
Lawrence Berkeley National Laboratory
LBL Publications

Title

Evolutionary reinforcement learning of dynamical large deviations

Permalink

https://escholarship.org/uc/item/2b148795

Journal

The Journal of Chemical Physics, 153(4)

ISSN

0021-9606

Authors

Whitelam, Stephen
Jacobson, Daniel
Tamblyn, Isaac

Publication Date

2020-07-28

DOI

10.1063/5.0015301

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2b148795
https://escholarship.org
http://www.cdlib.org/

Evolutionary reinforcement learning of dynamical large deviations

Stephen Whitelam1,∗ Daniel Jacobson2, and Isaac Tamblyn3,4

1Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
2Division of Chemistry and Chemical Engineering,

California Institute of Technology, Pasadena, California 91125, USA
3University of Ottawa & 4National Research Council of Canada, Ottawa, ON, Canada

We show how to calculate the likelihood of dynamical large deviations using evolutionary re-
inforcement learning. An agent, a stochastic model, propagates a continuous-time Monte Carlo
trajectory and receives a reward conditioned upon the values of certain path-extensive quantities.
Evolution produces progressively fitter agents, eventually allowing the calculation of a piece of a
large-deviation rate function for a particular model and path-extensive quantity. For models with
small state spaces the evolutionary process acts directly on rates, and for models with large state
spaces the process acts on the weights of a neural network that parameterizes the model’s rates.
This approach shows how path-extensive physics problems can be considered within a framework
widely used in machine learning.

I. INTRODUCTION

Machine learning provides the physics community with
methods that complement the traditional ones of physical
insight and manipulation of equations. Many-parameter
ansätze, sometimes encoded in the form of neural net-
works, can learn connections between physical proper-
ties (such as the positions of atoms and a system’s inter-
nal energy) without drawing upon an underlying physi-
cal model [1–15]. Reinforcement learning is a branch of
machine learning concerned with performing actions so
as to maximize a numerical reward [16]. It has a close
connection to ideas of stochastic control enacted by vari-
ational or adaptive algorithms [17–25]. A recent suc-
cess of reinforcement learning is the playing of computer
games [26–43]. Here we show that reinforcement learning
can also be used to propagate trajectories of a stochastic
dynamics conditioned upon potentially rare values of a
path-extensive observable. Doing so allows the calcula-
tion of dynamical large deviations, which are of funda-
mental importance, being to dynamical quantities what
free energies are to static ones [44–47].

Calculating large deviations is a challenging problem
for which specialized numerical methods are required [17–
21, 23, 24, 44, 45, 48–50]. Here we work within the frame-
work of the VARD (variational ansatz for rare dynamics)
method of Ref. [51]. VARD focuses on the ratio of prob-
abilities with which a given dynamical trajectory can be
generated by two stochastic models, the second model
being an ansatz for the behavior of the first model when
conditioned upon a particular value of a time-extensive
observable. We showed previously that simple, physi-
cally motivated choices for the second model can be used
to bound the likelihood of rare events in the first, and,
if certain criteria are fulfilled, calculate this likelihood
exactly [51]. That paper contains details of the conver-
gence criteria and statistical errors associated with the

∗ swhitelam@lbl.gov

VARD method. In the present paper we use evolution-
ary reinforcement learning to calculate bounds associated
with multi-parameter ansätze, in some cases encoded by
neural networks, and show that these bounds are tighter
than bounds associated with the few-parameter, physi-
cally motivated ansätze used in Ref. [51]. Moreover, by
direct comparison with answers obtained by other means
we show that bounds derived from evolutionary learn-
ing already provide a very good approximation of the
log-likelihood of rare events in systems for which state-
of-the-art methods must be used, showing the present
approach to have the potential to address cutting-edge
problems. The evolutionary reinforcement learning pro-
cedure we describe is conceptually and technically sim-
ple, and does not require insight into the models under
study or access to the formal results of large-deviation
theory. It therefore offers an alternative to existing ap-
proaches, and provides an example of one of the poten-
tially large number of applications of reinforcement learn-
ing in physics.

II. LARGE DEVIATIONS BY CHANGE OF
DYNAMICS

To set the large-deviations problem in a form amenable
to reinforcement learning, consider a continuous-time
Monte Carlo dynamics on a set of discrete states, with
Wxy the rate for passing between states x and y, and
Rx =

∑
y 6=xWxy the escape rate from x [52]. This dy-

namics generates a trajectory ω = x0 → x1 → · · · →
xN(ω) consisting of N(ω) jumps xn → xn+1 and associ-
ated jump times ∆tn. In the language of reinforcement
learning, Wxy is a policy (often denoted π) that stochasti-
cally selects a new state and a jump time given a current
state.

Stochastic trajectories can be characterized by path-
extensive observables A = aT , with

a = T−1
N−1∑

n=0

αxnxn+1
. (1)

ar
X

iv
:1

90
9.

00
83

5v
4

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
 2

1
Fe

b
20

20

mailto:{\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OMS/cmsy/b/n/5 {\OT1/cmr/m/n/8 }\OMS/cmsy/b/n/5 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OMS/cmsy/b/n/5 {\OT1/cmr/m/n/8 }\OMS/cmsy/b/n/5 \size@update \enc@update swhitelam@lbl.gov}

2

Here αxy is the change of the observable upon moving
between x and y. This type of observable describes many
physically important quantities, including work, entropy
production, and non-decreasing counting observables [45,
53–56]. Let the typical value of a be a0, the limiting value
of (1) for a long trajectory of the model Wxy. Finite-time
fluctuations a 6= a0 occur with a probability controlled
by the distribution ρT (A), taken over all trajectories of
length T . For large T this distribution often adopts the
large-deviation form [44, 46]

ρT (A) ≈ e−TJ(a). (2)

J(a) is the large-deviation rate function, which quantifies
the likelihood of observing atypical values of a [44, 46].
Calculation of J(a) far from a0 using only the original
model is not feasible, because such values of a occur
rarely. Instead, we can consider a new stochastic model,
which we call the reference model, whose purpose is to al-
low the calculation of J(a) potentially far from a0 [21, 57].

With the reference model we can carry out a form
of importance sampling [17–20, 44, 46, 51, 57–63]. Let

the rates of the reference model be W̃xy and R̃x =∑
y 6=x W̃xy, and let the limiting value of (1) for a long

reference-model trajectory be ã0. Then an upper bound
on J(a) at a = ã0 is given by the value of

J0 = −T−1
N−1∑

n=0

qxnxn+1
(3)

for a long reference-model trajectory, where

qxnxn+1 = ln
Wxnxn+1

W̃xnxn+1

− ∆̃tn(Rxn − R̃xn). (4)

Here ∆̃tn = − ln η/R̃xn is the jump time of the reference
model, and η is a random number uniformly distributed
on (0, 1]. Eq. (3) follows from straightforward algebra
(see Appendix A). It can be motivated by noting that

the probability of a jump x→ y in time ∆̃t occurs in the

reference model with probability W̃xye−R̃x∆̃t, and in the

original model with probability Wxye−Rx∆̃t; Eq. (3) is
the sum over a trajectory of the log-ratio of such terms.

Our aim in this paper to use evolutionary reinforce-
ment learning to find a reference model (a new policy)

W̃xy that produces a particular typical value of (1), say
ã0, and which minimizes (3).

Given a value of ã0, the model associated with the
smallest possible value of (3) is called the driven or ef-
fective model, and its typical behavior is equivalent to
the conditioned rare behavior of the original model [21].
The typical behavior of the driven model yields, from (3),
the piece J(ã0) of the rate function of the original model
at the point a = ã0. In previous work [51] we showed
that the reference model need only be close to the driven
model (in a sense made precise in that paper) in order
to calculate J(ã0); from the typical behavior of such a
reference model we get a bound [Eq. (3)] J0(ã0) > J(ã0),

and by sampling the atypical behavior of the reference
model we can (under certain conditions) compute a cor-
rection J1(ã0) such that J0(ã0) + J1(ã0) = J(ã0). There
we showed that simple, physically-motivated choices of
reference model lead to relatively tight bounds (J0 ≈ J)
and small corrections J1 � J0 for a set of models taken
from the literature. In this paper we show how to fur-
ther improve the quality of these bounds using multi-
parameter ansätze determined by evolutionary learning.
We do not address here the calculation of the correction
term (for more detail of that calculation, including con-
vergence criteria, see Ref. [51]), but for the cases studied
here the correction term is so small that the bound alone
suffices for the purposes of plotting the rate function. Er-
ror bars associated with the bound scale as 1/

√
N , where

N is the number of events in the trajectory. For the mod-
els studied here we chose N large enough that error bars
are smaller than symbol sizes.

The formulation of this section describes an extreme
example of reinforcement learning in which there is no
instantaneous reward, only an overall reward (or return)
associated with the entire trajectory [16]. Given that we
possess a constraint on a and work in continuous time,
this problem also falls outside the (standard) Markov de-
cision process framework [64, 65]. A natural approach
to such problems are evolutionary algorithms, which are
simple to apply and have been shown to be competitive
with gradient-based methods [16] on complex problems
whose solution requires upwards of thousands of parame-
ters [38, 66–72]. We use an evolutionary approach in this
paper.

III. LARGE DEVIATIONS VIA
EVOLUTIONARY REINFORCEMENT

LEARNING

As proof of principle we consider the example of en-
tropy production in the 4-state model of Ref. [73]. The
model’s rates do not satisfy detailed balance, and so it
produces nonzero entropy on average [76]. The dynam-
ical observable a is (1) with αxy = ln(pxy/pyx), where
pxy = Wxy/Rx. In Fig. 1(a) we depict the model (the
middle picture), with states x numbered clockwise from
1 at the top left. Red and blue links denote connections
x→ y with negative and positive entropy production, re-
spectively, and the thickness of the links is proportional
to the rate associated with the connection. The model’s
state space is small enough that the master operator can
be solved by diagonalization [44], yielding the exact rate
function J(a), shown as a black dashed line in Fig. 1(b).

We can reconstruct this function using evolutionary
reinforcement learning by mutating the rates W̃xy of a
set of reference models until desired values of (1) and (3)
are achieved. The process is as follows.

We start by running a trajectory of the reference model
(of N = 104 events) and recording the typical value of the
observable and bound, the long-time limits of (1) and (3),

3

0

50

100

J(a)

−50 −25 0 25 50
a

1 0 · · · 0 1 0 0 0 (1)

W̃xy = e�s↵xyWxy (2)

W̃01 = e�⌘W01 (3)

a (4)

(d) (5)

a = a0 (6)

�T�1 ln ⇢(a) (7)

q(!) =
X

ln

Wxy

W̃xy

· R̃x

Rx + �

!
(8)

a ⌧ a0 (9)

p̃x(�t) = (Rx + �)e�(Rx+�)�t (10)

⇢T (A) =
X

!

p̃(!)�(!)�(T (!) � T)�(A(!) � A) ⇡ e�TJ(a) (11)

=) (12)

ã0 (13)

evolutionevolution

1 0 · · · 0 1 0 0 0 (1)

W̃xy = e�s↵xyWxy (2)

W̃01 = e�⌘W01 (3)

a (4)

(d) (5)

a0 (6)

a � a0 (7)

q(!) =
X

ln

Wxy

W̃xy

· R̃x

Rx + �

!
(8)

p̃xy = W̃xy/R̃x (9)

p̃x(�t) = (Rx + �)e�(Rx+�)�t (10)

⇢T (A) =
X

!

p̃(!)�(!)�(T (!) � T)�(A(!) � A) ⇡ e�TJ(a) (11)

=) (12)

ã0 (13)

1 0 · · · 0 1 0 0 0 (1)

W̃xy = e�s↵xyWxy (2)

W̃01 = e�⌘W01 (3)

a (4)

(d) (5)

a0 (6)

a � a0 (7)

q(!) =
X

ln

Wxy

W̃xy

· R̃x

Rx + �

!
(8)

a ⌧ a0 (9)

p̃x(�t) = (Rx + �)e�(Rx+�)�t (10)

⇢T (A) =
X

!

p̃(!)�(!)�(T (!) � T)�(A(!) � A) ⇡ e�TJ(a) (11)

=) (12)

ã0 (13)

1 0 · · · 0 1 0 0 0 (1)

W̃xy = e�s↵xyWxy (2)

W̃01 = e�⌘W01 (3)

a (4)

(d) (5)

a = a0 (6)

�T�1 ln ⇢(a) (7)

q(!) =
X

ln

Wxy

W̃xy

· R̃x

Rx + �

!
(8)

a ⌧ a0 (9)

p̃x(�t) = (Rx + �)e�(Rx+�)�t (10)

⇢T (A) =
X

!

p̃(!)�(!)�(T (!) � T)�(A(!) � A) ⇡ e�TJ(a) (11)

=) (12)

ã0 (13)

(a)

(b)

40

80

J(σ)

−40 −30
σ

FIG. 1. (a) Evolutionary reinforcement learning can produce
versions of the 4-state model of Ref. [73] whose typical dy-
namics are exactly equivalent to the rare dynamics of the
original model (center) conditioned on values of entropy pro-
duction a. (b) From these we can calculate the corresponding
large-deviation rate function, J(a). The black dashed line is
the exact answer, obtained by matrix diagonalization [44, 46],
and the blue- and gray dashed lines are the Conway-Maxwell-
Poisson bound [74] and the universal current bound [73, 75],
respectively. The green points describe a bound resulting
from a set of models generated by evolutionary reinforcement
learning; this bound is effectively exact. Each green point is
calculated using a single trajectory of a stochastic model pro-
duced by the evolutionary process. Inset left: enlargement
of the boxed area. Inset right: we contrast one model (lower
image) produced by evolution (see panel (a)) with a second
model (upper image) that produces the same typical value of
a but whose rates are uniformly scaled versions of the original
model.

respectively. Initially the reference model is the original
model, W̃xy = Wxy, and so a = a0 and J0 = 0.

To perform an evolutionary step we create a mutant
model whose rates are

Ŵxy = eε(ηxy−1/2)W̃xy. (5)

Here ε is an evolutionary rate and ηxy is a uniformly dis-
tributed random number on (0, 1]. The parameter ε is
a learning rate and its effect is similar to other types of
learning rate in machine learning, or basic step size in
Monte Carlo simulation: if it is too small then we do not
explore parameter space rapidly enough; if it is too large
then the acceptance rate is too low; and somewhere in
between these extremes its precise numerical value does
not matter. The latter regime must be determined em-
pirically, and we found values of ε of order 0.1 to be
acceptable.

With this new set of rates we run a new trajectory

and compute the new values of a and J0, called â and
Ĵ0, respectively. If our selection criteria are fulfilled (see

below) then we accept the mutation, and set W̃xy = Ŵxy,

a = â, and J0 = Ĵ0 (i.e. the mutant model becomes
the new reference model); if not, we retain the current
reference model.

We imposed two types of selection criteria. For the
first, called a-evolution, we accepted the mutation if â is
closer than a to a specified target value a?, i.e. if

|â− a?| < |a− a?|. (6)

For the second, called J-evolution, we accept the muta-
tion if Ĵ0 is smaller than J0 and if â lies within a tolerance
δ of a specified pinning value a†, i.e. if

Ĵ0 < J0 and |â− a†| < δ. (7)

The process of a-evolution leads to reference models able
to generate values of a far from a0, while J-evolution
leads to reference models that generate values of a in a
manner as close as possible to the original model. The
role of the parameter δ in (7) is to constrain the reference
model to a particular window of a, and its value can
be chosen for convenience (e.g. to ensure that we plot
particular points along the rate function).

We alternated 5 steps of a-evolution, using an evolu-
tionary rate of ε = 0.1, with 50 steps of J-evolution,
using an evolutionary rate of ε = 0.05 and a tolerance of
δ = 0.1. During J-evolution we chose the pinning value
a† to be the last value of a produced by the preceding
phase of a-evolution. Upon reaching a specified value a?

we carried out an additional Nev = 105 steps of J evo-
lution (with a† = a?), again using ε = 0.05 and δ = 0.1.
We took Nev large enough that the bound had stopped
evolving under J-evolution. For the 4-state model the
chosen value 105 is much larger than necessary, because
the bound stopped evolving after a few hundred trajec-
tories. We carried out 100 independent simulations, each
with a different target value a?.

Some of the models produced in this way are shown
in Fig. 1(a), and the associated rate-function bounds are
shown as green circles in panel (b). All points (ã0, J0) on
the bound, derived from the typical behavior of the refer-
ence models, lie on the exact rate function of the original
model, indicating that each reference model’s typical dy-
namics is equivalent to the conditioned rare dynamics of
the original model. Some of the reference models so ob-
tained are shown in panel (a) and in the inset of panel
(b). The blue- and gray dashed lines are respectively the
Conway-Maxwell-Poisson bound [74] (see Appendix B)
and the universal current bound [73, 75].

4

(a)
input layer
(lattice)

hidden layer

example configurationstructure

output node

(b)
1-spin filter

7-spin filter

(c)

k-spin
filters 1 2+ 2- L+ L-…

lattice length L

output
node

2-spin filter

trainable
weights

color code

FIG. 2. Sketch of the neural-network reference-model ansatz
used to compute the dynamical large deviations of the FA lat-
tice model. (a) The building block of the network is a kα-spin
“filter”, whose hidden nodes activate when the k consecutive
spins to which they are attached are all of type α = ± (peri-
odic boundaries account for the diagonal line between input
and hidden layers). Here we show a 2+-spin filter applied to
a lattice of L = 15 sites; shown right is an example configura-
tion. The output of the filter is the number of hidden nodes
that are on (here 3) multiplied by the weights denoted by the
blue lines. (b) Structure of a 1-spin filter and a 7-spin filter
(lattice size L = 15). (c) The complete network contains a
single hidden layer of 2K filters (K ≤ L), with 2K trainable
parameters (the colored lines). The network output is the
function f displayed in (9).

IV. A NEURAL-NETWORK ANSATZ FOR
MODELS WITH LARGE STATE SPACES

A. A lattice model whose state space is small
enough to diagonalize

In the previous section we saw that evolutionary rein-
forcement learning using 12 trainable parameters (the 12
rates of the reference model) permits accurate computa-
tion of the rate function, i.e. accurate computation of
probabilities exponentially small in the trajectory length
T . However, direct application of rate-based evolution
is impractical for models with a large number of rates.
To overcome this problem we can encode the rates of the
reference model as a neural network, and we illustrate
this procedure in this section using the one-dimensional
Fredrickson-Andersen (FA) model [77].

The FA model is a lattice model with dynamical rules
that give rise to slow relaxation and complex space-time
behavior [78]. On each site i of a lattice of length L lives
a spin Si, which can be up (+1) or down (−1). Up spins
(resp. down spins) flip down (resp. up) with rate 1 − c
(resp. c) if at least one of their neighboring spins is up;
if not, then they cannot flip. We take the dynamical
observable a to be the number of configuration changes
per unit time, αxy = 1, often called activity [45, 79].

To determine the large-deviation rate function J(a) for
activity we chose a reference-model parameterization

W̃xy = Wxyew0efy−fx . (8)

Here w0 is a parameter that effectively speeds up or slows
down the clock [51] [80], and fx is the value in state x
of the neural network shown in Fig. 2. This network
is inspired by the convolutional neural networks used to
recognize images [81, 82], and consists of a set of feature
detectors or spin “filters” that scan the lattice for speci-
fied spin patterns. Here we consider filters called kα, each
having L hidden nodes; the output of a hidden node is 1
if the k consecutive spins to which it is attached are all in
state α, and is zero otherwise (i.e. the activation function
is a step function). The network has one hidden layer.
The weights connecting the input layer (the lattice) to
the hidden layer are unity, and the weights connecting
the hidden layer to the output node are denoted w±k ;
these are the trainable parameters of the network. All
weights within a filter have the same value, a constraint
suggested by the translational invariance of the model.
The output of the network is

fx = w1g1(Sx) +

K∑

k=2

∑

α=±1

wαk g
α
k (Sx), (9)

where Sx is the configuration of the lattice in state x,
and gαk (·) returns the number of active hidden nodes in
the filter kα [see Fig. 2(a)]. The reference model contains
2K trainable parameters: w0, w1 (only one type of 1-spin
filter is necessary), and w±2 , . . . , w

±
K ; note that K = L

when all filter types are used.
The form of (9) is similar to the multi-parameter aux-

iliary potential of Ref. [23], used to improve the conver-
gence of the cloning method [48] in order to calculate the
large-deviation function of the FA model. The present
approach is different, however, in that the calculation is
done using direct simulation of a reference model whose
parameters are determined by an evolutionary process
(rather than using rare-event algorithms such as cloning
or transition-path sampling [83]), and results in the cal-
culation of J(a) directly (rather than its Legendre trans-
form, which in general contains less information [44]).

To test the method we considered the FA model with
periodic boundary conditions and the parameter choices
c = 0.3 and L = 15, the latter value being small enough
that the exact J(a) can be determined by diagonalization
of the model’s rate matrix; that function is shown as a
black dashed line in Fig. 3(a). We next introduce the
reference model (8), and do evolutionary reinforcement
learning on the weights of the network, as follows.

All neural-network weights w ∈ {w0, w1, {wαK}} of the
reference model (8) were initially zero. Each proposed
evolutionary move consisted of a shift of each weight
by independent Gaussian-distributed random numbers of
zero mean and variance σ2 = 10−4:

w → w +N (0, σ2). (10)

5

(a) (b)

−0.5

0

0.5

w

0 5 10
a

w+
2

w−
2

−0.5

0

0.5

w

0 5 10
a

w+
2

w−
2

−1

0

1

w

0 5 10
a

w0
w1

−1

0

1

w

0 5 10
a

−0.5

0

0.5

w

0 5 10
a

w+
4

w−
4

−0.5

0

0.5

w

0 5 10
a

1 0 · · · 0 1 0 0 0 (1)

a w (2)

W̃01 = e�⌘W01 (3)

a (4)

(d) (5)

a = a0 (6)

�T�1 ln ⇢(a) (7)

q(!) =
X

ln

Wxy

W̃xy

· R̃x

Rx + �

!
(8)

a ⌧ a0 (9)

p̃x(�t) = (Rx + �)e�(Rx+�)�t (10)

⇢T (A) =
X

!

p̃(!)�(!)�(T (!) � T)�(A(!) � A) ⇡ e�TJ(a) (11)

=) (12)

ã0 (13)

1 0 · · · 0 1 0 0 0 (1)

a w (2)

W̃01 = e�⌘W01 (3)

a (4)

(d) (5)

a = a0 (6)

�T�1 ln ⇢(a) (7)

q(!) =
X

ln

Wxy

W̃xy

· R̃x

Rx + �

!
(8)

a ⌧ a0 (9)

p̃x(�t) = (Rx + �)e�(Rx+�)�t (10)

⇢T (A) =
X

!

p̃(!)�(!)�(T (!) � T)�(A(!) � A) ⇡ e�TJ(a) (11)

=) (12)

ã0 (13)

1 0 · · · 0 1 0 0 0 (1)

a w (2)

W̃01 = e�⌘W01 (3)

a (4)

(d) (5)

a = a0 (6)

�T�1 ln ⇢(a) (7)

q(!) =
X

ln

Wxy

W̃xy

· R̃x

Rx + �

!
(8)

a ⌧ a0 (9)

p̃x(�t) = (Rx + �)e�(Rx+�)�t (10)

⇢T (A) =
X

!

p̃(!)�(!)�(T (!) � T)�(A(!) � A) ⇡ e�TJ(a) (11)

=) (12)

ã0 (13)

1 0 · · · 0 1 0 0 0 (1)

a w (2)

W̃01 = e�⌘W01 (3)

a (4)

(d) (5)

a = a0 (6)

�T�1 ln ⇢(a) (7)

q(!) =
X

ln

Wxy

W̃xy

· R̃x

Rx + �

!
(8)

a ⌧ a0 (9)

p̃x(�t) = (Rx + �)e�(Rx+�)�t (10)

⇢T (A) =
X

!

p̃(!)�(!)�(T (!) � T)�(A(!) � A) ⇡ e�TJ(a) (11)

=) (12)

ã0 (13)

(c)
1 0 · · · 0 1 0 0 0 (1)

ã0 = 0.07 (2)

L = 11 (3)

L = 41 (4)

L = 81 (5)

(d) (6)

a = a0 (7)

T/L2 (8)

q(!) =
X

ln

Wxy

W̃xy

· R̃x

Rx + �

!
(9)

a ⌧ a0 (10)

p̃x(�t) = (Rx + �)e�(Rx+�)�t (11)

⇢T (A) =
X

!

p̃(!)�(!)�(T (!) � T)�(A(!) � A) ⇡ e�TJ(a) (12)

=) (13)

ã0 (14)

1 0 · · · 0 1 0 0 0 (1)

a0 ⇡ 3.2 (2)

1 (3)

5 (4)

10 (5)

(d) (6)

a = a0 (7)

T/L2 (8)

q(!) =
X

ln

Wxy

W̃xy

· R̃x

Rx + �

!
(9)

a ⌧ a0 (10)

p̃x(�t) = (Rx + �)e�(Rx+�)�t (11)

⇢T (A) =
X

!

p̃(!)�(!)�(T (!) � T)�(A(!) � A) ⇡ e�TJ(a) (12)

=) (13)

ã0 (14)

0

1

2

J(a)

0 5 10
a

J [CMP]

K = 7
ev. traj. 1
ev. traj. 2
J [exact]

0.4

1.4

3.2

4

10

FIG. 3. (a) Evolutionary reinforcement learning using neural-network spin filters up to order K = 7 (green circles) reproduces
the large-deviation rate function J(a) for activity a in the FA model of L = 15 sites (black). Also shown is the CMP universal
activity bound [74] (gray dashed), which results from a set of reference models whose rates are uniform multiples of those of
the original model (see Appendix B), and evolutionary trajectories of two neural-network reference models (gray and orange).
(b) Values of some of the weights of the neural network (9) for the reference models that produce the green circles in panel (a).
(c) Space (vertical) versus time (horizontal) plots for trajectories of length T = 2 × 103 for 5 different reference models. Blue
pixels indicate up-spins. The typical values of the activity for each model are shown left of the plot; the center reference model
is the original model.

The parameter σ is a learning rate and its effect is similar
to other types of learning rate in machine learning, or ba-
sic step size in Monte Carlo simulation. We found values
of σ of order 0.01 to be acceptable. We ran trajectories
for N = 105 events, and recorded the values of (1) and
(3) after each proposed trajectory. We did a-evolution
on the parameters w0 and w1 until a specified value a?

was reached. This procedure was as described for the 4-
state model, with the additional restriction that the new
bound must be not more than a value µ = 0.2 larger than
the current bound. That is, the proposed set of weights
was accepted if

|â− a?| < |a− a?| and â < a+ µ. (11)

We introduced the parameter µ in order to test the ef-
fect of replacing the alternating a- and J-evolution of
Section III with a “regularized” form of a-evolution (one
that does not allow the bound to grow beyond a partic-
ular size in any one step). If µ was chosen very small
(e.g. . 10−3) then a-evolution could not get going at all,
because the bound must be allowed to increase in size
at some point in the calculation. If µ was set very large
(e.g. of order 10, so that the second requirement in (11)
was effectively not present), then we observed the effect
seen with the gray line in Fig. 5, whereby the bound
obtained after a-evolution and prior to J-evolution was
much larger than the exact value of J . For intermediate
values of µ, such as the value 0.2 chosen here, the bound
obtained prior to J-evolution was in general close to the
exact answer (see the gray and orange lines in Fig. 3).
However, the total CPU time required in the cases of
moderate- and large µ were similar.

We then did J-evolution using a tolerance of δ = 0.02
[see Eq. (7)], for Nev = 3×104 proposed trajectories, with

higher-order spin filters applied. We ran 50 simulations,
each with a different target value of a.

In Fig. 3(a) we show results of these calculations us-
ing spin filters up to order K = 7. Increasing K from 0
improves the quality of the bound until, for K & 4, the
bound becomes numerically close to the exact answer;
see Fig. 4. That figure demonstrates that the quality of
the bound exceeds that of the few-parameter, physically-
motivated ansatz used in Ref. [51]. The neural network
contains many fewer parameters than the model has rates
(unlike in many deep-learning studies), and so we do not
necessarily expect the bound to be exact. If the bound is
good, the exact answer can be calculated by computing
a correction term [51]. Here, though, the correction term
(the difference between the bound, i.e. the green circles,
and the exact answer, i.e. the black dashed line) is very
small, indicating that the typical dynamics of this set of
reference models is similar to the conditioned rare be-
havior of the original model. Comparison of these results
with the exact result, and with the (c, λ)-bound from
Ref. [51] (Fig. 4), indicates that rare trajectories of the
FA model with parameter c resemble the typical trajec-
tories of versions of the FA model with different values of
the parameter c, but with slightly different tendencies to
display spin domains of different lengths. These tenden-
cies are quantified by the weights of the neural network,
some of which are shown in Fig. 3(b). In panel (c) we
show space-time plots of the trajectories of 5 reference
models.

In Fig. 4 we reproduce some of the results shown in
Fig. 3(a), together with results obtained for different val-
ues of K. In physical terms the value of K determines
the lengthscale over which the dynamical rules of the
reference model act. The original model possesses only

6

0

1

2

J(a)

0 5 10
a

J [CMP]
J0[λ, c]

K = 2
K = 4
K = 7
J [exact]

FIG. 4. As Fig. 3(a), showing results for neural-network spin
filters up to order K = 2, 4, 7. For K & 4 the bound is
numerically close to the exact answer. Also shown is the CMP
universal activity bound [74] (gray), which results from the
typical dynamics of a reference model whose rates are uniform
multiples of those of the original model, and the (c, λ) bound
of Ref. [51] (blue). The latter is essentially equivalent to the
case K = 1.

nearest-neighbor dynamical rules; its dynamics condi-
tioned upon certain values of a involves potentially long-
range correlations [45]. Fig. 4 shows how closely (in terms
of probabilities) the typical dynamics of reference mod-
els whose dynamical rules possess K-spin correlations ap-
proximate this conditioned dynamics: K ≈ 4 is sufficient
to closely approximate the rate function.

B. A lattice model whose state space is too large
to diagonalize

With proof of principle demonstrated using models
whose state space is small enough to solve by matrix di-
agonalization, we show in Fig. 5 that bounds produced by
evolutionary learning can closely approximate rate func-
tions whose calculation requires state-of-the-art numeri-
cal methods. For this purpose we chose the 100-site FA
model of Ref. [50] (for c = 0.1), whose state space is large
enough that state-of-the-art methods are needed to com-
pute its large-deviation rate function. This FA model has
open boundary conditions.

Initial tests with this larger FA model, done using evo-
lutionary learning on the network shown in Fig. 2 (with
K = 5), produced a bound that was visibly less close to
the exact answer than in the case L = 15, suggesting the
need for a neural-network ansatz able to detect more de-
tailed features. We therefore replaced the network shown
in Fig. 2 with the one shown in Fig. 5(a). This new net-
work is capable of learning which features (spin patterns)
are most significant; by contrast, the network shown in
Fig. 2 searches only for homogenous blocks of spins.

Each hidden node i = 1, 2, . . . L in the new network
couples to K input nodes (lattice sites), and takes one
of 2K values. This value, called hx(i) in microstate x,
is determined by the state of the K spins to which is it
connected, via

hx(i) =

K−1∑

m=0

2m
(

1 + Sxi+m
2

)
. (12)

The output of the network in microstate x is then

fx =

L∑

i=1

whx(i), (13)

where the 2K weights whx(i) are, along with w0, the
trainable parameters of the model. The reference-model
ansatz is again (8), but now with (13) replacing (9).

We ran 40 evolutionary simulations, each with a dif-
ferent target value of a between 0.1 and 30 (the typical
a of the original model is approximately 3.5). We turned
on the neural network from the start, and used trajecto-
ries of N = 2 × 105 events. We did a-evolution (using
Eq. (6)) to generate the desired values of a, and then did
J-evolution for ≈ 3× 104 proposed trajectories. Results
are shown in Fig. 5(b): for K & 4, the bound produced
is inexact, but numerically close to the exact answer. In
panel (c) we show the evolution of the bound as a function
of the number of evolutionary steps ntraj. As a guide to
CPU consumption, 100 trajectories of N = 2×105 events
(each followed by a neural-network mutation step) take
5, 17, and 31 seconds for the cases K = 2, 4 and 5, re-
spectively, on a 3.1 GHz Intel Core i7 processor (and so
the total simulation time for the case K = 5 was of order
4 hours on that processor).

We note that we used slightly different variants of the
a- and J-evolution protocols for each of the 4-state model
and the small- and large FA models (each protocol is de-
tailed above), in order to explore the effect of changing
protocol. We did not find one protocol to be obviously
better than the others, suggesting that a number of dif-
ferent evolutionary strategies can be used to tackle these
problems.

V. CONCLUSIONS

In previous work we showed how to calculate dynam-
ical large-deviation rate functions using a variational
ansatz for rare dynamics (VARD) [51]. The first step
of the VARD method is to calculate a rate-function
bound, derived from the typical behavior of the ansatz,
and we showed in that paper that ansätze containing a
few parameters motivated by physical insight produced
tight bounds for a set of models taken from the liter-
ature. In this paper we have shown that multiparam-
eter ansätze, in the form of a relatively simple neural
network (“VARDnet”), combined with evolutionary re-
inforcement learning, produce even tighter bounds on

7

2

4

6

J

1×104 2×104

ntraj

K = 3
K = 4
K = 5

0

2

4

J(a)

0 10 20
a

J0[CMP]
J0[λ, c, µ]

K = 2
K = 4
K = 5
ev. traj. 1

MPS

0

2

4

J(a)

0 10 20
a

J0[CMP]
J0[λ, c, µ]

K = 2
K = 4
K = 5
ev. traj. 1

MPS

2

4

6

J

101 102 103 104 105

ntraj

(a)

0

2

4

J(a)

0 10 20
a

J0[CMP]
J0[λ, c, µ]

K = 2
K = 4
K = 5
ev. traj. 1

MPS

(b) (c)

FIG. 5. (a) A spin filter (feature detector) related to those shown in Fig. 2, but generalized to recognize 2K features in the
vicinity of each lattice site (here, for the purpose of illustration, L = 20 and K = 4). Each hidden node possesses 2K internal
states (identified by colors) and the same number of parameters; the output of the network is (13). (b) Similar to Fig. 3(a),
but using the FA model of Ref. [50] (L = 100, c = 0.1). We show the CMP bound [74] (gray), the three-parameter bound of
Ref. [51] (blue), the results of evolutionary learning using the network shown in panel (a), for K = 2, 4, or 5, and the exact
answer obtained using matrix product states [50] (black). Evolutionary learning produces a bound numerically close to the
exact answer. We also show one evolutionary trajectory (gray). (c) Bound versus number of trajectories of J-evolution for
one particular choice of a (labeled by the black arrow connecting panels (b) and (c)), for the cases K = 2, 4 and 5 (the latter
corresponds to the gray line in panel (b)).

dynamical large-deviation rate functions for three such
models. In these cases no physical insight into the model
under study was required. The second step in the VARD
method is to calculate a correction term in order to turn
the bound into the exact rate function; here, for the three
models considered, the discrepancy between bound and
exact answer (obtained by other means) is so small that
for the purposes of plotting the rate function no correc-
tion is required. In the case of Fig. 5, calculation of the
large-deviation rate function for the model in question
requires state-of-the-art methods [50].

In treating the two lattice models we have introduced
neural networks as reference-model ansätze for the rare
behavior of each; the question of which network is best for
a particular model and application is an open one. We
used the single-layer architectures shown in Fig. 2 and
Fig. 5, partly because the rates for reference-model spin
flips then depend only on the states of the feature detec-
tors to which a spin is attached (here a number of order
5), and this allows relatively efficient and rapid updat-
ing of rate tables during the course of a continuous-time
Monte Carlo simulation. A natural next step would be to
apply a deeper network during later stages of evolution
(e.g. once the evolutionary trajectories in Fig. 5(c) have
reached their plateaux). Doing so would make for more
costly simulation, but would allow each reference-model
rate to be informed by the state of the entire lattice,

thereby increasing the descriptive power of the ansatz.

The approach described here does not rely on the for-
mal results of large-deviation theory, making it comple-
mentary to the growing body of methods based on such
results [21, 23, 24, 44, 45, 48, 49, 84]. More generally, the
present approach can be adapted to treat other physical
problems that involve time- or path-extensive quantities;
one example is molecular self-assembly, whose outcome
depends in some potentially complex way on the entire
history of the interactions of a set of molecules [85].

VI. ACKNOWLEDGMENTS

We thank Hugo Touchette for comments. This work
was performed as part of a user project at the Molec-
ular Foundry, Lawrence Berkeley National Laboratory,
supported by the Office of Science, Office of Basic En-
ergy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02–05CH11231. D.J. acknowledges
support from the Department of Energy Computational
Science Graduate Fellowship. I.T. performed work at the
National Research Council of Canada under the auspices
of the AI4D Program.

8

Appendix A: Large deviations by change of model

For completeness we present the derivation of Eq. (3) of
the main text, which follows straightforwardly from the
definition of the probability distribution. The derivation
follows Ref. [51] with minor notational changes. For more
on the ideas of dynamic importance sampling see e.g.
Refs. [44, 57–63] and Ref. [21] (esp. Section 5).

Consider a continuous-time dynamics on a set of dis-
crete states, defined by the master equation [86]

∂tPx(t) =
∑

y 6=x

WyxPy(t)−RxPx(t). (A1)

Here Px(t) is the probability that the system is in (mi-
cro)state x at time t, Wxy is the rate for passing from
state x to state y, and Rx =

∑
y 6=xWxy is the escape

rate from x. A standard way of simulating (A1) is as
follows [52]: from state x, choose a new state y with
probability

pxy =
Wxy

Rx
, (A2)

and a time increment ∆t from the distribution

px(∆t) = Rxe−Rx∆t. (A3)

The dynamics defined by (A2) and (A3) generates a tra-
jectory ω = x0 → x1 → · · · → xN(ω) consisting of N(ω)
jumps xn → xn+1 and associated jump times ∆tn. As-
sociated with an ensemble of trajectories of length T is
the probability distribution

ρT (A) =
∑

ω

p(ω)δ(T)δ(A) (A4)

of a time-extensive dynamical observable

A(ω) =

N(ω)−1∑

n=0

αxnxn+1
. (A5)

In these expressions δ(X) ≡ δ(X(ω)−X) specifies a
constraint on the trajectory, αxy is the change of A
upon moving from x to y, and A(ω) is the sum of
these quantities over a single trajectory ω. We define
a(ω) ≡ A(ω)/T (ω) as the time-intensive version of A.
T (ω) is the elapsed time of trajectory ω, and p(ω) is the
probability of a trajectory ω, proportional to a product
of factors (A2) and (A3) for all jumps of the trajectory.

Fluctuations of a are quantified by ρT (A), which for
large T often adopts a large-deviation form [44, 46]

ρT (A) ≈ e−TJ(a). (A6)

Direct evaluation of (A4) using the dynamics (A2) and
(A3) leads to good sampling of J(a) near the typical value
a0, where J(a0) = 0, and poor sampling elsewhere. To

overcome this problem we can introduce a reference dy-
namics

p̃xy =
W̃xy

R̃x
, (A7)

and

p̃x(∆t) = R̃xe−R̃x∆t, (A8)

in which W̃xy is a modified version of the rate of the

original model, and R̃x ≡
∑
y W̃xy. Let p̃(ω) be the

trajectory weight of the reference dynamics, proportional
to a product of factors (A7) and (A8) for all jumps of the
trajectory. We write

〈·〉a ≡
∑

ω

p(ω)(·)δ(T)δ(aT) (A9)

and

〈·〉aref ≡
∑

ω

p̃(ω)(·)δ(T)δ(aT) (A10)

for the ensemble averages over trajectories (having length
T and observable A = aT) of the original and reference
models, respectively. We can then write (A4) as

ρT (A) = 〈1〉a

= 〈eTq(ω)〉aref (A11)

= eT 〈q(ω)〉aref 〈eTδq(ω)〉aref . (A12)

Here eTq(ω) = p(ω)/p̃(ω) is the reweighting factor (also
known as the likelihood ratio or Radon-Nikodym deriva-
tive [21, 57]). We have

q(ω) = T−1 ln
p(ω)

p̃(ω)
= −T−1

N−1∑

n=0

qxnxn+1
, (A13)

where

qxnxn+1
= ln

Wxnxn+1

W̃xnxn+1

− ∆̃tn(Rxn
− R̃xn

). (A14)

Here ∆̃tn = − ln η/R̃xn
is the jump time of the reference

model (η is a random number uniformly distributed on
(0, 1]). In (A12) the quantity δq(ω) ≡ q(ω)− 〈q(ω)〉aref .

Taking logarithms of (A12) and the large-T limit gives
us

J(ã0) = J0(ã0) + J1(ã0), (A15)

where

J0(ã0) = −〈q(ω)〉ã0ref (A16)

and

J1(ã0) = − 1

T
ln〈eTδq(ω)〉ã0ref . (A17)

9

0

50

J(a)

−25 0 25 50
a

FIG. 6. Supplement to Fig. 1 of the main text, the large-
deviation rate function J(a) for entropy production a in a 4-
state model (black and green). We show as a blue dashed line
the CMP universal activity bound [74] and its time reverse,
Eq. (B11), which together provide a rudimentary bound on
any current. Shown in gray is the universal current bound [73,
75].

In these expressions ã0 is the typical value of a for the
reference model. The term (A16) is by Jensen’s inequal-
ity an upper bound on the piece of the rate function J(a)
at the point a = ã0, i.e

J(ã0) ≤ J0(ã0). (A18)

The bound can be determined by computing the values
of (A5) and (A13) for a suitably long reference-model
trajectory. If the reference model’s typical dynamics is
similar to the conditioned rare dynamics of the original
model (something we generally do not know in advance),
then the bound J0(ã0) will be tight, and if it is tight
enough the exact value of J(ã0) can be calculated by
sampling the (slightly) atypical behavior of the refer-
ence model [51]. In the main text we show that evo-
lutionary reinforcement learning can generate reference
models for which the correction term is very small. The
optimal reference model, called the driven or auxiliary
process [21, 44, 57, 84], is one for which the bound is
exact, meaning that its typical behavior is equivalent to
the conditioned rare behavior of the original model.

Appendix B: The CMP universal activity bound

The Conway-Maxwell-Poisson (CMP) formula

JCMP(a) =
k0

a0

(
a ln

a

a0
+ a0 − a

)
, (B1)

gives a bound on the large-deviation rate function J(a)
for any non-decreasing counting observable a; here a0 is

the typical value of the observable, and k0 is the typical
dynamical activity k (the total number of configuration
changes per unit time). Eq. (B1) was derived in Ref. [74]
from Level 2.5 of large deviations [87, 88], and we have
used this form in Fig. 3, Fig. 4, and Fig. 5 (for the case
a = k).

We note here that the CMP formula can be straightfor-
wardly derived from the generic bound (3), without using
the result known as Level 2.5 of large deviations. Let a0

and k0 be the typical activities produced by an original
model Wxy. Then a reference model W̃xy = γWxy, whose
rates are uniformly rescaled versions of those of the orig-
inal model, will produce typical activities γa0 and γk0

(a uniform rescaling of rates does not affect the choice

of new state, i.e. W̃xy/R̃x = Wxy/Rx, and so the refer-
ence model will visit the same set of states as the original
model, just faster or slower). The reference-model escape

rate is then R̃x = γRx. In (3) we assume the long-time,
steady-state limit, and so replace the fluctuating jump
time ∆̃tn with its mean 1/R̃xn

, giving

J0(ã0) = T−1
N−1∑

n=0

(
ln γ +

1− γ
γ

)

= k̃0

(
ln
ã0

a0
+
a0 − ã0

ã0

)

=
k̃0

ã0

(
ã0 ln

ã0

a0
+ a0 − ã0

)

=
k0

a0

(
ã0 ln

ã0

a0
+ a0 − ã0

)
, (B2)

where ã0 = γa0 and k̃0 = γk0 are respectively the mean
value of a and k for the reference model (a0 and k0 are
the analogous quantities for the original model). Eq. (B2)
is the bound associated with the single reference model
whose rates are W̃xy = γWxy. By choosing different val-
ues of γ we create a family of reference models, each
with a distinct typical behavior, and so we can replace
ã0 in Eq. (B2) with the general a; doing so, we recover
Eq. (B1), the CMP bound.

The derivation leading to (B2) specifies only that
a = A/T be derived from a time-extensive quantity A,
so that rescaling all rates by a factor γ > 0 changes the
typical value of the observable, a0, to γa0. Thus the
CMP bound applies to any time-extensive quantity, in-
cluding currents, not just non-decreasing counting vari-
ables. This fact justifies its inclusion in Fig. 1, where we
consider entropy production (a current). However, the
CMP bound does not address the a < 0 sector, which
cannot be accessed if the typical value of the observable of
the original model is a0 > 0 (because any reference model
obtained under a rescaling of rates has ã0 = γa0 > 0).

A simple way to produce a bound pertaining to the
a < 0 sector is to use the γ-rescaling on the time-reversed
version of the original model. To see this, we proceed
as follows. Consider the reference model obtained by
rescaling the rates of the original model, Wxy, by the

10

exponential of (minus) the entropy production:

W̃xy = e−σxyWxy (B3)

=
πy
πx

pyx
pxy

Wxy (B4)

=
Rx
πx
πypyx. (B5)

Here we are using standard notation for Markov chains:
pxy = Wxy/Rx is the probability of moving to (mi-
cro)state y, given that we are in state x; Rx =

∑
yWxy is

the escape rate from x; and πx is the invariant measure,
which satisfies

πx =
∑

y

πypyx. (B6)

Summing (B5) over y and using (B6) shows that the es-
cape rate of the reference model is equal to that of the
original:

R̃x =
∑

y

Wxy =
∑

y

(B5) =
Rx
πx
πx = Rx. (B7)

Then upon dividing (B4) by R̃x = Rx we have

p̃xy =
πy
πx
pyx, (B8)

and so this reference model generates the time-reversed
Markov chain [89]. If the observable a is a current, odd
under time reversal, then the typical value of the observ-
able in the reference model is ã0 = −a0.

To determine the value of the bound associated with
the time-reversed model we inset (B3) into (3), giving

J0 = −T−1
N−1∑

n=0

σxnxn+1
= −σ̃0 = σ0. (B9)

Thus choosing the time-reversed model to be the refer-
ence model gives as a bound a single point (−a0, σ0) on
the rate function of any current a; here a0 and σ0 are the
typical values of the current and the entropy production
rate in the original model.

If we now apply a γ-rescaling to the time-reversed
model we create a family of reference models with rates

W̃xy = γe−σxyWxy. (B10)

Using (3) and the results (B2) and (B9) it is straightfor-
ward to show that the bound associated with this family
of reference models is

J0(a) =
σ0

a0
|a|+ k0

a0

(
|a| ln |a|

a0
+ a0 − |a|

)
. (B11)

Hence one bound on any current a is provided by the
combination of (B2) (with ã0 → a) for a ≥ 0 and (B11)
for a < 0. We show this bound (for the choice a = σ for
the 4-state model) as a blue dotted line in Fig. 6. The
double-well form results from the fact that the associated
family of reference models is a glued-together combina-
tion of forward and time-reversed ‘original’ models with
uniformly rescaled rates. Comparison with the universal
current bound [73, 75] (gray dotted line) shows the lat-
ter to derive from a different family of models (see Figs.
2 and 3 of Ref. [51] for a comparison between the uni-
versal current bound and the bounds produced by other
families of reference models).

[1] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401
(2007).

[2] K. Mills, M. Spanner, and I. Tamblyn, Physical Review
A 96, 042113 (2017).

[3] A. L. Ferguson and J. Hachmann, Molecular Systems De-
sign & Engineering (2018).

[4] N. Artrith, A. Urban, and G. Ceder, The Journal of
Chemical Physics 148, 241711 (2018).

[5] A. Singraber, T. Morawietz, J. Behler, and C. Dellago,
Journal of Physics: Condensed Matter 30, 254005 (2018).

[6] C. Desgranges and J. Delhommelle, The Journal of
Chemical Physics 149, 044118 (2018).

[7] B. Thurston and A. Ferguson, Molecular Simulation , 1
(2018).

[8] A. Singraber, J. Behler, and C. Dellago, Journal of
Chemical theory and computation 15, 1827 (2019).

[9] J. Han et al., arXiv preprint arXiv:1611.07422 (2016).
[10] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller,

and A. Tkatchenko, Nature Communications 8, 13890
(2017).

[11] K. Yao, J. E. Herr, D. Toth, R. Mckintyre, and
J. Parkhill, Chem. Sci. 9, 2261 (2018).

[12] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans,
A. Tkatchenko, and K.-R. Mller, The Journal of Chem-
ical Physics 148, 241722 (2018).

[13] J. Carrasquilla and R. G. Melko, Nature Physics 13, 431
(2017), 1605.01735.

[14] N. Portman and I. Tamblyn, Journal of Computational
Physics 350, 871 (2017).

[15] B. S. Rem, N. Käming, M. Tarnowski, L. Asteria,
N. Fläschner, C. Becker, K. Sengstock, and C. Weiten-
berg, Nature Physics (2019), 10.1038/s41567-019-0554-0.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction (2018).

[17] T. I. Ahamed, V. S. Borkar, and S. Juneja, Operations
Research 54, 489 (2006).

[18] A. Basu, T. Bhattacharyya, and V. S. Borkar, Mathe-
matics of operations research 33, 880 (2008).

[19] V. S. Borkar, in Proceedings of the 19th International
Symposium on Mathematical Theory of Networks and

http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1038/ncomms13890 http://10.0.4.14/ncomms13890 https://www.nature.com/articles/ncomms13890{#}supplementary-information
https://doi.org/10.1038/ncomms13890 http://10.0.4.14/ncomms13890 https://www.nature.com/articles/ncomms13890{#}supplementary-information
http://dx.doi.org/ 10.1039/C7SC04934J
http://dx.doi.org/10.1063/1.5019779
http://dx.doi.org/10.1063/1.5019779
http://dx.doi.org/10.1038/nphys4035
http://dx.doi.org/10.1038/nphys4035
http://arxiv.org/abs/1605.01735
http://dx.doi.org/10.1038/s41567-019-0554-0

11

Systems–MTNS, Vol. 5 (2010).
[20] V. Borkar, S. Juneja, A. Kherani, et al., Communications

in Information & Systems 3, 259 (2003).
[21] R. Chetrite and H. Touchette, Journal of Statistical Me-

chanics: Theory and Experiment 2015, P12001 (2015).
[22] H. J. Kappen and H. C. Ruiz, Journal of Statistical

Physics 162, 1244 (2016).
[23] T. Nemoto, R. L. Jack, and V. Lecomte, Physical Review

Letters 118, 115702 (2017).
[24] G. Ferré and H. Touchette, arXiv preprint

arXiv:1803.11117 (2018).
[25] T. A. Bojesen, Phys. Rev. E 98, 063303 (2018).
[26] C. J. Watkins and P. Dayan, Machine learning 8, 279

(1992).
[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. Riedmiller, arXiv
preprint arXiv:1312.5602 (2013).

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, et al., Nature 518, 529 (2015).

[29] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,
Journal of Artificial Intelligence Research 47, 253 (2013).

[30] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, in Interna-
tional conference on machine learning (2016) pp. 1928–
1937.

[31] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li,
D. d. L. Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, et al., arXiv preprint arXiv:1801.00690
(2018).

[32] E. Todorov, T. Erez, and Y. Tassa, in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on (IEEE, 2012) pp. 5026–5033.

[33] M. L. Puterman, Markov decision processes: discrete
stochastic dynamic programming (John Wiley & Sons,
2014).

[34] A. Asperti, D. Cortesi, and F. Sovrano, arXiv preprint
arXiv:1804.08685 (2018).

[35] M. Riedmiller, in European Conference on Machine
Learning (Springer, 2005) pp. 317–328.

[36] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, Au-
tonomous Robots 27, 55 (2009).

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, arXiv preprint arXiv:1707.06347 (2017).

[38] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O.
Stanley, and J. Clune, arXiv preprint arXiv:1712.06567
(2017).

[39] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba, arXiv preprint
arXiv:1606.01540 (2016).

[40] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
W. Jaśkowski, in Computational Intelligence and Games
(CIG), 2016 IEEE Conference on (IEEE, 2016) pp. 1–8.

[41] M. Wydmuch, M. Kempka, and W. Jaśkowski, arXiv
preprint arXiv:1809.03470 (2018).

[42] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al., nature 529, 484
(2016).

[43] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, et al., Nature 550, 354 (2017).

[44] H. Touchette, Physics Reports 478, 1 (2009).
[45] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van

Duijvendijk, and F. van Wijland, Journal of Physics A:
Mathematical and Theoretical 42, 075007 (2009).

[46] F. Den Hollander, Large Deviations, Vol. 14 (American
Mathematical Soc., 2008).

[47] R. S. Ellis, Entropy, large deviations, and statistical me-
chanics (Springer, 2007).

[48] C. Giardina, J. Kurchan, and L. Peliti, Physical Review
Letters 96, 120603 (2006).

[49] U. Ray, G. K.-L. Chan, and D. T. Limmer, Physical
Review Letters 120, 210602 (2018).

[50] M. C. Bañuls and J. P. Garrahan, arXiv preprint
arXiv:1903.01570 (2019).

[51] D. Jacobson and S. Whitelam, Phys. Rev. E 100, 052139
(2019).

[52] D. T. Gillespie, The Journal of Physical Chemistry 81,
2340 (1977).

[53] U. Seifert, Physical Review Letters 95, 040602 (2005).
[54] T. Speck, A. Engel, and U. Seifert, Journal of Statis-

tical Mechanics: Theory and Experiment 2012, P12001
(2012).

[55] V. Lecomte, A. Imparato, and F. v. Wijland, Progress
of Theoretical Physics Supplement 184, 276 (2010).

[56] É. Fodor, M. Guo, N. Gov, P. Visco, D. Weitz, and
F. van Wijland, EPL (EuroPhysics Letters) 110, 48005
(2015).

[57] J. Bucklew, Introduction to rare event simulation
(Springer Science & Business Media, 2013).

[58] P. W. Glynn and D. L. Iglehart, Management Science 35,
1367 (1989).

[59] J. S. Sadowsky and J. A. Bucklew, IEEE transactions on
Information Theory 36, 579 (1990).

[60] J. A. Bucklew, P. Ney, and J. S. Sadowsky, Journal of
Applied Probability 27, 44 (1990).

[61] J. A. Bucklew, Large deviation techniques in decision,
simulation, and estimation (Wiley New York, 1990).

[62] S. Asmussen and P. W. Glynn, Stochastic simulation: al-
gorithms and analysis, Vol. 57 (Springer Science & Busi-
ness Media, 2007).

[63] S. Juneja and P. Shahabuddin, Handbooks in operations
research and management science 13, 291 (2006).

[64] Y. Li and F. Cao, European Journal of Operational Re-
search 224, 333 (2013).

[65] S. S. Singh, V. B. Tadić, and A. Doucet, European Jour-
nal of Operational Research 178, 808 (2007).

[66] J. H. Holland, Scientific american 267, 66 (1992).
[67] D. B. Fogel and L. C. Stayton, BioSystems 32, 171

(1994).
[68] J. Lehman, J. Chen, J. Clune, and K. O. Stanley, in

Proceedings of the Genetic and Evolutionary Computa-
tion Conference (2018) pp. 450–457.

[69] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever,
arXiv preprint arXiv:1703.03864 (2017).

[70] X. Zhang, J. Clune, and K. O. Stanley, arXiv preprint
arXiv:1712.06564 (2017).

[71] J. Lehman, J. Chen, J. Clune, and K. O. Stanley, in
Proceedings of the Genetic and Evolutionary Computa-
tion Conference (2018) pp. 117–124.

[72] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stan-
ley, and J. Clune, in Advances in neural information
processing systems (2018) pp. 5027–5038.

[73] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L.
England, Physical Review Letters 116, 120601 (2016).

[74] J. P. Garrahan, Physical Review E 95, 032134 (2017).

http://dx.doi.org/10.1103/PhysRevE.98.063303
http://dx.doi.org/10.1103/PhysRevE.100.052139
http://dx.doi.org/10.1103/PhysRevE.100.052139

12

[75] P. Pietzonka, A. C. Barato, and U. Seifert, Physical
Review E 93, 052145 (2016).

[76] The model’s rates are W12 = 3, W13 = 10, W14 = 9,
W21 = 10, W23 = 1, W24 = 2, W31 = 6, W32 = 4,
W34 = 1, W41 = 7, W42 = 9, and W43 = 5.

[77] G. Fredrickson and H. C. Andersen, Physical Review Let-
ters 53, 1244 (1984).

[78] J. P. Garrahan and D. Chandler, Physical Review Letters
89, 035704 (2002).

[79] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, and F. van Wijland, Physical Review Let-
ters 98, 195702 (2007).

[80] In order to calculate the correction to the bound (3), the
parameterization using the variable called λ in Ref. [51]
is more efficient; to calculate the bound itself the choice
(w0 or λ) makes little difference.

[81] A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Ad-
vances in neural information processing systems (2012)
pp. 1097–1105.

[82] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., Pro-
ceedings of the IEEE 86, 2278 (1998).

[83] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L.
Geissler, Annual Review of Physical Chemistry 53, 291
(2002).

[84] R. L. Jack and P. Sollich, The European Physical Journal
Special Topics 224, 2351 (2015).

[85] S. Whitelam and I. Tamblyn, arXiv preprint
arXiv:1912.08333 (2019).

[86] K. Binder, in Monte Carlo Methods in Statistical Physics
(Springer, 1986) pp. 1–45.

[87] C. Maes and K. Netočnỳ, EPL (EuroPhysics Letters) 82,
30003 (2008).

[88] L. Bertini, A. Faggionato, D. Gabrielli, et al., in Annales
de l’Institut Henri Poincaré, Probabilités et Statistiques,
Vol. 51 (Institut Henri Poincaré, 2015) pp. 867–900.

[89] W. K. Hastings, Monte Carlo sampling methods using
Markov chains and their applications (Oxford University
Press, 1970).

	Evolutionary reinforcement learning of dynamical large deviations
	Abstract
	I Introduction
	II Large deviations by change of dynamics
	III Large deviations via evolutionary reinforcement learning
	IV A neural-network ansatz for models with large state spaces
	A A lattice model whose state space is small enough to diagonalize
	B A lattice model whose state space is too large to diagonalize

	V Conclusions
	VI Acknowledgments
	A Large deviations by change of model
	B The CMP universal activity bound
	 References

