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Abstract

It is shown that the Pareto optimal outcomes in a two period simultaneous move
bargaining model violate forwards induction rationality when the players are sufficiently
patient. This bargaining model describes a situation where a principal is represented by an
agent whose flexibility is restricted. Hence, a bargaining process with such agents can
create costly delays. The result also provides another example of the power of forwards
induction and stability.
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1. Introduction

In the recent literature on noncooperative bargaining, starting from
Rubinstein’s [23] seminal paper, players make alternating offers in sequence, until
agreement is reached about the division of a "pie," which is discounted over time.
Rubinstein showed that in the unique subgame perfect equilibrium of the perfect
information game the first player’s offer is accepted by the second player. More
recent papers [1, 4, 6, 10-13, 24, 26, 29] have focussed on introducing incomplete 7
information to the model. These papers have imposed various refinements and have
then shown that the equilibrium involves df:lay,1 which acts as a screening device.

This paper analyzes a bargaining game with imperfect, but complete,
information and with simultaneous, rather than alternating, moves. The model is a
twice repeated Nash [20] noncooperative bargaining game. Both players tender
offers simultaneously, and if their offers agree then the pie is allocated accordingly.
If no agreement is reached they try again, whereupon if agreement is obtained the
(discounted) pie is split, while if once again no agreement is attained the game ends
without any division, or trade, Voccurring.

This model is obviously very specialized. It does, however, incorporate one
feature of bargaining which the model of alternating moves fails to capture. This
feature is that the bargaining parties may come to the table with predetermined
expectations and offers, and will not be very influenced (in the course of one
meeting) by what the opponent says. This may be because incorporating the
information revealed by the opponent takes more time than is spent in one meeting,
for example if the bargaining party must confer with its principal if (significant)
deviations from its offer are to be accepted.2

A difficulty with the model of this paper is the extremely large set of
subgame perfect (Selten [25]) equilibrium. Even after imposing the fairly strong

notion of forwards induction (Kohlberg and Mertens [17]), as captured in stability




(op cit), the equilibrium set remains large. Howéver, qualitative conclusions are
obtained. The main objective in this paper is to examine the set of Pareto efficient
outcomes which are supported as stable outcomes, and in particular how this set
changes with the discount rate. The main result is that as the players become more
patient, less Pareto efficient outcomes remain, until a point beyond which only
inefficient outcomes remain. > Thus, patience causes {Ieiay.4 This also suggests
that delegating bargaining to agents who must confer with the principal can cause

inefficiencies.d

This necessity of inefficiency seems to me an important
characteristic of noncooperative bargaihing. In particular, this form of delay does
not act as a device to screen among exogenously determined types, but as a method
of indicating (endogenous) "stubbornness” (cf, 2h.

This note is motivated above as clax‘ifyiﬁg certain aspects of bargaining
situations. Another motivation is that this work contributes to the understandin g
of forwards-induction and stability, and as such adds to [2, 12, 21, and 28] which
have examined the role of forwards induction and stability in selecting among
equilibria in other games of imperfect information. Arguments based on forwards
induction restrict beliefs about an opponent’s "type" according to the possible gains
to that "type” from deviating. Incomplete information bargaining models use such
arguments {1, p. 349; 6, p. 202] where a pléyer’s "type” is a characteristic of
his/her utility function (as in [15], and adverse selecﬁon models), Here the same
intuition applies, where "type" refers to a strategy choice (as in moral haéard
models). Thus, to the extent that the results here seem unreasonable they may

suggest that further work is needed to justify the use of forwards induction in

other models (e.g. [2]).




2. The Model and Results

The (noncooperative) bargaining model of Nash [19] is specified by a
utility possibility frontier, denoted by a non increasing function f: [0,1] — [0,1], and
a disagreement point d = (0, 0). (The strategies and payoffs are determined in such
a way that (as long as utilities are bounded) f and d can be normalized to have
these values by taking positive affine transformations.) The (first period)
strategies of players 1 and 2 are to specify a utility allocation in [0, 1] for player
1, denoted by sy and s, respectively. If $1 = s, then player 1 receives spand2
receives f(sz), while if $1>58y they both receive Q.

In this paper a two stage discrete version of this model is examined.
Players are only allowed to suggest amounts in S = {m/n : m = 1,..., n-1}, for some
n. Furthermore, when $1 > s, the players procecd to a second round. The second
round strategies, denoted t; and t, respectively, are thus functions in T = {f: § —
S}. A fully specified strategy of 2 piayer is then a pair in S x T. When the
players choose strategies (s, t1) and (s, ty) respectively their payoffs are as
follows. If in the first round 81 <85, then (as in the one stage game) they receive
sy and f(sz). Otherwise 89>8y, and if t1(sy) < t2(sl) (i.e.if 1’s second period
suggestion, after observing s, in the first period, is compatible with 2’s second
period suggestion after observing $1 in the first period) they receive § 1t1(s9) and
d,ty(s1) respectively, where 8; is player i’s discount rate. If their second period
suggestions are not compatible (i.e. t1(s9) > t2(sl)) they both receive the
disagreement allocation of 0. Henceforth discount rates in {8:s=s5"/8 for some
s,s’ in S} areruled out. This avoids (knife-edge) indifference between a first
and a second period allocation, and thus serves the same purpose as tie breaking
assumptions such as (A1) in [1] and (b-3) in {24]. The main result of this paper

follows,




In order to state the main result of this paper we review the definition of
a stable outcome. If a set of Nash equilibrium is stable [17, p.1027] and each of
these Nash equilibria induces the same probability distribution on endpoints of the

game, then this distribution is called a stable outcome [5, pp. 189-192].

PROPOSITION 1: The set of Pareto efficient and stable outcomes is the set
K={(sq, f(s)) : s1> 81 and f(sq) > 82}.

Furthermore, even if K is empty there exists a stable outcome.

~ Proof: The proof is an application of the forwards induction properties of stability
[17, Proposition 6]. First it is demonstrated that any Pareto efficient outcome
which is notin K is not stable. Consider the set of Nash equilibrium, denoted by
A, leading to any Pareto efﬁci;’-:nt outcome not in K, say the allocation (s1. f(sy))
where s; £8;. (The case where f(s)) <3, is similar.) For any (s5,ty) € A and
any sy ,85 <3y and t, (s}) <s1/8 since otherwise 1 would deviate to 5] -
Therefore, for any $1> $1 » a strategy for player 1in | (s’l,tl) 1t (59) < 31/81

for some s, € § } is never a weak best reply against any strategy for player 2
which is in A. So consider the sub (matrix) game where these strategies are
deleted. In this subgame, the strategies for player 2 in- {(32, ty): tz(s’l) < 51/81 » 81
> 51} are weakly dominated. Now consider the further sub (matrix) game obtained
by deleting these weakly dominated strategies. In this game none of the equilibria
in A are Nash equilibria, since player 1 would prefer to deviate from sy tothe
next higher amount in S, to which 2 would respond with more than $1/81-

Theorem 6 in [17] implies that if A is a stable set, then there is an element in A




which is an equilibrium in the sub (matrix) game which remains after such deletions.

Thus A is not a stable set.

Next it is shown that any outcome in K is stable. In fact, these outcomes are
hyperstable. In what follows let r; denote strategies for the full game, namely
pairs (si, ti), for playeri. Let (rl, r2) = ((SI’ tl)’ (32’ t2)) be an equilibrium which
determines an outcome in K, and let A be the set of Nash equilibrium which yield
that outcome. For any 15 such that (r1, 15) and (r{, 13) yield the same payoffs for
2, (r{, r5) is a Nash equilibrium. This is because the same payoffs can be obtained
for 2 only if the players reach agreement in the first period. The payoffs for
outcomes in K are greater than any possible second period payoff for either player.
Thus player 1 cannot gain by deviating from ry. So A includes all strategy pairs
in any row of the game which yield player 2 the same payoff as (r{.15) and all
strategy pairs in any column which yield player 1 the same payoff as (ry1p). Set
€ to be less than the smallest difference among payoffs in the game, excluding
equalities. If any of the payoffs in the normal form are then perturbed by an

amount less than &, one of the equilibria in A will still be a Nash equilibrium,

Finally, it is necessary to argue that a stable outcome exists when K is empty.

Since this game has a non generic extensive form, the claim does not follow from
the generic arguments in Kohlberg and Mertens [17]. However, a completely mixed
equilibrium can be constructed for this game, which is sufficient, This

construction is straightforward.

The characterization result in Proposition 1 has several nice properties. It
demonstrates inefficiencies in the bargaining process which are a direct

consequence of the players’ patience, since for large enough Bi , K is empty.

QED




On the other hand, as one player’s discount rate is increased, some efficient
outcomes which are less favorable for that player ﬁecomc unstable. So, in a sense,
each player benefits from increased patience -- until a point beyond which they
both lose. It is also noteworthy that the delay is not a signal of a player’s
preferences, but of his or her intent to play "tough." The result also shows how
forwards induction rules out efficient allocations which are "extremely one sided."
In [23] if the discount rates are equal, then, as the player’s impatience
decreases, the equilibrium allocation converges to the Nash [19] cooperative
bargaining solution. Thus, a noncooperative basis for the Nash solution is provided.
We show next that in our model qualified support is obtained for a minor
modification of the Kalai and Smorodinsky [16} solution (denoted MKS). When
discount rates are equal, if any equilibrium outcome is Pareto efficient, then the
MKS outcome is supported in an equilibrium (and no other Pareto efficient outcome
has this property). That is, as the set of stable equilibrium outcomes that are
Pareto optimal shrinks, it converges to the MKS outcome, before disappearing
entirely. The KS solution to a normalized bargaining game with a convex utility
possibility set is the allocation determined by the intersection of the diagonal with
the Pareto frontier. Since this solution does not apply to the discrete version of
the bargaining model (because this version is not convex) the solution must be
modified slightly in order to retain the property that it is strongly Pareto optimal.
The MKS solution is defined to be any point on the Pareto frontier which weakly

dominates the KS solution and is not itself weakly dominated.

COROLLARY 1: Let 51 =84 = 3. Either the MKS solution is efficient and stable, or
the efficient and stable set is empty. Furthermore, no other outcome has this

property for all discount rates.




Proof: Let (§°, &) be the point on the diagonal which intersects the Pareto frontier,
and let the MKS solution be (s, 89). For any 8 < &’, s1 > 6, and $9 > 3. Hence
the MKS solution is in K. For § sufficiently close to 8, only the MKS solution

satisfies the last two inequalities. Finally if § > §’, K is empty.

An example is now provided to illustrate the problems which arise in
generalizing the previous results to a model with more than two periods.7 The
example shows that stability (in fact hyperstability) allows for efficient outcomes in
a three-period model even when & is large. It is worthwhile noting that the
forwards induction used above may be weaker th_an that assumed in incomplete
information bargaining models (cf [1, p. 349]). Nevertheless in the present context
it is not clear how the assump-tions may be strengthened in order to extend the
results to n>2 periods. Despite the difficulties in attaining such an extension I
believe that the intuition that delegating bargaining can cause delays by creating
(signalling) incentives to play tough is of interest.

Consider a three-period game where in every period each player can either
say low or high. Agreement is reached in the first period in which at least one
player says low. If agreement is reached then low yields the payoff of 1, and hi gh
yields 2, while disagreement throughout the three periods yields zero. The discount
rate is assumed to be & for both players. This determines the payoff matrix in
Figure 1, where L; HL; HHL; HHH indicate: low in the first period; high in the
ﬁrstl and low in the second period; high in both the first and second periods and
low in the third; and high in all three periods for player 1 (and lower-case letters

are used for player 2).

QED




1 hi hhl hkhh

L 1,1 1,2 12 1,2

Figure 1 HL 2,1 5,8 5,28 5,28
HHL 2,1 288 8232 32252

HHH 2,1 258 25%52 00

1 hl hh
L 11 1,2 1,2
- Figure2 HI, 2,1 5,0 8,28
2,1 25,8 0,0

2

It is easy to see that in the two-period version of this game (see Figure 2)
the outcome (2,1) is not stable (hl is never a weak best reply against any
strategy of player 1 which is used in a Nash equilibrium that yields (2,1); HH is
weakly dominated in the sub (matrix) game remaining after hlis deleted; 1 is
weakly dominated after HH is deleted; and then HL is dominated so (2,1) is not
an equilibrium outcome after these deletions hence cannot be stable). Intuitively,
by rejecting the outcome (2,1) player 2 indicates that s/he will be demanding the
high payoff in the second period. In the three-period model such a rejection is
ambiguous -- player 2 could be indicating a demand for the high payoff in either
the second or the third period. Formally it is proven below that (2,1)isa

hyperstable outcome of the game in Figure 1.

PROPOSITION 2: In the three-period model of Figure 1 the outcome (2,1) is
hyperstable.




PROOF: First the set of Nash equilibria, denoted M , which yields (2,1) is
described.

M = {<(o, HL; B, HHL; 1-a-8, HHH), I> : 280+ 82 (1-o) < 1,
280 +2528<1, 0e [0,1] Be [0,1], ot +B e [0,1])

where <(a, HL; B, HHL ; 1-o-8, HHH) , I> denotes the strategy pair consisting of
player 1 playing HL (respectively HHL, HHH) with probability o (respectively
B, 1-a-8) and player 2 playing 1. In particular <[(1-82/(28-82) , HL; (23-1)/(28-
8%, HHH] , 1> € Mand <[(1-52)/(25-52) , HL; (26-1)/45-252) , HEL; (25-1)/(45-
28%), HHH] , 1> & M. Denote the strategy of player 1 in the former equilibrium
by q; and in the latter by r1-

Next it is argued that if any collection of payoffs in the matrix of Figure 1
are perturbed by some collection of €’s (where the €’s are sufficiently small)
then the perturbed game has a Nash equilibrium which is close to one of the

equilibria in M. Only the essential parts of this argument are provided below.

Step 1: L and hl can be ignored since in no equilibrium close to M will

either be assigned positive probability.

Step 2: Assume that the only perturbations are to player 1’s payoffs in the
cells corresponding to <HL,I>, <HH,1> and <HHH,I>, and denote these perturbations
by €;,& and €3 respectively. Perturbations of other payoffs in the matrix can

be dealt with using arguments which involve the same steps and approximatiﬁg
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equilibria as below -- the arguments are similar but more tedious, hence are

omitted.

Step 3: If e32¢; and e52¢,5 then <HHH,I>€ M is a Nash equilibrium
of the perturbed game.

Step 4: If &) >¢&5 and & 2 &, then there is an equilibrium of the

perturbed game close to <@y, 1>e€ M. In particular <qqp.{1-¢,1; 4, hhl)> is

an equilibrium of the perturbed game where | solves:

(2+27) (1-4) + 8 = (2+e3) (1-41) + 257 u > 2+e,) (1-40) + 820 (1)

This equation makes player 1 indifferent between HI. and HHH with both
preferred to HHL . Furthermore as (61 , 83) — (0,0), then 4 — 0 so this

equilibrium is close to M.

Step 5: If €5 >e3 and €5 > € then either there is an equilibrium of the
perturbed game close to <qy,1> e M, or there is an equilibrium of the perturbed
game close t0 <ry,I>€ M. The former holds if there isa [ € [0,1] such that
(1) is satisfied. The latter is the case if there are v, e [0,1] with

v +1n € [0,1] such that

C+epd-v-m+dv+6n =2+ g9)(L-v-n) + 282 = (2)
= (2 +8y) (1-vm) + 5% + 52 n.
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For p solving Eq. (1), we can proceed as in Step 4. For v, 1 solving Eq. (2),
if player 2 plays 15 = (1-v0-1,1; v, hhl; 1, hhh) then player 1 is indifferent
among HL , HHL and HHL so <ry, I'y> is an equilibrium of the perturbed
game. It is easily verified that as (81, €5, 83) — (0,0,0) then v >0 and
N — 0, and it can also be demonstrated, by comparing equations (1) and (2) that at
least one of these equations can be solved with 1, v, 1, and v + N in

[0,1].

QED
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Endnotes

1. Gul, Sonnenschein and Wilson [14] have shown that for a general class of these
models (excluding Admati and Perry [1]) the delay disappears as the time between
offers goes to zero.

2. Another feature of the simultaneous offer model is that it is ex ante Symmetric,

whereas there is a procedural asymmetry in the alternating move model.

3. In fact there exist subgame perfect equilibria which strongly Pareto dominate all
the stable outcomes in a game with sufficiently patient players. This seems to raise
doubts regarding the practice of focussing on Pareto dominatin g Nash equilibria
(for example in the literature on renegotiation proof equilibrium {3, 8, 22, 27]).

4. This delay of course disappears as the time between the stages disappears, since
only a two stage model is examined (cf. Gul, Sonnenschein and Wilson [14]). ' :
5. Delegation to agents who play a game instead of the original players is shown by |
Fershtman, Judd, and Kalai {9] to lead to cooberation.

6. The example actually involves a minor modification of the previous model.
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