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ARTICLE

Deforestation-induced climate change reduces
carbon storage in remaining tropical forests
Yue Li 1✉, Paulo M. Brando 1, Douglas C. Morton2, David M. Lawrence 3, Hui Yang4 &

James T. Randerson 1

Biophysical effects from deforestation have the potential to amplify carbon losses but are

often neglected in carbon accounting systems. Here we use both Earth system model

simulations and satellite–derived estimates of aboveground biomass to assess losses of

vegetation carbon caused by the influence of tropical deforestation on regional climate across

different continents. In the Amazon, warming and drying arising from deforestation result in

an additional 5.1 ± 3.7% loss of aboveground biomass. Biophysical effects also amplify carbon

losses in the Congo (3.8 ± 2.5%) but do not lead to significant additional carbon losses in

tropical Asia due to its high levels of annual mean precipitation. These findings indicate that

tropical forests may be undervalued in carbon accounting systems that neglect climate

feedbacks from surface biophysical changes and that the positive carbon–climate feedback

from deforestation-driven climate change is higher than the feedback originating from fossil

fuel emissions.
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Tropical forests store more than 200 Pg C in aboveground
live biomass1–3. Climate warming has the potential to
contribute to a positive feedback that causes tropical forests

to lose carbon, making it more difficult to stabilize the Earth’s
climate4,5. Over the past several centuries, the expansion of
agriculture in tropical regions has contributed to widespread
losses of tropical forest on multiple continents6–8. The rate of
tropical forest loss accelerated in the 1970s (e.g., refs. 9,10), and by
the 1990s, direct carbon emissions from tropical deforestation
were at record high levels, with estimates ranging between 0.8 and
2.2 Pg C yr−1 (refs. 11,12). Since the 2000s, rates of tropical
deforestation have slowed, contributing to an overall decline
in the global carbon flux from land-use change (e.g., from
1.9 Pg C yr−1 in 1997 to 1.0 Pg C yr−1 during 2010–2019,
ref. 11,13). Many tropical forests continue to lose carbon in hot-
spot regions14, however, as a consequence of increasing impacts
from fire and other drivers of forest degradation15,16. Altogether,
cumulative carbon emissions from tropical deforestation and
other land-cover changes in the tropics over the past several
centuries are comparable to the current aboveground vegetation
carbon stock17.

Apart from contributing to the build-up of atmospheric CO2,
tropical deforestation alters surface biophysical properties, con-
tributing to decreases in evapotranspiration and surface rough-
ness and increases in albedo when forests are replaced by
grasslands and crops18–21. The influence of these biophysical
changes has been long appreciated by regional and global climate
modeling communities22–27 and are known to contribute to
regional warming and drying28–32, changes in regional atmo-
spheric circulation and moisture convergence33,34, and longer-
range teleconnections35–37. Precipitation responses to tropical
deforestation also likely depend on the magnitude and spatial
structure of the deforestation pattern. On broader spatial scales,
decreases in evapotranspiration may weaken recycling along
transport pathways delivering moisture to tropical forests from
ocean source regions38,39. At a finer spatial scale, if deforestation
contributes to a heterogeneous distribution of surface roughness
and atmospheric heating, rainfall may increase in cleared areas
and downwind of deforestation patches40,41.

Contrasting climate responses to deforestation across different
tropical continents have been found in model simulations30,42,43

and are summarized in a recent review32. Studies using climate
models agree generally that Amazonian deforestation has the
strongest climate impacts, causing regional warming and
decreases in precipitation. The regional climate response to
deforestation in tropical Africa and Southeast Asia is weaker in
magnitude, likely as a consequence of different forms of land-
cover change, different climate baseline states, spatial patterns of
deforestation, and geographical differences in topography and
proximity of forests to nearby ocean regions44. For instance, the
higher precipitation sensitivity to local surface drying in the
Amazon, as compared to other tropical continents, has been
recently attributed to different contributions of local evaporative
recycling to precipitation in the baseline climate45.

An important question when considering the net impact of
deforestation on the Earth system is whether deforestation-
induced changes in regional climate influence the local environ-
ment for remaining forests, making it either easier or more dif-
ficult for these forests to grow. Forest loss that causes regional
warming and drying, for example, has the potential to contribute
to positive carbon–climate feedback because higher air tempera-
tures may reduce photosynthesis46,47 and increase autotrophic
respiration, leading to lower levels of net primary production and
forest cover in nearby areas. Warming and drying also promote
drought and wildfire15,48, which greatly increases the risk of
regional forest dieback and the associated loss of the aboveground

biomass49. An ensuing climate-tipping point, once triggered, may
cause local ecosystems to move toward an alternate stable
state5,32,50,51, in which grass plant functional types are dominant,
wildfires are prevalent, and carbon stocks are considerably
reduced. Negative feedback, in contrast, may occur if loss of forest
cover contributes to changes in atmospheric circulation that
increase regional rainfall40 or diffuse light52. While previous
studies have explored deforestation edge effects53,54 on carbon
storage in nearby patches from changes in canopy microclimate
and fire risk, much less work has examined the carbon con-
sequences of regional-to-continental-scale changes in climate. To
determine the magnitude and sign of these larger-scale interac-
tions, here we quantify the influence of deforestation-driven cli-
mate change on the carbon storage of forests across different
tropical continents. This is important because natural climate
solutions are gaining attention as a possible mechanism to slow
climate warming. In forest carbon offset programs, a critical need
is to provide an accurate estimate of the carbon and climate
benefits of a land management action (e.g., avoided deforesta-
tion), thus enabling a more effective valuation of the carbon
credits issued for a specific project.

In this work, we estimate the biophysical impacts of defor-
estation on aboveground vegetation carbon stocks by combining
deforestation-induced changes in annual mean rainfall and air
temperature derived from an idealized global deforestation
experiment (deforest–globe) that is part of the Land Use Model
Intercomparison Project (LUMIP55) of phase 6 of Coupled Model
Intercomparison Project (CMIP6), with empirical relationships
between climate and aboveground biomass storage derived from
contemporary satellite observations. Our analysis compares the
relative magnitude of the biophysical carbon cost to the direct
aboveground biomass loss from tropical deforestation across
three different continental regions (Amazon, Congo, and the
maritime continent in tropical Asia). We define the biophysical
carbon cost as the additional loss of carbon driven by
deforestation-induced climate change. We also report the
carbon–climate feedback parameter, gamma (defined as the
cumulative carbon loss at each location for a 1 °C increase in
surface air temperature)56 driven solely by the biophysical
climate effect of tropical deforestation and compare it to more
traditional estimates of gamma derived from radiative effects of
increasing CO2.

Results
Deforestation impacts on tropical climate across continents.
The multimodel mean estimates (obtained from eight fully cou-
pled Earth system models, ESMs57–64, Table 1) of the tropical
climate response (Fig. 1) to idealized deforestation (Supplemen-
tary Fig. 1) show that many areas across the tropics experience
warming and reduced rainfall in response to deforestation.
Decreases in rainfall occur across almost all of the Amazon, in the
western half of the Congo basin and across the southern part of
Borneo and the interior western part of New Guinea (Fig. 1a–c
and Supplementary Fig. 2). These reductions are consistent with
widespread declines in evapotranspiration in deforested areas, as
shown by Boysen et al.65, and are partly offset by precipitation
increases in northern and eastern Africa. The largest decline of
mean annual precipitation occurs in Amazonia, where a
59.0 ± 16.9% loss in biomass drives a significant precipitation
decrease of 150 ± 105 mm yr−1 (6.7 ± 4.7%), averaged across all
eight models (Table 2). Precipitation reductions for the Congo
and for the maritime continent (that is, islands in tropical
Southeast Asia) are smaller in relative magnitude, with biomass
losses of 50.8 ± 13.9% and 42.0 ± 10.2% resulting in mean annual
precipitation decreases of 41 ± 56 mm yr−1 (2.7 ± 3.7%) and
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38 ± 58 mm yr−1 (1.3 ± 2.0%), for the Congo and the maritime
continent, respectively. Model agreement with respect to the
direction of the precipitation response to deforestation is high in
South America, with at least six of the eight models showing
decreases in precipitation across most of the Amazon. Model
agreement is lower in the eastern part of the Congo and across
tropical Asia, where the magnitude of the multimodel mean
change is also smaller relative to background precipitation levels.

In response to idealized deforestation, mean annual air
temperature increases significantly in the Amazon by
0.5 ± 0.5 °C for the multimodel mean, with smaller and more
variable cross-model responses in the Congo (0.1 ± 0.5 °C) and
tropical Asia (−0.1 ± 0.2 °C) (Fig. 1d–f and Table 2). The
continental differences in the mean annual temperature response

have long been recognized from early climate model simulations
of tropical deforestation30 and are explained by tradeoffs between
declining surface net radiation (which causes cooling) and
reductions in evapotranspiration and surface roughness (which
causes surface warming). In the Amazon, latent heat decreases by
6.9 ± 3.5Wm−2 from deforestation whereas net surface radiation
declines by 4.6 ± 2.5Wm−2 (Supplementary Table 1). In
contrast, the latent heat declines by 3.4 ± 4.5Wm−2 and
2.1 ± 3.8Wm−2 for the Congo and the islands of tropical
Asia, respectively, relative to declines in net radiation of
3.3 ± 2.9Wm−2 and 1.4 ± 1.9Wm−2. The weaker warming
response in the Congo may be driven by a smaller cloud response
(that is, a smaller decrease in cloud cover, Supplementary Fig. 3)
in Africa where the diurnal temperature range changes by a

Table 1 A list of information of 8 Earth system models participating in the LUMIP idealized deforestation experiment.

Model name Model center Original resolution Dynamic
vegetation

Reference

BCC–CSM2–MR Beijing Climate Center, China 320 × 160 (1.125° × 1.125°) No Wu et al.57

CanESM5 Canadian Centre for Climate Modelling and
Analysis, Canada

128 × 64 (2.8° × 2.8°) No Swart et al.58

CESM2 National Center for Atmospheric Research, USA 288 × 192 (1.25° × 0.94°) No Danabasoglu et al.59

CNRM–ESM2–1 Centre National de Recherches Météorologiques, France 256 × 128 (1.4° × 1.4°) No Séférian et al.60

IPSL–CM6A–LR Institut Pierre-Simon Laplace, France 144 × 143 (2.5° × 1.27°) No Boucher et al.61

GISS–E2–1–G NASA Goddard Institute for Space Studies, USA 144 × 90 (2.5° × 2°) No Kelley et al.62

UKESM1–0–LL Met Office Hadley Centre, UK 192 × 144 (1.87° × 1.25°) Yes Sellar et al.63

MPI–ESM1–2–LR Max Planck Institute for Meteorology, Germany 192 × 96 (1.9° × 1.9°) No Mauritsen et al.64

Fig. 1 Biophysical impacts of idealized deforestation on rainfall and temperature in three tropical regions. Changes in mean annual rainfall and air
temperature in a, d, South America, (b, e, Africa and c, f, Southeast Asia. The changes were computed as the difference between the average of last
30 years from the LUMIP deforest–globe and piControl experiments (see “Methods”). The dotted area indicates the model agreement, with at least six out
of eight models agreeing on the sign of the climate responses. Information on the eight models is listed in Table 1.
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smaller amount as shown by previous simulations36,43. An
asymmetric cloud response between the Amazon and the Congo
is seen in ESMs such as CanESM5, CESM2, MPI–ESM–1.2.0, and
UKESM1–0–LL, as shown in Supplementary Fig. S6 in ref. 65. The
smaller latent heat decline for the tropical Asian islands is
expected since climatological precipitation is much larger than in
the other two regions, which means that evaporation is less
frequently water-limited. Further, the temperature over the
maritime continent is more tightly controlled by the
surrounding ocean.

The sensitivity of tropical aboveground biomass to climate. To
assess the response of tropical aboveground vegetation carbon
storage to the biophysical climate effects of deforestation, we
developed an empirical relationship between tropical above-
ground biomass (AGB) from the ESA–CCI BIOMASS project3

and climate observations (see “Methods”), drawing upon the
spatial variability of biomass and climate across different tropical
regions (Fig. 2a). We used all resampled 1-degree grid cells within
23°S–23°N (including forests and grasses) in our analysis
except for desert regions with mean annual precipitation less than
100 mm yr−1 and grid cells with a land fraction less than 50%.
Across the tropics, drier areas also have more spatial variation in
mean annual temperature, with lower AGB observed in regions
with higher mean annual temperature (Fig. 2a). Both the Congo
and the Amazon are closer to a 1500mm yr−1 threshold that
separates tropical forests and savannas66, suggesting forests in
these regions are closer to a climate-tipping point. The
climate–AGB relationship derived from the spatial variation in
observations reflects the long-term evolutionary and adaptive
responses of the terrestrial ecosystem to climate, and implicitly
includes processes such as fires, deforestation and drought effects
on tree mortality66. The CMIP6 multimodel mean captures
the general spatial sensitivity of AGB to precipitation and tem-
perature variations (Fig. 2b) despite the simulated AGB by
models are biased a bit low in areas with a high fraction of forests
(Supplementary Fig. 4).

We first used a multiple linear regression model to estimate the
AGB sensitivity to the spatial variations in temperature and
precipitation, with the aim of combining this information with
the climate impacts of deforestation to estimate the biophysical
feedback effect of deforestation on AGB. Table 3 shows that
observed mean annual temperature and mean annual precipita-
tion explain 49% of the spatial variance in tropical AGB using the
climate and biomass observations, with the AGB increasing by
3.4 Mg C ha−1 for 100 mm yr−1 increase in precipitation (8.2%
per 100 mm yr−1). Similarly, AGB declines by 0.32 Mg C ha−1 for
every 1 °C increase in mean annual temperature (−0.8% per °C)
(Table 3). This larger AGB sensitivity to precipitation is in
contrast to a recent report47 that finds that the tropical forest
AGB is more sensitive to maximum temperature (−5.9% per °C)
rather than rainfall (2.4% per 100 mm yr−1). When comparing
our findings to those in the previous study, it is important to note
our regression is also derived from non-forest biomes in the
tropics, including savannas and grasslands (Supplementary Fig. 5).
Therefore, the climate gradient that we consider is larger, and
rainfall therefore has a more significant role in defining the
transition from forests to savannas.

To tailor a climate-biomass statistical model for use in wetter
areas where tropical forests are dominant, we used a moving
window on climatological annual rainfall (see “Methods”). This
analysis indicates that tropical AGB rainfall sensitivity is the
largest between 1500 mm yr−1 and 2000 mm yr−1 (Fig. 2c),
collocated with the average rainfall climatology in the Congo
basin and the southern and eastern parts of the Amazon. ThisT
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suggests that the aboveground vegetation carbon storage is more
sensitive to rainfall changes in tropical Africa and South America
than in tropical Asia. An AGB spatial sensitivity analysis with two
other satellite AGB products1,2 shows consistent results to those
derived with the ESA–CCI product (Supplementary Fig. 6).

Within the CMIP6 models, the multiple linear regression
explains 60% of the spatial variability in AGB (Table 3). The
sensitivity of AGB to precipitation within the CMIP6 models is
similar to the observations (6.9% per 100 mm yr−1) but the
temperature sensitivity is considerably lower (−0.1 % per °C)
(Fig. 2b, d).

We also explored the impact of other or more specific
environmental factors such as vapor pressure deficit (VPD),
mean annual maximum temperature, the seasonality of tempera-
ture and precipitation, and precipitation during the driest
three months (see “Methods”). These metrics are thought to
be physiologically meaningful for tropical forest growth47,67.

We found that these physiological environment factors have a
high spatial collinearity with the mean annual temperature and
precipitation (“Methods”) and, therefore, their capability to
explain the spatial variation of observed AGB and simulated
aboveground vegetation carbon is comparable to that of mean
annual temperature and mean annual precipitation (Supplemen-
tary Tables 2 and 3). Consequently, for simplicity, we used
the AGB sensitivity solely to mean annual temperature and
mean annual precipitation (Fig. 2c) to quantify the impacts
of deforestation-induced changes in regional climate on
tropical AGB.

AGB costs of deforestation-driven changes in climate. To
estimate the carbon costs of deforestation-driven changes in
surface biophysics, we combined the climate changes from the
LUMIP idealized deforestation experiment (Fig. 1) with the
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CMIP6 was computed from the total vegetation carbon multiplied by a mean ratio between the aboveground and total biomass weighted by the tree cover
fraction (see “Methods”). c, d Statistical sensitivity of AGB to MAP and MAT for observation-based data and CMIP6 simulations, respectively. The
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from 600 to 3100mm yr−1. The dotted curves indicate the range over which the regressions were significant at P <0.001. No significant relationships were
found for the observations above a MAP of 2400mm yr−1. Vertical lines in panels a and b represent mean precipitation levels for each region before
(solid) and after (dashed) the deforestation.

Table 3 Overview of the statistical model of observed and simulated aboveground biomass (AGB) in relation to mean annual
precipitation (MAP) and temperature (MAT).

a*100 b R2 RMSE δMAP δMAT

Observationsa 3.4 −0.32 0.49 32 Mg C ha−1 8.2% /100mm yr−1 −0.8%/°C
CMIP6 mean 3.2 −0.04 0.60 23 Mg C ha−1 6.9% /100mm yr−1 −0.09%/°C

aEquation: AGB= a*MAP + b*MAT + ε. The units are mm yr−1 for MAP, °C for MAT, and Mg C ha−1 for AGB. δMAP and δMAT indicate the relative AGB sensitivity to MAP and MAT (in percentage),
computed as the relative value of the coefficients a and b to the observed/simulated AGB averaged for the whole tropical region. RMSE denotes the root mean square error.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29601-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1964 | https://doi.org/10.1038/s41467-022-29601-0 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


moving window climate–AGB relationship we derived from the
observations (Fig. 2c). Warming and drying from deforestation
contributed to an AGB loss of 5.0 ± 3.6 Mg C ha−1 in the Ama-
zon, 2.9 ± 1.9 Mg C ha−1 in the Congo, and 0.3 ± 2.0 Mg C ha−1

for the islands in tropical Asia (Table 2). The satellite observa-
tions indicate that AGB decreases by about 19–22Mg C ha−1

per 10% decrease in tree cover fraction in the tropics (Supple-
mentary Fig. 7). Using this relationship derived from the obser-
vations and the tree cover fraction changes from the LUMIP
models, we estimated that the direct AGB carbon losses due to
deforestation in the idealized deforestation experiments are
98.3 ± 13.2 Mg C ha−1, 75.5 ± 16.7 Mg C ha−1, and 62.4 ± 17.8
Mg C ha−1 in the Amazon, Congo, and tropical Asia, respectively
(Table 2). These estimated AGB carbon losses are larger than that
simulated explicitly in the ESM simulations (Supplementary
Fig. 1) as the model simulations of the aboveground vegetation
carbon stocks are smaller than the satellite observations due in
part to a lower atmospheric CO2 level in the preindustrial era
(Supplementary Fig. 4). Expressed relative to the direct AGB loss
in the deforestation experiment, the biophysical effects of defor-
estation contribute to 5.1 ± 3.7% (that is, (−5.0 ± 3.6 Mg C ha−1)/
(−98.3 Mg C ha−1)) of additional AGB loss in the Amazon,
3.8 ± 2.5% of additional loss in the Congo, and 0.5 ± 3.2% in
tropical Asia.

Figure 3 shows the spatial pattern of the biophysical effects of
deforestation on AGB and their percent contribution to total
biomass loss related to the direct effects of deforestation. Despite
the widespread decline in rainfall and warming, the largest AGB

loss due to biophysical feedback occurs in the eastern Amazon
where the additional AGB loss is as high as 14Mg C ha−1 (17%)
(Fig. 3a, d). There is no additional AGB loss predicted for the
northwestern Amazon due to its high baseline precipitation level
that reduces the sensitivity of AGB to changes in precipitation or
temperature (Fig. 2c). Biophysical effects also amplify the AGB
loss in the central Congo Basin by up to 9Mg C ha−1 (11%) but
do not lead to any additional AGB loss in tropical Asia as a
consequence of its high precipitation baseline (Fig. 3b, c, e, f).
Further separation of the effects of deforestation-driven changes
in temperature and precipitation indicates that it is the
precipitation response that controls the spatial pattern of the
biophysical carbon costs (Fig. 4), highlighting the importance of
water stress in regulating tropical deforestation-driven AGB
changes.

By applying the relationship that we obtained from LUMIP
simulations and the satellite AGB observations, we can estimate
the influence of past deforestation during the historical era on
regional climate and the associated additional carbon losses. For
South America, the mean primary forest fraction declined
by 11.5% in the Amazon basin from 1850 to 2015, according
to the Land Use Harmonization (LUHv2h) dataset68. Using
the information from the LUMIP simulations, this decline
would translate into a regional precipitation decrease of about
38.6 mm yr−1 and a temperature increase of about 0.13 °C.
Multiplied by the observed AGB–climate sensitivity (Fig. 2c),
these biophysical climate effects (mainly from rainfall reduction)
associated with deforestation would be equivalent to an additional

Fig. 3 Biophysical impacts of deforestation on aboveground biomass (AGB) in the tropics. a–c Shows biophysical AGB changes of deforestation
estimated from the product of deforestation-induced changes in climate (mean annual precipitation and mean annual temperature), and the observational
sensitivity of the AGB to precipitation and temperature shown in Fig. 2c. d–f Shows the relative change of (a–c) as a percent of the estimated direct AGB
loss from deforestation (see “Methods”).
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AGB loss of 741 Tg C (Supplementary Table 4). In Africa, 8.4%
loss in primary forest fraction was estimated to cause regional
reduction in rainfall by 8.8 mm yr−1 and warming by 0.02 °C,
resulting in a cumulative biophysical AGB loss of about 200 Tg C
from 1850 to 2015 (Supplementary Table 4).

Deforestation-driven climate–carbon cycle feedback parameter.
Climate warming is projected in CMIP5 and CMIP6 models to
reduce tropical land carbon storage, which is described by a γ
parameter that is often negative in sign for tropical terrestrial
ecosystems (see Fig. 6.22 in refs. 69 and 70). Here we estimated γ
from the LUMIP models by combining deforestation-driven
temperature and carbon stock changes and compare this estimate
of γ (i.e., γdef ;biophysAGB , see “Methods”) with estimates derived from
CO2-driven climate change (i.e., γCO2AGB, see “Methods”) for the
same set of CMIP6 models. Similar to previous conclusions
regarding the response of land carbon storage to climate change69,
we find that the most negative γCO2AGB is in the Amazon, with smaller
magnitude of γCO2AGB values in the Congo and across the islands in
tropical Asia (Fig. 5a–c). It should be noted that this γCO2AGB calcu-
lation does not account for any biophysical climate effects of land
use and land-cover change71. We apply a similar approach to
calculate a new deforestation-driven climate–carbon feedback
parameter γdef ;biophysAGB by normalizing the biophysical carbon costs
of tropical deforestation by the deforestation-caused warming (see
“Methods”). Figure 5d–f show that the γdef ;biophysAGB is, in general,

more than twofold higher than the γCO2AGB derived from the idealized
CO2 increasing experiments in the Amazon and Congo. This is
because the biophysical effects of deforestation influence the
aboveground vegetation carbon mainly through a regionally
concentrated rainfall response, with the temperature response
being much smaller. Our analysis on the biophysical carbon costs
of tropical deforestation, therefore, suggests that the positive
carbon–climate feedback from deforestation is fundamentally
larger than the feedback originating from fossil emissions.

Discussion
Our analysis indicates that the biophysical climate effects of
tropical deforestation, particularly as a consequence of pre-
cipitation reductions, add to committed carbon emissions by an
extra 5.1 ± 3.7% in the Amazon and by an extra 3.8 ± 2.5% in
Congo. The additional carbon losses occur as a consequence of
remaining intact forests experiencing hotter and drier conditions
that reduce carbon storage in aboveground biomass. These
findings suggest that the value of avoided deforestation and forest
degradation may be underestimated if current carbon assessment
methodologies focus only on the direct carbon stock and emission
changes associated with the land-use change72,73. The biophysical
additionality identified here should be complementary to other
co-benefits, including the potential of remaining forests to serve
as a future terrestrial carbon sink in response to rising levels of
atmospheric carbon dioxide and other global change drivers74,75.
The regional differences in the deforestation biophysical changes

Fig. 4 Contribution of rainfall and air temperature change to the total biophysical aboveground biomass (AGB) loss associated with deforestation.
a–c Shows precipitation contributions to the biophysical AGB costs of deforestation across the three different tropical regions. d–f Shows temperature
contributions to the biophysical AGB costs of deforestation. The partitioning is based on results shown in Fig. 3a–c but separates the contributions from the
deforestation-induced change in annual mean precipitation and temperature. The relative contribution of precipitation change to biophysical AGB loss
varies from 80 to 100% in the Amazon and from 85 to 100% in the Congo.
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in forest carbon stocks that we uncover may also provide insight
about a more equitable approach for assigning carbon credits in
the context of Reducing Emissions from Deforestation and forest
Degradation projects (REDD+) (e.g., ref. 76) and other climate
policy frameworks. An important next step in this context is to
combine the deforestation biophysical climate effect identified
here with AGB losses associated with local edge effects54,77–79 in

order to estimate an integrated indirect carbon benefit associated
with avoided deforestation (or reforestation) projects in the tro-
pics. A preliminary comparison of these two mechanisms and
their total effects are provided in Table 4. In the Amazon, these
indirect benefits of avoided deforestation may sum to be 41%
(with a range of 26–65%) higher than carbon contained within
the project boundaries.

Fig. 5 Spatial pattern of the CO2-driven and deforestation-driven carbon–climate feedback parameters. a–c Shows the climate–AGB feedback parameter
(γ) from an idealized increasing of ~4 × CO2 experiments (γCO2AGB), and d–f shows the same quantity derived from the climate change derived from the LUMIP
deforestation experiment and associated AGB losses (γdef;biophysAGB ). γCO2AGB was computed as the difference of changes in AGB between the full and
biogeochemical transient CO2 increasing experiments normalized by warming under the full coupled warming as the following ref. 70. γdef;biophysAGB was
computed as the ratio of the deforestation-driven climate impacts on the AGB relative to the deforestation-induced climate warming (see “Methods”).

Table 4 Additional benefits for avoiding deforestation or reforestation associated with the indirect local and regional effects of
deforestation on aboveground biomass (AGB).

Mechanism Impact of edge or climate feedback on AGB Citation

Mean Range

Local edge effects (from changes in microclimate and fire) 36% (Amazon)a 25–56% Junior et al.54

19% (Congo)b 18–20% Zhao et al.77

10% (Tropical Asia)c 7–13% Ordway and Asner78

Regional climate feedback (from changes in rainfall and temperature) 5.1% (Amazon) 1.4–8.8% This study
3.8% (Congo) 1.3–6.3%
0.5% (Tropical Asia) 0.0–3.7%

Local edge + regional climate feedback 41% (Amazon) 26–65%
23% (Congo) 19–26%
11% (Tropical Asia) 7–17%

aRatio between total gross carbon loss from edge effect and that from deforestation during 2001–2015.
bRatio between carbon loss from edge effect and that from deforestation for scenarios 1–3 under the Representative Concentration Pathway 8.5 (RCP8.5) for the entire continent of Africa.
cRatio of biomass loss has been reported to range from 16 to 30% according to forest sites observations in Sabah, Malaysian Borneo78. This ratio has been multiplied by an average fraction of forest
fragmentation of 31% (Fischer et al.79), and further divided by the remaining forest fraction of 69% that could experience potential large-scale deforestation.
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The positive biophysical climate feedback of tropical
deforestation (e.g., warming and reduced precipitation as revealed
by previous single model-based studies22–27 and our multimodel
analysis) has important implications for assessing future
climate risks of tropical moist forests50,80. From our analysis
of LUMIP–CMIP6 simulations, idealized deforestation by
45% contributes to an Amazonian rainfall decline by
150 ± 105mm yr−1, which is comparable to the expected change
in rainfall observed in idealized 1% CO2 physiological effect
experiments (that is, by −175mm yr−1 in response to a 4 × CO2

increase for CMIP5, ref. 45). If we presume that these two effects
can be linearly combined that would mean a 325mm yr−1

reduction of precipitation for a climatology of about
2240mm yr−1 (Fig. 2). An annual mean precipitation threshold of
1500mm yr−1 has been identified as the typical hydrological
boundary between tropical forests and savannas66,81. The total
precipitation expected changes from CO2 physiology and defor-
estation together suggest that the mean Amazonian precipitation
may not cross the hydrological threshold necessary for a perma-
nent transition to a savanna-like state in response to these drivers.
However, in southern and eastern areas of the Amazon, where
current precipitation levels are much closer to this tipping point,
these combined effects may push ecosystems over this threshold
and may be further amplified by the direct (radiative) effects of
global climate change.

In contrast, deforestation-driven decreases in rainfall in the
western Congo and in some areas of tropical Asia may be par-
tially offset by the radiative and physiological effects of rising
CO2, which may increase precipitation in these regions as a
consequence of interactions between surface biophysical
changes and regional atmospheric circulation45. Nevertheless,
the change of mean climate by deforestation (that is, less
rainfall and warming), as revealed in our analysis of the
LUMIP–CMIP6 simulations, still implies the increasing possibi-
lity of a lengthening dry season82, an increasing amplitude of
extreme drought events83, and a higher likelihood of
wildfires5,10,15 in the tropics if deforestation continues in the
future. More broadly, the high levels of uncertainty regarding
how radiative, physiological, and land-cover change mechanisms
influence tropical precipitation make it challenging to accurately
predict climate-tipping points in the tropics.

The carbon–climate feedback parameter γ was initially pro-
posed to measure the carbon cycle response to climate
warming56,70, irrespective of whether the warming originates
from fossil fuel emissions or carbon emissions from land-use
change. In past applications, γ has been found to be negative (i.e.,
a loss of carbon to the atmosphere for a 1 °C temperature
increase) across tropical land ecosystems as a consequence of
increases in ecosystem respiration and decreases in photosynth-
esis caused by warming84. As far as we are aware, past work has
not estimated γ driven by warming from the biophysical effects of
tropical deforestation. This warming is fundamentally different
because it is associated with large changes in precipitation and
other land surface variables in the tropics, including humidity
and wind speed. Here, we find that the deforestation-driven
γdef ;biophysAGB (i.e., the term considering the biophysical warming
effect of deforestation on the carbon cycle in the tropics) could be
twofold larger in the Amazon and Congo than that computed
from the idealized CO2 increasing experiment without con-
sideration of land-use and land-cover change (γCO2AGB, as derived
from the Coupled Climate–Carbon Cycle Model Intercomparison
Project experiments (C4MIP) for CMIP6, ref. 71). This implies
that the warming caused by biophysical effects of tropical
deforestation has stronger impacts on nearby tropical terrestrial
ecosystems than warming originating from global radiative

forcing of the Earth system, once adjusted for the same change in
temperature. Further analysis on the attribution of future tropical
climate change to deforestation and CO2 is needed for a better
understanding of the role of tropical land use and land cover in
the climate system. In future work, higher resolution model
simulations may help to identify optimal locations for forest
restoration efforts in order to offset precipitation declines from
historic deforestation and maximize climate change mitigation
from tropical reforestation efforts.

There are several key uncertainties associated with tropical
deforestation and its biophysical impact on precipitation and
temperature including whether or not precipitation and tem-
perature are linearly or nonlinearly dependent on the amount of
deforestation, masking of the precipitation response by internal
climate variability, and the potential for the deforestation-driven
climate changes to impact fires and therefore to feedback onto
aboveground vegetation carbon stocks by means of changes in the
disturbance regime. Further work is needed to explore non-
linearities in the carbon costs of tropical forest loss and the dri-
vers of continental-scale differences. Experiments and analysis
using high-resolution models could help refine the cloud and
convection responses to deforestation. More research on local and
remote teleconnections is also needed. Specifically, more work is
needed by the Earth system community to understand how
deforestation or reforestation in different regions (on individual
continents) influence local and remote patterns of precipitation38

and other aspects of near-surface climate. This may include fur-
ther effort to develop a process-based evaluation framework for
quantifying the impact of deforestation on regional climate that
reconciles predictions from ESMs with long-term trends from
satellites and field observations, building on the framework
developed by Duveiller et al.85 for evaluating the influence of
vegetation cover on surface energy exchange. Additional
improvements of ESMs to better represent forest mortality,
convection, and precipitation in tropical climate simulations also
would help us more accurately assess the carbon costs of defor-
estation and evaluate their role in the changing climate system.

Our study provides a means to estimate the additional carbon
losses associated with the regional to continental-scale biophysical
effects of deforestation and their impact on regional climate and
the carbon stocks of nearby undisturbed forests. For the Amazon,
avoiding deforestation provides an additional 5.1 ± 3.7% benefit
for aboveground vegetation carbon storage based on the model-
simulated deforestation–climate effects and climate–vegetation
carbon relationships derived from observations. For the Congo,
this additionality is 3.8 ± 2.5%. We find that such biophysical
carbon costs of deforestation mainly arise from regional declines
in precipitation and are further amplified by increases in surface
air temperature. This, in combination with the estimated strong
deforestation-driven climate–vegetation carbon feedback,
emphasizes the additional threat from regional water stress trig-
gered by deforestation and the potential effectiveness of climate
mitigation strategies that maintain or expand robust tropical
forest ecosystems.

Methods
CMIP6 simulations. Precipitation, surface air temperature, vegetation carbon
(being converted to the carbon in the aboveground biomass, AGB, using an
empirical factor, that is, 0.8 for forests and 0.4 for savannas, see below), and tree
cover fraction from 8 available Earth system models (ESMs57–64) (Table 1) parti-
cipating in the Land Use Model Intercomparison Project (LUMIP) with model
participating in phase 6 of Coupled Model Intercomparison Project (CMIP6)55

were used in this study. The idealized deforestation simulations (deforest–glob)
from LUMIP assume that a total forest area of 20 million km−2 was linearly
removed from the top 30% of forested area across the globe in 50 years. After
50 years, deforestation activity stopped, and most models were run for another
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30 years for the purpose of reaching a stable status. The idealized global defor-
estation experiments caused a significant decline in tropical tree cover fraction,
with the multimodel mean tree cover fraction decreasing by 44.7 ± 6.0%,
38.7 ± 8.8% and 31.2 ± 8.9% in Amazon, Congo, and islands in tropical Asia,
respectively (Table 2).

The above-mentioned variables from the preindustrial control (piControl)
simulations of the eight models that participated in the LUMIP deforestation
experiments were used to provide a referenced climate background in the tropics.
This is justified by the fact that the LUMIP deforestation simulations start from a
boundary condition that is identical to that in the piControl simulations. The first
realization (r1) was selected for all 8 models for both the deforest–globe and
piControl simulations, except for CESM2, for which the second realization (r2) in
the deforest–globe simulations were selected due to a shifted rainfall
climatology in r1.

We also downloaded these variables of the above 8 ESMs participating in the
Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP)71, to
calculate the CO2-driven climate–vegetation carbon feedback parameter (detailed
approach is described in detail below). The C4MIP experiments contain
simulations of the idealized 1% per year increasing CO2 experiments (1pctCO2),
with the capability of CO2 separately influencing the radiation components
(1pctCO2-rad) and the carbon cycle model components (1pctCO2-bgc). These
factorial experiment designs enable the isolation of the climate–carbon cycle
feedback parameter (that is, the sensitivity of a carbon pool to climate warming,
γ69, with a unit of kg Cm−2 °C−1). γ was computed by subtracting the land carbon
storage in 1pctCO2-bgc simulations from the 1pctCO2 simulations and by dividing
this term by the corresponding climate warming in the 1pctCO2 simulations. In
C4MIP experiments, 1pctCO2, 1pctCO2-rad, and 1pctCO2-bgc were run for each
model for 140 years under a transient CO2 increasing at a rate of 1% per year.
By the end of 140 years, the atmospheric CO2 concentration quadruples to about
1120 ppm. We thus represented the 4 × CO2 effects on climate and aboveground
vegetation carbon by computing their difference between the last and first 20-year
averages for each 140-yr simulation in 1pctCO2 and 1pctCO2-bgc simulations. All
variables from the above experiments were remapped to the 1-degree grid using the
bilinear interpolation method from Climate Data Operator (CDO)86.

Observations. Contemporary observations of mean annual precipitation and
surface air temperature, derived from the Tropical Rainfall Measuring Mission
(TRMM87) and Climate Research Unit (CRU TS4.04, ref. 88), were used to obtain
the empirical relationship between climate and the AGB. The observational AGB
(unit: Mg ha−1, being converted to Mg C ha−1 using a factor of 0.5, ref. 89) was
derived from the European Space Agency Climate Change Initiative (ESA–CCI)
BIOMASS project3. ESA–CCI biomass map provides detailed information of the
aboveground vegetation carbon storage during the year 2010, 2017, 2018 at a
spatial resolution of 100 × 100 m. In this study, we used the AGB map during the
year of 2017. The accuracy of ESA–CCI AGB has been improved when compared
to the previous version (that is, AGB from GlobBiomass project, used in land
surface model evaluation89), with the upper limit of AGB relative error being 20%
where AGB exceeds 50 Mg ha−1 and a fixed error of 10Mg ha−1 where the AGB is
below that limit (see Product Validation & Algorithm Selection Report Version 2 in
https://climate.esa.int/en/projects/biomass/key-documents/). Nevertheless,
ESA–CCI may still underestimate AGB in wet tropics because both L– and C–
band backscatter data saturate at high AGB levels when AGB values keep
increasing. We averaged the original AGB data to a 1° × 1° grid, corresponding to
the unified resolution of the LUMIP model output used in this study. Accordingly,
observed satellite precipitation from TRMM and air temperature from CRU in the
year of 2017 were downloaded and aggregated to the same 1-degree resolution.

Other observational data include AGB data from ref. 1 and ref. 2, land cover
from the Moderate Resolution Imaging Spectroradiometer (MODIS) data (MCD
12C1, distinguishing the land fraction within each 1-degree pixel), and MODIS
vegetation continuous fields (VCF) data (MOD44B, used as the observational tree
cover fraction as shown in Supplementary Fig. 7) during the year of 2017. We also
used the observed precipitation from Global Precipitation Climatology Centre
(GPCC)90 and estimated climatological (1987–2016 average) precipitation in the
Amazon, Congo, and tropical Asia (Supplementary Table 4).

Deforestation effects on rainfall and temperature. For each model, the defor-
estation impacts on mean annual precipitation and temperature were computed as
the difference of the last 30-year average between the deforest–glob and the
piControl simulations. For the multimodel mean, we calculated the agreement of
these eight models on the sign of the deforestation-caused change in precipitation
and temperature, with at least six out of eight models agreement indicated by the
dotted area shown in Fig. 1. A recent study by Boysen et al.65 has given an overview
of the simulated deforestation effects on global climate. Although tropical rainfall
and air temperature may be perturbed significantly by deforestation in the extra-
tropical regions (in particular, see remote effects by high-latitude deforestation in
Devaraju et al.26), most models agree that deforestation causes an averaged
warming and decline in rainfall due to the large-scale decline in evapotranspiration
within the tropics65.

To confirm that most of the tropical climate response originates from tropical
deforestation in the LUMIP experiments, we conducted an additional experiment

with CESM2. This experiment exactly followed the LUMIP protocol55 but excluded
deforestation in the extratropics poleward of 23°S–23°N. We ran the model for
80 years, with tropical tree cover losses exactly equivalent to those in CESM2
participating in the LUMIP deforest–glob experiments. Different from the LUMIP
deforest–glob simulations, in this experiment (CESM–trop) all tree cover fraction
was invariant in the extratropics. To eliminate the influence from model version or
initial conditions, we ran the same model in a configuration of the preindustrial
conditions for another 30 years (CESM2–ctl). The difference in precipitation and
temperature over the last 30 years between CESM2–trop and CESM2–ctl thus
represents the climate effects of deforestation only in the tropics in CESM2. This
experiment confirmed that most of the simulated changes in precipitation and
temperature over tropical forests originated from deforestation within the tropics.
Nevertheless, more work is needed to systematically examine tropical and
extratropical deforestation contributions (e.g., remote effects on tropical monsoon
precipitation by high-latitude deforestation via shifting the intertropical
convergence zone26) to regional climate across the full suite of CMIP models.

Spatial AGB sensitivity to rainfall and air temperature. To obtain the climate
sensitivity of the aboveground biomass (AGB), we first applied a multiple linear
regression model to the observational or simulated grids of biomass as a function of
the mean annual precipitation (MAP) and temperature (MAT) across the tropics
(23°S–23°N) (Table 3).

AGB ¼ a *MAPþ b *MATþ ε ð1Þ
The regression was applied to all land grids in the observational datasets (see

above descriptions) for the year of 2017 within 23°S–23°N, excluding those with a
MAP lower than 100 mm yr−1 and land fraction lower than 0.5 (mainly the edge
pixels on islands in tropical Asia). The land fraction was computed using
MCD12C1 land cover. The coefficients of a and b were shown in Table 3 for
both the observations and CMIP6 mean.

Despite using all land grid cells in the regression method, we found that the
AGB spatial sensitivity varies as a function of climatological mean rainfall (Fig. 2c).
We thus applied the regression method to estimate the AGB–climate sensitivity
at different precipitation levels. Each level of precipitation (that is, from 600 to
3100 mm yr−1 at an interval of 100 mm yr−1) is the center rainfall condition of
each moving window spanning ±500 mm yr−1 (for example, land grid cells with
precipitation from 100 mm yr−1 to 1100 mm yr−1 were used in the regression for
estimating AGB–climate sensitivity at the precipitation level of 600 mm yr−1)
(Fig. 2c). This approach was also used to estimate the subsequent AGB costs
of tropical deforestation impacts through changing the regional climate.

Observational climate sensitivity of the AGB may be influenced by spatial
variation in contemporary disturbance regimes, including fire and agriculture,
which were not considered in the piControl simulations of the models. To test the
robustness of the regression-derived parameters in the observations, we applied a
similar multiple linear regression model to the simulated AGB and precipitation,
and temperature from the piControl simulations of LUMIP models. On basis of
previously identified empirical ratios for aboveground to total biomass (that is,
0.8 for forests and 0.4 for savannas91), LUMIP ESMs simulated total vegetation
carbon was multiplied by a mean factor weighted by the simulated tree cover
fraction (that is, mean factor= 0.8 × tree cover+ 0.4× (1−tree cover)) and
converted to AGB carbon.

An implicit assumption here is that aboveground vegetation carbon in the
tropics is influenced by the precipitation- and temperature-induced changes in
environmental factors (including the subsequent changes in soil moisture and the
vapor pressure deficit, VPD), which influences aboveground vegetation carbon
through changes in vegetation physiological processes (for example, stomatal
closure). We also computed the observed VPD, mean annual maximum
temperature (MAXT), the seasonality of precipitation (Pamp, defined as the
difference in rainfall between the month with the maximum value and the month
with the minimum value), the seasonality of temperature (Tamp, defined as the
difference in temperature between the month with the maximum value and the
month with the minimum value), and precipitation in the driest quarter (PRD,
defined as the minimum rainfall of consecutive 3 months throughout the year). We
diagnosed the relationship of these metrics with MAT and MAP using the Belsley
collinearity diagnostics using the software MATLAB. We found that Tamp, MAXT,
and VPD have high spatial collinearity with the MAT, while Pamp and PRD have
high spatial collinearity with the MAP. Models with these extra variables did not
significantly improve the goodness of fit of the regression model (Supplementary
Tables 2 and 3). This suggests that these water and heat stress factors that are
critical for plant physiological processes covary spatially to a high degree with the
mean annual precipitation and surface air temperature.

Biophysical AGB loss from tropical deforestation. We estimated the biophysical
AGB costs of tropical deforestation (Fig. 3a–c) by multiplying the deforestation-
induced climate change from LUMIP (Fig. 1) and the observed AGB carbon
sensitivity to mean annual precipitation and air temperature (Fig. 2c). We focused
on three tropical continents (Amazon, Congo, and islands in tropical Asia) with a
high fraction of intact forests where the signal of deforestation–climate impacts is
also relatively robust (Fig. 1). Instead of using a unified AGB sensitivity to MAP
and MAT (shown in Table 3), we used the moving window AGB–climate
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sensitivity at different rainfall levels to estimate the carbon costs of tropical
deforestation-driven climate change as the AGB–climate sensitivity varies with the
rainfall background (Fig. 2c). When applying this moving window approach, we
inferred the AGB–climate sensitivity at each grid cell by its background rainfall
level, which was computed as the GPCC90 climatological precipitation average plus
the deforestation-induced change in relative rainfall (%) from the LUMIP
experiments. To measure the relative role of these biophysically driven carbon
losses, we first estimated the direct AGB losses due to losses of the multimodel
mean tree cover in LUMIP. The LUMIP ESMs simulated AGB loss along with
deforestation cannot represent the realistic values as the ESMs have a negative bias
for AGB in tropical regions with high fraction of forests (Supplementary Fig. 4). To
estimate the realistic direct AGB loss due to deforestation, we used the observa-
tional relationship between AGB and tree cover fraction, both of which were
derived from the satellite observations. Supplementary Fig. 7 shows that a 10% loss
in tree cover fraction corresponds to 19–22Mg C ha−1 loss in AGB for the
observations. Using this ratio in three tropical regions, combined with the multi-
model mean tree cover loss, we estimated that the tree cover losses by 44.7 ± 6.0%,
38.7 ± 8.8%, and 31.2 ± 8.9% in LUMIP corresponds to direct AGB carbon losses by
−98.3 ± 13.2 Mg C ha−1, −75.5 ± 16.7 Mg C ha−1, and −62.4 ± 17.8 Mg C ha−1 in
the Amazon, Congo, and maritime continent in tropical Asia, respectively
(Table 2). The relative role of biophysical carbon costs of tropical deforestation was
calculated as the ratio of the biophysically driven AGB loss to the estimated direct
AGB losses (Table 2 and Fig. 3d–f).

By assuming the ESM-diagnosed deforestation–climate relationships are a
linear function of the deforestation level92, we estimated the cumulative impacts of
past deforestation on regional climate and carbon stocks. To quantify the past
history of deforestation, we used the Land Use Harmonization (LUHv2h) dataset68

spanning the period from 1850 to 2015. Considering the Amazon basin, for
example, (also see Supplementary Table 4), the mean annual precipitation decline
caused by primary forest loss (−11.5%) was estimated to be −1.7%, and the mean
annual warming was estimated to be 0.13 °C. Applying the climate sensitivity of
AGB (Fig. 2c), this yielded a cumulative AGB loss of 1.3 Mg C ha−1 from rainfall
decline and an additional gain of 0.04Mg C ha−1 from warming. Together, these
add up to about 741 Tg C for the Amazon basin (area, 5,840,000 km2). Using the
same approach (Supplementary Table 4), we estimated the biophysically driven
AGB loss for the Congo to be 200 Tg C 1850 to 2015 from losses in forest cover
(Supplementary Table 4).

CO2- and deforestation-driven climate–vegetation carbon feedback. The CO2-
driven climate–carbon cycle feedback considers the isolation of the land
carbon–climate sensitivity, γ, from fully coupled (1pctCO2) and biogeochemically
coupled (1pctCO2-bgc) idealized climate simulations56,69,70. Here we modified this
approach to consider only the contribution to γ arising from changes in AGB at
each grid cell (CMIP6 simulated vegetation carbon was converted to the AGB using
an empirical factor, that is, 0.8 for forests and 0.4 for savannas):

γCO2AGB ¼ 4C0
AGB �4C�

AGB

4T 0 ð2Þ

where ΔC0
AGB , and ΔC�

AGB represent the changes in the AGB from 1pctCO2 and
1pctCO2-bgc simulations, and 4T 0 denotes the increases in surface air temperature
from 1pctCO2. The changes of AGB carbon and air temperature from these two
simulations were quantified as the difference between the last and first 20-year
average (for both two simulations, 140 years in total). γCO2AGB thus represents the
CO2-driven climate–carbon feedback parameter (see the first row in Fig. 5).

The CO2-driven climate–carbon feedback framework considers the
biogeochemical climate effects of increased CO2 concentration that may come from
both fossil fuel and land-use change carbon emissions but does not consider the
contribution from the biophysical effect of tropical deforestation, and therefore
may underestimate the land-use risk for the carbon–climate feedback in the tropics.
Using the LUMIP simulated biophysical deforestation effects and the sensitivity of
the AGB to climate derived from the observations, we calculated the deforestation-
driven carbon–climate feedback parameter as follows:

γdef ;biophysAGB ¼ 4Cdef ;biophys
AGB

4Tdef ;biophys
ð3Þ

where γdef ;biophysAGB denote the climate sensitivity of the AGB carbon under tropical

deforestation. 4Cdef ;biophys
AGB and 4Tdef ;biophys represent the biophysical effects of

deforestation on tropical AGB carbon and air temperature, respectively.
4Tdef ;biophys was computed as the LUMIP models simulated air temperature change

in the tropics, while 4Cdef ;biophys
AGB was calculated as the sum of the deforestation-

caused changes in mean annual precipitation and temperature, multiplied by the
observational AGB sensitivity to precipitation and temperature, respectively. γCO2AGB

and γdef ;biophysAGB are shown in the first and second row of Fig. 5, respectively.

Data availability
All CMIP6 simulations are publicly available via https://esgf-node.llnl.gov/projects/cmip6/.
Observational precipitation from TRMM 3B43 and climate variables from CRU TS4.04
are accessible via the websites: https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/

summary/ and https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/, respectively. ESA–CCI
AGB is available via: https://climate.esa.int/en/projects/biomass/. AGB from ref. 1 is
available via: https://www.ilamb.org/ILAMB-Data/DATA/biomass/Tropical/. AGB from
ref. 2 is available via: https://developers.google.com/earth-engine/datasets/catalog/
WHRC_biomass_tropical. MODIS MCD12C1 and MOD44B are available via EarthData:
https://earthdata.nasa.gov/. Processed data for this study have been deposited in Li Yue:
(2022). Data supporting figures of deforestation_carbon_biophysics (v1.0). Zenodo.
https://doi.org/10.5281/zenodo.6326365.

Code availability
Code and scripts of CESM2 can be downloaded through the website via: https://
escomp.github.io/CESM/versions/cesm2.1/html/downloading_cesm.html. Scripts for all
figures and tables are at https://github.com/YueLi92/deforestation_carbon_biophysics, which
has been deposited in Li, Yue: (2022). Code supporting deforestation_carbon_biophysics
(v1.0). Zenodo. https://doi.org/10.5281/zenodo.6323730.
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