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Abstract

A receiver is developed for MAP symbol detection of a burst (i.e., finite-length) CPM signal received in
additive white Gaussian noise. This minemum probability of symbol error receiver requires the entire burst
of data and involves the use of both forward and backward recursions. Performance results are provided
comparing the MAP symbol detector to the more commonly used ML sequence detector (i.e., the Viterbi
detector) applied to GMSK signals with the same burst structure as those employed in the GSM system. It
1s also shown that using only the forward recursions, the transmitted symbols can be detected in real-time
(i.e., without the delay required by the ML sequence detector or the MAP symbol detector) with only slight
degradation wn performance.

1 Introduction

This section provides a brief introduction describing the importance of the problem of detection of burst
continuous phase modulated (CPM) signals. We also introduce our approach for doing MAP symbol
detection and provide a review of previous approaches to the general problem of MAP symbol detection.

1.1 Background & Goal

In digital communication systems, one of the most frequently used methods of separating users who share
a common channel is by ensuring that each user transmits during a different time interval. This strategy,
which is important for helping present and future networks keep pace with the ever-increasing demands
being placed on them, is known as time-division multiple access (TDMA). Nowhere is the TDMA concept
more useful than in mobile radio and personal communication systems (PCS) [1]. Time-division multi-
plexing different users’ signals necessarily means that the sequence of symbols to be detected during each
transmission period are burst sequences.

In this paper, we consider the transmission of such bursts and focus on developing minimum probability
of symbol error receivers for the case when the symbols are transmitted using CPM signaling. CPM is an
important modulation format because of its spectral efficiency and constant envelope, which allows for the
use of nonlinear amplifiers [2]. Examples of systems that employ CPM signaling include the GSM cellular
system [3,4], and the DCS1800 and DCS1900 PCS systems [5,6].

1.2 CPM Signal Model

We assume the burst structure is that of the GSM system [8], with a symbol burst of N + 2L — 1 bits,
each drawn from the alphabet {—1,+41}. The first and last L bits are assumed known, and the remaining



N information bits are assumed independent and equally likely. Letting b denote this sequence of bits, we
have

b =[bo,b1, -, br_1,br,br41, -, bnyr—1,0Nn4+L, ONgL41, - ONgpor—1]. (1)

L known bits N unknown bits L known bits

Using the Laurent representation [7] (see Appendix A), the complex baseband equivalent of the CPM
signal generated from b can be expressed as

2Eb K—1N+2L-1 )
s(t,b) = ‘/T S e er(t — nT). (2)
k=0 n=0

At the receiver we assume that the transmitted signal is distorted by noise, so that the received signal can
be modeled as

r(t) = s(t,b) + n(?), (3)

where n(t) is a realization of a zero-mean, circularly symmetric, white, Gaussian noise process with double-
sided spectral density Nj.

1.3 The Approach

Optimal detection of CPM signals is accomplished by maximizing the probability of estimating the transmit-
ted sequence correctly. Under the assumption that the transmitted symbols are independent and equally
likely, this maximum a posteriori sequence detector (MAPSD) is equivalent to the maximum likelihood
sequence detector (MLSD) [9], whose optimization criterion is

b= arg { max () b) ()

It is important to highlight that in the case of sequence detection, an error occurs when one or more of the
symbols comprising b does not equal the corresponding entry in b.

Our approach is not based on optimum sequence detection, but rather on optimum symbol detection.
The optimization criterion we are concerned with 1s

b, — arg {Hzimx[P(an(t))]} ,me[L,N+L-1], (5)

where b, is one of the information bits comprising b in (1).

Using the Laurent representation, knowledge of the noise statistics, and the structure of b, we show
that (5) can be solved using a forward-backward recursive algorithm, which requires processing the entire
burst of data before any one symbol estimate is available. We should point out that this forward-backward
structure resembles the well-known solution for fixed-interval smoothing [10].

1.4 Related Work

In this section, we provide a review of previous approaches to the problem of minimum probability of symbol
error detection. We begin by describing methods applied to CPM signaling and then describe techniques
developed for ISI-corrupted PAM signals.

Osborne and Luntz [11] considered the development of minimum probability of symbol error receivers
for CPFSK signals (i.e., CPM with 1REC pulses [2]) based upon a finite-length observation of the received
signal. This fixed-delay constraint receiver makes decisions about one symbol based upon the present symbol
interval and D signal intervals into the future. Once this decision is made, the receiver, in theory, starts
from scratch to estimate the next symbol. In [12], Schonhoff extended the work of Osborne and Luntz to
M-ary CPFSK signals. The main difference between these methods and our method is that in both [11]
and [12], the MAP estimates are based upon a fixed-delay constraint, whereas we have no constraints other
than the burst structure of the signal.



For ISI-corrupted PAM signals, a great deal of research has been done in developing MAP symbol
detectors under a fixed-delay constraint [13-15]. It is shown in these references that the optimum receiver
admits a forward-backward recursive structure. In the Appendix of [16], Forney provides a succinct outline
of the forward and backward recursions required for MAP state detection for a finite-length, finite-state,
discrete-time Markov process observed in memoryless noise. He goes on to illustrate how these estimates
can be used to compute MAP symbol estimates for an ISI-corrupted PAM signal received in additive white
Gaussian noise. Bahl et al. [17] developed results similar to that of Forney for MAP detection of linear block
and convolutional codes. In [18], Verdu develops an MAP symbol detector for a multiple access channel
shared by K asynchronous users. The MAP algorithm requires the entire received signal and involves
forward and backward recursions.

1.5 Organization

The paper is organized as follows. In Section 2, we develop the MAP symbol detection algorithm. Section 3
provides performance results generated from computer simulations, comparing the MAP symbol detector to
the more commonly used ML sequence detector. Finally, in Section 4, we provide some concluding remarks
and issues to be researched in the future.

2 The Algorithm

In this section, we present the details of the the MAP symbol detection algorithm. In Section 2.1, we detail
the MAP criterion and use our assumed knowledge of the noise statistics and the structure of the CPM
burst to develop the optimum receiver. Following this, Section 2.2 includes the development of the forward
and backward recursions, along with the initial conditions on these recursions. Lastly, Section 2.3 lists
the main components of the algorithm and provides an outline of the steps necessary to do MAP symbol
detection.

2.1 MAP Symbol Detection
Referring back to the signal model of Section 1.2, the received signal is given by
r(t) = s(t,b) + n(t) (6)

where s(t,b) is given by (2) and n(?) is a realization of a zero-mean, circularly symmetric white Gaussian
noise process with double-sided spectral density Ng. We wish to develop the receiver structure that provides
the MAP (i.e., the minimum probability of error) estimate of each element b,, of the sequence of transmitted
symbols b given by (1). The MAP criterion for this estimate is

b, = arg {HzaX[P(an(t))]} ,me[L,N+L-1], (7)
We will find it useful to define the state of the signal at time nT (see Appendix A) as

A
Xn = [On,bner41,bnory2, -+, bn_1] (8)

where
n—1L
0n =7h > b;. (9)
i=0

Assuming the modulation index h = 2i/p (i, p integers), it can be shown that f, takes on p discrete values
{0, 27/p, - -+, 2x(p—1)/p}. Using the definition of x,,, we can express the conditional probability of (7) as

Plbalr(t)) = Y D PlOnsibuorya, - booy, bale(1)) (10)

Ont1 bn_L42 n—1

Y Plxanlr()). (11)

Xnt1=[,0n]



The MAP estimate of b,, can now be written as

by, = arg r%iLX Z P(xpy1|r(t)) . (12)

Xnt1=[,0n]

Considering the conditional density in (12) more closely, we write

P(x,|r(t)) = Z ZZ > Plbr, o boon, Xy bay o bygproalr(1) (13)

bn—1 bn ONL-1
= Z Z Do 2 PUDbL e bon X, by bygr)
bn—1 bn ONL-1
(bLa"'abn—Laxnabna"'abN-I—L—l)

p(r(t))

Since the term p(r(?)) has no effect on the maximization in (12), we let dy = 1/p(r(?)) and write

P(x,|r(t)) = d1Z Z Z Z ONbr, - bnr, Xn, b, - bniL-1) (15)

b1 bn bnyr—1
XP(bLa'"abn—Lagn)P(bn—L+1a"'abN+L—1) (16)

constant
= dzz N D pr Wb, e X by bvnon)

b1 bn bnyr—1
XP(bLa"'abn—Lagn)a (17)
where do = d1P(bp_r41, -+, bnyr—1) follows because the symbols are assumed independent and equally

likely.
Using the Laurent representation (see Appendix A) and the fact that the noise is zero-mean, circularly
symmetric and Gaussian with double-sided spectral density Ny, we can write

Plr) = X T Y- Zexp{%/wuw

b1 bn bnyr—1
K—-1N+4+2L-1

2K

SEZS i SRR
k=0 =

Next, we let yj; denote the output of the matched filter ¢} (—t) sampled at time ¢t = {T whose input is the
received signal r(1), i.e.,

2
dt S P(b, - bar,0n). (18)

Yot = /Oo r(t)eL(t — IT)dt. (19)

— 00

Now define the vectors

e [ejﬂhau)l ’ ejﬂ'hal,l’ o ejﬂ'haK_l,l]T (20)

e e

Y [yo,l,yl,l,"',yK—l,l]T~ (21)

This allows us to express (18) as

2, N+2L-1
P(xplr(t)) = d4Z ZZ Z eXP{NO Z € YI}

bn_r bn bnyr—1

XP(bLa T bn—La gn)



= d4Z Zexp{ \/QEbReZel yl}P(bL,~~~,bn_L,9n)
N+42L-1
I S e ],

bnyr—1

= d4F ( n)B(xn), (22)

where d3 is a function of dy and Ny,

dy :dgexp{%/oo [|r(t)]* + 2E,/T] dt}, (23)

— 00

and

F(x,) = Z Zexp{NO\/QEbReZel y,} (br,- - bu_r,6n) (24)
N+2L-1
Boe) = 3o 3 exp{ iR X e y,} (25)

bnyr—1

In the next section, we will demonstrate that F'(x,) and B(x,) can be calculated using forward and
backward recursions, respectively. However, before doing so, it is interesting to note that F(x,) can be
thought of as the probability of being in state x,, given r(¢) for t < (n + L)T, i.e.,

F(x,) = P(x,|r(t),t < (n+ L)T). (26)
Similarly, B(x,) can be thought of as the probability of being in state x,, given r(t) for t > nT, i.e.,

B(xy,) & P(x,|r(t),t > nT). (27)

2.2 The Forward and Backward Recursions

Based upon (9) and the fact that the modulation index is assumed to be expressible as h = 2i/p (i,p
integers), it can be shown that

P(br, -+ bnr,02) = Y Pbr, -+ bpr-1,00-1)P(ba_r) P(6n 1, b 1[0s)- (28)

Or_1

This allows us to write (24) as

n—1
F(x,) = ZZ Z exp EOHQTEReZefIyl}P(bL,~~~,bn_L_1,9n_1)
=0
)

Xn-1 br bp—r-1

X P(bp_r)P(Xn_1|%n

= Z Z Z eXP{]\QZO\/ 2EbRezel YI}P (br, -+ bn_r-1,0n_1)

Xn-1 br bp—r-1
2 2K
P(Xn—1|xn)exp{N_ bR@( Cn-1Yn- 1)}P(bn—L)
0
= Z F(Xn—l)P(Xn—l|Xn)GF(Xn—1aXn)a (29)
Xn-1



where

2 28
Gr(xn-1,%,) = expd —1/=—"Re (el 1y, )t P(ba-r) (30)
No T
1 2 2F,
= §GXP{M TRe<enH—1yn—1)} (31)

Equation (31) follows from (30) because the symbols are assumed independent and equally likely.
Next, we develop the backwards recursions for calculating B(xy). From (25), we write

9 [9E N+2L-1

[ 28

B(x,) = E E eXP{N—O TRe E efIYI}
l=n

bnyr—1

2Eb N+42L-1
= ¢4 Z Z Z exp Z e, vi ¢ P(xn411%0)

Xnt1 bngi bN4L—1

2Eb N+42L-1
= C4Z Z Z exp No Z el Vi ¢ P(Xni1l%n)

Xnt1 bntr ONL-1 I=n+1

xexp{]\Qf HQEbRe (e Yn)}
0

= C4 Z Xn+1 Xn+1|xn)GB(XnaXn+1)a (32)

Xnt1

where ¢4 is a constant equal to 1/P(b,) and

2 [2F
GB(Xn,Xp41) = exp {N_ \/ TbRe (enHyn)} : (33)
0

Next, we determine the initial conditions on the forward and backward recursions. From (1), we see
that our goal is to calculate b, using (12) for n € [L, N + L — 1]. Equation (22) reveals that estimation of
these symbols requires calculating F'(x,) and B(xy) for n € [L + 1, N 4+ L]. Based upon these results, it
can be shown that the initial conditions on the forward recursions are given by

1, xp =[mhbo,by, -, br_1]

F(xr) = {0: xp # [whbo, by, - bp_1] o

Calculating the initial conditions for the backward recursions is more complex. In order to simplify things
we consider the case in which the modulation index A = 1/2. (Note that in the simulation results presented
in Section 3, we choose h = 1/2 and L = 3.) Under these assumptions, it can be shown that

1/2, xnyor—1=[00r m bnsr, -, bnyor—2], N+ 2L —1even

0, XNtor—1 Z[0or T, byyr, - bnyar—a], N+ 2L — 1 even
B(xnyor-1) = (35)

1/2, XN42L-1 2[71'/2 or 377/2,bN+L,"',bN+2L—2], N+4+2L—1o0dd

0, XN42L-1 75[71'/2 or 377/2,bN+L,"',bN+2L—2], N+2L—1o0dd

2.3 Algorithm Review

In the following, we provide a review of the main components of the MAP symbol detection algorithm
presented in Sections 2.1 and 2.2.
Assumptions:



1. The information bits are independent and equally likely, with the transmitted sequence given by

b =[bo,b1, -, br_1,br,br41, -, bnyr—1,0Nn4+L, ONgL41, - ONgpor—1]. (36)

L known bits N unknown bits L known bits

2. The state 1s defined as A

Xp = [On, bn—r41,bn_r42, -, bu_1]. (37)
3. The phase state is given by
n—L
0n =7h > b;. (38)
i=0
MAP Symbol Detection:
b, = arg r%iLX Z P(xp41|r(t)) (39)
Xn+1:[',“',bn]
P(xp|r(t)) = daF(xn)B(xp) (40)
F(xn) = Y F(xno1)P(Xn-1]%0)Gr(Xn_1,%n) (41)
Xp-1
Bxa) = ea Y Bxnt)P(oi[xa) G (%0, Xo1) (42)

Xp41

1 2 2E
Gp(Xn-1,%n) = §GXP{N—O\/TbRe(enH—1yn—1)} (43)
2> 2B, 4
oy )} (i

GB(Xn; Xn+1)

e 4 [ejnhao,l’ejnhal,l’ o ejnhaK_l,l]T (45)
A

yi = ooy yk-11" (46)

i / r(t)i(t — IT)dt (47)

The Constants:

di = 1/p(r(t)) (48)
dy = diP(bp—rt1, -, bngr—1) (49)
ds = f(da, No) (50)
dy = dgexp{%/_ [Ir (D)) + 2E,/T] dt} (51)

The constants in equations (40), (42), and (43) can be set equal to 1 with no loss in performance. This is
because their presence in (39) does not effect the choice of by,.
Initial Conditions:

_ 1a XL = [ﬂ-thabla'HabL—l]
Fla) = { 0, xp # [whbo, by, -, by (52)
1/2, xnyor—1=[00r m bnsr, -, bnyor—2], N+ 2L —1even
0, XNtor—1 Z[0or T, byyr, - bnyar—a], N+ 2L — 1 even
B(xn4or-1) = (53)

1/2, XN42L—1 = [71'/2 or 377/2,bN+L, .- ',bN+2L—2], N+4+2L—1o0dd
0, XN42L-1 75 [71'/2 or 377/2,bN+L, .- ',bN+2L—2], N+2L—1o0dd



Note the initial conditions on the backward recursions are for the specific case when h = 1/2.

3 Performance

In this section, we present performance results for the MAP symbol detection algorithm introduced in
Section 2. These computer simulations were done in the MATLAB 4.2¢ environment. The CPM signals
were modeled after the GMSK signals used in the GSM cellular system. More specifically, the GMSK signal
parameters are BT = 0.3, L = 3 and h = 1/2. We also chose the length of each burst N + 2L — 1 to be
equal to the bursts used in the GSM system (i.e., N=156). All processing was done at complex baseband.

Figure 1 is a plot of the BER vs E}/N, characteristics for the MAP symbol detector developed in this
paper and the ML sequence detector developed in [19]. This plot provides the interesting result that both
detectors perform the same (except for Ey/N, = 8dB, but we attribute this to computational limitations).
This suggests that for CPM signals, the ML sequence detector provides the same symbol estimates as the
MAP symbol detector, and, therefore, minimizes the probability of making a symbol error. Or said in
a different way, the ML sequence detector, which can be thought of as globally optimum, is also locally
optimum, like the MAP symbol detector.

0

10°

o MAP Symbol Detectot 1
w107

o ML Sequence Detector

10 : > 3 Eb/Né - 5 6 7 8

Figure 1: MAP symbol detector vs. ML sequence detector, N=156.

It was of interest to us to determine how important the individual contributions from the forward and
backward recursions are in providing the MAP symbol estimate. Therefore, as a test we considered com-



paring the performance of the optimum MAP symbol detector, which uses both the forward and backward
recursions, to the detector which only considers the forward recursions (i.e, set B(x,) = 1 in (40)). The re-
sults are presented in Figure 2. The plot reveals that as we had suspected, the backward recursions provide
very little information about the probability of being in state x, and that nearly all the processing power
of the algorithm resides in the forward recursions. This result actually is not surprising if one considers

0

107
10_f Forward Recursions |
w10 i
107k / ]
Forward & Backward Recursions b
10*4 | | | | | | |

0 1 2 3 4 5 6 7 8
Eb/No (dB)

Figure 2: MAP symbol detector comparing forward-backward to forward, N=156.

that during the calculation of the backward recursions in going from state x,41 to x,,, for the specific case
of L = 3, it is the symbol b,,_5 that provides the transition between states. Looking more closely at the
Laurent representation (2), it can be shown that for ¢ = nT, b,_5 only affects the complex exponentials
ed™hazn and ed™haan multiplying the two smallest pulses ca(t — nT') and e3(t — nT'). Note that it has been
shown [19] that these two components contain less than 1% of the CPM signal power. Therefore, when
calculating the metric given in (44), which is a function of the matched filter outputs y,,, there will be very
little difference for the cases b,_s = +1 and b,_» = —1. This is the reason why the backward recursions
provide so little information.

What is interesting to realize is that if the backward recursions are expendable, then we can simply
detect the symbols based upon the forward recursions, with these estimates being nearly optimum. Recall
that at the end of Section 2.1, we noted that F'(x,) can be thought of as the probability of being in state
Xy, given r(t) for ¢ < (n+ L)T. This result highlights that symbol estimates based upon F(x,) (and not
B(xy)) do not require that the entire burst of data be processed, but rather that we only have a processing



delay of LT seconds before an estimate is available. This is certainly an advantage over the optimum
MAP symbol detection algorithm (using both the forward and backward recursions) and the optimum ML
sequence detection algorithm, which requires that the entire burst of data be received before any estimates
are available.

4 Conclusions & Future Work

In this paper, we considered the transmission of a burst of symbols transmitted using CPM signaling. A
receiver algorithm was developed that minimized the probability of symbol error under the assumption
that the noise is white and Gaussian. We illustrated that this algorithm requires the use of both forward
and backward recursions, and that the entire burst of data is required before any estimates are available.
Performance results were presented which suggest the following:

e For the particular CPM signals considered, the MAP symbol detector developed here and the more
commonly used ML sequence detector perform the same.

e Because of the structure of CPM signals, the backward recursions provide very little of the processing
power of the MAP algorithm.

e It is the forward recursions which provide the information needed. For this reason, a nearly optimum
receiver can be developed based solely on the forward recursions. The advantage of such a receiver
is that only a delay of LT seconds is required before symbol estimates are available. This is in stark
contrast to the MAP symbol detector and the ML sequence detectors, which require the entire burst
of data before any estimates are available.

In the future we plan to consider the development of near-optimum symbol detectors based on the Laurent
approximation, which uses only the & = 0 term in (2), in representing the CPM signal. This approach
has proven to be quite useful in developing reduced-complexity sequence detectors for CPM signals [19].
We also plan to consider the development of an optimum symbol detector for the case when the symbols
comprising the sequence b are not independent and equally likely, but are correlated due to precoding.
Lastly, we will develop a complexity comparison between the MAP symbol detector and the ML sequence
detector.

A The Laurent Representation

Consider the transmission of the sequence b given by (1). From [2], we know that the complex baseband
CPM signal can be expressed as

s(t,b) = \/%6j[€(t)], t>0 (54)

T
+t N+2L-1
o(t) = 27rh/ Z big(t —iTYdr, t>0 (55)
O =0
N+2L-1
= rh Z big(t —iT), t >0, (56)
=0

where £y is the energy per bit, 7" is the bit period, A& is the modulation index which takes on rational values
(i.e., h = 2k/p k, p integers), {b;} are the transmitted bits taken from the set {—1, 1} with equal probability,
g(t) is termed the frequency pulse which is nonzero in the interval [0, LT], has area equal to 1/2 and is
symmetric about L7/2; and ¢(¢) is the integral of the frequency pulse, such that

a(t) / g(r)dr (57)
o(LT) = 1/2 (58)

10



Laurent [7] showed that the complex baseband signal s(¢, b) can be expressed as the sum of K = 281

PAM signals, 1.e.,
9p, K-1N+2L-1
_ b iThag, n _
sty =1/= > > [T Jen(t = nT)
k=0 =0
over the interval t € [LT, (N + 2L)T], where
n L-1
Qe = D b= Y bosBry
i=o j=1
L-1
= dom— > bujBrj,
ji=1
L-1
= dom-r+ P bucj(1=Brj)+bn,
j=1
where the set {8y ;} are used in the binary representation of the index k, i.e.,
L-1
k=278, kel0,K—1]
ji=1

and Bk,j € {0, 1}
Defining the state of the signal at time n7T" as

A
Xn = [Hn, bn—L+1a bn—L+2a Tty bn—l]a

where

n—1L
0n =7h Y _ b,
i=0

it can be shown that ef™@.» in (59) is a function of the state x, and the symbol b,
h = 2i/p (4, p integers), it can be shown that @, takes on p discrete values {0, 27/p, - - -,

The functions of time ¢ (¢) are given by

L-1
cr(t) = so(t) [[ sjrpns(t) kel0, K —1],
where - (t 4+ T
_ sin j _ )
sj(t) = W = so(t + 47,
(1) tef0,LT)
U(t)={ wh—o(t—LT) tel[LT,2LT]
0 else
and t
() = 27Th/0 g(r)dr.
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