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Submitted to the Annals of Statistics

A UNIFIED FRAMEWORK FOR TESTING HIGH
DIMENSIONAL PARAMETERS: A DATA-ADAPTIVE

APPROACH

By Cheng Zhou‡, Xinsheng Zhang‡, Wenxin Zhou§ and Han Liu§

Department of Statistics, Fudan University‡ and Department of Operation
Research and Financial Engineering, Princeton University§

High dimensional hypothesis test deals with models in which the
number of parameters is significantly larger than the sample size. Ex-
isting literature develops a variety of individual tests. Some of them
are sensitive to the dense and small disturbance, and others are sen-
sitive to the sparse and large disturbance. Hence, the powers of these
tests depend on the assumption of the alternative scenario. This pa-
per provides a unified framework for developing new tests which are
adaptive to a large variety of alternative scenarios in high dimensions.
In particular, our framework includes arbitrary hypotheses which can
be tested using high dimensional U -statistic based vectors. Under this
framework, we first develop a broad family of tests based on a novel
variant of the Lp-norm with p ∈ {1, . . . ,∞}. We then combine these
tests to construct a data-adaptive test that is simultaneously pow-
erful under various alternative scenarios. To obtain the asymptotic
distributions of these tests, we utilize the multiplier bootstrap for U -
statistics. In addition, we consider the computational aspect of the
bootstrap method and propose a novel low cost scheme. We prove
the optimality of the proposed tests. Thorough numerical results on
simulated and real datasets are provided to support our theory.

1. Introduction. Modern data acquisition routinely produces massive
datasets in many scientific areas, e.g. genomics, astronomy, functional Mag-
netic Resonance Imaging (fMRI), and image processing. Effective analysis
of such data requires us to test high dimensional parameters ([47, 58, 71,
76, 29, 18]). Though specific methods have been developed to infer high
dimensional mean and covariance parameters. It is unclear how to choose
the best test when the parameter of interest has a complex structure and
the pattern of possible alternative hypothesis is unknown. In particular, we
need a unified framework for constructing tests of high dimensional param-
eters which are simultaneously powerful under a large variety of alternative
assumptions. This paper provides such a framework.

Keywords and phrases: High dimensional hypothesis tests, U -statistics, multiplier
bootstrap methods, data-adaptive tests
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1.1. General setup. Our framework considers a generic setup for high
dimensional inference. More specifically, let X = (X1, . . . , Xd)

> and Y =
(Y1, . . . , Yd)

> be two d-dimensional random vectors independent of each
other. X1, . . . ,Xn1 are independent and identically distributed (i.i.d.) ran-
dom samples fromX withXk = (Xk1, Xk2, . . . , Xkd)

>. Similarly, Y1, . . . ,Yn2

are i.i.d. random samples from Y with Yk = (Yk1, Yk2, . . . , Ykd)
>. We set

X = {X1, . . . ,Xn1}, Y = {Y1, . . . ,Yn2}, and

(1.1)

û1,s =
(
n1

m

)−1 ∑
1≤k1<···<km≤n1

Φs(Xk1 , . . . ,Xkm),

û2,s =
(
n2

m

)−1 ∑
1≤k1<···<km≤n2

Φs(Yk1 , . . . ,Ykm),

where s = 1, . . . , q, and Φs is a m-order symmetric kernel function. We
assume that Φs is symmetric and that each kernel function is of the same
order m only for notational simplicity.1,2

We then define two U -statistic based vectors as

(1.2) û1 := (û1,1, û1,2, . . . , û1,q)
> and û2 := (û2,1, û2,2, . . . , û2,q)

>.

We use uγ to denote the expectation of ûγ , i.e., uγ = (uγ,1, uγ,2, . . . , uγ,q)
>

with uγ,s = E[ûγ,s] for γ = 1, 2 and s = 1, . . . , q. We are interested in testing
the hypotheses:

(i) (One-sample problem) For a given u0 ∈ Rq,

(1.3) H0 : u1 = u0 v.s. H1 : u1 6= u0;

(ii) (Two-sample problem)

(1.4) H0 : u1 = u2 v.s. H1 : u1 6= u2.

We consider the high dimensional setting that d/n (or q/n) does not
necessarily go to zero. These two kinds of hypotheses are quite general and
include most existing studies as special cases.

1If Φs is an asymmetric kernel function, it gives a U -statistic û1,s =
1
m!

(
n1
m

)−1∑
Φs(X`1 , . . . ,X`m), where the summation is over all permutations of

distinct elements {`1, . . . , `m} from {1, . . . , n1}. By setting Φ0
s(x1, . . . ,xm) =

(m!)−1∑Φs(xk1 , . . . ,Xkm), where the summation is over all permutations of {1, . . . ,m},
we rewrite û1,s as a U -statistic with a symmetric kernel Φ0

s. For Y , we can rewrite û2,s as
a U -statistic with a symmetric kernel similarly.

2 If {Φs}s=1,...,q have different kernel orders, we require that the kernel orders are
uniformly bounded.
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1.2. Special cases and applications. In this section, we provide several
special cases of the above general testing problem.

• Matrix-based one-sample test:

(1.5) H0 : U1 = Id v.s. H1 : U1 6= Id,

where U1’s entries are estimated by U -statistics and Id is an identity
matrix of size d. The hypothesis (1.5) is often used to infer the indepen-
dence of random variables. This problem plays a fundamental role in
many fields including multiple testing ([9]), naive Bayes classification
([69, 32]), and independent component analysis([25]). Under the Gaus-
sian setting, testing (1.5) with U1 as covariance matrix is well studied
both in low ([60, 57, 1]) and high ([45, 42, 10, 62, 3, 22, 12, 43, 17])
dimensions. Moreover, [42, 48, 75, 51, 16, 12, 65] consider the high
dimensional independence test under more general distribution. Con-
sidering robustness, rank-based U -statistics such as Kendall’ s tau and
Spearman’s rho are introduced to describe the dependence of random
variables. As for their definitions and basic theoretical properties, we
refer to the book [46]. Recently, [35, 6] study how to utilyze general
U -statistics for high dimensional independence test.
• Matrix-based two-sample test:

(1.6) H0 : U1 = U2 v.s. H1 : U1 6= U2,

where U1 and U2 are matrices such that their entries are estimated by
U -statistics. The hypothesis (1.6) is often used before the discriminant
analysis ([1, 64, 13, 55, 33, 54, 36]) to simplify the test statistics. For
low dimensional two-sample covariance matrix test, we refer its theo-
retical properties to [1]. In recent years, [63, 68, 49, 14, 21] study how
to perform the two-sample covariance matrix test in high dimensions.
Moreover, [46, 35, 6, 74] consider how to use general U-statistics to
replace covariance coefficients.
• Means test:

(i) (One-sample problem)

(1.7) H0 : µ1 = 0 v.s. H1 : µ1 6= 0;

(ii) (Two-sample problem)

(1.8) H0 : µ1 = µ2 v.s. H1 : µ1 6= µ2,
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where µ1 and µ2 are mean vectors of X and Y . Testing the mean
vector is a special case of (1.7) and (1.8). The testing of mean values
is very fundamental. We refer their low dimensional properties to [1].
Recently, a large amount of literature work on high dimensional means
test ([4, 67, 66, 22, 15, 20]).

For (1.5) and (1.6), we can convert the matrix into a column vector by
vectorization to obtain equivalent tests with the same form as (1.7) or (1.8).
Therefore, (1.5) and (1.6) fall in our framework.

Testing high dimensional U -statistic parameters also has many important
practical applications. For example, in gene selection, we use it to detect gene
differences [37, 39, 38, 14, 15] or rare variants [8, 50, 70, 47, 58] between
the diseased and non-diseased population. In finance, we use it to detect
anomalies ([19]) and test the market efficiency ([28, 30, 31]).

1.3. Background and existing work. In the low dimensional setting with
d < n fixed, the Hotelling’s T 2 test enjoys certain kind of optimality and
has been widely used. To test two-sample mean vectors, the Hotelling’s T 2

is defined as
n1n2

n1 + n2
(X − Y )>S−1

1,2(X − Y ),

where X = n−1
1

∑n1
k=1Xk, Y = n−1

2

∑n2
k=1 Yk, and

S1,2 =
1

n1 + n2 − 2

( n1∑
k=1

(Xk −X)(Xk −X)> +

n2∑
k=1

(Yk − Y )(Yk − Y )>
)
.

As for the limiting distribution, large and moderate deviations of Hotelling’s
T 2, we refer to [1, 27, 52].

In the high dimensional setting, many tests have been proposed to test
high dimensional vectors and matrices. These tests fall in two categories:
the L2-type versus L∞-type tests. Specifically, for (1.7) and (1.8), the L2-
type tests are based on ‖A(u1 −u0)‖2 or ‖A(u1 −u2)‖2, and the L∞-type
tests are based on ‖A(u1 − u0)‖∞ or ‖A(u1 − u2)‖∞ for some operator
A. On one hand, the L2-type tests [4, 63, 66, 68, 22, 49] aim to detect
relatively dense signals, as the L2-norm accumulates small deviations of all
entries. On the other hand, the L∞-type tests [14, 15] are more sensitive to
sparse signals, where some strong perturbations exist on a small number of
entries. [52, 14, 15] illustrate that the L∞-type tests are reasonably more
powerful than the L2-type tests and enjoy certain kind of optimality when
the alternative is sparse.
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1.4. Our contributions. Theoretically, there is no uniformly most pow-
erful test under different scenarios of the alternatives ([26]). Therefore, de-
pending on the unknown truth of alternatives, a given and fixed test may
or may not be powerful. In this paper, we aim to develop a broad family
of tests such that at least one of them is powerful enough in a given situa-
tion. We then combine these tests to obtain a data-adaptive test that will
maintain high power across a wide range of alternative scenarios. We de-
velop our family of tests based on a new family of adjusted Lp-norms with
p = 1, 2, . . . ,∞, so that there is at least one test in our family is power-
ful no matter the signal is dense or sparse. The limiting distribution of the
data-adaptive test is very complex that we cannot obtain its explicit form.
Therefore, we use the bootstrap method to approximate the limiting distri-
bution, so that we can obtain the critical value and valid P -value of the test.
More specifically, to obtain a better approximation in the high dimensional
setting, we adjust Lp-norm while building the test statistics. In detail, we
introduce it as follows.

Definition 1.1. For v = (v1, . . . , vd)
> ∈ Rd, we define ‖v‖(s0,p) :=(∑d

j=d−s0+1(v(j))p
)1/p

, where v(1), v(2), . . . , v(d) are the order statistics of

|v1|, . . . , |vd| with 0 ≤ v(1) ≤ v(2) ≤ . . . ≤ v(d).

By this definition, for any positive integer s0, we have ‖v‖(s0,∞) = ‖v‖∞,
where ‖v‖∞ = maxj=1,...,d |vd|. Moreover, the following proposition shows
that ‖ · ‖(s0,p) is a norm for any 1 ≤ p ≤ ∞.

Proposition 1. For any 1 ≤ p ≤ ∞, ‖ · ‖(s0,p) is a norm on Rd.

The detailed proof of Proposition 1 is in Appendix B.1 of supplementary
materials. In this paper, we assume 1 ≤ p ≤ ∞ to make ‖ · ‖(s0,p) a norm.
Therefore, similarly to Lp-norm, we can call ‖v‖(s0,p) the (s0, p)-norm of v
in this paper. To construct the above family of tests, we use the (s0, p)-norm
as the adjusted Lp-norm. More details on this testing procedure is in Section
2. This paper has four major contributions:

• First, we introduce a new family of tests based on the (s0, p)-norm.
As is shown in the simulation experiment of Section 4, the power of
traditional Lp-norm based test decreases tremendously (especially for
small p) as q → ∞. The reason is that the Lp-norm with small p is
easy to accumulate the noise of all entries. Therefore, we introduce s0

to increase the signal-noise ratio of test statistics. The introduction
of s0 is also crucial in establishing our theoretical results for high
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dimensional multiplier bootstrap. Moreover, we obtain the required
scaling between s0, p, q, and n for the proposed bootstrap methods.
• Secondly, as it is hard to obtain the joint distribution of test statis-

tics with various (s0, p)-norm, we use the multiplier bootstrap method
to obtain its asymptotic distribution. In low dimensions, this boot-
strap method is well studied for both the sum of random variables
([61, 53, 59, 7]) and U -statistics ([44, 2, 56, 41, 40, 34]). In high di-
mensions, the multiplier bootstrap is also useful for approximating the
sum of random vectors ([23]). Motivated by these results, we generalize
multiplier bootstrap method for U -statistics to the high dimensional
setting with theoretical guarantees.
• Thirdly, for adapting to the possible alternatives, we propose a new

approach to combine these (s0, p)-norm based tests. Our combined
test automatically chooses the most powerful test within the chosen
combination according to the data. Therefore, we call this test the
data-adaptive combined test. However, to obtain the P -value for the
combined test, we originally need a double-loop bootstrap procedure,
which suffers from high computational cost. To avoid this, we propose
a novel computationally efficient scheme which generates nonindepen-
dent bootstrap samples. We also provide theoretical guarantees for this
new bootstrap scheme in the high dimensional setting.
• Finally, combining the developed theory for the proposed methods and

exiting lower bounds in the literature, we present that our methods
are rate-optimal in many settings.

1.5. Notation. We set ‖v‖p as the Lp-norm of a vector v = (v1, . . . , vd)
> ∈

Rd. We denote the spherical surface in Rd by Sd−1 := {v ∈ Rd : ‖v‖2 = 1}.
For two sequences of real numbers {an} and {bn}, we write an = O(bn) if
there exists a constant C such that |an| ≤ C|bn| holds for all sufficiently
large n, write an = o(bn) if an/bn → 0, and write an � bn if there exist
constants C ≥ c > 0 such that c|bn| ≤ |an| ≤ C|bn| for all sufficiently large
n. For a sequence of random variables {ξ1, ξ2, . . .}, we use ξn → ξ to denote
that the sequence {ξn} converges in probability towards ξ as n → ∞. For
simplicity, we also use ξn = op(1) to denote ξn → 0.

1.6. Paper organization. The rest of this paper is organized as follows. In
Section 2 we propose the new testing procedures: the individual (s0, p)-norm
based test and the data-adaptive combined test. In Section 3, we develop a
theory to analyze the size and power of the proposed tests. Section 4 provides
some numerical results on simulated data to justify our proposed methods’
size and power. In Section 5, we discuss some potential future work. Sup-
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plementary materials provide both proofs and additional numerical results
on both simulated and real data.

2. Methodology. This section introduces the (s0, p)-norm based indi-
vidual tests and the data-adaptive combined test for testing high dimen-
sional U -statistic based parameters. We also introduce how to exploit the
multiplier bootstrap method to obtain the critical values and P -values for
both individual and combined tests. In the following, we introduce individ-
ual tests based on the (s0, p)-norm in Section 2.1 and the data-adaptive
combined test in Section 2.2.

2.1. Individual tests based on the (s0, p)-norm. We introduce the (s0, p)-
norm based tests which are basic components of the data-adaptive combined
test. First, we explain the construction motivation in Section 2.1.1 and de-
scribe the test statistics in Section 2.1.2. We then introduce bootstrapping
scheme for U -statistics in high dimensions in Section 2.1.3 and use it to
obtain critical values and P -values for the proposed tests.

2.1.1. Motivation of the construction of the (s0, p)-norm. We first intro-
duce the motivation of the proposed individual tests. In the existing litera-
ture, there are two types of tests (L2-type and L∞-type tests) to test high
dimensional vectors or matrices. The L2-type tests are sensitive to dense
signals and the L∞-type tests are sensitive to sparse signals. Therefore, the
performance of these tests depends on the pattern of possible alternatives.
If such pattern is unknown, it is more desirable to construct a data-adaptive
test which is simultaneously powerful under various alternative scenarios.
For this, we need to construct a family of versatile tests so that for a given
alternative at least one test wiithin the family is powerful. Inspired by the
existing L2-type and L∞-type tests, we build the test family based on the
Lp-norm. Importantly, as p increases, the Lp-norm puts more weight on
the larger entries while gradually ignoring the remaining smaller entries. As
p→∞, we have ‖v‖p → ‖v‖∞ for any v ∈ Rd, where ‖v‖∞’s value only de-
pends on the largest entry of v. More generally, as p increases, we put more
weight on the larger entries, eventually realizing the L∞-type test. Hence,
by properly choosing p from the proposed test family, there exists at least
one test within the family that is powerful in each alternative situation.

However, it is problematic to directly use the Lp-norm (p < ∞) to con-
struct the test statistics in high dimensions. For example, when d/n 6→ 0,
Hotelling’s T 2 test (L2-type) performs poorly, as the Pearson’s sample co-
variance matrices no longer converge to their population counterparts under
the spectral norm ([5]). For high dimensional testing problems, we need to
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adjust the test statistics or make structured assumptions on the popula-
tion covariance matrix to obtain better asymptotic distributions of the test
statistics. We face the same problem while using Lp-norm (p < ∞) to con-
struct the test statistics. Hence, to avoid making unnecessary assumptions
on the covariance structure of the random vector, we introduce the (s0, p)-
norm to adjust the original Lp-norm. As is shown by numerical simulations
in Section 4, the Lp-norm based test with small p has significant power loss
when the dimension of the parameter of interest q → ∞. The introduc-
tion of s0 can boost the power of Lp-norm based test especially for small p.
More specifically, when p is small, the Lp-norm accumulates noise from all
the entries, which leads to significant power loss. By exploiting the (s0, p)-
norm, we can enhance the signal-noise ratio for the obtained test statistics.
When p is large, the choice of s0 becomes less critical. In theory, for the
bootstrap scheme to work properly under any 1 ≤ p ≤ ∞, we require that
s2

0 log(qn) = O(nδ) holds for some 0 < δ < 1/7. Therefore, s0 can also go
to the infinity as n → ∞. By simulation, s0 close to s, which is the true
unknown number of entries violating H0, is preferable. More details on the
choice of s0 are provided in Section 3 and 4.

2.1.2. The (s0, p)-norm based test statistics. Before presenting the test
statistics, we first introduce the following jackknife variance estimator for
the U -statistic ûγ,s defined in (1.1) with γ = 1, 2 and s = 1, 2 . . . , q. As
m ≥ 2, we define

(2.1) v̂1,s = m2n−1
1

n1∑
k=1

(Q1k,s − û1,s)
2, v̂2,s = m2n−1

2

n2∑
k=1

(Q2k,s − û2,s)
2,

where we set

(2.2)

Q1k,s :=
(
n1−1
m−1

)−1 ∑
1≤`1<···<`m−1≤n1
`j 6=k,j=1,...,m−1

Φs(Xk,X`1 , . . . ,X`m−1),

Q2k,s :=
(
n2−1
m−1

)−1 ∑
1≤`1<···<`m−1≤n2
`j 6=k,j=1,...,m−1

Φs(Yk,Y`1 , . . . ,Y`m−1).

We use v̂γ,s to estimate the variance of
√
nγ ûγ,s. Therefore, v̂γ,s/nγ is the

variance estimator for ûγ,s. As m = 1, ûγ,s and v̂γ,s are reduced to

(2.3)


û1,s = n−1

1

n1∑
k=1

Φs(Xk),

û2,s = n−1
2

n2∑
k=1

Φs(Yk),


v̂1,s = n−1

1

n1∑
k=1

(Φs(Xk)− û1,s)
2,

v̂2,s = n−1
2

n2∑
k=1

(Φs(Xk)− û2,s)
2.



9

After introducing these notations, we present our (s0, p)-norm based test
statistics. For this, we define W = (W1, . . . ,Wq)

> and N = (N1, . . . , Nq)
>,

where we set Ws and Ns as

(2.4)
Ws := (û1,s − u0,s)/

√
v̂1,s/n1,

Ns := (û1,s − û2,s)/
√
v̂1,s/n1 + v̂2,s/n2.

For the one-sample problem in (1.7), we propose the test statistic W(s0,p) :=
‖W ‖(s0,p). Similarly, for the two-sample problem in (1.8), we propose the
test statistic N(s0,p) := ‖N‖(s0,p). Throughout this paper, if not specially
specified, we require 1 ≤ p ≤ ∞ to make ‖ · ‖(s0,p) a norm, which is also
required by the theory.

2.1.3. Bootstrap procedure for the asymptotic distribution. In the high
dimensional setting, [23] introduce the multiplier bootstrap method for the
sum of independent random vectors. In detail, let Z1, . . . ,Zn be indepen-
dent random vectors in Rd with Zk = (Zk1, . . . , Zkd)

> and E[Zk] = 0 for
k = 1, . . . , n. Let ε1, ε2, . . . , εn be independent standard normal random
variables, the multiplier bootstrap sample for Z1, . . . ,Zn is ε1Z1, . . . , εnZn.
The bootstrap sample for the sample mean n−1

∑n
k=1Zk then becomes

n−1
∑n

k=1 εkZk. To fully utilyze this result, we use multiplier bootstrap
scheme for for high dimensional U -statistics. In detail, we generate inde-
pendent samples εb1,1, . . . , ε

b
1,n1

and εb2,1, . . . , ε
b
2,n2

from ε ∼ N(0, 1) for b =
1, . . . , B and set

ûb1,s=
(
n1

m

)−1 ∑
1≤k1<···<km≤n1

(εb1,k1
+ · · ·+ εb1,km)

(
Φs(Xk1 , . . . ,Xkm)− û1,s

)
,

ûb2,s=
(
n2

m

)−1 ∑
1≤k1<···<km≤n2

(εb2,k1
+ · · ·+ εb2,km)

(
Φs(Yk1 , . . . ,Ykm)− û2,s

)
.

Correspondingly, we set ûbγ := (ûbγ,1, . . . , û
b
γ,q)
> for γ = 1, 2. After introduc-

ing ûbγ , we define W b = (W b
1 , . . . ,W

b
q )> and N b = (N b

1 , . . . , N
b
q )>, where

(2.5) W b
s = ûb1,s/

√
v̂1,s/n1, N

b
s = (ûb1,s − ûb2,s)/

√
v̂1,s/n1 + v̂2,s/n2.

Bootstrap samples become {N b
(s0,p)
}b=1,...,B and {W b

(s0,p)
}b=1,...,B with

(2.6) W b
(s0,p)

= ‖W b‖(s0,p) and N b
(s0,p)

= ‖N b‖(s0,p).
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Given the significance level α and the bootstrap samples, we set the critical
values of W(s0,p) and N(s0,p) as

t̂Wα,(s0,p) = inf
{
t ∈ R :

1

B

B∑
b=1

1I{W b
(s0,p)

≤ t} > 1− α
}
,

t̂Nα,(s0,p) = inf
{
t ∈ R :

1

B

B∑
b=1

1I{N b
(s0,p)

≤ t} > 1− α
}
.

Therefore, we obtain the (s0, p)-norm based tests for (1.7) and (1.8) as

TWα,(s0,p) := 1I
{
W(s0,p) ≥ t̂

W
α,(s0,p)

}
, TNα,(s0,p) := 1I

{
N(s0,p) ≥ t̂

N
α,(s0,p)

}
.(2.7)

We reject H0 of (1.7) if and only if TWα,(s0,p) = 1 and reject H0 of (1.8) if and

only if TNα,(s0,p) = 1. Accordingly, we estimate W(s0,p) and N(s0,p)’s oracle

P -values PW(s0,p) and PN(s0,p) by

(2.8)

P̂W(s0,p) = (B + 1)−1
B∑
b=1

1I{W b
(s0,p)

> W(s0,p)}

P̂N(s0,p) = (B + 1)−1
B∑
b=1

1I{N b
(s0,p)

> N(s0,p)}.

Therefore, given a significance level α, we reject H0 of (1.7) if and only if
P̂W(s0,p) ≤ α and reject H0 of (1.8) if and only if P̂N(s0,p) ≤ α.

2.2. Data-adaptive combined test . We now introduce the data-adaptive
combined test. In Section 2.2.1, we present the test procedure. In Section
2.2.2, we introduce a double-loop bootstrap procedure to obtain the P -value
of the data-adaptive test. To reduce the expensive computation cost of the
double-loop bootstrap procedure, in Section 2.2.3 we introduce a low cost
bootstrap procedure which obtains nonindependent bootstrap samples. The
theory of this new low cost bootstrap procedure is provided in Section 3.3.

2.2.1. Test statistics. W(s0,p) and N(s0,p) have different powers for dif-
ferent p and alternative scenarios. For example, W(s0,∞) and N(s0,∞) are
sensitive to large perturbations on a small number of entries of u1−u0 and
u1 − u2. Moreover, W(s0,2) and N(s0,2) are sensitive to small perturbations
on a large number of entries of u1 − u0 and u1 − u2. We aim to combine
these tests to construct a data-adaptive test which is simultaneously pow-
erful under different alternatives.
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For the one-sample problem, as small P -values of W(s0,p) lead to the re-
jection of H0 in (1.7), we construct the data-adaptive test statistic Wad by
taking the minimum of P -values of all individual tests, i.e.,

(2.9) Wad = min
p∈P

P̂W(s0,p),

where P ⊂ {1, 2, . . . ,∞} is a candidate set of p. A bootstrap procedure
to obtain Wad is described in Algorithm 1. For the two-sample problem in
(1.8), we construct the data-adaptive test statistic Nad as

(2.10) Nad = min
p∈P

P̂N(s0,p).

Throughout this paper, we require that #(P) < ∞ is a fixed constant,
which is also required by the theory and discussed in Section 3.3. If the alter-
native pattern is unknown, we recommend using the balanced P including
both small and large values of p ∈ [1,∞]. For example, P = {1, 2, . . . , 5,∞}
is used in the later simulation experiments. If the alternative pattern is
known, we can boost the power of the data-adaptive combined test by choos-
ing P accordingly. For example, for possible sparse alternatives, P should
consist of large values of p.

Algorithm 1 A bootstrap procedure to obtain Wad

Input: X .
Output: W 1

(s0,p)
, . . . ,WB

(s0,p)
with p ∈ P, and Wad.

1: procedure
2: W(s0,p) = ‖W ‖(s0,p) with W = (W1, . . . ,Wq)

> and Ws = (û1,s − u0,s)/
√
v̂1,s/n1.

3: for b← 1 to B do
4: Sample independent standard normal random variables {εb1,1, . . . , εb1,n1

}.
5: ûb1,s=

(
n1
m

)−1 ∑
1≤k1<···<km≤n1

(εb1,k1 + · · ·+ εb1,km)
(
Φs(Xk1 , . . . ,Xkm)− û1,s

)
.

6: W b
s = ûb1,s/

√
v̂1,s/n1 for s = 1, . . . , q.

7: for p in P do
8: W b

(s0,p)
= ‖W b‖(s0,p) with W b = (W b

1 , . . . ,W
b
q )>.

9: end for
10: end for
11: P̂W(s0,p) =

∑B
b=1 1I{W b

(s0,p)
> W(s0,p)}/(B + 1) for p ∈ P.

12: Wad = minp∈P P̂
W
(s0,p)

.
13: end procedure

2.2.2. Double-loop bootstrap procedure. We present how to obtain P -
value of Wad. By setting FW,ad(x) as the distribution function of Wad, Wad’s
oracle P -value becomes FW,ad(Wad). As FW,ad(x) is unknown, we need to
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use the bootstrap method to estimate it, which leads to a double-loop boot-
strap procedure. In the outer loop, by Algorithm 1 we obtain the bootstrap
samples for W(s0,p), i.e,

{
W 1

(s0,p)
, . . . ,WB

(s0,p)

}
. In the inner loop, for each

b ∈ {1, . . . , B}, we use Algorithm 2 to obtain bootstrap samples for W b
(s0,p)

,

i.e.,
{
W b,1

(s0,p)
, . . . ,W b,L

(s0,p)

}
, and construct the bootstrap samples for Wad as

W b
ad = min

p∈P

∑L
`=1 1I{W b,`

(s0,p)
> W b

(s0,p)
}

L+ 1
for b = 1, . . . , B.

With the bootstrap samples, we can estimate the oracle P -value of Wad by

1

B + 1

(( B∑
b=1

1I{W b
ad ≤Wad}

)
+ 1

)
.

Figure 1 illustrates this double-loop bootstrap method. By this double-loop
bootstrap procedure, to guarantee the independence of W 1

ad, . . . ,W
B
ad, we to-

tally need LB+B samples from (2.1.3), which is computationally expensive
when L and B are large.

Algorithm 2 A double-loop bootstrap procedure to obtain bootstrap sam-
ples of Wad

Input: X and W 1
(s0,p)

, . . . ,WB
(s0,p)

for p ∈ P.

Output: W 1
ad, . . . ,W

B
ad.

1: procedure
2: for b← 1 to B do
3: for `← 1 to L do
4: Sample independent standard normal random variables {εb,`1,1, . . . , ε

b,`
1,n1
}.

5: ûb,`1,s=
(
n1
m

)−1 ∑
1≤k1<···<km≤n1

(εb,`1,k1
+ · · ·+ εb,`1,km

)
(
Φs(Xk1 , . . . ,Xkm)− û1,s

)
.

6: W b,`
s = ûb,`1,s/

√
v̂1,s/n1 for s = 1, . . . , q.

7: for p in P do
8: W b,`

(s0,p)
= ‖W b,`‖(s0,p) with W b,` = (W b,`

1 , . . . ,W b,`
q )>.

9: end for
10: end for
11: P̂W b,(s0,p)

=
∑L
`=1 1I{W b,`

(s0,p)
> W b

(s0,p)
}/(L+ 1) for p ∈ P.

12: W b
ad = minp∈P P̂W b,(s0,p)

13: end for
14: end procedure

2.2.3. A low cost bootstrap procedure. To handle the computational bot-
tleneck of the double-loop bootstrap, we propose to replace Algorithm 2
with Algorithm 3, which is computationally more efficient but obtains non-
independent bootstrap samples for Wad, denoted as {W 1

ad′ , . . . ,W
B
ad′}.
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Fig 1. Flowchart for the double-loop bootstrap procedure and total number of gen-
erated standard normal random variables.

In detail, in Algorithm 1 by (2.1.3), (2.5), and (2.6) we generate bootstrap
samples for W(s0,p), i.e., W 1

(s0,p)
, . . . ,WB

(s0,p)
. To avoid the double-loop boot-

strap procedure, we need to more effectively utilize the generated bootstrap
samples W 1

(s0,p)
, . . . ,WB

(s0,p)
. For this, we set

P̂ b,W(s0,p)
=

∑
b1 6=b 1I{W b1

(s0,p)
> W b

(s0,p)
}

B
for b = 1, . . . , B and p ∈ P.

We use W b
ad′ = minp∈P P̂

b,W
(s0,p)

as the bootstrap sample for Wad, and estimate
the oracle P -value by

(2.11) P̂Wad =

(∑B
b=1 1I{W b

ad′ ≤Wad}
)

+ 1

B + 1
.

The samplesW 1
ad′ , . . . ,W

B
ad′ are nonindependent. However, we can prove that

they are asymptotically independent as n1, B → ∞, which plays a pivotal
role in proving the consistency of P̂Wad .

Figure 2 illustrates the process of the low cost bootstrap procedure. To
obtain the P -value of Wad, we don’t need to generate new bootstrap samples.
In total, to perform the data-adaptive test we only need to generate B
bootstrap samples from (2.1.3).

We similarly deal with the two-sample problem. By generating bootstrap
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samples for N(s0,p), i.e., N1
(s0,p)

, . . . , NB
(s0,p)

and setting

(2.12) P̂ b,N(s0,p)
=

∑
b1 6=b 1I{N b1

(s0,p)
> N b

(s0,p)
}

B
for b = 1, . . . , B and p ∈ P,

we use N b
ad′ = minp∈P P̂

b,N
(s0,p)

as the bootstrap sample of Nad. Therefore, we
can similarly estimate the oracle P -value of Nad by

(2.13) P̂Nad =

(∑B
b=1 1I{N b

ad′ ≤ Nad}
)

+ 1

B + 1
.

With the estimated P -values of the data-adaptive tests Wad and Nad,
given significance level α, we reject H0 of (1.7) if and only if P̂Wad ≤ α and

reject H0 of (1.8) if and only if P̂Nad ≤ α. Therefore, we set

(2.14) TWad = 1I{P̂Wad ≤ α} and TNad = 1I{P̂Nad ≤ α}.

Algorithm 3 A low cost bootstrap procedure

Input: X and W 1
(s0,p)

, . . . ,WB
(s0,p)

for p ∈ P.

Output: W 1
ad′ , . . . ,WB

ad′ .
1: procedure
2: for b← 1 to B do
3: for p in P do
4: P̂ b,W(s0,p)

=
∑
b1 6=b 1I{W b1

(s0,p)
> W b

(s0,p)
}/B

5: end for
6: W b

ad′ = minp∈P P̂
b,W
(s0,p)

.
7: end for
8: end procedure

Fig 2. Flowchart for the low cost bootstrap procedure with low computation cost and
total number of generated standard normal random variables.
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Remark 2.1. To construct test statistics W(s0,p) and N(s0,p), we normal-
ize û1,s−u1,s and û1,s− û2,s by dividing their standard deviation estimators.
If we assume that U -statistics have the same variance under the null hypoth-
esis (homogeneity assumption), we can build W(s0,p) and N(s0,p) without the
normalization to avoid introducing unnecessary estimation error. Therefore,
Ws and Ns become

Ws := û1,s − u0,s and Ns := û1,s − û2,s.

For the same reason, we set W b
s = ûb1,s and N b

s = ûb1,s−ûb2,s when performing
bootstrap procedure of Sections 2.1.3 and 2.2. As the proof is similar for
the test statistics without normalization, in Section 3 we only analyze the
theoretical properties of the test statistics with normalization.

3. Theoretical properties. In this section, we discuss the theoretical
properties of the proposed testing methods including the (s0, p)-norm based
test and data-adaptive combined test. We first introduce several assump-
tions in Section 3.1. We then analyze the asymptotic size and power of the
(s0, p)-norm based test in Section 3.2. At last, we analyze the data-adaptive
combined test in Section 3.3.

3.1. Assumptions. Before presenting the theoretical properties, we in-
troduce the assumptions that are needed in this paper. We also explain the
intuitions of these assumptions. Throughout this paper, for the two-sample
problem, we assume n1 � n2 � n := max(n1, n2), which means that n1, n2,
and n are of the same order. We then introduce some other assumptions.
Assumption (A) characterizes the scaling of s0, q, and n. Assumptions (E),
(M1) and (M2) specify the requirements of the kernel functions. In detail,
we introduce Assumption (A) as follows.

• (A) For the one-sample problem in (1.7), we assume that there is some
0 < δ < 1/7 such that s2

0 log(q) = O(nδ1) holds. For the two-sample
problem in (1.8), we similarly assume that there is some 0 < δ < 1/7
such that s2

0 log q = O(nδ) holds.

Assumptions (A) also allows q and s0 to go to the infinity, as long as
s2

0 log(qn) = o(nδ) holds with some 0 < δ < 1/7.
We then introduce the assumptions on the kernel functions of the U -

statistics. For x,x1, . . . ,xm ∈ Rd, define

Ψ(x1, . . . ,xm) :=
(
Ψ1(x1, . . . ,xm), . . . ,Ψq(x1, . . . ,xm)

)>
h(x) :=

(
h1(x), . . . , hq(x)

)>
,
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where Ψs and hs are

(3.1)
Ψs(Xk1 , . . . ,Xkm) = Φs(Xk1 , . . . ,Xkm)− u1,s

hs(Xk) = E[Ψs(Xk1 , . . . ,Xkm)|Xk].

Also, set Vs0 := {v ∈ Sq−1 : ‖v‖0 ≤ s0}. With these introduced notations,
by setting 0 < K, b < ∞ as some positive constants, we are now ready to
state Assumptions (E), (M1), and (M2).

• (E) For different indexes 0 < i1, . . . , im < n1 and 0 < j1, . . . , jm < n2,
we require

max
1≤s≤q

E
[

exp
(
|Ψs(Xi1 , . . . ,Xim)|/K

)]
≤ 2,

max
1≤s≤q

E
[

exp
(
|Ψs(Yj1 , . . . ,Yjm)|/K

)]
≤ 2.

• (M1) E[|v>h(X)|2] ≥ b and E[|v>h(Y )|2] ≥ b hold for any v ∈ Vs0 .
• (M2) For ` = 1, 2, we require

max
1≤s≤q

E[|hs(X)|2+`] ≤ K`, max
1≤s≤q

E[|hs(Y )|2+`] ≤ K`.

Assumption (E) requires that Ψs(Xi1 , . . . ,Xim) and Ψs(Yj1 , . . . ,Yjs) follow
the sub-exponential distribution. Especially, bounded Ψs including useful
rank-based U -statistics such as Kendall’s tau and Spearman’s rho satisfy this
condition. Assumption (M1) excludes degenerate U -statistics. Moreover, it
also requires that the inner product of h(X) (or h(Y )) and any v ∈ Vs0
is not degenerated. The distribution assumptions (E), (M1), and (M2)
are useful for applying high-dimensional central limiting theorem (CLT) in
Lemma A.1. These assumptions are also justified by [24].

3.2. Theoretical properties of (s0, p)-norm based test statistics. After in-
troducing the assumptions in Section 3.1, we now state the theoretical prop-
erties of the (s0, p)-norm based test. Firstly, we consider the asymptotic
size. The following theorem justifies the multiplier bootstrap for W(s0,p) and
N(s0,p), which is crucial for the size control.

Theorem 3.1. Suppose all assumptions in Section 3.1 hold. Under H0

of (1.7), we have

(3.2) sup
z∈(0,∞)

∣∣∣P(W(s0,p) ≤ z)− P(W b
(s0,p)

≤ z|X )
∣∣∣ = op(1), as n1 →∞.

Similarly, under H0 of (1.8) we have

(3.3) sup
z∈(0,∞)

∣∣∣P(N(s0,p) ≤ z)− P(N b
(s0,p)

≤ z|X ,Y)
∣∣∣ = op(1), as n→∞.
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Proof. The proof of (3.2) is similar to that of (3.3). For simplicity, we
only present the proof of (3.3), which consists of three steps. We first analyze
the approximate distribution of N . We then obtain the distribution of the
bootstrap sample N b given X and Y. At last, we analyze the approximation
error between N and N b|X ,Y to yield (3.3). We only sketch the proof
here. More detailed proof is presented in Appendix B.2 of supplementary
materials.

Step (i) (Sketch). In this step, we aim to obtain the approximate dis-
tribution of N under the null hypothesis. Under the null hypothesis we have
u1,s = u2,s. Therefore, we rewrite Ns as

Ns = (ũ1,s − ũ2,s)/
√
v̂1,s/n1 + v̂2,s/n2,

where ũγ,s := ûγ,s − uγ,s is the centered version of ûγ,s. As ũγ,s is also a
U -statistic, by the Hoeffding’s decomposition we can approximate ũγ,s by a
sum of independent random variables. In detail, we use (m/n1)

∑n1
k=1 hs(Xk)

and (m/n2)
∑n2

k=1 hs(Yk) to approximate ũ1,s and ũ2,s. By setting

(3.4) σ1,st = E
(
hs(X)ht(X)

)
and σ2,st = E

(
hs(Y )ht(Y )

)
for 1 ≤ s, t ≤ q, as n → ∞ we have v̂γ,s → m2σγ,ss, which motivates us to
define

(3.5) HN
s =

( 1

n1

n1∑
k=1

hs(Xk)−
1

n2

n2∑
k=1

hs(Yk)
)/√

σ1,ss/n1 + σ2,ss/n2.

By setting HN = (HN
1 , . . . ,H

N
q )>, we use HN as an approximation of N .

However, we don’t know the exact distribution of HN . As HN is a sum of
independent random vectors with zero mean, by the central limit theorem
we can use a normal random vector to further approximate HN .

Let GN be a Gaussian random vector with the same mean vector and
covariance matrix as HN . By setting Σ1 := (σ1,st),Σ2 := (σ2,st) ∈ Rq×q, we
have

(3.6) GN ∼ N(0,R12) with R12 := D
−1/2
12 Σ12D

−1/2
12 ,

where we set

(3.7) Σ12 = Σ1/n1 + Σ2/n2 and D12 = Diag(Σ12).

We then use the distribution of GN to approximate that of N .
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Step (ii) (Sketch). In this step, we aim to obtain the distribution of
N b|X ,Y. We rewrite ûb1,s and ûb2,s in (2.1.3) as

(3.8) ûb1,s =
m

n1

n1∑
k=1

(Q1k,s − û1,s)ε
b
1,k, û

b
2,s =

m

n2

n2∑
k=1

(Q2k,s − û2,s)ε
b
2,k,

where Q1k,s and Q2k,s are defined in (2.2). Considering that εbγ,1, . . . , ε
b
γ,n1

are independent standard normal random variables, by (3.8) we have ûbγ :=

(ûbγ,1, . . . , û
b
γ,q)|X ,Y ∼ N(0,m2Σ̂γ/nγ) with Σ̂γ := (σ̂γ,st) ∈ Rq×q and

(3.9) σ̂γ,st =
1

nγ

n1∑
k=1

(Qγk,s − ûγ,s)(Qγk,t − ûγ,t),

for γ = 1, 2. Apparently, by the definition of v̂γ,s in (2.1) we have v̂γ,s =
m2σ̂γ,ss. By setting

Σ̂12 = Σ̂1/n1 + Σ̂2/n2 and D̂12 = Diag(Σ̂12),

given X and Y we have

(3.10) N b = m−1D̂
−1/2
12 (ûb1 − ûb2) ∼ N(0, R̂12),

where we set R̂12 = D̂
−1/2
12 Σ̂12D̂

−1/2
12 .

Step (iii) (Sketch). In this step, we aim to obtain the approximation
error between N and N b|X ,Y. For this, we analyze the estimation error
between R̂12 and R12. We then combine results from Steps (i) and (ii) to
finish the proof of (3.3). The detailed proof is in Appendix B.2 of supple-
mentary materials.

Remark 3.2. Assumption (A) requires that sζ0 log(q) = O(nδ) holds
with ζ = 2 and 0 < δ < 1/7. However, ζ = 2 is not optimal for each
individual p. By the proof of Theorem 3.1, ζ depends on the facet number
of a polytope to approximate B(s0,p)(x) = {v ∈ Rq : ‖v‖(s0,p) ≤ x}. If p = 1,
B(s0,p)(x) itself is a polytope, which makes ζ = 1 is enough for obtaining
(3.2) and (3.3). Similarly, If p = ∞, ζ = 0 is sufficient. To make (3.2) and
(3.3) hold for any p ∈ [1,∞], by Lemma A.3 in Appendix A, we set ζ = 2
in Theorem 3.1.

As an implication of Theorems 3.1, the following corollary shows that
under mild moment conditions on the kernel functions of U -statistics, by
using the multiplier bootstrap introduced in Section 2.1.3, the size of (s0, p)-
norm based test is asymptotically α, as desired.
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Corollary 3.1. Suppose all assumptions in Section 3.1 hold. For the
one-sample problem in (1.7), under H0 of (1.7) we have

(3.11) PH0

(
TWα,(s0,p) = 1

)
→ α and P̂W(s0,p) − P

W
(s0,p)

→ 0, as n1, B →∞.

as n1, B → ∞. Similarly, for the two-sample problem in (1.8), under H0 of
(1.8) we have

(3.12) PH0

(
TNα,(s0,p) = 1

)
→ α and P̂N(s0,p) − P

N
(s0,p)

→ 0, as n, B →∞.

The detailed proof of Corollary 3.1 is in Appendix B.3 of supplementary
materials. After analyzing the asymptotic size of the (s0, p)-norm based test,
we now turn to the analysis of its power. For this, we need the following
notations: D1 = (D1,1, . . . , D1,q)

> and D2 = (D2,1, . . . , D2,q)
> with

(3.13)
D1,s = |u1,s − u0,s|/

√
m2σ1,ss/n1,

D2,s = |u1,s − u2,s|/
√
m2σ1,ss/n1 +m2σ2,ss/n2,

where σγ,ss is defined in (3.4). We need new Assumption (A)′ to describe
the scaling between s0, q, and n for test statistics W(s0,p) and N(s0,p) to reject
with overwhelming probability under the alternative.

• (A)′ For the one-sample problem in (1.7), we assume log q = o(n
1/3
1 )

and n1 = O(qδ1) with some δ1 > 0, as n1, q →∞. For the two-sample
problem in (1.8), we assume log q = o(n1/3) and n = O(qδ1) with some
δ1 > 0, as n, q →∞. Moreover, we also assume that there is a constant
δ2 > 0 such that s0 = O(logδ2(q)) holds for both problems.

After the introduction of Assumption (A)′, we then state the theorem that
characterizes the power of W(s0,p) and N(s0,p).

Theorem 3.3. Suppose Assumptions (A)′, (E), (M1), and (M2) hold.
For the one-sample problem in (1.7), we assume εn1 = o(1) with εn1

√
log q →

∞ as n1, q →∞. If H1 of (1.7) holds with

(3.14) ‖D1‖(s0,p) ≥ s0(1 + εn1)
(√

2 log q +
√

2 log(1/α)
)
,

we have PH1

(
TW(s0,p) = 1

)
→ 1 as n1, q, B →∞. Similarly, for the two-sample

problem in (1.8) we assume εn = o(1), and εn
√

log q → ∞ as n, q → ∞. If
H1 of (1.8) holds with

(3.15) ‖D2‖(s0,p) ≥ s0(1 + εn)
(√

2 log q +
√

2 log(1/α)
)
,

we have PH1

(
TN(s0,p) = 1

)
→ 1 as n, q,B →∞.



20

The detailed proof of Theorem 3.3 is presented in Appendix B.4 of sup-
plementary materials. The scaling of q and n in Theorem 3.3 is weaker than
Assumption (A), allowing larger q for proposed tests to correctly reject
the null hypothesis. Moreover, by the proof of Theorem 3.3, for m = 1,

we can further relax the conditions log q = o(n
1/3
1 ) and log q = o(n1/3) by

log q = o(n
1/2
1 ) and log q = o(n1/2) in Assumption (A)′.

3.3. Theoretical properties of Wad and Nad. In Section 2.2, we introduce
the data-adaptive test by combining the (s0, p)-norm based tests with p ∈ P,
where P ⊂ {1, 2 . . . ,∞} is a finite fixed set specified by users. Intuitively,
by combining tests with various norms, the data-adaptive test enjoys high
power across various alternative hypothesis scenarios. In (2.9) and (2.10),
we introduce the data-adaptive tests as

(3.16) Wad = min
p∈P

P̂W(s0,p) and Nad = min
p∈P

P̂N(s0,p),

where P̂W(s0,p) and P̂N(s0,p) are defined in (2.8). By setting FW,(s0,p)(z) :=

P(W(s0,p) ≤ z) and FN,(s0,p)(z) := P(N(s0,p) ≤ z), we have that the ora-
cle P -values of W(s0,p) and N(s0,p) are

PW(s0,p) := 1− FW,(s0,p)(W(s0,p)) and PN(s0,p) := 1− FN,(s0,p)(N(s0,p)).

By the definitions of P̂W(s0,p) and P̂N(s0,p) in (2.8), P̂W(s0,p) and P̂N(s0,p) estimate

PW(s0,p) and PN(s0,p). Therefore, by (3.16) Wad and Nad estimate

(3.17) W̃ad = min
p∈P

PW(s0,p) and Ñad = min
p∈P

PN(s0,p).

By setting F̃W,ad(z) := P(W̃ad ≤ z) and F̃N,ad(z) := P(Ñad ≤ z), considering
that the small values of Wad and Nad yield the rejection of the null hypothe-
ses, we have that the oracle P -values of Wad and Nad are F̃Wad(W̃ad) and
F̃N,ad(Ñad).

After introducing these notations, we aim to justify the bootstrap proce-
dure in Section 2.2 by showing that P̂Wad and P̂Nad (defined in (2.11) and

(2.13)) are consistent estimators of the oracle P -values F̃Wad(W̃ad) and
F̃N,ad(Ñad). For this, we introduce Assumption (A)′′ to specify the scal-
ing between s0, q and n for the data-adaptive combined test.

To state Assumption (A)′′, we need some additional notations. For the
two-sample problem, we introduceGN ∼ N(0,R12) ∈ Rq in (3.6) to approx-
imate N . We set fGN ,(s0,p)(x) and cGN ,(s0,p)(α) as the probability density
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function and the α-quantile of ‖GN‖(s0,p). We then define hq,N (ε) as

hq,N (ε) = max
p∈P

max
x∈IN

(s0,p)
(ε)
f−1
GN ,(s0,p)

(x),

where IN(s0,p)(ε) = [cGN ,(s0,p)(ε), cGN ,(s0,p)(1 − ε)]. For the one-sample prob-

lem, we define hq,W (ε) similarly for GW ∼ N(0,R1) ∈ Rq, where

R1 = (r1,st) ∈ Rq×q with r1,st = Corr(hs(X), ht(X)).

By definition, R1 and R12 are the asymptotic correlation matrices ofW and
N , where W and N are defined in (2.4). With these additional notations,
we then state Assumption (A)′′ as follows.

• (A)′′ Under (1.7), as n1 → ∞, we assume that h0.6
q,W (ε)s2

0 log q =

o(n
1/10
1 ) holds for any 0 < ε < 1. Under (1.8), as n → ∞, we as-

sume that h0.6
q,N (ε)s2

0 log q = o(n1/10) holds for any 0 < ε < 1.

Compared to Assumption (A), the required scaling in Assumption (A)′′ is
more stringent. This is because when analyzing the combined test, we need
not only the convergence of distribution functions of the test statistics but
also their uniform convergence of the quantile functions on [ε, 1− ε].

Remark 3.4. Let 1 ≤ s0,#(P) < ∞. If there are 0 < C0 < ∞ and
0 < η < 1 such that C−1

0 < λmin(R12) ≤ λmax(R12) < C0 and maxi 6=j |rij | <
η, we have hq,N (ε) = O(1) for any ε ∈ (0, 1), as q → ∞. Similarly, if
C−1

0 < λmin(R1) ≤ λmax(R1) < C0 and maxi 6=j |rij | < η, we also have
hq,W (ε) = O(1) for any ε ∈ (0, 1), as q → ∞. The detailed proof is in
Appendix B.6 of supplementary materials.

The detailed proof of Remark 3.4 is in Appendix B.6 of supplementary
materials, in which we obtain a joint asymptotic distribution for the order
statistics of nonindependent Gaussian random variables. This result is non-
trivial and of independent technical interest. After introducing additional
assumptions, we then justify the data-adaptive combined test by the follow-
ing theorem.

Theorem 3.5. Suppose Assumptions (A)′′, (E), (M1) and (M2) hold.
For the one-sample problem, under H0 of (1.7) we have

(3.18) PH0

(
TWad = 1

)
→ α and F̃W,ad(W̃ad)− P̂Wad → 0 as n1, B →∞.

Similarly, for the two-sample problem, under H0 of (1.8) we have

(3.19) PH0

(
TNad = 1

)
→ α and F̃N,ad(Ñad)− P̂Nad → 0 as n,B →∞.
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The detailed proof of Theorem 3.5 is in Appendix B.5 of supplementary
materials.

Remark 3.6. To prove Theorem 3.5, we first show that for any fixed
0 < ε < 1, not only the distribution function of Nad but also its quantile
function on [ε, 1−ε] converge to those of Ñad. By choosing ε sufficiently small,
we then prove that the probability of Ñad ∈ (0, ε) is negligible to finish the
proof. If #(P)→∞, we cannot guarantee Ñad ∈ (0, ε) is negligible any more.
Moreover, it is also very hard to prove the convergence of quantile functions
on (ε, 1 − ε) for Nad with ε → 0. Hence, when constructing the combined
test, we require 0 < #(P) < ∞. By simulation, we recommend using P =
{1, 2, 3, 4, 5,∞}. The simulation also shows that there is no significant power
advantage to add more elements to P (see Appendix F.3). Therefore, the
assumption of finite #(P) is enough for the practical usage.

We now turn to the analysis of the power of the combined test. For this,
we have the following result.

Theorem 3.7. Suppose Assumptions (A)′, (E), (M1), and (M2)) hold.

For the one-sample problem in (1.7), we assume log q = o(n
1/2
1 ), εn1 = o(1),

and εn1

√
log q →∞ as n1, q →∞. If H1 of (1.7) holds with

(3.20) ‖D1‖(s0,p) ≥ s0(1 + εn1)
(√

2 log q +
√

2 log(#{P}/α)
)
,

we have PH1

(
TWad = 1

)
= 1 as n1, q, B → ∞. Similarly, for the two-sample

problem in (1.8) we assume log q = o(n1/2), εn = o(1), and εn
√

log q → ∞
as n, q →∞. If H1 of (1.8) holds with

(3.21) ‖D2‖(s0,p) ≥ s0(1 + εn)
(√

2 log q +
√

2 log(#{P}/α)
)
,

we have PH1

(
TNad = 1

)
→ 1 as n, q,B →∞.

The detailed proof of Theorem 3.7 is presented in Appendix B.7 of sup-
plementary materials.

Remark 3.8. On one hand, by Theorems 3.3 and 3.7, we require ‖u1−
u0‖(s0,p) � s0

√
log(q)/n1 or ‖u1−u2‖(s0,p) � s0

√
log(q)/n for our proposed

methods to reject the null hypothesis with overwhelming probability. On the
other hand, by Theorem 3 in [14, 15], Theorem 4.3 in [35], and Theorem
3.5 in [74], for both vector-based and matrix-based high dimensional tests,
any α-level test is unable to reject the null hypothesis correctly uniformly
over ‖µ1 − µ0‖∞ ≥ c0

√
log(d)/n or ‖µ1 − µ0‖∞ ≥ c0

√
log(d)/n with c0

sufficiently small. Therefore, we have that our proposed methods with finite
s0 are rate-optimal for these sparse alternatives.
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4. Simulation results. The goal of this section is to investigate the
numerical performance of the proposed tests. For this, we compare our
methods with several existing methods from the literature. In this section,
we only consider the high dimensional mean test under different settings.
We put additional simulation results for testing high-dimensional covari-
ance/correlation coefficients in Appendix F to illustrate the proposed meth-
ods’ generality. Apart from simulated datasets, Appendix F also includes
the experimental results on real world fMRI datasets.

In the context of high dimensional mean test, we compare the proposed
tests with four existing methods: Hotelling’s T 2 test, the L2-type tests given
in [5] and [67], and the L∞-type test give in [15]. We refer these four tests
as T 2, BY, SD, and CLX. For simplicity, we only consider the two-sample
problem. We generate synthetic data from a wide range of covariance struc-
ture including both sparse and non-sparse settings. We also consider a wide
range of alternative scenarios including both sparse and dense settings to
investigate the power of the proposed methods.

Under the null hypothesis, we sample n1 + n2 data points from the fol-
lowing models.

• Model 1. (Gaussian distribution with block diagonal Σ) We set Σ? =

(σ?ij) ∈ Rd×d with σ?ii
i.i.d.∼ U(1, 2), σ?ij = 0.5 for 5(k − 1) + 1 ≤ i 6=

j ≤ 5k, where k = 1, . . . , bd/5c, and σ?ij = 0 otherwise. In this model,
under the null hypothesis we generate n1 + n2 random vectors from
N(0,Σ?).
• Model 2. (Gaussian distribution with banded Σ) We set Σ′ = (σ′ij) ∈
Rd×d with σ′ij = 0.4|i−j| for 1 ≤ i, j ≤ d. In this model, under the null
hypothesis we generate n1 + n2 random vectors from N(0,Σ′).
• Model 3. (Gaussian distribution with non-sparse Σ) We set F =

(fij) ∈ Rd×d with fii = 1, fii+1 = fi+1i = 0.5, and fij = 0 otherwise.
We also set that U ∼ U(Λd,k) follows the uniform distribution on
the Stiefel manifold Λd,k (i.e., Λd,k = {H ∈ Rd×k : H>H = Ik}).
After introducing F and U, we then set the correlation matrix as
R = (Df )−1/2(F + UU>)(Df )−1/2 with Df = Diag(F + UU>). By
setting D = (dij) ∈ Rd×d as a diagonal matrix with dii ∼ U(1, 2), we
generate n1 +n2 random vectors from N(0,Σ) with Σ = D1/2RD1/2.
• Model 4. (Multivariate t distribution) We generate n1 + n2 random

vectors from the multivariate t distribution t(ν,µ,Σ) according to µ+
Z/
√
W/ν, where we have W ∼ χ2(ν) and Z ∼ N(0,Σ) with W and

Z independent of each other. In the simulation, we set µ = 0, ν = 5,
and Σ = Σ?.
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We use the above models to show that the proposed methods are valid
given a fixed size α under various covariance structures and distributions. To
present the empirical power of the proposed methods, we introduce a random
vector V ∈ Rd with exactly s nonzero entries, which are selected randomly
from d coordinates. Each nonzero entry follows an independent uniform
distribution U(u1, u2). Under the alternative hypothesis, we set µ1 = 0 and
µ2 = V . By choosing different s, u1, and u2, we compare the power of the
proposed methods with that the existing methods under both the sparse
and non-sparse settings.

Table 1
Empirical sizes for Model 1 with α = 0.05, B = 300, and n1 = n2 = 100 based on 2000

replications.

Empirical size (%)
d s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TNad T 2 BY SD CLX
75 5 5.50 5.85 6.15 6.35 6.30 6.60 6.50 5.05 5.85 4.65 5.25

30 4.20 4.45 4.90 5.30 5.70 6.90 5.90 5.05 5.85 4.65 5.25
75 3.70 3.95 4.75 5.10 5.65 6.75 5.50 5.05 5.85 4.65 5.25

200 10 4.75 4.50 4.85 5.20 5.25 6.55 5.75 - 4.85 3.85 5.35
50 2.80 2.90 3.55 3.80 4.35 6.45 4.75 - 4.85 3.85 5.35
100 1.90 2.25 2.50 3.60 3.85 6.45 4.80 - 4.85 3.85 5.35
150 2.35 2.45 2.75 3.70 4.15 6.85 4.90 - 4.85 3.85 5.35
200 2.30 2.35 2.95 3.65 4.35 7.10 5.15 - 4.85 3.85 5.35

400 10 4.20 4.30 4.70 5.30 5.40 7.60 5.90 - 5.35 4.55 6.65
50 2.45 2.50 2.80 3.45 4.25 8.25 5.00 - 5.35 4.55 6.65
100 2.05 2.30 2.25 2.65 3.95 7.90 4.75 - 5.35 4.55 6.65
200 1.45 1.60 1.90 2.70 3.60 7.75 4.55 - 5.35 4.55 6.65
400 1.40 1.40 1.75 2.70 3.80 7.85 4.70 - 5.35 4.55 6.65

800 10 4.75 4.95 5.20 5.50 5.95 9.10 6.30 - 5.65 4.65 7.45
100 0.75 1.20 1.40 1.80 2.65 8.85 4.45 - 5.65 4.65 7.45
200 0.40 0.50 0.75 1.40 2.00 8.85 4.45 - 5.65 4.65 7.45
400 0.55 0.45 0.70 1.20 2.10 8.15 3.95 - 5.65 4.65 7.45
600 0.40 0.35 0.80 1.20 2.00 8.70 4.00 - 5.65 4.65 7.45
800 0.40 0.55 0.75 1.35 1.85 8.65 3.65 - 5.65 4.65 7.45

In Table 1, we present the empirical sizes of introduced methods for
Model 1. We set n1 = n2 = n = 100 and q = d = 75, 200, 400, 800.
The nominal significance level is 0.05. We compare our methods with four
other tests: T 2, BY, SD, and CLX. Moreover, T 2, BY, and SD are L2-type
and CLX is L∞-type. The T 2 test requires d < n, so that we don’t per-
form T 2 test as d > n. In the current setting, the four existing methods can
control the size correctly, except that CLX test suffers a size distortion as
d is significantly larger (d = 800) than n. For the (s0, p)-norm based tests,
when s0 is significantly smaller (s0 = 5, 10) than d, they can control the size
correctly, except that the (s0,∞)-norm based test suffers a size distortion
as d is significantly large (d = 800). As s0 increases, the empirical size of
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Table 2
Empirical power of Model 1 with α = 0.05, B = 300, and n1 = n2 = 100 based on 2000

replications.

Empirical power (%) with µ1 = 0 and µ2 = V with s = 5, u1 = 0, and u2 = 4
√

log(d)/n
d s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TNad T 2 BY SD CLX
75 5 82.10 84.35 85.70 86.50 86.80 85.10 86.90 73.7 67.85 66.45 83.5

30 49.10 69.20 78.75 83.80 85.40 85.50 84.50 73.7 67.85 66.45 83.5
75 32.70 64.25 78.20 83.25 85.15 85.00 83.70 73.7 67.85 66.45 83.5

200 10 75.85 81.05 83.85 84.95 86.10 86.40 85.65 - 55.65 53.90 85.25
50 36.20 59.65 75.35 81.50 84.00 86.05 84.40 - 55.65 53.90 85.25
100 23.60 48.90 72.65 80.75 84.20 86.45 84.35 - 55.65 53.90 85.25
150 18.70 45.40 72.10 81.15 84.45 86.45 84.35 - 55.65 53.90 85.25
200 17.55 45.20 72.40 81.00 84.20 86.15 84.25 - 55.65 53.90 85.25

400 10 77.90 82.15 85.20 87.25 88.05 87.80 87.90 - 44.25 42.75 87.05
50 34.25 56.40 71.85 79.65 84.05 87.90 85.55 - 44.25 42.75 87.05
100 18.45 40.45 65.15 77.30 83.50 87.60 85.55 - 44.25 42.75 87.05
200 9.85 29.35 60.25 76.25 83.35 88.10 85.45 - 44.25 42.75 87.05
400 6.95 25.60 60.00 75.90 83.60 87.50 85.05 - 44.25 42.75 87.05

Empirical power (%) with µ1 = 0 and µ2 = V with s = 100, u1 = 0, and u2 = 3
√

1/n
d s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TNad T 2 BY SD CLX

200 10 87.55 86.05 85.00 83.50 81.75 51.25 82.30 - 96.20 96.05 47.45
50 93.25 93.80 93.40 92.05 89.40 51.05 90.20 - 96.20 96.05 47.45
100 92.75 93.85 93.80 92.55 89.80 51.55 91.35 - 96.20 96.05 47.45
150 90.95 93.55 94.35 92.35 89.90 52.75 90.65 - 96.20 96.05 47.45
200 90.05 93.75 93.80 92.45 89.55 51.70 91.10 - 96.20 96.05 47.45

400 10 70.40 69.95 68.75 67.90 66.00 42.70 64.00 - 85.10 84.25 38.70
50 72.60 73.95 74.95 74.85 73.35 42.30 70.25 - 85.10 84.25 38.70
100 69.85 72.80 73.95 74.45 73.30 42.35 69.45 - 85.10 84.25 38.70
200 61.55 68.25 73.05 74.45 73.90 42.45 68.30 - 85.10 84.25 38.70
400 54.40 67.15 73.00 74.50 73.40 43.15 67.15 - 85.10 84.25 38.70

(s0, p)-norm based tests decreases dramatically especially for small p, mak-
ing the (s0, p)-norm based tests with small p overly conservative. Although
the (s0, p)-norm based tests perform differently with different s0 and p, the
data-adaptive combined test TNad can control the size correctly under various
settings of d and n.

In Table 2, we compare these methods under different alternative scenar-
ios. In the sparse alternative setting, we set µ2 = V with s = 5 nonzero en-
tries. Each entry follows independent uniform distribution U(0, 4

√
log(d)/n).

In this setting, the L∞-type test achieves a higher empirical power than the
L2-type tests. In the dense alternative setting, we set µ2 = V with s = 100
nonzero entries of the magnitude U(0, 3n−1/2). In this setting, the L2-type
tests are more powerful. This similar pattern also appears in the (s0, p)-norm
based tests. As p increases, the (s0, p)-norm based test is more sensitive to
the sparse alternative. The influence of s0 is more complicated. However,
by choosing s0 close to s, the tests always enjoy good performance. For the
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data-adaptive combined test TNad, we choose a balanced P including both
small and large values of p. Hence, in various settings of the alternative sce-
narios, d, and n, it always has a high power. Although TNad with balanced P
may not be the most powerful option for some alternatives, TNad is adaptive
to the alternative setting and powerful enough in various kinds of alternative
scenarios. Theoretically, there is no uniformly most powerful test in all the
alternative scenarios [26]. If the alternative pattern is unknown, the data-
adaptive test with balanced P (including small and large p) is a good choice.
If the alternative pattern is known, by choosing P accordingly we can still
construct a powerful test. For the choice of s0, similarly to the (s0, p)-norm
based tests, TNad with s0 close to s is always powerful.

We put the numerical results of Models 2-4 in Appendix F of supple-
mentary materials. Their experimental results are similar to Model 1 and
indicate that the proposed methods work well in various settings.

5. Summary and discussion. This paper considers the problem of
testing high dimensional U -statistic based vectors. We construct a family
of tests based on the (s0, p)-norm. By the introduction of s0, when q is
large, we can increase the power compared to the tradition Lp-norm based
test (especially for small p). Moreover, by choosing p properly, we can fur-
ther enhance the power under different alternatives. We also introduce a
data-adaptive combined test, which is simultaneously powerful under a wide
variety of alternatives. Moreover, We also develop a trick for avoiding the
high computational cost of the double-loop bootstrap for the data-adaptive
combined test with theoretical guarantee in high dimensions.

We then discuss the choice of s0 and P. Theoretically, for individual
(s0, p)-norm tests we generally require that sζ0 log q = o(nδ) holds with ζ = 2
and 0 < δ < 1/7 for all p ∈ [1,∞]. We also point out that it is possible to
reduce ζ for some specified p. For combined tests, we require 0 < #(P) <∞
to prevent the test statistic from going to 0. By simulation, we also see
that the proposed tests with s0 close to s (true unknown number of entries
violating H0) enjoy high power, which makes s a good candidate for s0.
In practice, we recommend choosing s0 and s as close as possible without
violating theoretical conditions.

There are several possible future directions of this work. For instance,
how to generalize the idea to the k-sample testing problems (k > 2) has
been for a future investigation. This may require a nontrivial extension of
the theoretical analysis. Moreover, our theory is based on the Gaussian ap-
proximation for the sum of high dimensional independent random vectors
from [23]. [73] and [72] further study Gaussian approximations for high di-
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mensional time series, which allow to generalize our methods for dependent
data. As a significant amount of additional work is still needed, we shall
report the results elsewhere in the future.
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ABSTRACT
The supplementary materials contain additional details of the paper “A
Unified Framework for Testing High Dimensional Parameters: A Data-
Adaptive Approach” authored by Cheng Zhou, Xinsheng Zhang, Wen-
Xin Zhou, and Han Liu. After introducing some useful lemmas in Ap-
pendix A, We prove main results in Appendix B. In Appendices C and
D, we prove lemmas required by the proofs in Appendix B. In Appendix
E, we prove lemmas introduced in Appendix A. In Appendix F, we
present additional numerical experimental results. Throughout supple-
mentary materials, we use C, C1, C2, . . . to denote constants which do
not depend on n, d, and q. These constants can vary from place to place.

APPENDIX A: USEFUL LEMMAS

In Appendix A, we introduce some useful lemmas that will be used many
times for proving main results. We put their proof in Appendix E. To present
these lemmas, we need some additional notations. Let Z1, . . . ,Zn be inde-
pendent random vectors in Rd with Zk = (Zk1, . . . , Zkd)

> and E[Zk] = 0 for
k = 1, . . . , n. Let W1, . . . ,Wn be independent Gaussian random vectors in
Rd such that Wk has the same mean vector and covariance matrix as Zk. By
setting Vs0 := {v ∈ Sd−1 : ‖v‖0 ≤ s0}, we require the following conditions:

• (M1)′ n−1
∑n

k=1 E
[
(v′Zk)

2
]
≥ b > 0 for any v ∈ Vs0 ;

• (M2)′n−1
∑n

k=1 E
[
|Zkj |2+`

]
≤ K` for ` = 1, 2 and j = 1, . . . , d.

• (E)′ E
[

exp(|Zkj |/K)
]
≤ 2 for j = 1, . . . , d and k = 1, . . . , n.

Lemma A.1. Assume s2
0 log(dn) = O(nζ) with 0 < ζ < 1/7. IfZ1, . . . ,Zn

satisfy (M1)′, (M2)′, and (E)′. By setting SZn = n
−1/2
1

∑n
k=1Zk and SWn =

n
−1/2
1

∑n
k=1Wk, for 1 ≤ p ≤ ∞ and sufficiently large n, there is a constant

ζ0 > 0 such that

(A.1) sup
z∈(0,∞)

∣∣∣P(‖SZn ‖(s0,p) ≤ z)− P
(
‖SWn ‖(s0,p) ≤ z

)∣∣∣ ≤ Cn−ζ0 ,
where C depends on b and K.
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Lemma A.2. (Corollary 1.2 in [2]) For any compact and symmetric con-
vex set C ∈ Rd with non-empty interior and γ > e/4

√
2, there exist a

polytope P ∈ Rd and a constant εγ > 0 such that for any 0 < ε < εγ , we
have

P ⊂ C ⊂ (1 + ε)P and V <
( γ√

ε
ln

1

ε

)d
,

where V is the vertex number of P.

We call a set Am is m-generated if it is the intersection of m half-spaces.
Therefore, Am is a polytope with at least m facets. We then set V(Am) as
the set of m unit vectors that are outward normal to the facets of Am. For
ε > 0, we then define

Am,ε := ∩v∈V(Am){w ∈ Rd : w>v ≤ SAm(v) + ε},

where SAm(v) := sup{w>v : w ∈ Am}.

Lemma A.3. Let ER,d = {x ∈ Rd : ‖x‖ ≤ R} and V z,d
(s0,p)

= {x ∈
Rd : ‖x‖(s0,p) ≤ z}. For any γ > e/4

√
2, there is a m-generated convex set

Am ∈ Rd and a constant εγ such that for any 0 < ε < εγ , we have

Am ⊂ ER,d ∩ V z,d
(s0,p)

⊂ Am,Rε and m ≤ ds0
( γ√

ε
ln

1

ε

)s20
.

Lemma A.4. (Nazarovs inequality in [11]) Let W = (W1, . . . ,Wd)
> ∈

Rd be centered Gaussian random vector with infk=1,...,dE[W 2
k ] ≥ b > 0. For

any x ∈ Rd and a > 0, we then have

P(W ≤ x + a)− P(W ≤ x) ≤ Ca
√

log d,

where C only depends on b.

Lemma A.5. W = (W1, . . . ,Wd)
> is a random vector with the marginal

distribution N(0, σ2). For any t > 0, we have

(A.2) E
[

max
1≤i≤d

|Wi|
]
≤ log(2d)

t
+
tσ2

2
.

To estimate the covariance matrix of U -statistic based vector, we intro-
duce σγ,st and σ̂γ,st in (3.4) and (3.9). The following lemma then analyzes the
estimation error of σ̂γ,st. To analyze the correlation matrix, we also provide
the approximation error of r̂γ,st, where

(A.3) rγ,st = σγ,st/
√
σγ,ssσγ,tt and r̂γ,st = σ̂γ,st/

√
σ̂γ,ssσ̂γ,tt.
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Lemma A.6. Assumptions (E), (M1), and (M2) hold. For log(qn) =
o(n1/3) and m > 1, when n is sufficiently large,

(A.4) max
1≤s,t≤q
γ=1,2

max
(∣∣σ̂γ,st − σγ,st∣∣, ∣∣r̂γ,st − rγ,st∣∣) ≤ C log3/2(qn)√

n
,

holds with probability 1 − C1n
−1. For log(qn) = o(n1/2) and m = 1, when

n is sufficiently large,

(A.5) max
1≤s,t≤q
γ=1,2

max
(∣∣σ̂γ,st−σγ,st∣∣, ∣∣r̂γ,st−rγ,st∣∣) ≤ C√ log(qn)

n
+C

log2(qn)

n
,

holds with probability 1− C1n
−1.

APPENDIX B: PROOF OF MAIN RESULTS

In Appendix B, we present the detailed proofs of main results including
Proposition 1, Theorems 3.1, 3.3, 3.5 3.7, Remarks 3.4, and Corollary 3.1.

B.1. Proof of Proposition 1 .

Proof. We need to prove that for any 1 ≤ p ≤ ∞, a ∈ R and x,y ∈ Rd,
we have (i) ‖ax‖(s0,p) = |a|‖x‖(s0,p); (ii) ‖x + y‖(s0,p) ≤ ‖x‖(s0,p) + ‖y‖(s0,p);
(iii) ‖x‖(s0,p) = 0 implies x = 0. By Definition 1.1, for x = (x1, . . . , xd)

> we
have

‖x‖(s0,p) =
(∑d

j=d−s0+1
(x(j))p

)1/p
,

We use k1 to denote the index of x(d−s0+1), x(d−s0+2), . . . , x(d). Therefore,
we have ‖x‖(s0,p) = ‖xk1‖p, where xk1 ∈ Rs0 . We then separately prove (i),
(ii), and (iii). For (i), we have

‖ax‖(s0,p) = ‖axk1‖p = |a|‖xk1‖p = |a|‖x‖(s0,p).

For (iii), from ‖x‖(s0,p) = 0, we have x(d) = 0, which implies x = 0. There-
fore, to prove Proposition 1, we only need to prove

‖x + y‖(s0,p) ≤ ‖x‖(s0,p) + ‖y‖(s0,p).

Similarly to the definition of k1, we define k2, k12 for y and x + y. We then
have

(B.1) ‖y‖(s0,p) = ‖yk2‖p and ‖x + y‖(s0,p) = ‖(x + y)k12‖p.
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For 1 ≤ p ≤ ∞, ‖ · ‖p is a norm. Hence, we have

(B.2) ‖(x + y)k12‖p = ‖xk12 + yk12‖p ≤ ‖xk12‖p + ‖yk12‖p.

By the definition of k1 and k2, we have

(B.3) ‖xk12‖p ≤ ‖xk1‖p = ‖x‖(s0,p) and ‖yk12‖p ≤ ‖yk2‖p = ‖y‖(s0,p).

Combining (B.1), (B.2), and (B.3), we have (iii), which finishes the proof.

B.2. Proof of Theorem 3.1.

Proof. In Theorem 3.1, we aim to prove (3.2) and (3.3). For simplicity,
we only present the detailed proof of (3.3). According to the proof sketch
in Section 3.2, the proof proceeds in three steps. In the first step, we obtain
the approximate distribution of N . In the second step, given X and Y we
obtain the bootstrap sample N b’s distribution. In the last step, we analyze
the approximation error between N and N b|X ,Y to yield (3.3).

Step (i). In this step, we aim to obtain the approximate distribution
of N . As ûγ,s is a U -statistic, by the Hoeffding decomposition we approx-
imate N by a sum of independent random vectors. Hence, we can further
approximate the sum by its Gaussian counterpart. In detail, under the null
hypothesis we have u1,s = u2,s. Therefore, we rewrite Ns as

(B.4) Ns = (ũ1,s − ũ2,s)/
√
v̂1,s/n1 + v̂2,s/n2,

where ũγ,s := ûγ,s − uγ,s is the centralized version of ûγ,s. For introducing
Hoeffding decomposition, we define

hs(Xk) = E[Ψs(Xk1 , . . . ,Xkm)|Xk],

where Ψs are defined in (3.1). Hence, by the Hoeffding decomposition, we
decompose ũγ,s as

(B.5)

ũ1,s =
m

n1

n1∑
k=1

hs(Xk) +

(
n1

m

)−1

∆n1,s,

ũ2,s =
m

n2

n2∑
k=1

hs(Yk) +

(
n2

m

)−1

∆n2,s,

where we define ∆n1,s and ∆n1,s as

∆n1,s =
∑

1≤k1<k2<...<km≤n1

(
Ψs(Xk1 , . . . ,Xkm)−

m∑
`=1

hs(Xk`)
)
,

∆n2,s =
∑

1≤k1<k2<...<km≤n2

(
Ψs(Yk1 , . . . ,Ykm)−

m∑
`=1

hs(Yk`)
)
.



5

We then use m
∑n1

k=1 hs(Xk)/n1 and m
∑n2

k=1 hs(Yk)/n2 to approximate ũ1,s

and ũ2,s. By setting Σ1 := (σ1,st),Σ2 := (σ2,st) ∈ Rq×q with

(B.6) σ1,st = E
(
hs(X)ht(X)

)
and σ2,st = E

(
hs(Y )ht(Y )

)
,

considering v̂γ,s = m2σ̂γ,ss, as n → ∞ we have v̂γ,s → m2σγ,ss, which
motivates us to define

(B.7) HN
s =

( 1

n1

n1∑
k=1

hs(Xk)−
1

n2

n2∑
k=1

hs(Yk)
)
/
√
σ1,ss/n1 + σ2,ss/n2.

Moreover, by setting HN = (HN
1 , . . . ,H

N
q )>, we have that HN approx-

imates N , and the approximation error is characterized by the following
lemma.

Lemma B.1. Assumptions (A), (E), (M1), and (M2) hold. Under H0

of (1.8) there is a constant C > 0 such that as n→∞, we have

P
(
‖N −HN‖(s0,p) > ε

)
= o(1),(B.8)

where ε = Cs0 log2(qn)n−1/2.

The proofs of Lemma B.1 is in Appendix C.1 of supplementary materials.
By the definition of HN

s in (B.7), HN is a sum of random vectors with zero
mean and covariance matrix R12, where we set

(B.9) R12 := D
−1/2
12 Σ12D

−1/2
12

with Σ12 = Σ1/n1 +Σ2/n2 and D12 = Diag(Σ12). Therefore, by the central
limit theorem, we can use the Gaussian random vector GN ∼ N(0,R12)
to approximate HN . To characterize the approximation error, considering
Az := {v, ‖v‖(s0,p) ≤ z} ∈ As0 , by Lemma A.1, there is ζ0 > 0 such that

(B.10) sup
z

∣∣∣P(‖HN‖(s0,p)≤z)−P(‖GN‖(s0,p)≤z)
∣∣∣≤ Cn−ζ0

where the constant C only depends on K and b. We then use GN as the
approximation for N .

Step (ii). In this step, we aim to obtain the distribution of N b|X ,Y. For
this, we rewrite ûb1,s and ûb2,s in (2.1.3) as

(B.11) ûb1,s =
m

n1

n1∑
k=1

(Q1k,s − û1,s)ε
b
1,k, û

b
2,s =

m

n2

n2∑
k=1

(Q2k,s − û2,s)ε
b
2,k,
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where Q1k,s and Q2k,s are defined in (2.2). Considering that εbγ,1, . . . , ε
b
γ,nγ

are i.i.d. standard normal random variables, therefore given X and Y, ûbγ :=

(ûbγ,1, . . . , û
b
γ,q) follows N(0,m2Σ̂γ/nγ) with Σ̂γ := (σ̂γ,st) ∈ Rq×q where

(B.12) σ̂γ,st =
1

n1

n1∑
k=1

(Qγk,s − ûγ,s)(Qγk,t − ûγ,t).

Apparently, by the definition of v̂γ,s in (2.1) we have v̂γ,s = m2σ̂γ,ss. There-

fore, by setting Σ̂12 = Σ̂1/n1 + Σ̂2/n2 and D̂12 = Diag(Σ̂12), we have

N b|X ,Y = m−1D̂
−1/2
12 (ûb1 − ûb2)|X ,Y ∼ N(0, R̂12),

where R̂12 = D̂
−1/2
12 Σ̂12D̂

−1/2
12 .

Step (iii). In this step, we combine results from previous two steps to
justify the bootstrap procedure, i.e., we aim to prove

sup
z∈(0,∞)

∣∣∣P(N(s0,p) > z)− P(N b
(s0,p)

> z|X ,Y)
∣∣∣ = op(1).

For this, we need both the lower and upper bounds of P
(
N(s0,p) > z

)
−

P
(
N b

(s0,p)
> z|X ,Y

)
. We first presents how to obtain the upper bounds. By

the triangle inequality, we have

(B.13) P(‖N‖(s0,p)>z)≤P(‖HN‖(s0,p)>z − ε) + P(‖N −HN‖(s0,p)>ε)︸ ︷︷ ︸
ρ1

.

By Lemmas B.1, we have ρ1 = o(1). We then bound P(‖HN‖(s0,p) > z− ε).
For this, we have

(B.14) P(‖HN‖(s0,p) > z − ε) ≤ ρ2 + P(‖GN‖(s0,p) > z − ε),

where ρ2 = supx>0

∣∣∣P(‖HN‖(s0,p) > x)− P(‖GN‖(s0,p) > x)
∣∣∣. By (B.10), we

have ρ2 ≤ Cn−ζ0 which yields

(B.15) P(‖N‖(s0,p) > z) ≤ P(‖GN‖(s0,p) > z − ε)︸ ︷︷ ︸
ρ3

+o(1),

as n→∞. We then decompose ρ3 as ρ3 = P(‖GN‖(s0,p) > z) + ρ4 with

ρ4 = P(z − ε < ‖GN‖(s0,p) ≤ z).

To control ρ4, by utilizing the anti-concentration inequality for the the Gaus-
sian random vector in Lemma A.4, we introducing the following lemma.
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Lemma B.2. Assumptions (A) and (M1) hold. For any z > 0 and
ε = O(s0 log2(qn)n−1/2), we have P(z − ε < ‖GN‖(s0,p) ≤ z) = o(1) as
n→∞.

The proof of Lemma B.2 is in Appendix C.2 of supplementary materials.
By Lemma B.2, we then have

P(‖N‖(s0,p) > z) ≤ P(‖GN‖(s0,p) > z) + o(1),

as n → ∞. As is shown in Step (ii), under the null hypothesis we have
N b|X ,Y ∼ N(0, R̂12). Considering GN ∼ N(0,R12), we have

(B.16) P(‖N‖(s0,p) > z)− P(‖N b‖(s0,p) > z|X ,Y) ≤ D̂5 + o(1).

with D̂5 = supz>0

∣∣∣P(‖GN‖(s0,p) > z) − P(‖N b‖(s0,p) > z|X ,Y)
∣∣∣. The fol-

lowing lemma presents the upper bound of D̂5.

Lemma B.3. Assumptions (A), (E), (M1) and (M2) hold. With prob-
ability at least 1− C1n

−1, we have D̂5 = op(1) as n→∞.

The proof of Lemma B.3 is in Appendix C.3 of supplementary materials.
Therefore, we have

(B.17) sup
z>0

(
P(‖N‖(s0,p) > z)− P(‖N b‖(s0,p) > z|X ,Y)

)
= op(1),

uniformly for any z > 0. We can similarly construct the lower bound and
obtain

sup
z>0

∣∣∣P(‖N‖(s0,p) > z)− P(‖N b‖(s0,p) > z|X ,Y)| = op(1),

which finishes the proof of (3.3) in Theorem 3.1.

B.3. Proof of Corollary 3.1 .

Proof. In Corollary 3.1, we aim to prove (3.11) and (3.12). As the proof
of (3.11) is similar, we only prove (3.12). As P̂N(s0,p) − P

N
(s0,p)

→ 0 implies

PH0

(
TNα,(s0,p) = 1

)
→ α, for proving (3.12) we only need to prove that as

n,B →∞, we have

(B.18) P̂N(s0,p) − P
N
(s0,p)

→ 0,
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where P̂N(s0,p) is defined in (2.8) and PN(s0,p) is the oracle P -value of N(s0,p).
By introducing

(B.19)
FN,(s0,p)(z) = P

(
‖N‖(s0,p) ≤ z

)
F̂Nb,(s0,p)(z) = (B + 1)−1

(∑B

b=1
1I
{
N b

(s0,p)
≤ z|X ,Y

}
+ 1
)
,

consider the definitions of P̂N(s0,p) and PN(s0,p), we have

(B.20) P̂N(s0,p) = 1− F̂Nb,(s0,p)

(
N(s0,p)

)
, PN(s0,p) = 1− FN,(s0,p)

(
N(s0,p)

)
.

According to Theorems 3.1, under Assumptions (A), (S), (E), (M1), and
(M2), by setting T1 =

∣∣1− FNb,(s0,p)

(
N(s0,p)

)
− PN(s0,p)

∣∣ with

(B.21) FNb,(s0,p)(z) := P
(
‖N b‖(s0,p) ≤ z

∣∣X ,Y),
we have T1 → 0 as n → ∞. Considering (B.19) and (B.20), we use the

triangle inequality to obtain
∣∣∣PN(s0,p) − P̂N(s0,p)∣∣∣ ≤ T1 + T2 with

T2 =
∣∣∣FNb,(s0,p)

(
N(s0,p)

)
− F̂Nb,(s0,p)

(
N(s0,p)

)∣∣∣
By Massart’s inequality (see Section 1.5 in [10]), we have

(B.22) sup
z∈R

∣∣∣F̂Nb,(s0,p)(z)− FNb,(s0,p)(z)
∣∣∣→ 0, as n,B →∞.

Therefor, as n, B →∞, we have T2 → 0, which finishes the proof.

B.4. Proof of Theorem 3.3.

Proof. For simplicity, we only consider the two-sample problem. The
proof proceeds in two steps. In the first step, we give an upper bound of the
oracle critical value

tNα,(s0,p) = inf
{
t ∈ R : P

(
‖N b‖(s0,p) ≤ t|X ,Y

)
> α

}
.

In the second step, with the obtained upper bound of tNα,(s0,p), we construct

a lower bound of P
(
N(s0,p) > tNα,(s0,p)

)
. By showing that this lower bound

goes to 1 under (3.15), we have

P
(
N(s0,p) > tNα,(s0,p)

)
→ 1,
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as n, q →∞. Considering that t̂Nα,(s0,p) is a bootstrap estimator for tNα,(s0,p),

under (3.15) we then have P
(
N(s0,p) > t̂Nα,(s0,p)

)
→ 1, as n,B →∞.

Step (i). In this step, we give an upper bound of tNα,(s0,p). By the definition

of N b in (2.5), N b|X ,Y is a q-dimensional Gaussian random vector with
standard normal entries. According to Lemma A.5, by setting σ = 1 and
t =
√

2 log q we have

(B.23) E
[
‖N b‖∞|X ,Y

]
≤
√

2 log q+
1√

2 log q
=
√

2 log q
(
1 +{2 log q}−1

)
.

By Theorem 5.8 of [4], we have

(B.24) P
(
‖N b‖∞ ≥ E

[
‖N b‖∞|X ,Y

]
+ u
∣∣∣X ,Y) < exp(−u2/2).

By setting cα as the α-quantile of ‖N b‖∞|X ,Y, combining (B.23) and
(B.24), we have

(B.25) c1−α ≤
√

2 log q
(
1 + {2 log q}−1

)
+
√

2 log(1/α).

Considering that tNα,(s0,p) is the 1−α quantile of ‖N b‖(s0,p)|X ,Y, by the in-

equality ‖N b‖(s0,p) ≤ s
1/p
0 ‖N b‖∞, we then have tNα,(s0,p) ≤ s

1/p
0 c1−α. There-

fore, by (B.25) we have

(B.26) tNα,(s0,p) ≤ s
1/p
0

(√
2 log q

(
1 + {2 log q}−1

)
+
√

2 log(1/α)
)
.

Step (ii) In this step, we aim to obtain an lower bound of P
(
N(s0,p) >

tNα,(s0,p)
)
. By (B.26), we have P(N(s0,p) > tNα,(s0,p)

)
≥ LN1 , where

(B.27) LN1 = P
(
N(s0,p) > s

1/p
0

(√
2 log q

(
1+{2 log q}−1

)
+
√

2 log(1/α)
))

.

To obtain the lower bound of LN1 , we need some additional notations. By
setting Ns as Ns = (û1,s − û2,s)/

√
v̂1,s/n1 + v̂2,s/n2, in (2.4), we define

N(s0,p) = ‖N‖(s0,p), where N = (N1, . . . , Nq)
>. Under the alternative hy-

pothesis, u1,s = u2,s cannot hold for all s ∈ {1, . . . , q}, which motivates us
to define

(B.28) N1
s =

û1,s − û2,s − u1,s + u2,s√
v̂1,s/n1 + v̂2,s/n2

and N1 = (N1
1 , . . . , N

1
q )>.
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Considering that v̂γ,s is the variance estimator for
√
nγ ûγ,s and that v̂γ,s

has the limit m2σγ,ss as nγ →∞, we introduce D2 = (D2,1, . . . , D2,q)
> and

D̂2 = (D̂2,1, . . . , D̂2,q)
>, where

(B.29)
D2,s = |u1,s − u2,s|/

√
m2σ1,ss/n1 +m2σ2,ss/n2

D̂2,s = |u1,s − u2,s|/
√
v̂1,s/n1 + v̂2,s/n2.

Without loss of generality, we assume that largest s0 entries of D2 is k1, k2,
. . . , ks0 . Therefore, by setting k = (k1, . . . , ks0)> under (3.15) we have

(B.30) ‖D2‖(s0,p) = ‖(D2)k‖p ≥ s0(1 + εn)
(√

2 log q +
√

2 log(1/α)
)
,

where we set εn → 0 and εn
√

log q → ∞ as n → ∞. By the definition of
(s0, p) distance and the triangle inequality, we have

(B.31) N(s0,p) ≥ ‖Nk‖p ≥ ‖(D̂2)k‖p − ‖N1
k‖p.

As we impose conditions on D2 not on D̂2, by the definitions of D2 and D̂2

in (B.29) we need the estimation error of v̂γ,s. By Lemme A.6, considering
Assumption (M1), for m > 1, with probability at least 1−C1n

−1, we have

(B.32) max
γ=1,2
s=1,...,q

∣∣∣√ v̂γ,s
m2σγ,ss

− 1
∣∣∣ ≤ C log3/2(qn)√

n
,

when n is sufficiently large. Similarly, for m = 1 and sufficiently large n with
probability at least 1− C1n

−1 we have

(B.33) max
γ=1,2
s=1,...,q

∣∣∣√ v̂γ,s
σγ,ss

− 1
∣∣∣ ≤ C√ log(qn)

n
+ C

log2(qn)

n
.

Therefore, we introduce the event E0(x) as

E0(x) =

{
max
γ=1,2
s=1,...,q

∣∣∣√ v̂γ,s
m2σγ,ss

− 1
∣∣∣ ≤ x}.

We set x � log3/2(qn)/
√
n for m > 1 and x �

√
log(qn)/n+ log2(qn)/n for

m = 1. We then have P(E0(x)c) � n−1. By (B.31), under E0(x) we have

(B.34) N(s0,p) ≥
1

1 + x
‖D2‖(s0,p) − ‖N

1
k‖p︸ ︷︷ ︸

LN2

.
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Therefore, by partitioning the event based on E0(x), we use (B.34) to obtain

LN1 ≥ P
(
LN2 > s0

(
1 + {2 log q}−1

)(√
2 log q +

√
2 log(1/α)

)
, E0(x)

)
.

Considering (B.30), by choosing u satisfying (1 + x)
(
1 + u+ {2 log q}−1

)
=

(1 + εn) we have

(B.35) LN1 ≥ P
(
‖N1

k‖p < s0u
√

2 log q
)
.

By the triangle inequality, for i ∈ {1, . . . , s0} we have

(B.36) P
(
‖N1

k‖p ≥ s0u
√

2 log q
)
≤ s0 max

1≤i≤s0
P
(
|N1

ki
| ≥ u

√
2 log q

)
.

Therefore, combining (B.35) and (B.36) we have

LN1 ≥ 1− P
(
‖N1

k‖p ≥ s0u
√

2 log q
)
≥ 1− s0 max

1≤i≤s0
P
(
|N1

ki
| ≥ u

√
2 log q

)
.

By the definition of L1 in (B.27), to prove L1 → 1 we only need to obtain

(B.37) s0P
(
|N1

ki
| ≥ u

√
2 log q

)
→ 0,

uniformly as n, q →∞. For this, we introduce the following lemma.

Lemma B.4. Under Assumptions (A)′, (E), (M1), and (M2), as n, q →
∞, we have

(B.38) s0 max
s=1,...,q

P
(
|N1

s | ≥ u
√

2 log q
)
→ 0.

The detailed proof of Lemma B.4 is in Appendix C.4 of supplementary
materials. By Lemma B.4, we finish the proof.

B.5. Proof of Theorem 3.5.

Proof. In Theorem 3.5, we aim to prove (3.18) and (3.19). As the proof
of (3.18) is similar, we only prove (3.19). The proof proceeds in two steps.
In the first step, by setting FN,ad(z) = P(Nad ≤ z|X ,Y) and F̃N,ad(z) =

P(Ñad ≤ z), we prove that as n,B →∞, we have

(B.39) F̃N,ad(Ñad)− FN,ad(Nad)→ 0,
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where Nad and Ñad are defined in (3.16) and (3.17). In the second step, we
prove that

(B.40) FN,ad(Nad)− P̂Nad → 0,

as n,B →∞. Combining (B.39) and (B.40), we can easily obtain (3.19).
Step (i). In this step, we aim to prove (B.39). For this, we need the fol-

lowing lemma to analyze the difference between the cumulative distribution
functions of Nad and Ñad.

Lemma B.5. Assumptions (A)′′, (E), (M1) and (M2) hold. Under H0

of (1.8), we have that for any ε > 0

(B.41) sup
z∈[ε,1−ε]

∣∣∣FN,ad(z)− F̃N,ad(z)
∣∣∣ = 0,

as n,B →∞.

The proof of Lemma B.5 is in Appendix C.5 of supplementary materials.
After introducing Lemma B.5, we then prove (B.39). In detail, we aim to
prove that for any δ, ε′ > 0 we have

(B.42) P
(
|F̃N,ad(Ñad)− FN,ad(Nad)| ≥ δ

)
︸ ︷︷ ︸

∆1

< ε′

as n → ∞. By plugging in FN,ad(Ñad), we use the triangle inequality to
obtain ∆1 ≤ ∆2 + ∆3, where

(B.43)
∆2 =P

(
|F̃N,ad(Ñad)−FN,ad(Ñad)| ≥ δ/2

)
,

∆3 =P
(
|FN,ad(Ñad)−FN,ad(Nad)| ≥ δ/2

)
.

We then separately bound ∆2 and ∆3. To prove (B.42). We only need to
show both ∆2 < ε′/2 and ∆3 < ε′/2 hold as n and B are sufficiently large.
For ∆2, by setting E

Ñ,ad
(ε) := {Ñad ∈ [ε, 1− ε]}, we can bound ∆2 by

(B.44) ∆2 ≤ P
(
|F̃N,ad(Ñad)− FN,ad(Ñad)| ≥ δ/2 ∩ E

Ñ,ad
(ε)
)

+ ∆4,

where ∆4 = P
((
E
Ñ,ad

(ε)
)c)

. By the definition of Ñad in (3.17), by choosing

ε small enough, we have ∆4 ≤ ε′/4. By Lemma B.5 and the definition of
E
Ñ,ad

(ε), we also have

(B.45) P
(
|F̃N,ad(Ñad)− FN,ad(Ñad)| ≥ δ/2 ∩ E

Ñ,ad
(ε)
)
≤ ε′/4,
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for sufficiently large n and B. Hence, we have ∆2 ≤ ε′/2 holds as n and
B are sufficiently large. After the proof foe ∆2, we then bound ∆3. By the
definition of Ñad in (3.17) and Corollary 3.1, we have

(B.46) |Ñad −Nad| → 0, as n, B →∞.

Therefore, we obtain that fN,ad(z) = F ′N,ad(z) is uniformly bounded for
sufficiently large n,B. Hence, there is a constant C such that

(B.47) |FN,ad(Ñad)− FN,ad(Nad)| ≤ C|Ñad −Nad|.

Combining (B.43), (B.46), and (B.47), we have ∆3 ≤ ε′/2 for sufficiently
large n and B. Therefore, we finish the proof of (B.39).

Step (ii). In this step, we aim to prove (B.40). For this, we introduce

(B.48)
FNb,(s0,p) = P

(
N b

(s0,p)
≤ z|X ,Y

)
,

N b
ad = min

p∈P

(
1− FNb,(s0,p)(N

b
(s0,p)

)
)
,

where N b
(s0,p)

is defined in (2.6). Therefore, we define the cumulation distri-

bution function of N b
ad|X ,Y as

(B.49) FNb,ad(z) = P(N b
ad ≤ z|X ,Y).

Considering the definition of P̂Nad in (2.13), by setting

(B.50) F̂N,ad′(z) =

(
B∑
b=1

1I{N b
ad′ ≤ z|X ,Y}+ 1

)/
(B + 1),

we have P̂Nad = F̂N,ad′(Nad).

To prove FN,ad(Nad) − P̂Nad → 0, by plugging in FNb,ad(Nad) and using
the triangle inequality, it is sufficient to prove

(B.51) FN,ad(Nad)− FNb,ad(Nad)→ 0 and FNb,ad(Nad)− P̂Nad → 0,

as n, B →∞. To prove (B.51), we introduce the following two lemmas.

Lemma B.6. Assumptions (A)′′, (E), (M1), and (M2) hold. Under H0

of (1.8), by setting FN,ad(z) = P(Nad ≤ z|X ,Y) and FNb,ad(z) = P(N b
ad ≤

z|X ,Y), we have

(B.52) sup
z∈[ε,1−ε]

|FN,ad(z)− FNb,ad(z)| → 0, as n,B →∞,

for any ε > 0.
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Lemma B.7. For any ε > 0, we have that as n,B →∞,

(B.53) sup
z∈[ε,1−ε]

|FNb,ad(z)− F̂N,ad′(z)| → 0,

where F̂N,ad′(z) is defined in (B.50).

The proofs of Lemmas B.6 and B.7 are in Appendices C.6 and C.7 of
supplementary materials. Let EN,ad(ε) = {Nad ∈ [ε, 1 − ε]}. Considering
Lemmas B.6 and B.7, by replacing E

Ñ,ad
(ε) with EN,ad, similarly to (B.44)

and (B.45) we can prove (B.51), which finishes the proof of Theorem 3.5.

B.6. Proof of Remark 3.4 .

Proof. For G ∼ N(0,R) ∈ Rq with q ≥ 1 fixed, the distribution of
‖G‖(s0,p) is absolutely continuous with respect to the Lebesgue measure

and its density function fG(s0,p) is positive everywhere. This implies that for

any ε > 0, mincG
ε,(s0,p)

≤z≤cG
1−ε,(s0,p)

fG(s0,p)(z) > 0. To prove the result after

taking infimum over all positive integers q, it suffices to show that as long
as R ∈ R, the limiting distribution of ‖G‖(s0,p) as q → ∞ exists with an
absolutely continuous density function. For this, we prove a stronger result,
which characterizes the joint asymptotic distribution of the top s0 order
statistics of weakly dependent standard normal random variables. In detail,
let v(1), v(2), . . . , v(q) be an ascending sequence of the magnitudes of the
coordinates of v ∈ Rq such that 0 ≤ v(1) ≤ v(2) ≤ . . . ≤ v(q). Set G =
(G1, . . . , Gq)

> ∼ N(0,R) with R ∈ R and GI = (GI1, . . . , G
I
q)
> ∼ N(0, Iq).

Moreover, let ϕj(G) = G(q−j+1) for j = 1, . . . , q and aq = 2 log q− log(log q).
For any x = (x1, x2, . . . , xs0) with x1 > x2 > · · · > xs0 > 0, by setting
fext(t1, . . . , ts0) = exp

(
− 1

2

∑s0−1
j=1 tj

)
g(ts0)I(t1 > t2 > · · · > ts0), where

g(t) = 2−1π−1/2 exp(−t/2− π−1/2e−t/2), we shall prove that as q →∞,

(B.54)

P
(
ϕ2

1(G) ≤ x1 + aq, . . . , ϕ
2
s0(G) ≤ xs0 + aq

)
−→

(
1

2
√
π

)s0−1 ∫ x1

−∞
· · ·
∫ xs0

−∞
fext(t1, . . . , ts0) dts0 · · · dt1,

holds uniformly for R ∈ R.
For simplicity, we only prove (B.54) for s0 = 2, as the general case can be
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dealt with similarly. Let yjq =
√
xj + aq for j = 1, 2, and note{

ϕ1(G) >
√
x1 + aq, ϕ2(G) >

√
x2 + aq

}
=

⋃
1≤i 6=j≤q

{
(|Gi|, |Gj |) > (y1q, y2q)

}
=

2q̄⋃
k=1

{
(|Gik |, |Gjk |) > (y1q, y2q)

}
,

where {(ik, jk)}2q̄k=1 = {(1, 2), (1, 3) . . . , (1, q), (2, 1), (2, 3) . . . , (2, q), . . . , (q, q−
1)} and q̄ = q(q − 1)/2. By the Bonferroni inequality, for any fixed k < q̄,
we have

(B.55)

2k∑
`=1

(−1)`−1E` ≤ P
(
ϕ1(G) >

√
x1 + aq, ϕ2(G) >

√
x2 + aq

)
≤

2k−1∑
`=1

(−1)`−1E`,

where

E`=
∑

1≤k1<···<k`≤2q̄

P
(
|Gik1

| > y1q, |Gjk1
| > y2q, . . . , |Gik` | > y1q, |Gjk` | > y2q

)
.

Moreover, for every 2 ≤ t ≤ 2`, define

(B.56) E`,t =
∑

1≤k1<···<k`≤2q̄

#{ik1
,jk1

,...,ik`
,jk`
}=t

P
(

min
1≤ν≤`

|Gikν | > y1q, min
1≤ν≤`

|Gjkν | > y2q

)
︸ ︷︷ ︸

Pk1,...,k`

.

We define index sets Ic, I, and Ik in the same way as in the proof of Lemma 6
in [6]. Therefore, we have I = ∪t−1

k=1Ik. Further, for 1 ≤ i1 < · · · < it ≤ q, by
defining

Q(i1, . . . , it)=
{
1 ≤ k1< · · · < k` ≤ 2q̄ : {ik1 , jk1 , . . . , ik` , jk`} = {i1, . . . , it}

}
,

with #Q(i1, . . . , it) ≤
(t(t−1)

`

)
, we have

E`,t =
∑

(i1,...,it)∈Ic

∑
(k1,...,k`)

∈Q(i1,...,it)

Pk1,...,k`

︸ ︷︷ ︸
M1(`,t)

+
∑

(i1,...,it)∈I

∑
(k1,...,k`)

∈Q(i1,...,it)

Pk1,...,k`

︸ ︷︷ ︸
M2(`,t)

.

For (k1, . . . , k`) ∈ Q(i1, . . . , it) with (i1, . . . , it) ∈ Ic, a straightforward adap-
tation of the arguments used to prove (20) in [6] yields that, as q →∞,

(B.57) Pk1,...,k` = {1 + o(1)}P Ik1,...,k`
,
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where P Ik1,...,k`
is defined in the same way as Pk1,...,k` in (B.56) by replacing

Gi with GIi .
For (k1, . . . , k`) ∈ Q(i1, . . . , it) with (i1, . . . , it) ∈ Ik for some 1 ≤ k ≤ t−1,

considering y1q > y2q, we have

Pk1,...,k` ≤ P(|Gi1 | > y2q, . . . , |Git | > y2q) := P̃i1,...,it .

Now, it follows from (21) in [6] with slight modification that, as q →∞,
(B.58)

M2(`, t) ≤
∑

(i1,...,it)∈I

(
t(t− 1)

`

)
P̃i1,...,it =

(
t(t− 1)

`

) ∑
(i1,...,it)∈I

P̃i1,...,it → 0.

We define M I
2 (`, t) by replacing entries of G with the corresponding entries

of GI in M2(`, t). Similarly to (B.58), we have M I
2 (`, t) = o(1) as q → ∞.

Therefore, as q →∞, we have

E` =
2∑̀
t=2

E`,t = {1 + o(1)}
∑

1≤k1<···<k`≤2q̄

P Ik1,...,k`
+ o(1).

This, together with (B.55) implies that, as q →∞,

(B.59)

{1 + o(1)}
2k∑
`=1

(−1)`−1
∑

1≤k1<···<k`≤2q̄

P Ik1,...,k`
+o(1)

≤P
(
ϕ1(G)>

√
x1 + aq, ϕ2(G)>

√
x2 + aq

)
≤{1 + o(1)}

2k−1∑
`=1

(−1)`−1
∑

1≤k1<···<k`≤2q̄

P Ik1,...,k`
+ o(1).

On the other hand, observing

(B.60)

P
(
ϕ1(GI) >

√
x1 + aq, ϕ2(GI) >

√
x2 + aq

)
= lim

k→∞

2k∑
`=1

(−1)`−1
∑

1≤k1<···<k`≤2q̄

P Ik1,...,k`
,

and aq = 2 log q−log(log q), by [8], the bivariate vector (ϕ2
1(GI)−aq, ϕ2

2(GI)−
aq) has a limiting distribution with joint density function

g2(t1, t2) =
g(t1)g(t2)

G(t1)
=
e−t1/2

2
√
π
g(t2), for t1 > t2,

where G(t) = exp(−π−1/2e−t/2) and g(t) = G′(t). Therefore, the limit in
(B.60) is equal to

∫∞
x1

∫∞
x2
g2(t1, t2)I(t1 > t2) dt2 dt1, which together with

(B.59) proves (B.54) by letting q →∞ first and then k →∞.
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B.7. Proof of Theorem 3.7.

Proof. For simplicity, we only consider the two-sample problem. In de-
tail, we aim to prove

(B.61) PH1

(
TNad = 1

)
→ 1, as n, B →∞.

under (3.21) and some assumptions. By the definition of TNad in (2.14), for
proving (B.61), it is equivalent to prove

(B.62) PH1

(
P̂Nad ≤ α

)
→ 1, as n, B →∞.

By the definition of P̂Nad and F̂N,ad′(z) in (2.13) and (B.50), (B.62) becomes

(B.63) PH1

(
F̂N,ad′(Nad) < α

)
→ 1, as n, B →∞.

Therefore, to obtain (B.61), it is sufficient to prove (B.63). By setting α′ =
α/#{P}, we can prove that α is also an upper bound of F̂N,ad′(α

′), i.e.,

(B.64) PH1

(
F̂N,ad′

(
α′
)
≤ α

)
→ 1, as n, B →∞.

By (B.64), to obtain (B.63) it is sufficient to prove

(B.65) PH1

(
Nad ≤ α′

)
→ 1, as n, B →∞.

By the definition of Nad in (2.10), we have

(B.66) PH1

(
P̂N(s0,p) ≤ α

′) ≤ PH1

(
Nad ≤ α′

)
,

for any p ∈ P. By Theorem 3.3, under (3.21) we have

(B.67) PH1

(
P̂N(s0,p) ≤ α

′)→ 1, as n, B →∞.

Combining (B.66) and (B.67), we prove (B.65).
To complete the proof, we now prove (B.64). By Lemma B.7, for any

0 < α < 1, we have

(B.68) P
(
F̂N,ad′

(
α′
)
≤ α

)
= P

(
FNb,ad(α′) ≤ α

)
, as n, B →∞.

Moreover, by the definition of FNb,ad(z) in (B.49), we have that FNb,ad(α′) ≤
α holds with probability 1, which yields (B.64).
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APPENDIX C: PROOF OF LEMMAS IN APPENDIX B

C.1. Proof of Lemma B.1.

Proof. To prove Lemma B.1, we need to bound P
(
‖N−HN‖(s0,p) > ε

)
,

where ε = Cs0 log2(qn)n−1/2. We first prove for m > 1. For this, we set

ĤN = (ĤN
1 , . . . , Ĥ

N
q )> with

(C.1) ĤN
s =

( 1

n1

n1∑
k=1

hs(Xk)−
1

n2

n2∑
k=1

hs(Yk)
)
/
√
σ̂1,ss/n1 + σ̂2,ss/n2.

By plugging ĤN , we have P(‖N −HN‖(s0,p)>ε) ≤ D1 +D2 with

D1 = P
(
‖N − ĤN‖(s0,p) > ε/2

)
, D2 = P

(
‖ĤN −HN‖(s0,p) > ε/2

)
.

Therefore, we only need to separately prove D1 = o(1) and D2 = o(1) as
n→∞.

For proving D1 = o(1), by setting E12 := {mins,γ σ̂γ,ss > b/2}, we have

(C.2) D1 ≤ P
(∥∥N − ĤN‖(s0,p) > ε/2 ∩ E12

)
︸ ︷︷ ︸

I1

+P
(
Ec12

)
.

Considering Assumptions (A) and (M1), by Lemma A.6, we have P
(
Ec12

)
=

o(1) as n → ∞. Hence, we only need to prove I1 = o(1) as n → ∞. By
the Hoeffding’s decomposition, considering v̂γ,s = m2σ̂γ,ss and ‖v‖(s0,p) ≤
s

1/p
0 ‖v‖∞, we have

I1 ≤ P

(
max

1≤s≤q

∣∣∣(n1

m

)−1

∆n1,s −
(
n2

m

)−1

∆n2,s

∣∣∣ > mb1/2ε
√

2s
1/p
0

√
1

n1
+

1

n2

)
,

where ∆n1,s and ∆n2,s are residuals of the Hoeffding’s decomposition. For
bounding the residuals, we threshold the kernel by Bn = C log(qn). For this,
we introduce

(C.3)
V i1,...,im

1,s = Ψs(Xi1 , . . . ,Xim) 1I{|Ψs(Xi1 , . . . ,Xim)| ≤ Bn},

E1,s = E
(

Ψs(Xi1 , . . . ,Xim) 1I{|Ψs(Xi1 , . . . ,Xim)| ≤ Bn}
)
,

and denote the thresholded kernel and Hoeffding’s projection by

(C.4)
Ψ̂s(Xi1 , . . . ,Xim) = V i1,...,im

1,s − E1,s,

ĥs(Xi) = E
(

Ψ̂s(Xi1 , . . . ,Xim)|Xi

)
.
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Hence, the corresponding residuals become

∆̂n1,s =
∑

1≤i1<...<im≤n1

(
Ψ̂s(Xi1 , . . . ,Xim)−

m∑
`=1

ĥs(Xi`)
)
,

By the definitions of both ∆n1,s and ∆̂n1,s, we then have

|∆n1,s − ∆̂n1,s| ≤

∣∣∣∣∣∆n1,s −
( ∑

1≤i1<...<im≤n1

V i1,...,im
1,s −

m∑
`=1

E(V i1,...,im
1,s |Xi`)

)∣∣∣∣∣
+ (m− 1)

(
n1

m

)
|E1,s|.

Considering that ε = Cs0 log2(qn)n−1/2, we have

mb1/2ε
√

2s
1/p
0

√
1

n1
+

1

n2
= O(log2(qn)/n).

By choosing a proper constant C in Bn, considering Assumption (E), we
have maxs(|E1,s|+ |E2,s|) ≺ log2(qn)/n. Hence, when n is sufficiently large,
we use the triangle inequality to get I1 ≤ I1,1 + I1,2, where

I1,1 = P

(
max

1≤s≤q

∣∣∣(n1

m

)−1

∆̂n1,s −
(
n2

m

)−1

∆̂n2,s

∣∣∣ > C
log2(qn)

n

)
I1,2 = Cqnmmax

s,i`,j`
`=1,...,m

(
P(|Ψs(Xi1 , . . . ,Xim)|>Bn)+P(|Ψs(Yj1 , . . . ,Yjm)|>Bn)

)
By choosing a proper constant C in Bn, considering Assumption (E), we
have I1,2 = o(1). For I1,1, by Proposition 2.3 (c) in [1], we obtain

(C.5) I1,1 ≤ Cq exp
(
− C1n

1− 2
m log

2
m (qn)

)
.

Considering m ≥ 2 and Assumption (A), we then have I1,1 = o(1). There-
fore, we prove that D1 = o(1), as n→∞.

After the proof for D1, we then prove that D2 = o(1). Considering

(C.6) ‖ĤN −HN‖(s0,p) ≤ s
1/p
0 ‖Ĥ

N −HN‖∞,

we have D2 ≤ P(‖ĤN −HN‖∞ > 0.5s
−1/p
0 ε). By the definitions of HN and

ĤN in (B.7) and (C.1), we have ‖ĤN −HN‖∞ ≤ I2I3 with

(C.7)

I2 = max
1≤s≤q

|
∑n1

k=1 hs(Xk)− ρ
∑n2

k=1 hs(Yk)|√
n1σ1,ss + ρ2n2σ2,ss

,

I3 = max
1≤s≤q

∣∣∣1− √σ1,ss + ρσ2,ss√
σ̂1,ss + ρσ̂2,ss

∣∣∣,
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where ρ = n1/n2. By Assumption (E) and exponential inequality, we have
that I2 ≤ C

√
log(qn) holds with probability 1− C1n

−1.
For bounding I3, we introduce the following lemma.

Lemma C.1. ξ1, . . . , ξs ∈ R are positive random variables with ξs > 0.
For y ∈ (0, 1], we have

(C.8) P
(

max
1≤s≤q

|1− ξs| ≤ y/2
)
≤ P

(
max

1≤s≤q
|1− ξ−1

s | ≤ y
)
.

The detailed proof of Lemma C.1 is in Appendix D.1. Motivated by
Lemma C.1, we introduce

I ′3 := max
1≤s≤q

∣∣∣1− √σ̂1,ss + ρσ̂2,ss√
σ1,ss + ρσ2,ss

∣∣∣.
By Assumption (M1), considering (a + b)(a − b) = a2 − b2, we use the
triangle inequality to obtain

I ′3 ≤ max
1≤s≤q

(σ1,ss + ρσ2,ss)
−1|σ̂1,ss + ρσ̂2,ss − σ1,ss − ρσ2,ss|

≤ (1 + ρ)−1b−1
(

max
1≤s≤q

|σ̂1,ss − σ1,ss|+ ρ max
1≤s≤q

|σ̂2,ss − σ2,ss|
)
.

Therefore, by Lemma A.6, I ′3 ≤ C log3/2(qn)n−1/2 holds with probability
1−C1n

−1. By Lemma C.1, we then have that I3 ≤ C log3/2(qn)n−1/2 holds
with probability 1−C1n

−1 for sufficiently large n. Combining (C.6) and the
bound for I2 and I3, we then have

‖ĤN −HN‖(s0,p) ≤ Cs0
log2(qn)√

n

with probability 1−C1n
−1 for sufficiently large n. Therefore, we have D2 =

o(1) as n→∞, which finishes the proof for m > 1.
By Lemma A.6 and similar proof, we can also prove for m = 1. As the

proof is much easier and similar to the proof for m > 1, we omit the proof
here.

C.2. Proof of Lemma B.2.

Proof. For notational simplicity, we set

Lz,ε := P(‖G‖(s0,p) ≤ z + ε)− P(‖G‖(s0,p) ≤ z),
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where z > 0 and ε = O(s0 log2(qn)n−1/2). Let ER,q = {x ∈ Rq : ‖x‖ ≤ R}
and V z,q

(s0,p)
= {x ∈ Rq : ‖x‖(s0,p) ≤ z}. We then have

Lz,ε ≤ P
(
G ∈ Rq\ER,q

)︸ ︷︷ ︸
L1

+P
(
G ∈ V z+ε,q

(s0,p)
∩ ER,q

)
− P

(
G ∈ V z,q

(s0,p)
∩ ER,q

)︸ ︷︷ ︸
L2

.

By the tail probability of Gaussian distribution, we have

L1 ≤ q(2πR2q−1)−1/2 exp(−R2q−1/2).

For L2, by Lemma A.3, there is a m-generated convex set Am ∈ Rq such
that

(C.9) Am ⊂ V z,q
(s0,p)

∩ ER,q ⊂ Am,Rε and m ≤ qs0
( γ√

ε
ln

1

ε

)s20
.

Hence, there is a constant C such that

(C.10) V z+ε
(s0,p)

∩ ER,q ⊂ Am,Rε+Cε

By setting R = qn and ε = (qn)−2, we have Rε ≺ ε and L1 = o(1). By
Lemma A.4, we combine (C.9) and (C.10) to obtain L2 ≤ Cεs0

√
log(qn) =

O(s2
0 log5/2(qn)n−1/2). By Assumption (A), we have L2 = o(1), which fin-

ishes the proof.

C.3. Proof of Lemma B.3.

Proof. In Lemma B.3, we aim to bound D̂5, where

D̂5 := sup
z>0

∣∣∣P(‖GN‖(s0,p) > z)− P(‖N b‖(s0,p) > z|X ,Y)
∣∣∣.

To bound D̂5, we need to analyze the distributions of GN and N b|X ,Y.
Considering the definitions of Σγ and Σ̂γ in (3.4) and (3.9), by setting

Σ12 = Σ1/n1 + Σ2/n2 and Σ̂12 = Σ̂1/n1 + Σ̂2/n2,

we have GN ∼ N(0,R12) and N b|X ,Y ∼ N(0, R̂12), where R12 and R̂12

are defined as

(C.11)
R12 = Diag(Σ12)−1/2Σ12Diag(Σ12)−1/2 = (r12,ij)1≤i,j≤q,

R̂12 = Diag(Σ̂12)−1/2Σ̂12Diag(Σ̂12)−1/2 = (r̂12,ij)1≤i,j≤q.

Lemma C.2.
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After analyzing the distributions of GN and N b|X ,Y, we then bound D̂5.
For this, we rewrite D̂5 as D̂5 = max

(
sup

z∈(0,R̃]
Iz, sup

z∈(R̃,∞)
Iz
)
, where

Iz =
∣∣P(‖GN‖(s0,p) > z)− P(‖N b‖(s0,p) > z|X ,Y)

∣∣,
and R̃ = Cs0

√
n. For sup

z∈(R̃,∞)
Iz, considering ‖v‖(s0,p) ≤ s

1/p
0 ‖v‖∞ ≤

s0‖v‖∞, we have

(C.12) sup
z∈(R,∞)

Iz ≤ P(‖GN‖∞ > C
√
n) + P(‖N b‖∞ > C

√
n|X ,Y).

Considering r12,ii = r̂12,ii = 1, by the tail probability of Gaussian distribu-
tion, we further have

(C.13) sup
z∈(R̃,∞)

Iz ≤ Cq exp(−C1n) = o(1).

We now bound sup
z∈(0,R̃]

IDz . Let E R̃,q = {x ∈ Rq : ‖x‖ ≤ R̃} and V z,q
(s0,p)

=

{x ∈ Rq : ‖x‖(s0,p) ≤ z}. Hence, considering ‖x‖ ≤ q1/2‖x‖∞ ≤ q1/2‖x‖(s0,p),
we have V z,q

(s0,p)
⊂ E R̃q1/2,q for z < R̃. Therefore, Considering Lemma A.3,

there is a m-generated convex set Am and ε > 0 such that

Am ⊂ V z,d
(s0,p)

⊂ Am,R̃q1/2ε and m ≤ ds0
( γ√

ε
ln

1

ε

)s20
.

Let ε′ = Rq1/2ε. By setting ε = (qn)−3/2, we have ε′ = s0(qn)−1. We then
have Iz ≤ Lz,1 + Lz,2 with

(C.14)

Lz,1 = max
(
P(GN ∈ Am,ε′\Am),P(N b ∈ Am,ε′\Am)

)
Lz,2 = max

(∣∣P(GN ∈ Am,ε′)− P(N b ∈ Am,ε′ |X ,Y)
∣∣,∣∣P(GN ∈ Am)− P(N b ∈ Am|X ,Y)

∣∣),
for z < R̃. We then separately bound Lz,1 and Lz,2. For Lz,1, by Lemma A.4
and Assumption (A), we have

(C.15) Lz,1 ≤ Cε′
√

log(m) = Cs2
0(qn)−1

√
log(qn) = o(1).

Considering Vs0 := {v ∈ Sq−1 : ‖v‖0 ≤ s0}, we have

sup
v1,v2∈Vs0

|v>1 (R̂12 −R12)v2| ≤ ‖R̂12 −R12‖∞‖v1‖1‖v2‖1

≤ s0‖R̂12 −R12‖∞.



23

Therefore, combining Theorem 4.1 and Remark 4.1 in [7], by Lemma C.2,
with probability at least 1− C1n

−1, we have

(C.16) Lz,2 ≤ C
(
s0

log3/2(qn)√
n

)1/3
log2/3(mn) ≤ C

(s10
0 log7(qn)

n

)1/6
.

From Assumption (A), we have Lz,2 = o(1), which finishes the proof.

C.4. Proof of Lemma B.4.

Proof. We first prove for m > 1. By the definition of N1
s in (B.28), we

have

(C.17) N1
s =

û1,s − û2,s − u1,s + u2,s√
m2σ1,ss/n1 +m2σ2,ss/n2︸ ︷︷ ︸

Ñ1
s

·
√
m2σ1,ss/n1 +m2σ2,ss/n2√

v̂1,s/n1 + v̂2,s/n2

.

By Lemma A.6 and Lemma C.1, for sufficiently large n with probability at
least 1− C1n

−1 we have

(C.18)

∣∣∣∣∣1−
√
m2σ1,ss/n1 +m2σ2,ss/n2√

v̂1,s/n1 + v̂2,s/n2

∣∣∣∣∣ ≤ C log3/2(qn)√
n

.

By setting

E(z) =
{∣∣1− (v̂1,s/n1 + v̂2,s/n2)−1/2(m2σ1,ss/n1 +m2σ2,ss/n2)1/2

∣∣ ≤ z}
and z � log3/2(qn)/

√
n, we can bound P(|N1

s | ≥ x) by

(C.19) P(|N1
s | ≥ x) ≤ P

(
|N1

s | ≥ x, E(z)
)

+ Cn−1.

By the definition of E(z) and (C.17), we then have

P
(
|N1

s | ≥ x, E(z)
)
≤ P

(
|û1,s − û2,s − u1,s + u2,s|√
m2σ1,ss/n1 +m2σ2,ss/n2

≥ (1 + z)−1x

)
Considering z = o(1) and x = u

√
2 log q in Lemma B.4, to prove (B.38), we

only need to prove that as n, q →∞, we have

s0 P
(
|û1,s − û2,s − u1,s + u2,s|√
m2σ1,ss/n1 +m2σ2,ss/n2

≥ C
√

log q

)
︸ ︷︷ ︸

A1

→ 0,
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uniformly for s. By triangle and Hoeffding’s inequalities, we have

s0A1 ≤s0 P
( | 1

n1

∑n1
k=1 hs(Xk)− 1

n2

∑n2
k=1 hs(Yk|√

m2σ1,ss/n1 +m2σ2,ss/n2

≥ C

2

√
log q

)
︸ ︷︷ ︸

A2

+ s0 P
(∣∣(n1

m

)−1
∆n1,s −

(
n2

m

)−1
∆n2,s

∣∣√
m2σ1,ss/n1 +m2σ2,ss/n2

≥ C

2

√
log q

)
︸ ︷︷ ︸

A3

.

By the exponential inequality for sub-exponential distribution, considering
Assumption (A)′ we have s0A2 ≤ s0 exp(−C log1/2(q)) → 0. As A3 does
not exist for m = 1, we only need to deal with m > 1. Similarly to (C.3),
we threshold the kernel of ûγ,s − uγ,s by Bn = C log(q) and construct the

threshold residual ∆̂nγ ,s. Similarly to the proof of bounding |
(
n1

m

)−1
∆n1,s −(

n2

m

)−1
∆n2,s| in Lemma B.1, by setting

A3,1 = P
(∣∣∣(n1

m

)−1

∆̂n1,s −
(
n2

m

)−1

∆̂n2,s

∣∣∣ > C

√
log q

n

)
A3,2 = max

i`,j`
`=1,...,m

(
P(|Ψs(Xi1 , . . . ,Xim)|>Bn)+P(|Ψs(Yj1 , . . . ,Yjm)|>Bn)

)
,

For proving s0A3 → 0, we only need to prove s0A3,1 → 0, s0n
mA3,2 → 0, and

|E1,s|+ |E2,s| ≺
√

log q/n, where Eγ,s is defined in (C.3). By by Proposition
2.3 (c) in [1], under Assumption (A)′, we have

s0A3,1 ≤ C1s0 exp
(
− (n

m−1
2 log−

1
2 (q))

2
m

)
→ 0.

As Ψs(Xi1 , . . . ,Xim)| and Ψs(Xi1 , . . . ,Xim)| have sub-exponential tails from
Assumption (E), similarly to the proof in Lemma B.1, under Assumption
(A)′ we have s0n

mA3,2 → 0, and |E1,s| + |E2,s| ≺
√

log q/n, which finishes
the proof.

C.5. Proof of Lemma B.5.

Proof. In Lemma B.5, we aim to prove (B.41). For this, we need to
bound

sup
z∈[ε,1−ε]

∣∣∣1− F̃N,ad(z)− P(Nad > z|X ,Y)
∣∣∣.

By the definition of Nad in (3.16), we have Nad = minp∈P P̂
N
(s0,p)

, where P
is a finite set. Therefore, without loss of generality, we assume P = {p1, p2}
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with 1 ≤ p1 6= p2 ≤ ∞. We then have Nad = min
(
P̂N(s0,p1), P̂

N
(s0,p2)

)
. We then

have P(Nad > z|X ,Y) = P
({
P̂N(s0,p1) > z

}
∩
{
P̂N(s0,p2) > z

}∣∣∣X ,Y). In (B.19)

and (B.21), we introduce FNb,(s0,p`)
(z) and F̂Nb,(s0,p`)

(z) as

(C.20)

FNb,(s0,p`)
(z) = P(‖N b‖(s0,p`) ≤ z|X ,Y),

F̂Nb,(s0,p`)
(z) =

∑B
b=1 1I

{
N b

(s0,p`)
≤ z|X ,Y

}
+ 1

B + 1
,

for ` = 1, 2. By the definition of P̂N(s0,p) in (2.8), we then have P̂N(s0,p`) =

1− F̂Nb,(s0,p`)

(
N(s0,p`)

)
. Therefore, we can rewrite P(Nad > z|X ,Y) as

(C.21) P
(
F̂Nb,(s0,p1)(N(s0,p1)) < 1− z, F̂Nb,(s0,p2)(N(s0,p2)) < 1− z|X ,Y

)
.

Similarly, by setting FN,(s0,p`)(z) = P
(
N(s0,p`) ≤ z

)
we can also rewrite

1− F̃N,ad(z) as

(C.22) P
(
FN,(s0,p1)

(
N(s0,p1)

)
< 1− z, FN,(s0,p2)

(
N(s0,p2)

)
< 1− z

)
.

Combining (C.21) and (C.22), by setting

D1(z) = P
(
FN,(s0,p1)

(
N(s0,p1)

)
< 1− z, FN,(s0,p2)

(
N(s0,p2)

)
< 1− z

)
,

D2(z) = P
(
F̂Nb,(s0,p1)(N(s0,p1)) < 1− z, F̂Nb,(s0,p2)(N(s0,p2)) < 1− z

)
,

we have
∣∣∣1− F̃N,ad(z)− P(Nad > z|X ,Y)

∣∣∣ =
∣∣∣D1(z)−D2(z)

∣∣∣. By Glivenko-

Cantelli Theorem, we have limB→∞ supz∈R |F̂Nb,(s0,p`)
(z)−FNb,(s0,p`)

(z)| = 0
almost surely, which motives us to introduce

D3(z) = P
(
FNb,(s0,p1)(N(s0,p1)) < 1− z, FNb,(s0,p2)(N(s0,p2)) < 1− z

)
.

We then use the triangle inequality to bound
∣∣∣1−F̃N,ad(z)−P(Nad > z|X ,Y)

∣∣∣
by

(C.23)
∣∣∣1−F̃N,ad(z)−P(Nad > z|X ,Y)

∣∣∣ ≤ ∣∣D1(z)−D3(z)
∣∣+∣∣D3(z)−D2(z)

∣∣.
By (C.23), to prove (B.41), it is sufficient to prove that as n,B → ∞, we
have

(C.24) sup
z∈[ε,1−ε]

|D1(z)−D3(z)| → 0 and sup
z∈[ε,1−ε]

|D3(z)−D2(z)| → 0,
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for any fixed ε > 0.
By Lemma 5 in [3], we can prove

(C.25) lim
B→∞

sup
z∈[ε,1−ε]

|D3(z)−D2(z)| = 0.

Hence, we only need to prove limn→∞ supz∈[ε,1−ε] |D1(z) −D3(z)| = 0. For
this, we introduce the following lemma.

Lemma C.3. Assumptions (A)′′, (E), (M1), and (M2) hold. Under H0

of (1.8) for any ε > 0 we have

sup
z∈[ε,1−ε]

|D1(z)−D3(z)| → 0, as n→∞.

The proof of Lemma C.3 is in Appendix D.2 of supplementary materials.
Combining (C.25) and Lemma C.3, we prove (C.24), which finishes the proof
of Lemma B.5.

C.6. Proof of Lemma B.6.

Proof. In Lemma B.6, we aim to prove (B.52). We set

FN,ad(z) = P(Nad ≤ z|X ,Y) and FNb,ad(z) = P(N b
ad ≤ z|X ,Y),

where Nad and N b
ad are defined in (2.10) and (B.48). Hence, to prove (B.52),

it is sufficient to prove

(C.26) sup
z∈[ε,1−ε]

∣∣∣P(Nad > z|X ,Y)− P(N b
ad > z|X ,Y)

∣∣∣→ 0 as n,B →∞.

Without loss of generality, we assume P = {p1, p2} with 1 ≤ p1 6= p2 ≤ ∞.
We can then rewrite P(Nad > z|X ,Y) as

(C.27) P
(
F̂Nb,(s0,p1)(N(s0,p1)) < 1− z, F̂Nb,(s0,p2)(N(s0,p2)) < 1− z|X ,Y

)
,

where F̂Nb,(s0,p`)
(z) is defined in (C.20). Similarly, we can rewrite P(N b

ad >
z|X ,Y)

(C.28) P
(
FNb,(s0,p1)(N

b
(s0,p1)) < 1− z, FNb,(s0,p2)(N

b
(s0,p2)) < 1− z|X ,Y

)
,

where FNb,(s0,p`)
(z) is defined in (B.48). Let

L = P
(
FNb,(s0,p1)(N(s0,p1))<1−z, FNb,(s0,p2)(N(s0,p2))<1−z|X ,Y

)
.
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By Massart’s inequality (see Section 1.5 in [10]) and Lemma 5 in [11], under
Assumptions (A)′′, (E), (M1), and (M2), for any fix ε > 0, we have

(C.29) sup
z∈[ε,1−ε]

∣∣∣P(Nad > z|X ,Y)− L
∣∣∣→ 0 as n, B →∞.

Similarly to the proof of Theorems 3.1, considering (C.28), we also have

(C.30) sup
z∈[0,1]

∣∣∣P(N b
ad > z|X ,Y)− L

∣∣∣→ 0, as n, B →∞.

Combining (C.29) and (C.30), we use the triangle inequality to obtain (C.26),
which finishes the proof of Lemma B.6.

C.7. Proof of Lemma B.7.

Proof. In Lemma B.7, we aim to prove (B.53). By the definitions of
FNb,ad(z) and F̂N,ad′(z) in (B.49) and (B.50), we have

(C.31)

1− FNb,ad(z) = P(N b
ad > z|X ,Y)

1− F̂N,ad′(z) =
B∑
b=1

1I{N b
ad′ > z|X ,Y}/(B + 1),

where N b
ad and N b

ad′ are defined in (B.48) and (2.12). Therefore, for (B.53)
it is sufficient to prove

(C.32) sup
z∈[ε,1−ε]

∣∣∣∣∣P(N b
ad > z|X ,Y

)
−
(

1− F̂N,ad′(z)
)∣∣∣∣∣→ 0,

as n,B → ∞. Without loss of generality, we assume P = {p1, p2} with
1 ≤ p1 6= p2 ≤ ∞, which yields

(C.33) N b
ad′ = min

(
P̂ b,N(s0,p1), P̂

b,N
(s0,p2)

)
,

where P̂ b,N(s0,p)
is defined in (2.12). Combining (C.31) and (C.33), we then

have

(C.34) 1− F̂N,ad′(z) =

∑B
b=1 1I{P̂ b,N(s0,p1) > z, P̂ b,N(s0,p2) > z|X ,Y}

B + 1
.
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By setting F̂ b,N(s0,p)
(z) = B−1

(∑
b1 6=b 1I{N b1

(s0,p)
≤ z|X ,Y} + 1

)
, consider-

ing the definition of P̂ b,N(s0,p)
in (2.12), we have P̂ b,N(s0,p)

= 1 − F̂ b,N(s0,p)
(N b

(s0,p)
).

Therefore, by (C.34), we rewrite 1− F̂N,ad′(z) as

(C.35)

∑B
b=1 1I

{
F̂ b,N(s0,p1)(N

b
(s0,p1)) < 1− z, F̂ b,N(s0,p2)(N

b
(s0,p2)) < 1− z|X ,Y

}
B + 1

,

As F̂ b,N(s0,p)
(z)→ FNb,(s0,p)(z), to approximate 1−F̂N,ad′(z) we introduce S(z)

as

(C.36)

∑B
b=1 1I

{
FNb,(s0,p1)(N

b
(s0,p1))<1−z, FNb,(s0,p2)(N

b
(s0,p2))<1−z|X ,Y

}
B + 1

,

where FNb,(s0,p`)
is defined in (B.48). To analyze the difference between

1− F̂N,ad′(z) and S(z), we introduce the following lemma.

Lemma C.4. Let ε be any positive real number, we have

sup
z∈[ε,1−ε]

∣∣1− F̂N,ad′(z)− S(z)
∣∣ = 0, as n, B →∞.

The proof of Lemma C.4 is in Appendix D.3. ConsideringN b
ad = minp∈P

(
1−

FNb,(s0,p)(N
b
(s0,p)

)
)

from (B.48), we can rewrite S(z) as

S(z) = (B + 1)−1
B∑
b=1

1I{N b
ad > z|X ,Y}.

By Massart’s inequality (see Section 1.5 in [10]), we have

(C.37) sup
z∈[0,1]

|S(z)− P(N b
ad > z|X ,Y)| → 0,

as n,B → ∞. Combining Lemma C.4 and (C.37), we plug in S(z) and use
the triangle inequality to obtain (C.32), which finishes the proof of Lemma
B.7.

APPENDIX D: PROOFS OF LEMMAS IN APPENDIX C

D.1. Proof of Lemma C.1.
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Proof. Under the event {max1≤s≤q |1−ξs| ≤ y/2}, we have |1−ξs| ≤ y/2
for any s ∈ {1, . . . , q}. Considering y ∈ (0, 1], by the simple calculation,
|1− ξs| ≤ y/2 implies

|1− ξ−1
s | ≤ max

( y

2 + y
,

y

2− y

)
≤ y,

for any s ∈ {1, . . . , q}. Therefore, we have{
max

1≤s≤q
|1− ξs| ≤ y/2

}
⊆
{

max
1≤s≤q

|1− ξ−1
s | ≤ y

}
,

which implies (C.8). Hence, we finish the proof of Lemma C.1.

D.2. Proof of Lemma C.3.

Proof. Without loss of generality, we assume P = {p1, p2} with 1 ≤
p1 6= p2 ≤ ∞. We set

(D.1)
D1(z)=P

(
FN,(s0,p1)

(
N(s0,p1)

)
<1−z, FN,(s0,p2)

(
N(s0,p2)

)
<1−z

)
,

D3(z)=P
(
FNb,(s0,p2)(N(s0,p1))<1−z, FNb,(s0,p2)(N(s0,p2))<1−z

)
,

where FN,(s0,p`)(z) and FNb,(s0,p`)
(z) are defined in (B.19) and (B.21). In

Lemma C.3, we aim to prove

(D.2) lim
n→∞

sup
z∈[ε,1−ε]

|D1(z)−D3(z)| = 0.

By following the proof of Theorem 3.1, under Assumptions (A)′′, (E), (M1),
and (M2), by setting

FN,12(z1, z2) = P
(
N(s0,p1) ≤ z1, N(s0,p2) ≤ z2

)
,

FG,12(z1, z2) = P
(
‖GN‖(s0,p1) ≤ z1, ‖GN‖(s0,p2) ≤ z2

)∣∣∣,
with GN ∼ N(0,R12) with R12 defined in (B.9), we have

(D.3) sup
z1,z2∈(0,∞)

∣∣∣FN,12(z1, z2)− FG,12(z1, z2)
∣∣∣→0, as n→∞.

(D.3) motives us to introduce

D4(z)=P
(
FN,(s0,p1)

(
‖GN‖(s0,p1)

)
<1−z, FN,(s0,p2)

(
‖GN‖(s0,p2)

)
<1−z

)
,

D5(z)=P
(
FNb,(s0,p1)

(
‖GN‖(s0,p1)

)
<1−z, FNb,(s0,p2)

(
‖GN‖(s0,p2)

)
<1−z

)
.
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Combining (D.1) and (D.3), we then have

sup
z∈(0,1)

|D1(z)−D4(z)| → 0 and sup
z∈(0,1)

|D3(z)−D5(z)| → 0,

as n → ∞. Therefore, by using the triangle inequality, to prove (D.2) we
only need to prove

(D.4) sup
z∈[ε,1−ε]

|D4(z)−D5(z)| → 0, as n→∞.

By Assumption (A)′′, considering Theorems 3.1, for any ε > 0 and suffi-
ciently large n, we have

sup
z∈[ε,1−ε]

∣∣∣F−N,(s0,p)(z)−F−Nb,(s0,p)
(z)
∣∣∣ ≤ hq,N (ε) sup

t∈R
|FN,(s0,p)(t)−FNb,(s0,p)(t)|.

Moreover, by the proof of Lemma B.2 we have

sup
z∈[ε,1−ε]

|D4(z)−D5(z)| ≤ Chq,N (ε)s0

√
log(nq) sup

t∈R

∣∣∣FN,(s0,p)(t)−FNb,(s0,p)(t)
∣∣∣,

for sufficiently large n. By the proof of Lemma A.1, B.2, B.3 and Theorem
3.1, under Assumption (A)′′, (E), (M1), and (M2), we have

sup
z∈[ε,1−ε]

|D4(z)−D5(z)| ≤ Chq,N (ε)s0

√
log(qn)

(s14
0 log7(qn)

n

)1/6
.

In Assumption (A)′′, we set h0.6
q,N (ε)s2

0 log(qn) = o(n1/10). Therefore, we have

sup
z∈[ε,1−ε]

|D4(z)−D5(z)| → 0, as n→∞,

which finishes the proof.

D.3. Proof of Lemma C.4.

Proof. In Lemma C.4, we aim to prove supz∈[ε,1−ε]
∣∣1 − F̂N,ad′(z) −

S(z)
∣∣→ 0, as n,B →∞. For this, we need to prove that for any δ, ε̃ > 0

(D.5) P

(
sup

z∈[ε,1−ε]

∣∣1− F̂N,ad′(z)− S(z)
∣∣ > δ

)
< ε̃,
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holds for sufficient large n and B. By setting

F̂ b,N(s0,p)
(z) = B−1

(∑
b1 6=b

1I{N b1
(s0,p)

≤ z|X ,Y}+ 1
)
,

considering Massart’s inequality (Section 1.5 in [10]), we have

sup
1≤b≤B
z∈R

∣∣∣F̂ b,N(s0,p)
(z)− FNb,(s0,p)(z)

∣∣∣→ 0, as n, B →∞.

Considering Lemma 5 in [3], for any fixed ε, δ′ > 0, by setting

A(δ′) =

{
sup

1≤b≤B
z∈[ε,1−ε]

∣∣∣F̂ b,N−(s0,p)
(z)− F−

Nb,(s0,p)
(z)
∣∣∣ ≤ δ′},

as n and B are sufficiently large, we have P(A(δ′)c) ≤ ε̃/2. Therefore, con-
sidering that F−

Nb,(s0,p)
(z) is Lipschitz continuous on z ∈ [ε, 1 − ε], by the

definitions of 1− F̂N,ad′ and S(z) in (C.35) and (C.36), under A(δ′) there is

a constant C such that S(z + Cδ′) ≤ 1 − F̂N,ad′(z) ≤ S(z − Cδ′) holds for
any z ∈ [ε, 1− ε] and sufficiently large n and B. Hence, under A(δ′) we have

supz∈[ε,1−ε]

∣∣∣1−F̂N,ad′(z)−S(z)
∣∣ ≤ L with

(D.6) L = max

(
sup

z∈[ε,1−ε]

∣∣∣S(z+Cδ′)−S(z)
∣∣∣, sup
z∈[ε,1−ε]

∣∣∣S(z − Cδ′)−S(z)
∣∣∣).

Therefore, to prove (D.5), we only need to prove

(D.7) P
(
L > δ,A(δ′)

)
≤ ε̃/2,

for sufficiently large n and B. By Massart’s inequality (Section 1.5 in [10])
and the definition of S(z) in (C.36), we have

(D.8) sup
z∈[0,1]

|S(z)− FNb,ad(z)| → 0, as n, B →∞,

where FNb,ad(z) is defined in (B.49). By (D.8), the limit of L is

max
(

sup
z∈[ε,1−ε]

∣∣∣FNb,ad(z+Cδ′)−FNb,ad(z)
∣∣∣, sup
z∈[ε,1−ε]

∣∣∣FNb,ad(z−Cδ′)−FNb,ad(z)
∣∣∣).

As FNb,ad(z) is uniformly Lipschitz contentious on [ε, 1− ε], there is a con-
stant C1 such that

(D.9) 0 ≤ L ≤ C1δ
′,

holds for sufficiently large n and B. By setting δ′ small enough and (D.9),
we obtain (D.7), which finishes the proof of Lemma C.4.
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APPENDIX E: PROOF OF USEFUL LEMMAS IN APPENDIX A

E.1. Proof of Lemma A.1. By setting ER,d = {x ∈ Rd : ‖x‖ ≤ R},
from Assumption (E)′, we have

P(SZn ∈ (ER,d)c) ∨ P(SWn ∈ (ER,d)c) = C1d exp(−C2Rd
−1/2).

By setting V z,d
(s0,p)

= {x ∈ Rd : ‖x‖(s0,p) ≤ z}, we then have

(E.1) sup
z

∣∣∣P(SZn ∈ V z,d
(s0,p)

)
− P

(
SWn ∈ V

z,d
(s0,p)

)∣∣ ≤ A1 +A2,

where A1 = C1d exp(−C2Rd
−1/2) and A2 = supz Pz with

Pz = |P
(
SZn ∈ ER,d ∩ V

z,d
(s0,p)

)− P
(
SWn ∈ ER,d ∩ V

z,d
(s0,p)

)
|.

We then approximate ER,d ∩V z,d
(s0,p)

with m-generated convex set. According
to Lemmas A.3 and A.4, by setting

ρ̄ = |P(SZn ∈ Am)− P(SWn ∈ Am)| ∨ |P(SZn ∈ Am,Rε)− P(SWn ∈ Am,Rε)|,

we have Pz ≤ CRε log1/2(m) + ρ̄, where C only depends on b. By high
dimensional CLT for Hyperreactangles in [7], we have

ρ̄ ≤ C
( log7(mn)

n

)1/6
,

where C only depends on b. Considering (E.1), we then have

sup
z

∣∣∣P(SZn ∈ V z
(s0,p)

)
− P

(
SWn ∈ V z

(s0,p)

)∣∣
≤CRε log1/2(m) + C

( log7(mn)

n

)1/6
+ C1d exp(−C2Rd

−1/2).

By setting ε = (dn)−3/2 and R = (dn)1/2, considering s2
0 log(dn) = O(nζ)

with 0 < ζ < 1/7, we have

Rε log1/2(m) �
( log7(mn)

n

)1/6
, d exp(−C2Rd

−1/2) �
( log7(mn)

n

)1/6
,

which yields (A.1).

E.2. Proof of Lemma A.3.

Proof. By the definition ofm-generated convex setsAm andAm,ε, Lemma
A.3 is an immediate corollary of Lemma A.2.
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E.3. Proof of Lemma A.5.

Proof. By the Jensen’s inequality, we have

(E.2) exp
(
tE
[

max
1≤i≤d

|Wi|
])
≤ E

[
exp

(
t max

1≤i≤d
|Wi|

)]
≤ dE[exp(t|Wi|)].

By (23) of [12], we have

(E.3) E[exp(t|Wi|)] = 2e
σ2t2

2 [1− Φ(−σt)] ≤ 2e
σ2t2

2 .

Combining (E.2) and (E.3), we have

exp
(
tE
[

max
1≤i≤d

|Wi|
])
≤ 2de

σ2t2

2 ,

which yields (A.2).

E.4. Proof of Lemma A.6.

Proof. We first prove for m > 1. For simplicity, we only present the
proof for X. In (3.4), we set Σ1 = (σ1,st) with

(E.4) σ1,st = E[hs(X)ht(X)],

where hs is defined in (3.1). To estimate Σ1, in (3.9) we introduce Σ̂1 :=
(σ̂1,st) ∈ Rq×q, where σ̂1,st = n1

−1
∑n1

k=1(Q1k,s−û1,s)(Q1k,t−û1,t). By setting

ũ1,s = û1,s − u1,s and Q̃1k,s = Q1k,s − u1,s, we rewrite σ̂1,st as

(E.5) σ̂1,st = n−1
1

∑n1

k=1
Q̃1k,sQ̃1k,t − ũ1,sũ1,t.

To provide an upper bound for max1≤s,t≤q
∣∣σ̂1,st−σ1,st

∣∣, by combining (E.4)
and (E.5), we use the triangle inequality to obtain

max
1≤s,t≤q

∣∣σ̂1,st − σ1,st

∣∣ ≤ max
1≤s,t≤q

∣∣∣n−1
1

(∑n1

k=1
Q̃1k,sQ̃1k,t

)
− E[hs(X)ht(X)]

∣∣∣︸ ︷︷ ︸
L1

+ max
1≤s,t≤q

∣∣∣ũ1,sũ1,t

∣∣∣︸ ︷︷ ︸
L2

.
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We then bound L1 and L2 separately. For bounding L2, we introduce

ũ′1,s =

(
n1

m

)−1 ∑
1≤i1<...,<im≤n1

V i1,...,im
1,s − E1,s,

where V i1,...,im
1,s and E1,s are defined in (C.3) with threshold Bn = C log(qn).

For any δ > 0, by choosing proper C, we have E1,s ≺ (qn)−δ. We then have

|ũ1,s − ũ′1,s| ≤
∣∣∣ũ1,s −

(
n1

m

)−1 ∑
1≤i1<...,<im≤n1

V i1,...,im
1,s

∣∣∣︸ ︷︷ ︸
L2,s

+E1,s.

By setting z � (qn)−δ, we have

(E.6) max
1≤s≤q

P(|ũ1,s| > z) ≤ max
1≤s≤q

(
P(|ũ′1,s| > z/3) + P(L2,s > z/3)

)
.

By using the exponential inequality for bounded U -statistics we have

(E.7) max
1≤s≤q

P(|ũ′1,s| > z/3) ≤ C exp(−C1nz
2/B2

n).

By Assumption (E), we also have

(E.8) max
1≤s≤q

P(L2,s > z/3) ≤ Cnm1 exp(−C1Bn)

Combining (E.6), (E.7), and (E.8), we then have

(E.9)
P(L2 > y) ≤ q2 max

1≤s,t≤q
P
(
|ũ1,sũ1,t| > y

)
≤ 2q2 max

1≤s≤q
P
(
|ũ1,s| >

√
y
)

≤ Cq2 exp(−C1ny/B
2
n) + Cq2nm1 exp(−C1Bn).

Therefore, for sufficiently large n1 with probability 1−Cn−1
1 we have L2 ≤

log3(qn)/n.
We now bound L1. Considering that n−1

1

∑n1
k=1 hs(Xk)ht(Xk) approxi-

mates E[hs(Xk)ht(Xk)], we use triangle inequality again to bound L1 by

(E.10)

L1 ≤ max
1≤s,t≤q

∣∣∣n−1
1

(∑n1

k=1
Q̃1k,sQ̃1k,t

)
− n−1

1

n1∑
k=1

hs(Xk)ht(Xk)
∣∣∣︸ ︷︷ ︸

L3

+ max
1≤s,t≤q

∣∣∣n−1
1

n1∑
k=1

hs(Xk)ht(Xk)− E[hs(X)ht(X)]
∣∣∣︸ ︷︷ ︸

L4

.
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By Assumption (E), hs(X) has sub-exponential tails. Therefore, by Theo-
rem 6 in [9], we have

(E.11) P(L4 > z) ≤ Cq2 exp(−C1n1z
2) + Cq2 exp

(
− C2(n1z)

1/2
)
.

Therefore, for sufficiently large n1, with probability 1− Cn−1
1 , we have

L4 ≤ C
√

log(qn)

n
+ C1

log2(qn)

n
.

After bounding L4, we now deal with L3. For this, we decompose Q̃1k,s as

Q̃1k,s =

(
n1 − 1

m− 1

)−1(
Ahs(Xk) +BS1,s + Υ

(k)
1,s

)
,(E.12)

with A =
(
n1−1
m1−1

)
−
(
n1−2
m−2

)
, B =

(
n1−1
m−2

)
, S1,s :=

∑n1
β=1 hs(Xβ) and

Υ
(k)
1,s =

n1∑
1≤`1<...<`m−1≤n1
`j 6=k,j=1,...,m−1

Γ
k,`1`2...`m−1

1,s ,(E.13)

with Γ
k,`1`2...`m−1

1,s = Ψs(Xk,X`1 . . . ,X`m−1) −
(
hs(Xk) +

m−1∑
i=1

hs(X`i)
))

.

Ψs(Xk1 , . . . ,Xkm), the centralized version of Φs(Xk1 , . . . ,Xkm), is defined
in (3.1). For notational simplicity, by setting

V 2
1,st :=

n1∑
k=1

hs(Xk)ht(Xk), Λ1,s :=

n1∑
k=1

Υ
(k)
1,s , Λ2

1,st :=

n1∑
k=1

Υ
(k)
1,sΥ

(k)
1,t ,(E.14)

and D =
(
n1−1
m−1

)
. we have L3 = max1≤s,t≤q L3,st, where L3,st is defined as

∣∣∣ 1

n1

( 1

D2

n1∑
k=1

(
Ahs(Xk) +BS1,s + Υ

(k)
1,s

)(
Aht(Xk) +BS1,t + Υ

(k)
1,t

)
−

n1∑
k=1

hs(Xk)ht(Xk)
)∣∣∣,

After introducing these notations, we can expand L3,st as

L3,st =
∣∣∣A2 −D2

n1D2
V 2

1,st +
1

n1D2
(2AB + n1B

2)S1,sS1,t +
1

n1D2
Λ2

1,st

+
A

n1D2

n1∑
k=1

(Υ
(k)
1,sht(Xk) + Υ

(k)
1,t hs(Xk)) +

B

n1D2
(Λ1,sS1,t + Λ1,tS1,s)

∣∣∣.
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By using the triangle inequality on L3,st, we have L3,st ≤ J1,st+J2,st+J3,st+
J4,st + J5,st, where

J1,st :=
∣∣∣A2 −D2

n1D2
V 2

1,st

∣∣∣, J2,st :=
∣∣∣2AB + n1B

2

n1D2
S1,sS1,t

∣∣∣,
J3,st :=

∣∣∣ 1

n1D2
Λ2

1,st

∣∣∣, J4,st :=
∣∣∣ A

n1D2

∑n1
k=1

(
Υ

(k)
1,sht(Xk) + Υ

(k)
1,t hs(Xk)

)∣∣∣,
J5,st :=

∣∣∣ B

n1D2
(Λ1,sS1,t + Λ1,tS1,s)

∣∣∣.
We now bound J1,st, . . . , J5,st separately. By the definitions of A and D,

we obtain

A = O(nm−1
1 ), D = O(nm−1

1 ) and D −A =

(
n1 − 2

m− 2

)
= O(nm−2

1 ).

Thus, for J1,st, by the definition of V1,st in (E.14), by Assumption (M2)
we easily have that max1≤s,t≤q J1,st = Op(n

−1
1 ). For J2,st, considering B =

O(nm−2
1 ), we use the exponential inequality to have

(E.15) P(J2,st > y) = P
(S1,sS1,t

n2
1

≥ Cy
)
≤ C1 exp(−C2n1 min(y,

√
y)).

With probability 1−Cn−1
1 , we then have max1≤s,t≤q J2,st ≤ log(qn1)n−1

1 for

sufficiently large n1. We then bound J3,st. Recalling Λ2
1,st :=

∑n1
k=1 Υ

(k)
1,sΥ

(k)
1,t

in (E.14), we have

P(J3,st > y) = P
( Λ2

1,st

n2m−1
1

≥ Cy
)

= P
( n1∑
k=1

Υ
(k)
1,sΥ

(k)
1,t ≥ Cn

2m−1
1 y

)
≤

n1∑
k=1

P
(

Υ
(k)
1,sΥ

(k)
1,t ≥ Cn

2m−2
1 y

)
.

By the definition of Υ
(k)
1,s in (E.13), given Xk, we can treat

Ψs(Xk,X`1 . . . ,X`m−1)−
(
hij(Xk) +

m−1∑
r=1

hij(X`r)
)
,

as a symmetric kernel function. Therefore, Υ
(k)
1,s/D|Xk is a U -statistic with

a kernel function of zero mean and m − 1 order. Hence, similarly to L2,
we threshold the kernel with C log(qn1) and use the exponential inequality
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for U -statistics to obtain that for sufficiently large n1 with probability with
1− C1n

−1
1 , we have

max
1≤s,t≤q

J3,st ≤ C
log2(qn)

n
.

We now bound J4,st and J5,st. For J4,st, we use the Cauchy-Swartz in-

equality on
∑n1

k=1 Υ
(k)
1,sht(Xk) and

∑n1
k=1 Υ

(k)
1,t hs(Xk) to obtain

(E.16) J4,st ≤
∣∣ A

n1D2
(Λ1,ssV1,tt + Λ1,ttV1,ss)

∣∣∣.
For J5,st, by using the Cauchy-Swartz inequality on Λ1,s and S1,s, we have

(E.17) J5,st ≤
∣∣∣ B
D2

(Λ1,ssV1,tt + Λ1,ttV1,ss)
∣∣∣.

Combining (E.16) and (E.17), we have

(E.18) J4,st + J5,st ≤
∣∣∣A+ n1B

n1D2
(Λ1,ssV1,tt + Λ1,ttV1,ss)

∣∣∣︸ ︷︷ ︸
J6,st

.

Considering A = O(nm−1
1 ), B = O(nm−2

1 ), and D = O(nm−1
1 ), by the

triangle inequality we have

max
1≤s,t≤q

J6,st ≤ C max
1≤s,t≤q

Λ1,ssV1,tt

nm1
=
(

max
1≤s≤q

Λ2
1,ss

n
2m−3/2
1︸ ︷︷ ︸
J ′6,s

max
1≤s≤q

V 2
1,ss

n
3/2
1︸ ︷︷ ︸
J ′′6,s

)1/2
.

Similarly to L4, from Assumption (M2), we have max1≤s≤q J
′′
6,s = Op(n

−1/2
1 ).

For J ′6,s, we have

P
( Λ2

1,ss

n
2m−3/2
1

≥ y
)
≤

n1∑
k=1

P
( |Υ(k)

1,ss|
nm−1

1

≥ Cn−1/4
1 y1/2

)
.(E.19)

By thresholding kernel with C log(qn) and exponential inequality for U -

statistics, for sufficiently large n1, max1≤s≤q J
′
6,s ≤ log3(qn1)n

−1/2
1 holds

with probability 1− C1n
−1
1 . Therefore, we have

max
1≤s,t≤q

J6,st ≤ C log3/2(qn1)n
−1/2
1 .
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From all above results, for sufficiently large n1, with probability 1−C1n
−1
1 ,

we have

(E.20) max
1≤,s,t≤q

|σ̂1,st − σ1,st| ≤ C
log3/2(qn1)
√
n1

.

After analyzing the approximation error of σ̂1,st, we then prove for r̂1,st.
By (A.3), we have r̂1,st = σ̂1,st/

√
σ̂1,ssσ̂1,tt and r1,st = σ1,st/

√
σ1,ssσ1,tt.

Therefore, we have

|r̂1,st − r1,st| =
∣∣∣ σ̂1,st√

σ̂1,ssσ̂1,tt

− σ1,st√
σ1,ssσ1,tt

∣∣∣
≤
∣∣∣ σ̂1,st√

σ̂1,ssσ̂1,tt

− σ̂1,st√
σ1,ssσ1,tt

∣∣∣︸ ︷︷ ︸
A1

+
∣∣∣ σ̂1,st√
σ1,ssσ1,tt

− σ1,st√
σ1,ssσ1,tt

∣∣∣︸ ︷︷ ︸
A2

.

Hence, to bound |r̂1,st − r1,st| we bound A1 and A2 separately. For A1, we
rewrite it as

A1 =
∣∣∣ σ̂1,st√

σ̂1,ssσ̂1,tt

∣∣∣∣∣∣1− √σ̂1,ssσ̂1,tt
√
σ1,ssσ1,tt

∣∣∣.
Considering |r̂1,st| ≤ 1 and a2 − b2 = (a+ b)(a− b), we have

A1 ≤ σ−1
1,ssσ

−1
1,tt

∣∣σ̂1,ssσ̂1,tt − σ1,ssσ1,tt

∣∣.
By Assumption (M1) and (M2), there are constants b and B, such that
0 < b ≤ σ1,ss ≤ B <∞ for s = 1, . . . , q. Hence, we have

(E.21) A1 ≤ b−2 max
1≤s≤q

|σ̂1,ss − σ1,ss|2 + 2Bb−2 max
1≤s≤q

|σ̂1,ss − σ1,ss|.

For A2, by σ1,ss ≥ b > 0 from Assumption (M1) we have

(E.22) A2 ≤ b−1 max
1≤s,t≤q

|σ̂1,st − σ1,st|.

Combining (E.20), (E.21), and (E.22), we then have that

max
1≤,s,t≤q

|r̂1,st − r1,st| ≤ C
log3/2(qn1)
√
n1

,

holds with the overwhelming probability, which finishes the proof for m > 1.
We then prove for m = 1. We decompose σ̂1,st as

σ̂1,st = n−1
1

n1∑
k=1

Ψs(Xk)Ψt(Xk)−Ψ1,sΨ1,t,
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where Ψs(Xk) = Φs(Xk)− u1,s and Ψ1,s = n−1
1

∑n1
k=1 Ψs(Xk). Considering

σ1,st = E[Ψs(X)Ψt(X)], by setting

B1 = P
(

max
1≤s,t≤q

∣∣n1
−1

n1∑
k=1

Ψs(Xk)Ψt(Xk)− E[Ψs(X)Ψt(X)]
∣∣ > x/2

)
B2 = P

(
max

1≤s,t≤q
Ψ1,sΨ1,t > x/2

)
we then have

(E.23) P
(

max
1≤s,t≤q

∣∣σ̂ γ,st − σγ,st
∣∣ > x

)
≤ B1 +B2,

By Theorem 6 in [9], we can bound B1 by

(E.24) B1 ≤ Cq2 exp(−C1n1x
2) + Cq2 exp

(
− C2(n1x)1/2

)
.

Similarly, for the term B2 in (E.23), we use the same argument to obtain

(E.25) P
(

max
1≤s,t≤q

Ψ1,sΨ1,t>x/2
)
≤Cq2 exp(−C1n1x)+Cq2 exp

(
−C2(n1

√
x)
)
.

Combining (E.23), (E.24), and (E.25), for sufficiently large n1, with proba-
bility 1− C1n

−1
1 , we have

(E.26) max
1≤,s,t≤q

|σ̂1,st − σ1,st| ≤ C

√
log(qn1)

n1
+ C

log2(qn1)

n1
.

Similarly to m > 1, we also have that

max
1≤,s,t≤q

|r̂1,st − r1,st| ≤ C

√
log(qn1)

n1
+ C

log2(qn1)

n1
,

holds with the overwhelming probability for m = 1.

APPENDIX F: MORE SIMULATION RESULTS

This section consists of three parts. Firstly, we present the empirical size
for high dimensional mean tests based on Models 2-4, which are introduced
in Section 4. Secondly, we apply our methods to test high dimensional covari-
ance/correlation coefficients to illustrate the generality of proposed methods.
At last, we apply our methods to analyze resting-state functional magnetic
resonance imaging (fMRI) data.
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Table 3
Empirical sizes of Models 2, 3 and 4 with α = 0.05, B = 300, and n1 = n2 = 100 based

on 2000 replications.

Model 2
d s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TNad T 2 BY SD CLX
75 5 6.20 6.50 6.55 6.85 7.00 6.65 7.10 5.25 6.50 5.40 5.05

30 4.30 4.75 5.35 6.00 6.35 6.75 6.25 5.25 6.50 5.40 5.05
75 4.55 4.75 5.60 6.00 6.25 6.50 6.30 5.25 6.50 5.40 5.05

200 10 5.20 5.45 5.75 5.65 6.20 6.65 6.30 - 5.35 4.60 6.10
50 3.30 3.40 3.80 4.50 5.30 6.25 5.30 - 5.35 4.60 6.10
100 2.85 3.05 3.35 3.95 4.75 7.10 5.10 - 5.35 4.60 6.10
150 3.00 3.10 3.55 4.50 5.10 7.00 5.50 - 5.35 4.60 6.10
200 2.70 2.90 3.40 4.20 5.05 7.10 5.15 - 5.35 4.60 6.10

400 10 4.85 5.00 5.45 5.45 5.95 0.71 6.90 - 5.10 4.10 6.25
50 1.90 2.15 2.60 3.30 3.90 7.40 5.45 - 5.10 4.10 6.25
100 1.35 1.50 1.85 2.80 3.85 7.20 4.75 - 5.10 4.10 6.25
200 1.05 1.15 1.70 2.65 3.70 7.00 4.45 - 5.10 4.10 6.25
400 1.30 1.65 1.75 2.70 3.55 7.10 4.50 - 5.10 4.10 6.25

Model 3
d s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TNad T 2 BY SD CLX
75 5 5.25 5.65 6.25 6.15 6.30 6.90 6.75 5.30 6.10 5.40 5.90

30 4.70 4.70 5.35 5.75 6.20 6.95 5.65 5.30 6.10 5.40 5.90
75 4.25 4.80 5.05 5.10 5.75 7.00 5.75 5.30 6.10 5.40 5.90

200 10 3.75 4.05 4.65 5.20 5.35 7.05 5.85 - 5.70 4.90 5.50
50 2.80 2.60 3.20 3.50 4.15 6.70 4.65 - 5.70 4.90 5.50
100 2.45 2.50 2.75 3.50 4.35 6.60 4.20 - 5.70 4.90 5.50
150 2.40 2.55 2.75 3.70 4.40 7.05 4.50 - 5.70 4.90 5.50
200 2.15 2.30 2.75 3.60 4.35 6.70 4.65 - 5.70 4.90 5.50

400 10 3.95 4.30 4.80 4.85 5.30 7.35 6.05 - 5.25 3.95 6.25
50 1.40 1.80 2.15 2.55 3.70 7.15 4.75 - 5.25 3.95 6.25
100 1.10 1.20 1.65 2.25 3.05 7.05 4.45 - 5.25 3.95 6.25
200 0.90 0.95 1.25 1.95 3.20 7.10 4.35 - 5.25 3.95 6.25
400 0.95 0.75 1.30 2.10 3.20 7.15 3.80 - 5.25 3.95 6.25

Model 4
d s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TNad T 2 BY SD CLX
75 5 4.10 4.05 4.05 4.70 4.95 5.50 5.05 4.10 3.90 3.60 4.40

30 3.05 3.00 3.20 3.55 3.90 5.15 5.00 4.10 3.90 3.60 4.40
75 2.75 3.15 3.30 3.75 4.10 5.60 4.65 4.10 3.90 3.60 4.40

200 10 2.45 2.75 2.80 3.10 3.30 5.30 4.20 - 1.75 1.50 4.35
50 1.05 1.05 1.30 1.75 2.35 5.50 3.30 - 1.75 1.50 4.35
100 1.10 1.10 1.20 1.65 2.35 5.60 3.00 - 1.75 1.50 4.35
150 0.85 0.90 1.10 1.45 2.25 5.65 3.35 - 1.75 1.50 4.35
200 1.00 1.10 1.10 1.65 1.95 5.65 2.75 - 1.75 1.50 4.35

400 10 2.85 3.05 3.35 3.40 4.15 5.70 4.20 - 0.85 0.45 4.20
50 0.95 0.95 1.05 1.30 1.80 5.65 3.20 - 0.85 0.45 4.20
100 0.45 0.65 0.60 0.75 1.20 5.45 2.80 - 0.85 0.45 4.20
200 0.30 0.30 0.35 1.00 1.60 5.40 2.70 - 0.85 0.45 4.20
400 0.30 0.30 0.50 0.70 1.50 5.50 2.45 - 0.85 0.45 4.20
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F.1. Additional simulation results of testing high dimensional
mean values. In Section 4, we introduce Models 1-4 for high dimensional
mean tests. In this section, we show the numerical results for Models 2-4
in Table 3.

F.2. Simulation results of testing high dimensional covariance
and correlation coefficients . In this section, we carry out the simula-
tion of the marginal test using the Pearson’s covariance and Kendall’s tau
correlation matrices. For simplicity, we consider the one-sample problem. In
the simulation, Z and X ∈ Rd are the response variable and the explanatory
vector. We generate n1 data points of (Z,X>)> from the following models.

• Model 5. Let ΣL
0 ,Σ

L
1 ∈ R(d+1)×(d+1) to be

ΣL
0 =

[
1 0>

0 (D?)−1/2Σ?(D?)−1/2

]
, ΣL

1 =

[
1 V >

V (D?)−1/2Σ?(D?)−1/2

]
,

where V ∈ Rd has s nonzero entries with the magnitude U(u1, u2). Un-
der the null hypothesis, we generate n1 random vectors from t(ν,µ,Σ)
with ν = 5, µ = 0, Σ = ΣL

0 as the samples of (Z,X>)>. Under
the alternative hypothesis, we generate the samples of (Z,X>)> from
t(5,0,ΣL

1 + δId+1) with δ = |λmin(ΣL
1 )|+ 0.5.

The experimental results of Model 5 are in Table 4. In Model 5 we com-
pare the proposed tests based on Pearson’s covariance and Kendall’ tau
correlation matrices. The pattern of empirical size and power for Model 5
is similar to Models 1-4. Moreover, the experiment shows that Kendall’s
tau based test is more powerful than the Pearson’s covariance based one for
distributions with the heavy tails and strong tail dependence.

F.3. Simulation results of increasing #(P). In this section, we
discuss the impact of #(P) by simulation. In Sections 2.2 and 3.3, we require
fixed P for the data-adaptive combined test. In Remark 3.6, we discuss
theoretical difficulties of increasing #(P). In this section, we present the
performance of proposed methods under various P.

For this we generate the data based on Model 1 in Section 4. We consider
various P. In detail, we set P1 = {1, 2}, P2 = {1, 2,∞}, P3 = {1, 2, 3, 4, 5},
P4 = {1, 2, 3, 4, 5,∞}, P5 = {1, 2, . . . , 10,∞}, and P6 = {1, 2, . . . , 20,∞}.
We also consider various alternatives with s = 5, 50, 100, from sparse to
dense. The simulation results are in Table 5.

From Table 5, we recommend using P4 = {1, 2, 3, 4, 5,∞}. It has good
performance for both sparse and dense alternatives. Table 5 also shows that
there is no power advantage to add more elements to P4.
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Table 4
Empirical size and power of Model 5 with α = 0.05, B = 300, and n1 = 200 based on

2000 replications.

Empirical size (%)
Pesrson’s sample covariance Kendall’s tau

d s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TN
ad p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TN

ad
200 10 0.00 0.00 0.00 0.15 0.15 2.65 1.50 3.75 4.30 4.75 5.40 6.05 8.20 6.85

50 0.00 0.00 0.00 0.00 0.05 2.60 1.30 1.20 1.75 1.90 3.35 4.35 8.75 5.25
100 0.00 0.00 0.00 0.00 0.00 2.10 1.35 0.60 0.85 1.70 2.55 3.95 8.60 5.65
150 0.00 0.00 0.00 0.00 0.00 2.65 1.25 0.60 0.85 1.50 2.65 3.75 8.35 4.75
200 0.00 0.00 0.00 0.00 0.00 2.40 1.20 0.60 0.90 1.40 2.80 3.55 8.20 5.25

Empirical power (%) with s = 5, u1 = 0, and u2 = 4
√

log(d)/n1

d s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TN
ad p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TN

ad
200 10 13.70 20.7 27.95 34.00 38.85 55.20 50.60 73.20 78.75 81.40 83.45 84.05 84.20 84.00

50 0.40 1.50 5.50 14.00 24.40 55.95 49.05 26.90 52.75 70.55 78.50 81.80 84.05 81.85
100 0.05 0.40 3.20 11.55 23.65 55.65 48.85 11.85 39.20 66.35 77.05 81.90 84.15 82.00
150 0.05 0.30 2.80 12.00 22.90 55.20 48.25 8.30 35.00 65.65 77.25 81.55 84.25 82.15
200 0.05 0.40 3.05 11.85 23.30 55.20 47.55 6.95 34.95 65.55 76.55 81.70 84.05 81.45

Empirical power (%) with s = 5, u1 = 0, and u2 = 3
√

1/n1

d s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TN
ad p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TN

ad
200 10 10.25 10.55 11.35 11.65 12.80 16.80 13.95 75.85 75.05 74.15 72.90 70.65 46.55 68.20

50 4.90 5.55 6.85 8.40 9.6 16.25 12.60 78.30 79.80 80.60 79.50 77.10 47.15 74.50
100 2.95 4.05 4.85 6.45 8.2 17.20 11.15 73.80 78.65 80.90 80.35 77.60 46.85 75.10
150 2.70 4.00 5.15 6.50 8.60 16.90 11.15 69.55 78.00 80.75 79.70 77.90 47.45 73.75
200 2.75 3.65 5.35 6.85 8.60 16.45 11.15 68.00 78.45 81.15 80.70 77.60 46.95 74.25

Table 5
Empirical size and power of TNad under Model 1 with α = 0.05, B = 300, d = 400, and

n1 = n2 = 200 based on 1000 replications.

Empirical power (%) with

Empirical size(%) with s = 5, u1 = 0, u2 = 4
√

log(d)/n1

s0 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

10 5.1 5.6 5.3 5.2 5.3 5.4 82.8 86.3 86.6 86.4 86.5 86.5
50 3.7 4.6 4.8 4.6 5.1 4.6 60.4 84.0 82.4 84.7 85.0 85.1
100 2.9 3.9 3.7 4.5 4.6 4.5 44.2 83.7 81.6 84.5 84.8 85.0
150 2.6 3.6 3.5 3.8 4.1 4.2 33.6 83.3 80.8 83.6 84.6 84.5
200 2.3 4.0 3.5 3.9 4.0 4.1 29.1 83.5 81.1 84.1 84.2 84.8

Empirical power (%) with Empirical power (%)with

s = 50, u1 = 0,u2 = 4
√

1/n1 s = 100, u1 = 0, u2 = 3
√

1/n1

s0 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

10 76.0 75.2 78.6 77.3 74.8 75.1 71.1 65.1 0.1 69.5 64.1 64.8
50 75.8 75.2 79.0 78.2 78.0 78.0 79.6 73.8 77.9 76.3 72.7 74.3
100 70.1 71.1 79.4 78.3 77.3 76.1 78.6 72.0 77.0 76.0 73.1 74.2
150 65.0 67.5 78.1 77.2 75.3 75.3 75.8 68.5 76.9 75.8 73.1 73.7
200 60.2 65.9 76.8 76.5 74.6 74.0 74.5 68.5 76.0 75.1 73.8 73.8
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F.4. Real data example. In this section, we apply our methods to
analyze resting-state functional magnetic resonance imaging (fMRI) data.
We aim to compare the resting-sate fMRI scans between the attention deficit
hyperactivity disorder (ADHD) and normal children. For each subject, the
resting-state fMRI scan is a high dimensional time series. Instead of dealing
with the time series directly, we alternatively use an index named amplitude
of low frequency fluctuation (ALFF) to yield a high dimensional vector for
each subject. Each entry of ALFF is defined as the total power within the
frequency range between 0.01 and 0.1 Hz of the corresponding entry of the
original fMRI time series, which reflects the slow fluctuation. In general,
ALFF reflects the intensity of regional spontaneous brain activity. As for
the detailed definition of ALFF, we refer to [13]. Existing literature [13, 14]
utilizes univariate two-sample t-tests to detect differentially experessed brain
areas between the diseased and control groups based on ALFF. Before we
conduct the univariate two-sample tests, it is a common practice to perform
a global test to verify that there is significant difference of ALFFs between
two groups. By the definition of ALFF, we utilize the high dimensional mean
test to perform the global test.

Our experiment is based on the first dataset of Peking University from
the ADHD-200 sample.3 The sample consists of 85 subjects, in which 24
subjects have ADHD. Therefore, the control group has 61 subjects. ALFF
analysis is performed by using the C-PAC software. The C-PAC software
preprocesses the data by registering each person’s fMRI scan to the stan-
dard MN152 template. To increase the signal-noise ratio, the software also
performs slice timing correction, body motion correction, nuisance signal
correction, and temporal filtering. Because of the difference of individual
brain baseline activity, we standardize the ALFF for each subject. We then
use the Gaussian kernel to perform the spatial smoothing for each subject.
Moreover, existing literature and psychological knowledge suggest that the
ALFF of brain’s gray matter is related to the mental disease. Hence, we
restrict the testing area to the gray matter of the brain. For detailed de-
scription of the processing procedure, we refer to [13], [14], and the user
guide of C-PAC software.4

Figure 3 illustrates P -values of univariate two-sample t-tests. Figure 3(A)
illustrates the P -value map to the standard MN152 brain template with the
slice thickness 3mm at the given threshold (P -value < 0.2). Moreover, Figure
3(B) illustrates the estimated density of these P -values. Figure 3 shows there
are significant ALFF differences between the diseased and control groups in

3 The website for ADHD-200 sample is http://fcon 1000.projects.nitrc.org/indi/adhd200/.
4 The website for the C-PAC software is http://fcp-indi.github.io/.
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(A)

(B)

Fig 3. P -values of the marginal two-sample t-tests on ALFFs between ADHD and
control groups. (A) The P -value map on the standard MN152 brain template with
the slice thickness 3mm at the given threshold (P -value < 0.2). (B) The estimated
density of the P -values and some summary statistics.
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some brain areas.

Table 6
P -values of the (s0, p)-norm tests and data-adaptive combined test with

s0 = 40, 400, 4000, 8000 and B = 1000 on the ALFF data.

P -values of global tests between the ADHD and control groups
s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TNad

40 0.001 0.001 0.001 0.001 0.001 0.001 0.000
400 0.013 0.013 0.012 0.011 0.010 0.000 0.000
4000 0.016 0.015 0.015 0.015 0.013 0.000 0.000
8000 0.016 0.015 0.013 0.011 0.008 0.000 0.000

P -values of global tests within the control group
s0 p = 1 p = 2 p = 3 p = 4 p = 5 p =∞ TNad

40 0.192 0.192 0.193 0.195 0.196 0.254 0.237
400 0.301 0.295 0.290 0.288 0.284 0.299 0.355
4000 0.373 0.362 0.352 0.337 0.323 0.273 0.354
8000 0.406 0.394 0.387 0.375 0.360 0.282 0.370

We then use both the individual (s0, p)-norm test and data-adaptive com-
bined test with balanced P = {1, . . . , 5,∞} to perform the global test. We
also randomly split the sample for the control group into two subsamples
with 30 and 31 subjects. We then perform the global mean test between the
two subsamples of the control group to confirm the validity of our proposed
methods. As is shown in Figure 3, at most 20% of the gray matter is poten-
tially different between the diseased and control groups. Therefore, consid-
ering that the voxel size is about 40000, we set s0 = 40, 400, 4000, 8000 in
the experiment. The experiment result is presented in Table 6, which shows
that our proposed methods are quite powerful to distinguish the ADHD and
control groups.
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