed to Fð0Þ in MC simulation.

The GGRESRC event generator includes next-to-leading-
order radiative corrections to the Born cross section calcu-
lated according to Ref. [15]. In particular, it generates extra
soft photons emitted by the initial and final state electrons.
The formulas from Ref. [15] were modified to account for
the hadron contribution to the vacuum polarization dia-
grams. The maximum energy of the extra photon emitted
from the initial state is restricted by the requirement2 E�

� <

0:05
ffiffiffi
s

p
, where

ffiffiffi
s

p
is the eþe� center-of-mass (c.m.) en-

ergy. The generated events are subjected to detailed detec-
tor simulation based on GEANT4 [16], and are
reconstructed with the software chain used for the experi-
mental data. Variations in the detector and beam back-
ground conditions are taken into account. In particular,
we simulate the beam-induced background, which may
lead to the appearance of extra photons and tracks in the
events of interest, by overlaying the raw data from a
random trigger event on each generated event.

Background events from eþe� ! q �q, where q repre-
sents a u, d, s, or c quark, eþe� ! �þ��, and eþe� ! B �B
are simulated with the JETSET [17], KK2F [18], and EVTGEN

[19] event generators, respectively.

III. EVENT SELECTION

At the trigger level candidate events for the process
under study are selected by the VirtualCompton filter.
This filter was originally designed to select so-called vir-
tual Compton scattering (VCS) events used for detector
calibration. This process corresponds to eþe� ! eþe��
with the kinematic requirement that one of the final state
electrons goes along the collision axis, while the other
electron and the photon are scattered at large angles. The
filter requires that a candidate event contain a track with
p�=

ffiffiffi
s

p
> 0:1 and a cluster in the EMC with E�=

ffiffiffi
s

p
> 0:1

which is approximately opposite in azimuth (j��� � �j<
0:1 rad) to this track. Cluster and track polar angle acoli-
nearity in the c.m. frame is required to be greater than
0.1 rad. Finally, the measured missing energy in the c.m.
frame, which should correspond to the undetected electron,
is compared to a prediction based entirely on the directions
of the detected particles, and the assumption that the

missing momentum is directed along the collision axis:
jE�

meas � E�
predj=

ffiffiffi
s

p
< 0:05. For a significant fraction of the

eþe� ! eþe��0 events, the trigger cluster algorithm can-
not separate the photons from �0 decay, and hence identi-
fies them as a single photon. Therefore the VirtualCompton
filter has relatively large efficiency (about 50%–80% de-
pending on the �0 energy) for signal events.
In each event selected by the VirtualCompton filter, we

search for an electron and a �0 candidate. A charged track
identified as an electron must originate from the interaction
point and be in the polar angle range 0:376< 	e <
2:450 rad in the laboratory frame. The latter requirement
is needed to provide high efficiency for the trigger track-
finding algorithm and for good electron identification. To
recover electron energy loss due to bremsstrahlung, both
internal and in the detector material before the DCH, we
look for EMC showers close to the electron direction and
combine their energies with the measured energy of the
electron track. The resulting laboratory energy of the elec-
tron candidate must be greater than 2 GeV. Two photon
candidates with energies greater than 50 MeV are com-
bined to form a �0 candidate by requiring that their invari-
ant mass be in the range 0:06–0:21 GeV=c2 and that their
laboratory energy sum be greater than 1.5 GeV. Since a
significant fraction of events contains beam-generated spu-
rious track and photon candidates, extra tracks and extra
photons are allowed in an event.
The main background process, VCS, has a cross section

several thousand times greater than that for the process
under study. The VCS photon together with a soft photon,
for example from beam background, may give an invariant
mass value close to the �0 mass. Such background events
are effectively rejected by requirements on the photon
helicity angle (j cos	hj< 0:8) and on the �0 c.m. polar
angle (j cos	��j< 0:8). The photon helicity angle 	h is
defined as the angle between the decay photon momentum
in the �0 rest frame and the �0 direction in the laboratory
frame.
The next step is to remove improperly reconstructed

QED events. We remove events which involve noisy
EMC channels, events with extra tracks close to the �0

candidate direction, and events with j�	��j< 0:025 rad,

where �	�� is the difference between the laboratory polar

angles of the photons from the �0 decay. The latter condi-
tion removes VCS events where the photon converted to an
eþe� pair within the DCH volume. It also removes about
20% of the signal events, but significantly improves (by a
factor of about 15) the signal-to-background ratio.
Two additional event kinematics requirements provide

further background suppression and improved data to MC-
simulation correspondence. Figure 2 shows the data and
MC-simulation distributions of the cosine of the polar
angle of the momentum vector of the e�0 system in the
c.m. frame. We require j cos	�e�j> 0:99. This effectively
limits the value of the momentum transfer to the untagged

2Throughout this paper the asterisk denotes quantities in the
eþe� c.m. frame.
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electron (q22) and guarantees compliance with the condition
�q22 < 0:6 GeV2 used in MC simulation.

The emission of extra photons by the electrons involved
leads to a difference between the measured and actual
values of Q2. In the case of initial state radiation (ISR)
Q2

meas ¼ Q2
trueð1þ r�Þ, where r� ¼ 2E�

�=
ffiffiffi
s

p
. To restrict

the energy of the ISR photon we use the parameter

r ¼
ffiffiffi
s

p � E�
e� � p�

e�ffiffiffi
s

p ; (3)

where E�
e� and p�

e� are the c.m. energy and the magnitude
of the momentum of the detected e�0 system. In the ISR
case this parameter coincides with r� defined above. The

condition r < 0:075 ensures compliance with the restric-
tion r� < 0:1 used in MC simulation. The r distribution for

data is shown in Fig. 3, where the shaded histogram shows

the background estimated from the fit to the two-photon
mass distribution (Sec. IV). We select events with
�0:025< r < 0:050 for further analysis.
The background from eþe� annihilation into hadrons is

strongly suppressed by the requirements of electron iden-
tification, on cos	�e�, and on r. An additional twofold
suppression of this background is provided by the condi-
tion that the z component of the c.m. momentum of the e�0

system is negative (positive) for events with a tagged
positron (electron).
The Q2 dependence of the detection efficiency obtained

from MC simulation is shown in Fig. 4. The detector
acceptance limits the detection efficiency at small Q2. To
avoid possible systematics due to data-simulation differ-
ences near detector edges, we measure the cross section
and form factor in the region Q2 > 4 GeV2. The asymme-
try of the eþe� collisions at PEP-II leads to different
efficiencies for events with electron and positron tags.
The Q2 range from 4 to 7 GeV2 is measured only with
the positron tag. The decrease of the detection efficiency in
the region Q2 > 10 GeV2 is explained by the decrease of
the �0 reconstruction efficiency due to growth of the
average �0 energy with Q2.
The efficiency corrections and systematic uncertainties

due to imperfect simulation of detector response are con-
sidered in Sec. VI.

IV. FITTING THE TWO-PHOTON MASS
SPECTRUM

The two-photon mass spectrum for selected data events
with 4<Q2 < 40 GeV2 is shown in Fig. 5; for Q2 >
40 GeV2 we do not see evidence of a �0 signal over
background. To determine the number of events containing
a �0, we perform a binned likelihood fit to the spectrum
with a sum of signal and background distributions. We
describe the signal line shape by a sum of two FB1 func-
tions with the same position of their maxima [20]. The

|cos θeπ
∗ |

E
ve

nt
s/

0.
00

2

1

10

102

103

104

0.9 0.925 0.95 0.975 1

FIG. 2. The distribution of the cosine of the polar angle of the
e�0 system momentum in the c.m. frame for data (solid histo-
gram) and simulated signal (dotted histogram). Events for which
j cos	�e�j> 0:99 (indicated by the arrow) are retained.
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FIG. 3 (color online). The r distribution for data events. The
shaded histogram shows the background contribution estimated
from the fit to the two-photon mass distribution (Sec. IV). The
vertical lines indicate the region used to select candidate events
(� 0:025< r < 0:050).
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function FB1 is the convolution of a Gaussian and an
exponential distribution:

FB1ðx; xg; �g; 
Þ ¼ 1

2j
j exp
�
� x� xg



þ �2

g

2
2

�

�
�
1� erf

�
�2

g � ðx� xgÞ
ffiffiffi
2

p
�gj
j

��
: (4)

The parameters of the �0 resolution function are fixed
from the fit of the mass spectrum obtained for simulated
signal events weighted to yield the Q2 dependence ob-
served in data. The background distribution is described

either by a linear function in the mass range
0:085–0:185 GeV=c2 or a second order polynomial in the
mass range 0:06–0:21 GeV=c2. The data mass spectrum is
fitted with five (six for second order polynomial) free
parameters: the number of signal events, the peak position,
the sigma of one (narrow) of the FB1 functions (�1), and
two (three) parameters for the background. The results of
the fits are shown in Fig. 5.
The total number of signal events is about 14 000. The

difference in signal yield between the two background
hypotheses is 170 events, while the statistical error on the
signal yield is 140 events. The difference between the peak
positions in data and MC simulation is consistent with
zero. The value of �1 is 7:5 MeV=c2 in data and
7:7 MeV=c2 in simulation, which corresponds to a differ-
ence of about two standard deviations.
A similar fitting procedure is applied in each of the

seventeenQ2 intervals indicated in Table I. The parameters
of the �0 resolution function are taken from the fit of the
mass spectrum for simulated events in the corresponding
Q2 interval. For the fits to the data, the value of the
parameter �1 is modified to take into account the observed
data-simulation difference in resolution: �1 !ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 � ð1:9 MeVÞ2
q

. The free parameters in the data fits

are the number of signal events and two or three parame-
ters, depending upon the description of the background
shape. The numbers of signal events obtained from the fits
using a linear background are listed in Table I. The differ-
ence between the fits for the two background hypotheses is
used as an estimate of the systematic uncertainty associ-
ated with the unknown background shape. The two-photon
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FIG. 5 (color online). The two-photon invariant mass spectrum
for data events with 4<Q2 < 40 GeV2. The solid (dotted) curve
corresponds to the fit with a linear (quadratic) background shape.
The dashed curve represents the fitted quadratic background.

TABLE I. For each Q2 interval, the number of events with �0 obtained from the fit (N�), number of eþe� ! eþe��0�0

background events (Nbkg), total efficiency correction (�total), number of signal events corrected for data/MC difference and resolution

effects (Ncor), and detection efficiency obtained from simulation ("). The quoted errors on N� and Ncor are statistical and systematic,
respectively. For Ncor we quote only Q2-dependent systematic errors. The Q2-independent systematic error is 2.5%.

Q2 interval (GeV2) N� Nbkg �totalð%Þ Ncor " (%)

4.0–4.5 1645� 45� 4 176� 41 �4:9� 1:2 1503� 52� 52 5.2

4.5–5.0 1920� 49� 11 254� 54 �5:5� 1:1 1740� 58� 70 9.0

5.0–5.5 1646� 46� 5 206� 34 �5:0� 1:1 1551� 56� 46 10.3

5.5–6.0 1252� 41� 5 175� 30 �5:5� 1:0 1139� 50� 40 10.7

6.0–7.0 1891� 50� 2 271� 36 �7:0� 1:1 1760� 59� 47 11.5

7.0–8.0 1229� 41� 19 150� 29 �7:5� 1:0 1160� 50� 44 13.2

8.0–9.0 985� 38� 27 125� 24 �7:3� 0:9 915� 46� 46 15.3

9.0–10.0 829� 34� 8 59� 14 �7:7� 1:0 849� 43� 23 17.3

10.0–11.0 625� 30� 18 47� 13 �8:3� 1:1 634� 40� 30 18.6

11.0–12.0 448� 26� 3 27� 11 �8:4� 1:0 484� 35� 16 18.7

12.0–13.5 405� 26� 22 51� 12 �8:1� 0:9 381� 33� 32 17.2

13.5–15.0 289� 22� 14 13� 6 �7:3� 1:0 304� 28� 20 16.3

15.0–17.0 260� 22� 5 14� 6 �6:7� 1:0 270� 27� 11 15.4

17.0–20.0 235� 21� 2 20� 6 �6:6� 1:1 234� 25� 10 13.9

20.0–25.0 171� 19� 11 5� 4 �6:6� 1:3 185� 22� 14 11.4

25.0–30.0 36� 12� 2 1� 1 �6:9� 1:5 36� 14� 3 9.2

30.0–40.0 49� 12� 2 2� 6 �6:3� 1:8 53� 13� 8 7.3
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mass spectra and fitted curves for three representative Q2

intervals are shown in Fig. 6.

V. PEAKING BACKGROUND ESTIMATION AND
SUBTRACTION

A background containing true �0’s might arise from
processes such as beam-gas interaction, eþe� annihilation,
and two-photon processes yielding higher multiplicity final
states.

For beam-gas interactions, the total energy of the de-
tected electron and�0 should be less than the beam energy.
In the energy spectrum of the e�0 system, we do not see
events with energy less than the beam energy. Therefore we
conclude that the beam-gas background does not survive
the selection criteria.

For events due to the signal process with tagged positron
(electron), the momentum of the detected e�0 system in
the eþe� c.m. frame has a negative (positive) z component,
while events resulting from eþe� annihilation should be
produced symmetrically. Events with the wrong sign of the
e�0 momentum z component can therefore be used to
estimate the background contribution from eþe� annihila-
tion. The two-photon mass spectrum for such background
events is shown in Fig. 7. The total number of wrong-sign
events is about 3% of the selected signal event candidates.
The spectrum is fitted using a sum of signal and back-
ground distributions as described in Sec. IV. The fit yields
6� 16�0 events. Assuming that the numbers of back-
ground events from eþe� annihilation in the wrong and
right-sign data samples are approximately the same, we
conclude that this background does not exceed 0.2% of
signal events, and so is negligible. Nevertheless we have
analyzed simulated events for the processes eþe� ! B �B,
eþe� ! q �q, and eþe� ! �þ��. The number of simulated
events for each reaction is close to the number of such
events produced in the experiment. Seven events with a
right-sign z component of the e�0 momentum (four from

�þ�� and three from q �q) satisfy the analysis selection
criteria, while the number of accepted wrong-sign events
is four. This supports the conclusion that the eþe� anni-
hilation background is negligible.
The major source of peaking background, of order 10%,

is two-photon production of two �0’s. This background is
clearly seen as a �0 peak in the two-photon invariant mass
spectrum for data events with two extra photons. The
following procedure is used to estimate the 2�0 back-
ground. We select a clean sample of 2�0 events with the
special selection criteria (described below) and measure
the Q2 distribution for these events (N2�;i). Then we tune

the MC simulation of the eþe� ! eþe��0�0 reaction to
reproduce the 2�0 mass and �0 angular distributions ob-
served in data. Using the MC simulation we calculate the
ratio (�i) of the numbers of 2�0 events selected with the
standard and special criteria and estimate the number of
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FIG. 6 (color online). The two-photon invariant mass spectra for data events from three representative Q2 intervals. The solid
(dotted) curve corresponds to the fit with a linear (quadratic) background shape. The dashed curve represents the fitted quadratic
background.
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2�0 events for each Q2 interval that satisfy the standard
selection criteria as �iN2�;i.

To select 2�0 events we remove the criteria on r and
cos	�e� and search for events with an extra �0. The com-
binatorial background due to soft false photons is reduced
by requiring that, in the laboratory, the energy of the extra
�0 be greater than 0.2 GeV, and that the energies of the
decay photons be greater than 50 MeV. The mass of the
first �0 must be in the range 0:10–0:17 GeV=c2. We cal-
culate the parameters cos	� and r for the found e�0�0

system, and require j cos	�e��j> 0:99 and �0:025< r <
0:05. The two-photon invariant mass spectrum for the extra
�0 candidates is shown in Fig. 8. The mass spectrum is
fitted using a sum of signal and background distributions.
The signal distribution is obtained from MC simulation for
the eþe� ! eþe��0�0 process. The background is de-
scribed by a second order polynomial. This fitting proce-
dure is performed for all Q2 intervals. To estimate the
systematic uncertainty due to the unknown background
shape, we make two fits, one with a linear and one with a
quadratic background. The difference in �0 signal size
between the fits is taken as a measure of systematic
uncertainty.

The 2�0 mass spectrum for selected 2�0 events after
background subtraction is shown in Fig. 9. The observed
spectrum differs strongly from the spectrum measured in
the no-tag mode [21], where the dominant mechanism of
2�0 production is �� ! f2ð1270Þ ! �0�0. In the no-tag
mode the f2ð1270Þ meson is produced predominantly in
the helicity-2 state with angular distribution �sin4	��,
where the 	�� is the angle between the �0 direction and
the assumed �� collision axis in the dipion rest frame. The
cos	�� distribution for selected 2�0 events after back-
ground subtraction is shown in Fig. 10. It is seen that our
criteria select events with 	�� near zero and strongly

suppress f2ð1270Þ production in the helicity-2 state. The
spectrum in Fig. 9 contains three components: tensor
f2ð1270Þ, scalar f0ð980Þ, and a broad bump below
0:8 GeV=c2. We reweight the simulated events to repro-
duce the mass spectrum observed in data. Since the mass
spectrum may change with Q2, the reweighting is per-
formed for twoQ2 intervals (4<Q2 < 10 GeV2 and 10<
Q2 < 40 GeV2) separately.
The simulated events are generated with isotropic �0

angular distribution in the 2�0 rest frame. Comparison of
the simulated cos	�� distribution with the data distribution
is shown in Fig. 10. We reweight the f2ð1270Þ subsample
of simulated events so that the total MC simulated distri-
bution of Fig. 10 matches the data. Using reweighted
simulated events we calculate the Q2 dependence of the
scale factor �i which varies from 2.4 at Q2 � 5 GeV2 to
about 1 at Q2 > 15 GeV2. The numbers of 2�0 back-
ground events which satisfy our standard selection criteria
are listed in Table I. The fraction of 2�0 background events
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FIG. 8. The invariant mass spectrum of the extra �0 candidate
in 2�0 data events (points with error bars). The histogram is the
result of the fit using a sum of signal and background distribu-
tions. The dashed curve represents the fitted background distri-
bution.
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in the e�0 data sample changes from about 13% for Q2 <
10 GeV2 to 6%–7% for Q2 > 10 GeV2.

A similar technique is used to search for background
from the processes eþe� ! eþe��0�, � ! �� and
eþe� ! eþe�!,! ! �0�. We do not see a clear� signal
in the two-photon mass spectrum, nor do we see an !
signal in the �0� mass spectrum; we estimate that these
backgrounds do not exceed 5% of the 2�0 background and
thus are negligible.

VI. EFFICIENCY CORRECTION

The values of the ��� ! �0 transition form factor in
bins of Q2 are determined from the ratio of the Q2 distri-
butions from data and MC simulation. The data distribu-
tion must be corrected to account for data-simulation
difference in detector response:

Ncorr
i ¼ NiQ

4
j¼1ð1þ �i

jÞ
; (5)

where i denotes the interval ofQ2 under consideration, and
the �i

j’s are the corrections for the effects discussed in

Secs. VIA, VIB, VI C, and VID.

A. �0 reconstruction efficiency

A possible source of data-simulation difference is �0

loss due to the merging of electromagnetic showers pro-
duced by the two photons from the �0 decay, the loss of at
least one of the decay photons, or the rejection of the �0

because of the selection criteria. The �0 efficiency is
studied by using events produced in the ISR process
eþe� ! !�, where ! ! �þ���0 [22]. These events
can be selected and reconstructed using the measured
parameters for only the two charged tracks and the ISR
photon. Taking the ratio of the number of events with found
�0 to the total number of selected eþe� ! !� events, we
measure the �0 reconstruction efficiency. The events with
reconstructed �0 are selected with our standard criteria for
the photons and the �0, as described in Sec. III.

The ratio of the reconstruction efficiencies obtained in
data and in simulation provides a �0 efficiency correction.
This correction, �1 ¼ data=MC � 1, is shown as a func-
tion of �0 laboratory energy in Fig. 11. The energy depen-
dence is well described by a linear function. We estimate
that the systematic uncertainty associated with this correc-
tion does not exceed 1%.

To obtain the correction to the MC-estimated �0 effi-
ciency as a function of Q2, we convolve the correction
energy dependence of Fig. 11 with the �0 energy spectrum
in each Q2 interval. The Q2 dependence obtained is shown
in Fig. 12. Only statistical errors are shown; the systematic
error is estimated to be 1%.

B. Electron identification efficiency

The average electron identification (EID) inefficiency in
the signal MC simulation is about 1%. To estimate the
data-simulation difference in EID, we use VCS events
which can be selected with negligible background without
any EID requirements. The EID efficiency is determined as
the ratio of the number of events with an identified electron
to the total number of VCS events. The ratio of the effi-
ciencies obtained from data and simulation gives the effi-
ciency correction. We determine the correction as a
function of the electron energy and polar angle and con-
volve this function with the electron energy and angular
distributions for the process under study. The resulting Q2

dependence of the efficiency correction is shown in Fig. 13.

C. Trigger efficiency

With the available statistics and the trigger configuration
used, we cannot determine the trigger efficiency for the
process under study by using the data. However, the trigger
efficiency can be measured for the VCS process, which has
a much larger cross section. The VCS events allow the
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FIG. 11. The correction to the MC-estimated�0 efficiency as a
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FIG. 12. The Q2 dependence of the correction to the MC-
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determination of the part of the trigger inefficiency related
to the trigger track-finding algorithm. The remaining trig-
ger inefficiency, which is related to the ability of the trigger
cluster algorithm to separate nearby photons from �0

decay, depends strongly on �0 energy. Therefore the
data-simulation difference can be estimated from compari-
son of the �0 energy spectra in data and simulation.

The VCS events are selected with the criteria described
in Sec. III after applying the �0 requirements to the VCS
photon. These events must satisfy a second trigger line that
selects VCS events with an efficiency close to 100%, but
that is prescaled by a factor of 1000. The trigger efficiency
is determined as the fraction of selected events which pass
the VirtualCompton filter. The ratio of the efficiencies
obtained from data and simulation gives the efficiency
correction. We find that the trigger efficiency depends
strongly on electron scattering angle. When 	e changes
from 0.376 to 0.317 rad, the efficiency falls from 70% to
30% and the efficiency correction increases from 10% to
30%. For this reason the events with 	e < 0:376 rad were
removed from the analysis data sample. Since the angular
and energy distributions for the VCS and eþe� ! eþe��0

processes are different, we determine the correction as a
function of cos	� and cos	e, separately for tagged elec-

trons and positrons, and convolve this function with the
cos	� and cos	e distributions for the process under study.
The resultingQ2 dependence of the efficiency correction is
shown in Fig. 14. The corrections for events with a tagged
electron or positron are also shown. The correction for
tagged positron events is about �2% and flat. For events
with a tagged electron, the graph begins at Q2 ¼ 7 GeV2.
The electron correction changes from �8% at Q2 ¼
7 GeV2 to about �1:5% at Q2 ¼ 20 GeV2 and higher.

The trigger inefficiency determined directly from
eþe� ! eþe��0 simulation is compared to that calcu-
lated using simulated VCS events in Fig. 15. The discrep-
ancy between the inefficiencies is 3%–4% for �0 energies
higher than 3 GeV, but increases to 30% for E� < 2 GeV.

Figure 16 shows the Q2 spectra for simulated signal
pions of different energies. For eachQ2 interval the energy
spectra for data and simulation should be identical. Any
difference provides a measure of the quality of the trigger
efficiency simulation. Using the fitting procedure de-
scribed in Sec. IV, we determine the numbers of signal
events in ten Q2 intervals for six �0 energy ranges (53
measurements, excluding cells with no events). We sub-
tract the 2�0 background and normalize the energy spec-
trum in each Q2 interval so that its integral is unity. The
same procedure is applied to simulated spectra after in-
troducing the efficiency corrections for �0 loss, EID and
trigger inefficiency. The comparison of the normalized
data and simulated spectra gives �2=ndf ¼ 42:4=43
(ndf ¼ number of degrees of freedom).
The �0 energy spectrum summed over the Q2 intervals

from 4 to 12 GeV2 is shown in Fig. 17. The simulated
spectrum is the sum of the spectra normalized to the
number of data events in each Q2 interval. The shaded
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FIG. 13. The correction to the MC-estimated EID efficiency as
a function of Q2.
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FIG. 14 (color online). The Q2 dependence of the correction
for trigger efficiency for events with a tagged electron (triangles)
or positron (squares), and for all events (circles).
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FIG. 15 (color online). The trigger inefficiency as a function of
�0 energy determined directly from eþe� ! eþe��0 simula-
tion (circles) and from simulated VCS events (squares).
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boxes represent the uncertainties in the efficiency correc-
tions. The ratio of the data and simulated spectra agrees
with unity with �2=ndf ¼ 5:9=5. Since the spectra for data
and simulation are in reasonable agreement, we conclude
that the simulation reproduces the discrepancy in trigger
inefficiency, and so there is no need to introduce an extra
efficiency correction. However, we introduce an extra sys-
tematic uncertainty due to trigger inefficiency, which is
conservatively estimated to be 2%, i.e., half of the differ-
ence between the VCS and eþe� ! eþe��0 trigger in-
efficiencies for high energy �0’s (see Fig. 15).

Since the energy and angular distributions, and the
trigger efficiency correction are very different for events
with a tagged electron or a tagged positron, it is interesting
to compare the eþe� ! eþe��0 differential cross sec-
tions measured for electron-tagged and positron-tagged
events. To do this we subtract the 2�0 background
and apply the efficiency correction separately to events
with tagged electron and positron. The ratio of the cross

sections is then calculated as the double ratio
ðNdata=NMCÞelectrons=ðNdata=NMCÞpositrons (Fig. 18) and is

found to be in reasonable agreement with unity.

D. Requirements on r and cos��
e�

To estimate possible systematic uncertainty due to
the requirement �0:025< r < 0:05, we study events in
the range 0:05< r < 0:075 [see Eq. (3) and Fig. 3].
Assuming that the efficiency corrections are the same
for events from the two r ranges, and subtracting
2�0 background, we determine the double ratio
ðNdata=NMCÞ0:05<r<0:075=ðNdata=NMCÞ�0:025<r<0:05 as a
function of Q2. The ratio is consistent with unity
(�2=ndf ¼ 9:3=15), so we conclude that the MC simula-
tion reproduces the shape of the r distribution.
We also study the effect of the j cos	�e�j> 0:99 criterion

by changing the value to 0.98 and 0.95. The ratio of the
numbers of events with 0:98< j cos	�e�j< 0:99 and
j cos	�e�j> 0:99 is found to be 0:013� 0:003 in data and
0:0074� 0:0004 in simulation. The corresponding values
for 0:95< j cos	�e�j< 0:99 are 0:018� 0:002 and
0:0103� 0:0005. Since the observed data-simulation dif-
ference does not exceed 1%, we do not introduce an
efficiency correction, but consider this difference (1%) as
a measure of systematic uncertainty due to the cos	�e�
criterion.

E. Effect of the beam-induced background

The quality of simulation of beam-generated spurious
track and photons is checked using practically background-
free VCS events. The simulated distributions of the number
of extra photons, their energies, number of extra tracks, and
their momenta are found to be in a reasonable agreement
with those from data.
The average values of the parameters for data and simu-

lation are listed in Table II. We find that the values of these
parameters are independent of Q2.
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FIG. 16. The Q2 spectrum for simulated signal events. The
shading represents the contributions from the different �0 energy
ranges (in GeV) indicated by the key.
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FIG. 17 (color online). The �0 energy spectrum for data
(points with error bars) and signal simulation (histogram). The
shaded boxes represent the uncertainties associated with the
efficiency correction procedure.
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text to compare the cross section for selected signal events with a
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The background conditions changed considerably over
the course of the experiment. For example, the average
number of extra photons varied from 1.5 for 2001 data to
3.5 for 2007 data. It was tested that simulation reproduces
this variation well. It should be noted that our selection
criteria are only slightly sensitive to beam-induced back-
ground. The relative difference between the detection effi-
ciencies calculated with 2001 and 2007 background
conditions is found to be ð�1:2� 0:9Þ%. Since the simu-
lation reproduces the beam-induced background and its
variation, we do not introduce any systematic uncertainty
associated with the effects of the beam-induced
background.

The total efficiency correction as a function of Q2 is
shown in Fig. 19, where the error bars are of statistical
origin. The systematic uncertainty, which is independent of
Q2, is 2.5% and takes into account the uncertainties in the
determination of �0 loss (1%) and trigger inefficiency
(2%), and the uncertainty due to the j cos	�e�j> 0:99 re-
quirement (1%). The values of the total efficiency correc-
tion and their statistical errors are listed in Table I.

VII. CROSS SECTION AND FORM FACTOR

The Born differential cross section for eþe� ! eþe��0

is calculated as

d�

dQ2 ¼ Ncor=�Q
2

"RL
; (6)

where Ncor is the number of signal events corrected for
data-simulation difference and resolution effects (Table I),
�Q2 is the relevant Q2 interval, L is the total integrated
luminosity (442 fb�1), " is the detection efficiency as a
function of Q2, and R is a radiative correction factor
accounting for distortion of the Q2 spectrum due to the
emission of photons from the initial state particles and for
vacuum polarization effects. The detection efficiency is
obtained from simulation. Its Q2 dependence is shown in
Fig. 4 and listed in Table I.
The radiative correction factor is determined using

generator-only simulation. The Q2 spectrum is generated
using only the Born amplitude for the eþe� ! eþe��0

process, and then again using a model with radiative cor-
rections included. The Q2 dependence of the radiative
correction factor, evaluated as the ratio of the second
spectrum to the first, is shown in Fig. 20. The Q2 depen-
dence is fitted by the function a=ð1þ bQ�Þ. The accuracy
of the radiative correction calculation is estimated to be 1%
[15]. Note that the value of R depends on the requirement
on the extra photon energy. The Q2 dependence obtained
corresponds to the criterion r ¼ 2E�

�=
ffiffiffi
s

p
< 0:1 imposed in

the simulation.
The corrected mass spectrum (Ncor) is obtained from the

measured spectrum (Nrec) by dividing by the efficiency
correction factor [see Eq. (5)] and unfolding the effect of
Q2 resolution. Using MC simulation, a migration matrix A
is obtained, which represents the probability that an event
with true Q2 in interval j is reconstructed in interval i:

Nrec;i ¼
X
j

AijNcor;j: (7)

In the case of extra photon emission, Q2
true is calculated as

�ðp� p0 � kÞ2, where k is the photon four-momentum; "
and R in Eq. (6) are functions of Q2

true. The Q2 resolution
varies from about 0:05 GeV2 at Q2 ¼ 5 GeV2 to
0:25 GeV2 at Q2 ¼ 25 GeV2. As the chosen Q2 interval
size significantly exceeds the resolution for all Q2, the
migration matrix is nearly diagonal, with diagonal values

TABLE II. The average number of extra photons (Nph), the
average energy of extra photon (Eph), the fraction of events with

extra track (ftrk), and the average momentum of extra track ptrk

in data and simulation for VCS events.

Nph Eph, MeV ftrk, % ptrk, MeV

Data 2:31� 0:01 40:2� 0:1 1:62� 0:03 196� 4
MC 2:27� 0:01 38:4� 0:1 1:81� 0:04 205� 4
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FIG. 19. The Q2 dependence of the total efficiency correction.
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FIG. 20. The Q2 dependence of the radiative correction factor.
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�0:9, and next-to-diagonal values �0:05. We unfold the
Q2 spectrum by applying the inverse of the migration
matrix to the measured spectrum. The procedure changes
the shape of the Q2 distribution insignificantly, but in-
creases the errors (by about 20%) and their correlations.
The corrected Q2 spectrum is listed in Table I.

The values of the differential cross section are listed in
Table III. The quoted errors are statistical and systematic.
The latter includes only Q2-dependent errors: the system-
atic uncertainty in the number of signal events and the
statistical error in the detection efficiency determined from
MC simulation. The Q2-independent systematic error is
equal to 3% and includes the systematic uncertainties in
the efficiency correction (2.5%) and in the radiative cor-
rection factor (1%), and the uncertainty in the integrated
luminosity (1%).

The measured differential cross section at the Born level
is shown in Fig. 21, together with CLEO data [12] forQ2 >
4 GeV2.

Because of the strong nonlinear dependence of the cross
section on Q2, the effective value of Q2 corresponding to
the measured cross section differs from the center of theQ2

interval. We parametrize the measured cross section by a
smooth function, reweight theQ2 distribution in simulation
to be consistent with data, and calculate the weighted
average ( �Q2) for each mass interval. The values of �Q2

are listed in Table III.

Since the requirement on cos	�e� limits the momentum
transfer to the untagged electron, we measure the cross
section for the restricted q22 range jq22j< amax. The value of
amax is determined from the q22 dependence of the detection
efficiency ["ðamaxÞ ¼ 50%] and is equal to 0:18 GeV2.
To extract the transition form factor we compare the

measured and the calculated values of the cross section.
The simulation uses a constant form factor FMC. Therefore
the measured form factor is determined from

F2ðQ2Þ ¼ ðd�=dQ2Þdata
ðd�=dQ2ÞMC

F2
MC: (8)

The calculated cross section ðd�=dQ2ÞMC has a model-
dependent uncertainty due to the unknown dependence on
the momentum transfer to the untagged electron. We use a
q22-independent form factor, which corresponds to the
QCD-inspired model Fðq21; q22Þ / 1=ðq21 þ q22Þ � 1=q21
[23]. Using the vector dominance model with the form
factor Fðq22Þ / 1=ð1� q22=m

2
�Þ, where m� is � meson

mass, leads to a decrease of the cross section by 3.5%.
This difference is considered to be an estimate of model
uncertainty due to the unknown q22 dependence. However,
it should be noted that this estimate depends strongly on
the limit on q22. The value of 3.5% is obtained with jq22j<
0:18 GeV2. For a less stringent q22 constraint, for example
jq22j< 0:6 GeV2, the difference between the calculated
cross sections reaches 7.5%.
The values of the form factor obtained, represented in

the form �Q2jFð �Q2Þj, are listed in Table III and shown in
Fig. 22. For the form factor we quote the combined error,
for which the statistical and Q2-dependent systematic un-
certainties are added in quadrature. The Q2-independent
systematic error is 2.3%, and includes the uncertainty on
the measured differential cross section, and the model-
dependent uncertainty due to the unknown q22 dependence.

TABLE III. The Q2 interval, the weighted average Q2 value
for the interval ( �Q2), the eþe� ! eþe��0 cross section
(d�=dQ2ð �Q2Þ), and the product of the ��� ! �0 transition
form factor Fð �Q2Þ and �Q2. The quoted errors are statistical
and systematic for the cross section, and combined for the
form factor. In the table we quote only Q2-dependent systematic
errors. The Q2-independent systematic error is 3% for the cross
section and 2.3% for the form factor.

Q2 interval �Q2 d�=dQ2ð �Q2Þ �Q2jFð �Q2Þj
(GeV2) (GeV2) (fb=GeV2) (MeV)

4.0–4.5 4.24 131:4� 4:6� 5:0 150:4� 3:9
4.5–5.0 4.74 87:7� 2:9� 3:7 149:1� 4:1
5.0–5.5 5.24 68:4� 2:5� 2:2 157:4� 3:9
5.5–6.0 5.74 48:3� 2:1� 1:8 156:0� 4:5
6.0–7.0 6.47 34:8� 1:2� 1:0 163:5� 3:6
7.0–8.0 7.47 20:01� 0:86� 0:79 160:6� 4:7
8.0–9.0 8.48 13:60� 0:69� 0:70 167:3� 6:0
9.0–10.0 9.48 11:11� 0:56� 0:32 185:3� 5:5
10.0–11.0 10.48 7:73� 0:48� 0:38 186:6� 7:6
11.0–12.0 11.49 5:86� 0:42� 0:21 191:6� 7:8
12.0–13.5 12.71 3:35� 0:29� 0:28 175:0� 11:0
13.5–15.0 14.22 2:82� 0:26� 0:19 198:0� 12:0
15.0–17.0 15.95 1:99� 0:20� 0:09 208:0� 12:0
17.0–20.0 18.40 1:27� 0:14� 0:06 220:0� 13:0
20.0–25.0 22.28 0:73� 0:09� 0:06 245:0� 18:0
25.0–30.0 27.31 0:18� 0:07� 0:02 181:0þ33:0

�40:0

30.0–40.0 34.36 0:16� 0:04� 0:02 285:0þ39:0
�45:0
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FIG. 21 (color online). The eþe� ! eþe��0 differential
cross section obtained in this experiment compared to that
from the CLEO experiment [12].
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VIII. CONCLUSIONS

We have studied the eþe� ! eþe��0 reaction in the
single tag mode and measured the differential cross section
ðd�=dQ2Þ and the ��� ! �0 transition form factor FðQ2Þ
for the momentum transfer range from 4 to 40 GeV2. For
the latter, the comparison of our results with previous
measurements [11,12] is shown in Fig. 22. In the Q2 range
from 4 to 9 GeV2 our results are in reasonable agreement
with the measurements by the CLEO collaboration [12],
but have significantly better precision. We also signifi-
cantly extend the Q2 region over which the form factor is
measured.

To effectively describe the Q2 dependence of the form
factor in the range 4–40 GeV2, we fit the function

Q2jFðQ2Þj ¼ A

�
Q2

10 GeV2

�
�

(9)

to our data. The values obtained for the parameters are A ¼
0:182� 0:002 GeV, and � ¼ 0:25� 0:02. The fit result is
shown in Fig. 22 by the dotted curve. The effective Q2

dependence of the form factor (� 1=Q3=2) differs signifi-
cantly from the leading order pQCD prediction (� 1=Q2)
[see Eq. (2)], demonstrating the importance of higher-order
pQCD and power corrections in theQ2 region under study.

The horizontal dashed line in Fig. 22 indicates the

asymptotic limit Q2FðQ2Þ ¼ ffiffiffi
2

p
f� � 0:185 GeV for

Q2 ! 1, predicted by pQCD [2]. The measured form
factor exceeds the limit for Q2 > 10 GeV2. This contra-
dicts most models for the pion distribution amplitude (see,
e.g., Ref. [24] and references therein), which give form
factors approaching the asymptotic limit from below.

The comparison of the form-factor data to the predic-
tions of some theoretical models is shown in Fig. 23. The
calculation of [8] was performed by Bakulev, Mikhailov,
and Stefanis using the light-cone sum rule method [4,25] at
next-to-leading order (NLO) pQCD; the power correction
due to the twist-4 contribution [25] was also taken into

account. Their results are shown for the Chernyak-
Zhitnitsky DA (CZ) [26], the asymptotic DA (ASY) [27],
and the DA derived from QCD sum rules with nonlocal
condensates (BMS) [28].
For all three DAs the Q2 dependence is almost flat for

Q2 * 10 GeV2, whereas the data show significant growth
of the form factor between 8 and 20 GeV2. This indicates
that the NLO pQCD approximation with twist-4 power
correction, which has been widely used for the description
of the form-factor measurements by the CLEO collabora-
tion [12], is inadequate for Q2 less than �15 GeV2. In the
Q2 range from 20 to 40 GeV2, uncertainties due to higher-
order pQCD and power corrections are expected to be
relatively small. Here, our data lie above the asymptotic
limit, as does the prediction of the CZ model.

ACKNOWLEDGMENTS

We thank V. L. Chernyak for useful discussions, and
A. P. Bakulev, S. V. Mikhailov, and N.G. Stefanis for pro-
viding us the NLO pQCD calculation of the transition form
factor. We are grateful for the extraordinary contributions
of our PEP-II colleagues in achieving the excellent lumi-
nosity and machine conditions that have made this work
possible. The success of this project also relies critically on
the expertise and dedication of the computing organiza-
tions that support BABAR. The collaborating institutions
wish to thank SLAC for its support and the kind hospitality
extended to them. This work is supported by the U.S.
Department of Energy and National Science Foundation,
the Natural Sciences and Engineering Research Council
(Canada), the Commissariat à l’Energie Atomique and
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