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Abstract 

We study the ghost antighost symmetry of the extended BRS equations, 

discuss the geometrical interpretation of the formalism and define a 

new class of gauges in which the ghost number is only conserved modulo 

two. 

lThis work was supported by the Director, Office of Energy Research 
Office of High Energy and Nuclear Physics, Division of High Energy 
Physics of the U.S. Department of Energy under Contract DE-AC03-
76SF00098. 
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INTRODUCTION 

The extended BRS equations [1-4] which govern the unitarity [1,5] 

and renormalizability [1,2,6,7] of Yang-Mills theory are Sp(2) symmetric 

in the ghost antighost fields [8,9,10]. On the other hand, the fami-

liar Faddeev POPJv gauges [11] break this symmetry and the antighost 

plays no role [12] in the classification of anomalies [13,14,15]. 

The purpose of this note is to analyze this situation in some de-

tail, and to emphasize the geometrical interpretation of the formalism 

In the first section, we shall study the Sp(2»)Q BRS semi-direct algebra 

and its eventual decontraction to OSp(I/2). 

In section 2, we discuss the Curci Ferrari gauges [2] which allow 

for a controlled breaking of the ghost-antighost symmetry [7] and re-

late them to the one parameter family of parallel transports that 

Cartan [16] has defined"'on a Lie group. 

In section 3, we generalize these gauges by allowing the creation 

of ghost pairs. The theory remains unitary and renormalizable. 

Nevertheless, these gauges offer the possibility of occurence, in per-

turbation theory, of anomalies with ghost number 3 considered recently 

by Faddeev [17] and Zumino [18]. 

In the last section we show that the Osp(I/2) group decontraction 

discussed in the first section leads to the massive Curci-Ferrari gauges 

[2] and we explain algebraically why these gauges break unitarity. 

This work is a complement to our earlier detailed study with 
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Laurent Baulieu of the renormalizability of the extended BRS invariance 

entitled "The principle of BRS symmetry" [7] and we shall use the same 

notations. It can however be read independently. 

1. THE Sp(2) >4 BRS ALGEBRA 

Let A: denote the Yang-Mills field. ca the scalar anticommuting 

Faddeev Popov ghost. and ~a the antighost. all valued in the adjoint 

representation of the Lie group G. The extended BRS equations [2.3,4,7] 

can be written: 

s'\ - DIJc S,\ - Di 
sc - - t [c.c] sc - - [e.e] 

se + sc + [c.e] - 0 

Let us define a composite connection form 

A - A dxV + c + e IJ 

and a composite differential operator: 

a - dxiJa + s + J 
IJ 

The BRS equations (1.1) can be rewritten as Maurer Cartan 

equations [ 19 ] 

. where 
" - F 

F .. d A + 

F - d A + 

[A.A] 
[A.A] 

- t (a A - a A + [A .A ]) dxIJdxV 

IJ v v IJ IJ v 

",-

(l.l ) 

(1. 2a) 

(1. 2b) 

(1. 3) 
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To define se in equ. (1.1). one introduces an auxiliary field ba 

of dimension 2 [5.6] such that [20]: 

se - b - [e.c] 

sc- -b - [e.c] 

Using (1.1). one may verify that 

s2 '\ - (ss + ss) AIJ - s2,\ - 0 

s 2c - s2e - 0 

Imposing 

s2 - ss + ss - s2 - 0 

on all fields yields the variation of b [20]: 

sb - - 1 [c.b] - 1 [[c.c].e] 
2 8 

sb = - t [e,b] + i [[e,e],c] 

( 1.4) 

(1. 5) 

(1.6) 

0.7) 

These well known equations are explicitly symmetric under the 

exchange of c and e, sand s and the reversal of the sign of b. 

It is often more convenient [4-7] to define the variable 

b' - b - t [e.c] 

and rewrite the auxiliary equations 1.4 - 1.7 as 

se - b' 

BC • - b' - [c,e] (1. 4a) 

sb' - 0 

sb' [e.b' ] (1. 7 a) 

However. the ce symmetry of the equations is less manifest. 

.... -
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Let us now consider a continuous group Sp(2) generated by 3 opera-

0+tors 0 , 0 , 0 We define A~ and b as Sp(2) singlets 

OiA - oib - 0 
~ 

i - +,-,0 

and (c, c) as a doublet 

o-c c, oOc c, 0+ c 0 

o c 0, oOc c, 0+C c 

It is easy to verify that the 0 operators, acting on A~,c,c,b 

(1. 8) 

(1.9) 

represent the Sp(2) algebra 

[0+, 0-) .. 0.° 

[0°, o±) - ±20± ( 1.10) 

It may also be checked that the ss operators themselves form an 

Sp(2) doublet 

Co-,s) - S, roO,s) .. s, [o+,s] = 0 

Co-,s) .. 0, [oO,s] __ S, [o+,s] = s (1.11) 

A great.emphasis has been put on this Sp(2) symmetry in the BRS 

superspace of Bonora and Tonin [8,21] Delbourgo and Jarvis [9). 

In this formalism, the Sp(2) group is mixed with the Lorentz 

group to produce an OSp(4/2) Lorentz supergroup acting on a 6 dimen-

sional superspace (x~/8, 5). Then, considering the super Poincare 

extension IOSp(4/2), they identify the BRS operators sand 5 with 

translations in the 5,8 directions. However, this supermachinery is 

extremely inefficient because the 8 superrotations of the OSp(4/2) 

Lorentz supergroup break the MaurerCartan equation (1.3) and therefore 

.r 
0,- ... 

- 6 -

are outlawed in the formalism. It is not possible to restore the sym-

metry off-shell because unfortunately there exist no superspace action 

which imply the Maurer Cartan equations as classical equations of 

motion such that the theory could be quantized in superspace off-shell 

and off BRS. The best one can do [22) is to obtain the spontaneous 

fibration of the supermanifold [23) as rheonomy conditions using the 

group manifold formalism of Regge and Ne'eman. [24). It is not known, 

however, how to quantize that formalism. 

A more economical scheme to unify the Sp(2) and BRS algebra is 

implicit in the early work of Curci and Ferrari (2). The algebra de

fined by eqs. (1,4,7,10,11) is a semi-direct product Sp(2»)qBRS and can 

be Viewed as the Wigner Inor.U contraction of the simple superalgebra 

OSp( 1/2) (25) •. It is indeed possible to decontract the algebra and 

preserve the Maurer Cartan equations (1.1,1.3). We simply modify the 

variation of the auxiliary field b into 

sb - m2c -.! [c,b) -.! [[c,c),c) 
2 8 

5b - m2c - t [c,b) + i [[c,cl,c) 0.12) 

- i -In this way, on the fields A~, c,c, the operators 0 ,s,s represent 

OSp(l/2) : 

S2 • m20+ 52 _ - m20- ss + SS - - m200 (1.13) 

Equations (l,4,i2) define a non-linear representation of the OSp(l/2) 

superalgebra and the limit of vanishing m2 corresponds to a Wigner InorU 
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contraction. 

The action of the algebra on. the aUJ<:iliary field b is however, 

anomalous. We have as expected 

s 2b - a+b - 0 

jj2b • - a-b - 0 (1.14) 

however: 

(ss + ss) b - m2[c,e] r oOb - 0 (1.15) 

In section 4, by explicit construction of the Faddeev-Popov 

Lagrangian, we shall confirm that m2 is the mass parameter of Curci 

and Ferrari. 

Meanwhile, we set ~ - o. 

2. QUANTIZED YANG-MILLS THEORY WITH CURVATURE AND TORSION 

The most general local polynomial in the fields A~, c,c. b 

which is 

i) of dimension 4 

ii) globally Lorentz and group invariant 

iii) BRS and anti BRS invariant 

iv) of ghost number zero can be written [7] 

fl! - -1 F2 . ~v 

S5 (~ - (1 +B)A ec) 

- i 8A s(ese) (2.1) 

Expanding this Lagran~lan and eliminating the auxiliary field b, 

we obtain by (1.1,4,7) 

e-, .~ 

- 8 -

jf- - 1 F~v - ~ (a~A~)2 

+i(a~eD~c + D~ea~c) 

- i 8 

1 
16 

f a Aa eb cC abc ~ ~ 

A(1-82) fabe fcde eaebcccd 

A is the usual gauge parameter, 8 controls the cc asymmetry. When 

8 - tl, we recover the usual Faddeev-Popov gauges, when 8 - 0, the 

Lagrangian is explicitly c~ symmetric. 

Substituting the equation of motion of b in (1.4) we obtain 

on shell 

s~ a_I a A _ 1+8 
X ~ ~ 2 

sc = 1 
I a A 

~ II 
1-8 

- -2-

[e,c] 

[e,c] 

Remarkedly, the 8 parameter is related to the geometry of the 

(2.2) 

(2.3) 

gauge group. Consider with Cartan [16) a Lie group G with generic ele

ment g and Lie algebra generators Aa. The I-forms wa such that: 

w - WaAa - g-ldg (2.4) 

define a moving frame. A parallel transport is defined by specifying, 

together with the wa a set of connection forms wab. 

The one parameter family of transport 

a 
w b 

1-8 fa wC <_> 'IIa __ 1+8 fa 'II c -r bc b -r bc (2.5) 

is particularly interesting. When 8 - I, the connection vanishes and 

the left invariant moving frame wa is parallel. On the contrary, when 
\ . 

8 • - I, it is easy to check that the right invariant moving frame 

-'- ( 
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a -1 -1 ( 
~ a 11 Aa -dg g -gwg 2.6) 

is now parallel. At last, when B a 0, the geometry is Riemannian. 

If we define a la Cartan the curvature and torsion 2-forms 

Ta a Dwa a dwa + wa wb 
b 

Ra a dwa + wa wC 
b b. c b (2.7) 

and expand them over the wa 

Ta • l Ta wbwc 
bc 

Ra a l Ra wCwd 
b bcd (2.8) 

We find 

T\c - - B f a
bc 

a 1_~2 a e 
R bcd = 4 f be f cd (2.9) 

The Riemannian connection is particularly useful if the group is 

not s~i simple and f a
ab ; O. In this case, indeed, the left invariant 

Haar measure 

n .. II wa (2.10) 

is not invariant under the right translation generated by Lie derivative 

along a left invariant vector field Da: 

D .J wb .. 0 a 

-> .$lDb n a fa ab n (2.11) 

This property is reflected in the fact that the Jacobian of the 

BRS transformation of the Yang-Mills field does not vanish 

Tr(asA~ ) 
o Ab v 

.. Ii \.I fa b \J abc (2.12) 

.c " 
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On the other hand, by definition of curvature, if wa is parallel 

transported around an elementary cycle of base Dc,Dd, it will rotate 

and translate by an amount 

a a b a 
licd waR bcdw + T cd (2.13) 

Therefore, in the Riemannian case, the transport of the volume 

element over the group is path independent: 

lic~n a Ra
acd a faabfbcd a 0 (2.14) 

This property, which holds even when faabdoes not vanish is reflec-

ted in the fact that a gauge transformation of A\.I with gauge parameter 

[c,c] : 

OA\J .. I\J [cc] (2.15) 

has vanishing Jacobian for an arbitrary Lie group. 

Substituting (2.9) in (2.2) we obtain a geometrical form of the 

Curci-Ferrari Lagrangian: 

!£a _ ! F 2 _ ~ (a A )2 
. \.IV LA \.I-II 

+ (o\JcD\JC + D\Jco\Jc) 

- l Tabc 0\J~S cbcc 

- t Rabcd cScbcccd 

which is reminiscent of the super a-model [26]. 

Consider now the multiplication map on the Lie group 

G x G + G 

\.IL(x,y) a xy 

If we pull back by this map the left invariant form w 
xy 

(2.16) 

(2.17) 
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onto (G x G)·, we obtain 

~~ (wxy ) - (xy)-l d(xy) 

_ y-1 x -1 dx Y + y- 1dy (2.18) 

Let us call p and p the components 

p _ y-1 x-1 dx y 

p _ y-1 dy (2.19) . 

It is immediate to verify that 

dx p + pp - 0 dx p - 0 

dyp + pp - 0 dyp - - [p,p] (2.20) 

On the other hand, if we pull back the right invariant form_nxy 

or if we use the reversed map (x,y) + yx 

~; (wyx) - x-1 dx + x-1 y-1dY x 

The mixed equation in (2.20) is replaced by 

dxii = .;. [p,p] 

dyP - 0 

(2.21) 

(2.20a) 

Comparing with (2.3), we may identify, when 6 - !1, the operator 

s,s with dx' dyand associate the gauge choices with left ~L and right 

~R multiplication map. 

~ .; 
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3. GHOST CREATING GAUGES 

In the non Riemannian case 6 '" 0, the Lagrangian (2.1) explicitly 

breaks the Sp(2) symmetry of the BRS equations: 

[0+ + o-]~~ 6(sc + se)se 

This suggests the idea of adding a term of this form to the 

Lagrangian and to consider the 3 parameter gauges: 

~ - - 1 F2 . - t ss(A2 - ).(H6)ec) 
~\I ~ 

- t 6). seese) 

+ ~ ).y se(sc + sc) 

(3.1 ) 

(3.2) 

Of course, the new parameter y breaks ghost conservation, but this 

should not jeopardize unitarity because y multiplies an s exact opera

tor. Moreover, (3.2) is the most general Lagrangian which violates 

ghost conservation but yet preseves BRS and anti BRS symmetry. The 

new model is therefore automatically renormalizable. 

Developing (3.2) and eliminating the b field we find: 

• 2 1 
!Z- - 1 F - -. (a A )2 

~\I 2.>0. ~ ~ 

+ t (D~ cauc + a~e D~c) 

- ~ a A [e,c] 
2 ~'"lI 

- I a A ([c,c] + [c,c]) 4 ~ ~ 

- ).(1-62 + y2)/16 [ee][cc] 

Evaluating explicitly the one loop counterterms we find that 

(3.3) 

all Ward identities are sat[sfied and that the gauge parameters are 

renormalized in the notations of [7] in the following way: 

.-<'-

... 



.r 
.~ 

z _ z _ Cg2 ' 
). 3 (t;;)ZE 

z • Z - 1 6 y 

.' 
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1 - 62 + y2 
2 

(3.4) 

Thus, we find the remarkable result that the geometrical parameters 

6 and yare not renormalized at the one-loop level. We have found no 

Ward identity explaining this stability. (eq. 5.43 of ref. [7] is wrong.) 

The gauges 1 - 62+ y2 - 0 are particularly interesting. There, 

the longitudinal part of the gluon propagator is finite, a well known 

result in the Faddeev-Popov gauge (6-~1, y-O); furthermore, the 4-ghosts 

contact term is absent. 

Restricting again, the choice (A-I, 6-0, y2 __ 1) is especially 

compelling. 

The Lagrangian: 

~m _ 1 F2 -! (a A )2 \lV \l \l 

+ ~ (D\lca\lC + a\lcD\lc) 

- i a\l~([C,C] + [c,c]) (3.5) 

is the Feynman gauge, the Sp(2) symmetry is manifest and there are no 

4-ghost interactions. 

Unitarity is maintained despite the creation of ghosts for the 

following reason. At the tree level, pair of ghosts are only emitted 

by non-physical longitudinal photons. Consider now a pair of ghosts, 

cacb coupled to an arbitrary physical state. Since the S-matrix 

element must be anti-symmetrized in cacb , [ca,~L] can be thought of as 

emitted by an operator sc. The BRS operator commutes with the S-matrix 

L ( 
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and annihilates the physical states. Therefore, the whole S-matrix 

element vanishes. 

4. ANOMALIES 

Consider again the composite gauge field 

x - A' d x\l + c \l 

satisfying the Maurer Cartan BRS equation [19]: 

f' - F 

(4.1) 

(4.2) 

Construct in d dimensions the Chern Simons form w of degree d + g 

satisfying 

dw<A) - Tr (f'n) - Tr (Fn ) 2n - d+g+l (4.3) 

If, using (4.1), we develop w inpower of c, the term of degree g: 

w~ (A,c) - !, c g. 
IS 
"6X w (X) I 

A=A 

satisfies the Wess-Zumino equation [13,27]: 

Isw~ - 0 

(4.4) 

(4.5) 

w~ is the generating functional of the BRS transform of the 

anomalous diagrams of the theory [13,14,15]. Moreover, the reciprocal 

holds [12]: Any local polynominal in the fields (A\l',c,c,b) and the 

source operators which solves the Wess-Zumino equation (4.5) non-trivi-

ally (aw + 0) can be gauge transformed to the form (4.4). 

This reciprocal implies that: 

i) The antighoata play no'role in the classification ~f the ano-

malies. 
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ii) The gauge equivalence classes of anomalies are put in one to one 

correspondence with the cohomology classes of the classical principal 

fiber bundle P by identifying A as an Ehresman connection on P [19]. 

The usual anomalies which occur in perturbation theory have ghost 

number 1 and generate the BRS transfomof the anomalous diagrams with 

external gluons. However, the construction (4.1,4.-4) also provides 

solutions with ghost number 0,2,3 ••• and one would like to interpret 

these geometrical objects in the quantized field formalism. 

The gaO "anomalies" are just topological mass terms [28] and occur 

in odd dimension. 

It has been shown [17] by Faddeev that the w~ g-2 anomaly induces 

a Schwinger term in the commutator of constraints in Yang-Mills model. 

At last, the g-3 anomaly could be viewed as the breaking of the 

Jacobi identity around an inconsistent magnetic monopole not satisfying 

the Dirac quantization condition [18]. 

However, in the usual gauges, the g-3 anomaly cannot occur in per-

turbation since the g-2 diagram vanishes. In our new gauges, corres-

ponding to a Weyl invariant symmetric tensor of degree n: 2n = d + 4, 

there corresponds an anomalous g-3 term w~ - dabcd ••• ca[c,clbFSF~ ••. 

The corresponding disgram has 3 + d/2 external particles: a longi

tudinal gluon, a pair of ghosts and d/ 2 transverse gluons. The 

diagram converges in d-4 and d-6 but is linearly divergent in d-8. 

Since there is no direct ghost-fermion coupling, the potentially 

dangerous diagrams only occur at 2-100ps and presumably can be regulated 

~ (. 
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in a gauge invariant way. Therefore, it seems that these anomalies, 

although possible, are not generated. 

The question remains open in supergravity. 

5. CURCI FERRARI GAUGES 

Let us now return to the OSp(4/2) simple superalgebra defined in 

section I, eq. 12-13. 

If mf ; 0, the Lagrangians (2.1) or (3.2) are no longer BRS 

invariant. Rather we must consider the Lagrangian: 

• - l F2 - t (ss-m2)(A2 - hCc) 
~v -~ (5.1) 

Expanding this equation using 1.1, 1.4 and 1.11 rather than 1.7, 

we obtain in addition to the Lagrangian 2.2 the Curci Ferrari mass 

term [2]: 

!em ,!!!2 A2 _ 2hm2cc 
2 ~ (5.2) 

In the Feynmann gauge h-1 the masses of the ghost and gluon are 

equal. These gauges provide an infrared regularization of Yang-Mills 

theory. However, Curci and Ferrari have shown [2] that the theory is 

unitary only in the m2 - 0 limit. 

In our formalism, we may understand the breaking of unitarity 

algebraically. In the usual construction, the physical states are 

defined as cohomology classes of the BRS operator: 

s I phys> -0 (5.3a) 

phys> : I phys> + s I A > (5.3b) 

-;:-
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This construction is meaningful as long as 

S2 0 (5.4) 

In the massive scheme, we have: 

S2 = m 20 + 

and equations 5.3a and b become incompatible since any state IA> with 

ghost number -1 belongs at least to a triplet and s2jA> + o. 

It follows that the BRS operator can no longer be used to remove 

the longitudinal degrees of freedom and the formalism collapses. 

CONCLUSION 

The new gauges considered in this note provide a systematic gener-

alization of several earlier studies [2,7,10,21]. We have found a 

renormalizable and unitary gauge with continuous Sp(2) cc invariance 

and related it to the Riemannian connection on a Lie group [16]. 

Then, abandoning ghost conservation, we have constructed a 

Feynman gauge where ghost and antighosts pairs are emitted by longitu-

dinal photons, the Sp(2) symmetry is explicit and the 4-ghost inter-

action is absent. In these gauges, ghost number 3 anomalies are 

a priori possible in supergravity. 

The ghost creating gauges, and the relation to the geometry of the 

Lie groups, are certainly amusing and curious. We hope that they will 

prove useful in future models. 

.~. i.., 
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