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Abstract

Successfully navigating the social world requires reasoning
about both high-level strategic goals, such as whether to co-
operate or compete, as well as the low-level actions needed
to achieve those goals. While previous work in experimental
game theory has examined the former and work on multi-agent
systems has examined the later, there has been little work in-
vestigating behavior in environments that require simultaneous
planning and inference across both levels. We develop a hierar-
chical model of social agency that infers the intentions of other
agents, strategically decides whether to cooperate or compete
with them, and then executes either a cooperative or competi-
tive planning program. Learning occurs across both high-level
strategic decisions and low-level actions leading to the emer-
gence of social norms. We test predictions of this model in
multi-agent behavioral experiments using rich video-game like
environments. By grounding strategic behavior in a formal
model of planning, we develop abstract notions of both co-
operation and competition and shed light on the computational
nature of joint intentionality.
Keywords: joint intention, cooperation, coordination, rein-
forcement learning, teams

Introduction
Our most important relationships involve understanding
when to cooperate and when to compete. From siblings to
coworkers, humans rely on both planning and context to know
which situations they should cooperate in and which they
should compete in (Galinsky & Schweitzer, 2015; Rand &
Nowak, 2013). And yet in real life, unlike a behavior eco-
nomics experiment, cooperation and competition are abstract
with respect to a given situation. A cooperative or competitive
interaction unfolds over time – there isn’t a single moment
where competition or cooperation “happens”. Even if the de-
cision to cooperate or compete has been made, efficiently im-
plementing those strategies can be difficult. A person deter-
mined to cooperate and knowing what the other person wants

Matrix-Form Games

Blue
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Cooperate 7,7 -1,8
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Figure 1: A social dilemma written as a normal-form game. The
numbers in each square specify the payoff in terms of utility to the
blue and yellow player respectively for choosing the action corre-
sponding to that square’s row and column. If both agents choose
cooperate they will collectively be better well off than if they both
choose compete. However in any single interaction, either agent
would be materially better off by choosing to compete.

will have to develop a detailed plan of action to realize that
cooperative intention. Likewise for a person intent on com-
peting. In this work we aim to bridge high-level strategic
decision making over abstract social goals such as coopera-
tion and competition with low-level planning over actions to
actually realize those goals.

The ability to form these hierarchical joint intentions is a
key component of social behavior. The motivated instinct
to both infer and evaluate complex social plans emerges in
early childhood (Warneken & Tomasello, 2006; Hamann,
Warneken, Greenberg, & Tomasello, 2011). Young children
not only rapidly infer the goals of other agents, but sponta-
neously execute complex plans to cooperate with others. For
instance, a cooperative intention might generalize to include
not just the low-level details of a joint task but also tell how
to share the spoils. The ability to infer the intentions of oth-
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Figure 2: Two-player stochastic games. (top) Grid form represen-
tation of the stochastic game. The arrows show example strategies
that can be used to realize both cooperative and competitive out-
comes. (bottom) Matrix representation of the strategy space, with
low-level strategies sorted by a high-level goal. The arrows corre-
spond to moving in a specific direction and the /0 corresponds to
waiting. Note that the action space is effectively unbounded but the
strategies naturally cluster into a small number of high-level goals.
If both agents go to the sides then they will both score the reward
but if they fight for the middle in hopes of using less moves they
will collide and only one will get any reward.
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ers and participate in a dynamic joint endeavor (sometimes
called the “we-mode”) is thought to be a key building block of
large scale collaborative culture (Tomasello, Carpenter, Call,
Behne, & Moll, 2005).

Naturalistic Games
Game-theoretic investigations of social behavior often repre-
sent strategic interactions as matrix-form games like the one
shown in Figure 1. In these games, the rows and columns
correspond to the action space of the two players and the
cells describe the payoffs to each agent that would result from
those actions. While useful as a succinct representation of a
social decision, these games lack the ecological validity of
real social decisions which require planning across space and
time. When presented to participants, it can be difficult to
extract the right information and even after significant train-
ing, many people don’t even look at the payoffs most relevant
for strategic reasoning (Costa-Gomes, Crawford, & Broseta,
2001). When the number of decisions grows beyond two de-
cisions per agent, these problems are exacerbated.

Instead we use a paradigm commonly deployed in multi-
agent systems research which has not been explored behav-
iorally (De Cote & Littman, 2008). In this paradigm, strate-
gic interactions are represented as naturalistic spatial environ-
ments that people play intuitively like video-games. Figure 2
shows an example of one of these multi-agent planning en-
vironments that is conceptually related to the social dilemma
shown in Figure 1. Unlike the matrix-form game, these envi-
ronments also require low-level planning over spatial actions
to realize a strategic goal. The action space of these games
is much larger than those typically studied in matrix-form
games but the strategies are still intuitive.

Each player controls the movement of one of the colored
circles. On each turn players choose to either move their cir-
cle into an adjacent square (not including diagonal moves) or
to remain in the same position. Attempting to move is costly
resulted in the loss of one point. Choosing to remain in the
same position did not incur any cost. Both players select an
action during the same turn and their positions are updated
simultaneously. Each square can only be occupied by one
player at a time so if both players try to move to the same
square, one of the players chosen by chance will enter the
contested square while the other remains in place. However
both pay the cost for attempting to move. If one player stays
in the same position and the other player tries to move into
their square, no movement occurs. Finally, players cannot
move through each other and switch places.

The colored squares are the goals. When either player
reaches a square with the same color as their avatar, that
player receives ten points and the round ends. Thus the
only way for both players to receive points is if they both
enter squares that match their avatar’s color on the same
turn. These dynamics were chosen to be identical to those
in (De Cote & Littman, 2008) so that our data can also be
compared to the models of that work. Because each interac-
tion generates data about both the action plan and the payouts,

we can use these games to start to investigate the mechanisms
people use to coordinate on cooperative and competitive out-
comes. Furthermore, they allow us to study how humans in-
novate to find these strategies out of such a large possible
space of action plans.

Model
Hierarchical Social Planning
We develop a hierarchical model of strategic planning that
unifies low-level action planning with high-level strategic rea-
soning and allows for learning across both levels. In brief,
agents have two “modes” of low-level planning: a coopera-
tive mode and a competitive mode. These two modes are con-
nected through a high-level strategic planner that determines
which mode should be deployed based on previous interac-
tions. After each round, agents use Bayesian theory-of-mind
to determine whether or not the other agent’s low-level ac-
tions are consistent with the cooperative planning mode vs.
the competitive planning mode. The agent can then condition
their own next actions on the inferred high-level intentions of
the other agent realizing a sophisticated strategic response.

Both modes include forms of model-based learning which
allows for learning to generalize across environments as well
as model-free reinforcement of actions. In this work we focus
specifically on the high-level goals of cooperation and com-
petition but other high-level goals such as teaching, punishing
or communication are also relevant in these games and will
be investigated in future work. The challenge of hierarchical
planning is to link these high-level goals to a lower-level plan
of action.

Our work builds on and is inspired by classical for-
malisms of intention and joint planning from the AI liter-
ature (Levesque, Cohen, & Nunes, 1990; Grosz & Kraus,
1996) as well as more modern formulations for planning
under uncertainty such as DEC-POMDPs and I-POMDPs
(Gmytrasiewicz & Doshi, 2005; Gal & Pfeffer, 2008; De Cote
& Littman, 2008). However the earlier models do not han-
dle uncertainty in a probabilistic way and hence struggle with
quantitative predictions about behavior while the later are of-
ten intractable over long planning horizons and don’t explic-
itly represent abstract social goals.

We briefly introduce stochastic games following the no-
tation of De Cote and Littman (2008) and then discuss re-
peated stochastic games. A two-player stochastic game is:
〈S,s0,A1,A2,T,U1,U2,γ〉 where S is the set of all possible
states with s0 ∈ S the starting state. Each agent can choose
from a set of actions A1 and A2 which together form a
joint action space A1 × A2. The state-transition function,
T (s,a1,a2) = P(s′|s,a1,a2) maps a state and joint action to
a distribution over new states. The utility functions of the two
agents U(s′,s,a1,a2) = R describe the agent’s goals in terms
of quantitative costs and rewards. Finally 0 ≤ γgame ≤ 1 is
the discount rate of reward. In repeated stochastic games, a
series of stochastic games are played one after another in suc-
cession between the same pair of players. We now discuss the
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cooperative and competitive modes of planning in detail.

Cooperative Planning
Since there is no specific action that corresponds to cooper-
ation in these stochastic games (all actions are spatial move-
ments), we develop an abstract notion of cooperation which
generalizes across contexts. We postulate that a cooperative
action is one that is good for the group i.e., efficiently max-
imizes the utility of all agents. Since under this assumption,
the goal of cooperation is to rationally achieve a group goal,
we consider a group-agent that optimizes a utility function
composed of the utility of all agents (Sugden, 1993, 2003;
De Cote & Littman, 2008).

Computationally, we represent this group utility function
as a linear weighting of the utility of the two agents: UG =
(w)U1 + (1− w)U2 where w ∈ [0,1] controls how the two
agents are relatively valued by the group-agent. For example
when w = 0.5 the group-agent impartially weighs the utility
of both agents equally. We are not implying that this group-
agent actually exists but rather that each player can simulate
the same group-agent by taking an objective view of the plan-
ning environment outside and separate of their own personal
goals (Nagel, 1986). We note that this utility function can
include other social preference such as inequality aversion or
merit based allocations.

Since the group-agent can directly control the actions of
both players (like a “we” agent), it can treat the stochastic
game as a single-agent MDP. Rational planning over joint ac-
tions (a1,a2) is achieved through value-iteration:

P(a1,a2|s) = π
G(s,a1,a2) ∝ e(βQG(s,a1,a2))

QG(s,a1,a2) = ∑
s′

P(s′|s,a1,a2)[UG(s′,s,a1,a2)+

γ max
(a′1,a

′
2)

QG(s′,a′1,a
′
2)]

where the group-agent policy, πG(s), is to choose actions
with probability proportional to their future expected util-
ity. A high value of β means that the group-agent is more
likely to select the action with the highest Q-value and a low
value of β means that the group-agent is more likely to select
suboptimal-actions. In all experiments we used a relatively
high value of β = 4. We note that πG is not only a policy
for action, but also includes the future-oriented intentions of
what the two agents should do once they get to a new state.
These intentions include how to recover from failed coordi-
nation attempts. We used a discount rate of γ = 0.9 in all the
models presented here.

Although each agent might consider the policy of the
group-agent, the individual agents can only control their own
actions. To transform this group-agent policy into an in-
dividual policy, individual agents marginalize out the ac-
tions of the other player from the joint policy: πG

1 (s,a1) =

∑a2 πG(s,a1,a2) and πG
2 (s,a2) = ∑a1 πG(s,a1,a2). These

policies contain intertwined intentions, not only an inten-
tion to take a specific action but also the intention that the

other agent reach certain states. This “meshing” of plans be-
tween the two agents has been called a key component of joint
and shared intentionality (Bratman, 1993, 2014). Unlike so-
cial preference based accounts of cooperative behavior where
each agent individually plans to maximize joint utility, in this
account, cooperation is a built in cognitive feature of planning
itself – agents plan together.

When there is a single unambiguous action for both players
that maximizes joint utility, coordination is readily achieved.
However in the environments we investigate, there are often
multiple actions that can generate optimal rewards for the
group-agent. We now discuss two mechanisms for learning
social norms that can break these symmetries and lead to ro-
bust coordination on a single jointly optimal plan.

We first consider the case where two different actions
are equally good from the perspective of a group-agent that
weighs the utility of the two agents equally but the rewards
will be allocated unequally. For example, consider game (C)
in Figure 3 where one agent needs to go around the other.
Because moving costs 1 point, the agent who goes around the
other will only earn 7 points while the agent who waits will
earn 9 points. From the perspective of the group-agent with
w = 0.5, it doesn’t matter who goes around since the joint
utility is equal. However if one agent was favored over the
other (w 6= 0.5) this symmetry would be broken and the disfa-
vored agent would take the long route. Thus prior knowledge
about asymmetries in how the group should operate can lead
to more robust coordination although potentially at the cost
of less fair cooperation.

The two agents may start with a different prior on the value
of w and thus when simulating the group-agent will fail to
coordinate. Consider the case where both agents think they
should be valued more than the other and hence expect the
other player to go around them. We propose a mechanism
based on “virtual bargaining” accounts of social choice that
lead to each agent’s w to converge over time to the same
value without any explicit communication (Binmore, 1998;
Misyak, Melkonyan, Zeitoun, & Chater, 2014). After each in-
teraction, agents can infer the w that best explains the joint be-
havior of their previous interaction: P(w|H) ∝ P(H|w)P(w)
where H are the data from previous interactions and the like-
lihood of those interactions is defined by the marginalized
joint policies generated from planning with a specific w: πG

1
and πG

2 . In our analysis, each agent starts out with a prior of
w = 0.5 and updates it after each round based on the inferred
w of the previous interaction. Thus over time w will converge
and as predicted by the theory of virtual bargaining, more pa-
tient agents who insist on the advantage will gain a greater
share of the joint reward in future coordinated interactions
where an equitable split isn’t possible. For example, if in a
previous interaction agent 1 took a more costly route, then in
the next round agent 1 will be more likely to take the costly
route again generating a social norm for cooperative coordi-
nation. Since w is an input to the planning process itself, it
allows for generalizing these norms to new environments.
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Finally, in some environments, there are multiple plans that
are equally good for both agents, creating a different type of
symmetry which cannot be broken by w. For example, the
decision to go clockwise or counterclockwise in game (A) of
Figure 3 is equally good for both players as long as they both
go in the same direction. To capture the intuition that once
agents successfully coordinate, they should continue to coor-
dinate in that way e.g., after luckily choosing to go clockwise
in game (A), they will go clockwise again on the next round,
agents learn a function NG(s,a1,a2) based on the frequency
of previous joint actions which is added to the state-action
QG-value used by the group-agent. This norm based rein-
forcement affects the policies of the individual agents through
marginalization. The norms reinforced by this mechanism
do not generalize across environments although feature based
norms can generalize when there are features in common be-
tween two environments e.g., see Ho et al. in this years pro-
ceedings.

Competitive Planning
As before, in these stochastic games there is no action that
directly corresponds to “compete”. Instead, we ground com-
petitive planning as each agent attempting to maximize their
individual utility under the assumption that the other agent is
doing the same. To tractably realize this game-theoretic best-
response, we extend the cognitive hierarchy / level-K formal-
ism used in behavioral game theory to temporally extended
polices instead of just actions (Camerer, Ho, & Chong, 2004).
In brief, a level-K agent best responds to a level-(K−1) agent
which grounds out in the level-0 agent. Specification of the
level-0 agent is sufficient to specify the full hierarchy.

In this work we use a level-0 agent that doesn’t consider
the existence of the other player and tries to efficiently reach
her goal without taking any strategic consideration of how the
other player might affect her progress. This level-0 agent is
more naturalistic than randomly acting agents which are com-
monly used in behavioral modeling (Camerer et al., 2004;
Yoshida, Dolan, & Friston, 2008). A level-0 agent of this type
only makes sense in these naturalistic environments since one
can easily imagine acting alone unlike in matrix-form games.
The level-0 agent for player i is:

P(ai|s,k = 0) = π
0
i (s) ∝ eβQ0

i (s,ai)

Q0
i (s,ai) = ∑

s′
P(s′|s,ai)(Ui(s,ai,s′)+ γmax

a′i
Q0

i (s
′,a′i))

where P(s′|s,ai) represents transition dynamics that do not
depend on the other player. Having defined the level-0 player
we can recursively define all of the other levels in the hierar-
chy in terms of lower levels:

P(ai|s,k) = π
k
i (s) ∝ eβQk

i (s,ai)

Qk
i (s,ai) = ∑

s′
P(s′|s,ai)(U(s,ai,s′)+ γmax

a′i
Qk

i (s
′,a′i)))

Since the other agent is treated as a knowable stochastic
part of the environment, the dynamics of the other player are
encapsulated in P(s′|s,ai) which are marginalized out using
the k−1 player: P(s′|s,ai) = ∑a−i P(s′|s,ai,a−i)P(a−i|s,k =
k− 1) where −i is a shorthand to refer to the “other” player.
Because of the maximization operator, a level-K agent imple-
ments a best response to a level-K− 1 agent. Thus zeroth-
order agents have their own goals but ignore the other player,
first-order agents act on their own goals but assume that the
other agent is ignoring their existence and so on. In our ex-
periments we used K = 1 although results were similar with
higher values of K.

Even when competitively planning, agents can still im-
prove their behavior through learning and can even develop
certain conventions when they serve mutual self-interest such
as symmetry breaking in coordination games. Again we con-
sider two mechanisms. The first mechanism improves agent
i’s model of agent−i by using the frequency of i’s previously
successful behavior to modify the state-action Q-values of−i
such that previously successful action are more likely to oc-
cur again. This model-based mechanism, improves agent i’s
policy since she will best-respond to a more accurate model
of agent −i. The second mechanism is model-free reinforce-
ment of player i’s state-action Q-values when player i herself
successfully reaches a goal. Neither of these norms trivially
generalize across different planning environments that don’t
share states.

Coordinating Cooperation and Competition
Finally, we describe how agents can use both the coopera-
tive and competitive modes of planning to decide whether to
cooperate or compete. Since these modes of planning ab-
stract away the details of cooperation and competition, high-
level strategic planning can use these low-level planners with-
out considering their details. Agents first use these planning
modes to infer the high-level intention I of the other player
(i.e., their planning mode) using Bayesian theory-of-mind:
P(I|D) ∝ P(D|I)P(I) where P(D|I) are just the cooperative
or competitive policies. This probabilistic approach is justi-
fied because intentions can be ambiguous. For instance, when
both agents reach the goal in a coordination game it could just
be because of luck so the behavior isn’t very diagnostic of the
intention. Yet in social dilemma only the cooperative inten-
tion is consistent with behavior where both reach the goal.
Using these inferred strategic intentions, a high-level planner
can take a simple and intuitive form such as reciprocal coop-
eration (e.g., tit-for-tat) or reinforcement learning at the level
of strategy rather than actions (Fudenberg & Levine, 1998).

Behavioral Experiments
We developed client/server software that allows for real-
time interactions between two participants randomly matched
through mTurk. All participants went through a short single
player tutorial that familiarized them with the controls of the
games, the dynamics of the game environment, the costs of
movement and value of the goals. After the tutorial, pairs of
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Figure 3: Participant data and model predictions for four environments. Each row shows data and model predictions for the environment
in column 1 which was repeated 30 times. Rows 1 and 2 are coordination games and rows 3 and 4 are social dilemmas. Column 2 shows
the average rate of cooperation for each round of play averaged over the high-cooperating cluster of participants (blue), low-cooperating
cluster of participants (green) and all participants (red). Column 3 are histograms of the proportion of cooperation for all pairs of participants.
Column 4 quantifies the model predictions where each point represents the frequency of cooperation for a given dyad observed in the data and
as predicted by the model. The inset shows correlations of the two lesioned models with the same human data: (top) only compete (bottom)
only cooperate.

participants were matched together and played 30 rounds of
the same game with the same partner. Subjects were not told
the exact number of rounds they would play together in order
to prevent horizon effects from backward induction. Once
both participants submitted moves, the game state and score
were updated and the process continued until the end of the
round. Participants had 30 second for each move and the
game ended if a participant exceeded their 30 second time
bank two moves in a row. We only analyzed data from com-
plete interactions where the pair of participants completed all
30 rounds of the game together. All experiments were in-
centivized with bonuses proportional to the number of points
accumulated.

To compare model predictions with human behavior, we
first focused on analyzing whether or not both players reached
a goal on a given round, a behavioral signature of coopera-
tion in these games. For each pair of participants, the model
observes the interaction in the previous rounds, performs in-
ference on the latent high-level goal and social norms, and

samples a prediction for the behavior of the pair in the next
round. We compare this sampled prediction with actual hu-
man behavior to assess model performance. The same model
parameters were used for all pairs of participants.

Figure 3 shows the results of the behavioral experiments
and the model predictions for four environments (≈ 50 par-
ticipant pairs per environment), two coordination games and
two social dilemma. Since model predictions were made at
the level of each pair of participants, averaging the behav-
ior and model predictions across dyads obscures individual
differences in the dynamics of cooperative and competitive
learning. To investigate the model predictions in a more fine-
grained way, we used unsupervised clustering to split the
pairs of participants into two group. In short, for each pair
of participants we construct a 30-dimensional binary vector
where each dimension corresponds to one of the 30 rounds.
Each element is set to one if both participants reached a goal
in the round corresponding to that dimension and set to zero
otherwise. We ran K-means clustering with K = 2 which split
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the data into a high-cooperating cluster and a low-cooperating
cluster allowing for better visualization of the data and model
prediction and gave some rough indication about the model
ability to handle individual differences.

In all four environments, some of the pairs converged on
a cooperative plan but the incentive structure of the game
i.e., whether or not the game was a coordination game or
social dilemma affected the likelihood that both participants
jointly reached a goal. Overall, participants jointly reached
the goal more frequently in coordination games than in the
social dilemma. As shown in Figure 3 the model qualitatively
captures the rate of cooperation and competition in both the
high-cooperating cluster and the low-cooperating cluster as
well as the average over all participants. Another coarse mea-
sure of behavior in these games is the distribution of the fre-
quency of cooperative behavior across pairs of participants.
In coordination games, the distribution was left-skewed and
in social dilemma the distribution was right-skewed. These
distributions were captured both qualitatively and quantita-
tively across these games by the model.

We compared the full model which included both modes of
planning and strategic reasoning over those two modes with
two lesioned models which just used one of the two plan-
ning modes. One lesioned model always used the competitive
planning mode and the other lesioned model always used the
cooperative planning mode. Overall, neither lesioned model
could capture the rates of cooperation between the two clus-
ters and qualitatively failed to explain the distribution of co-
operative behavior in each game. Both lesioned models failed
to predict the dynamics of strategic reasoning between coop-
eration and competition in social dilemma and had weaker
correlation with participants’ behavior in the coordination
games.

Discussion
In this work we developed a hierarchical model of social plan-
ning to understand how humans coordinate their low-level ac-
tion plans to realize high-level strategic goals such as cooper-
ation and competition. We formalize cooperation and compe-
tition as abstract planning procedures over low-level actions.
Both model-based and model-free learning can create social
norms which facilitate robust and stable coordination. One of
our main contributions is formalizing how cooperative norms
can make cooperation more robust across environments, a key
step for long-lasting collaborative endeavors. While we only
had space to show a subset of our full results, we are currently
looking at how agents use these planning programs and the
norms that they learn to generalize cooperation to completely
new environments with the same partner. We will also use
these models to study how observers attribute cooperative and
competitive intentions to other agents.

One interesting feature of the model is how an asymmetric
w in the cooperative planner can break symmetries making
successful coordination more likely. In future work we’d like
to explore how priors on this parameter in social hierarchies

might enable more effective teamwork e.g., boss-employee
relations (Galinsky & Schweitzer, 2015). Finally, in our cur-
rent paradigm, the desires of all agents are common knowl-
edge. Investigating environments that require jointly infer-
ring the goals of others and the plan needed to help realize
a cooperative outcome will be examined in future work. By
grounding strategic social reasoning in a theory of planning
we can begin to investigate the mechanisms of joint intention-
ality and how these joint intentions enable the scale and scope
of human cooperative behavior (Tomasello, 2014).
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