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ABSTRACT OF THE THESIS 

 

The Effect of Sampling Methods  

on Model Performance for Classification  

of Imbalanced Datasets 

 

by 

 

Jeremy Elijah Weidner 

Master of Applied Statistics 

University of California, Los Angeles, 2022 

Professor Yingnian Wu, Chair 

 

This paper applies various statistical techniques with the goal of maximizing model performance for the task of 

classification on a dataset with heavily imbalanced classes. A dataset is created by combining several sources into 

one comprehensive dataset. Exploratory data analysis will be performed to understand the available factors, their 

corresponding distributions and relationship to the outcome variable. Then steps will be taken to prepare the data 

for the task of classification. Next, a collection of different training set sampling strategies will be outlined using 

methods such as Random Over Sampling, Random Under Sampling and Synthetic Minority Oversampling 

Technique. Machine learning models such as Random Forest Classifiers will be fitted for each of the sets of 

parameters and the model fit will be evaluated on the test set in order to provide insight into the differences of 

various sampling techniques in the imbalanced classification task. Metrics used to evaluate model fit will include 

traditional statistical measures as well as other strategies that more closely align with the specific business 

problem.  
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CHAPTER 1 

Introduction 

 

This paper is an overview of the process of refining a solution to optimize its ability to solve a real–world 

business problem. Precisely, it is an investigation into what statistical methods are most useful when trying to 

perform a binary classification task on a dataset that contains a heavy imbalance in the outcome variable. This 

presents complications where some conventional metrics fail to provide the insight needed to tune a solution to fit 

the problem. This paper will detail the process of exploring this question through the course of data collection, 

exploratory data analysis, data cleaning & transformation, sampling strategies, model fitting and finally 

performance evaluation. 

 

The premise of the business problem is that a company sells products to customers and can interact with 

them via the internet or by having an agent reach out to the potential customer during regular business hours. 

Prospective customers can use the company’s website to enter their information and receive a personalized price 

estimate for a product from the company online. One of the responsibilities of the company agents is to then 

follow up with the potential customers who filled out price estimates to try and sell the product. The core problem 

is that the company agents have more positive outcomes opportunities to follow up on than they have the staff and 

time to be able to keep up with. Prioritizing contacting customers who are most likely to buy the product is an 

important part of helping the company agents be as efficient and effective as possible at helping the company 

succeed. 

 

The data is collected across a period of several months, the two core components of the dataset are the 

information that the potential customer entered themselves to get the auto insurance price estimate as well as the 

corresponding web traffic associated with their visit collected via web browser cookies. 
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The outcome variable represents whether the price estimate resulted in the positive outcome of a product. 

Naturally there is a window of timing where some price estimates have not yet resulted in a positive outcome but 

will eventually and so for the dataset curation a 30-day grace period after the price estimate was implemented to 

give the full allowance of time necessary for a positive outcome to take place. Not employing the grace period 

would result in false negatives in our training data and that is best avoided. 

 

Another stipulation is that the way the data is collected, the potential customer needs to go through 

several web pages and enter information on each to receive the price estimated rates at the end of the sequence. 

To remain in line with the intent of this program the dataset has been restricted to only price estimates and 

potential customers that completed the steps far enough to see their personal price estimate based on the 

information they provided. Data points where the potential customer did not make it far enough to see the 

estimate are excluded from the dataset. This was done because the rate of positive outcome in that cohort was well 

below the corresponding rate from the group that did complete the price estimate process and so the business 

priority was to focus on the potential customers who did complete the price estimate process. 

 

Variables have been stripped of their names and replaced with numerical identifiers to preserve 

proprietary information. 
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CHAPTER 2 

Exploratory Data Analysis 

 

The overall structure of the data is such that each row represents one unique price estimate and has a 

corresponding unique “Row ID” to identify it. The date range of available data is price estimates given between 

July – October of 2021. The total record count is 54,654 and record counts by month are shown below: 

 

Month Record Count 

July 14,776 

August 15,146 

September 17,142 

October 7,563 

Total 54,654 

[Table 2.1: Record Count by Month] 

 

The first thing to note is that October is a partial month of data, with observations through 10/16/2021. 

This is due to the fact that when this dataset was being aggregated, the observance of a 30 day run-out window 

from the date of data aggregation to the date the price estimate was created in order to give all price estimates a 

fair chance to result in a positive outcome and therefore avoid false negatives in the dataset. Taking that into 

consideration the data is fairly stable month over month with a slight positive trend from July-September but the 

half-month worth of October indicating an expected slight decrease in record counts between September and 

October if the second half of the month were to come in on pace with the first 16 days. 

 

The first variable to examine is the outcome variable, “Outcome Indicator”, representing whether the 

price estimate resulted in a positive outcome. It is a binary variable, the price estimate will either result in a 

positive outcome or it will not. Out of the 54,654 price estimates in the dataset, only 2,733 resulted in a positive 

outcome. Represented as a percentage that is 5% which will be referred to as the “Positive Outcome Ratio” going 
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forward. This means that our dataset is rather imbalanced, where 95% of the observations do not result in a 

positive outcome while only 5% do result in a positive outcome. 

 

The first group of predictors are all deconstructions of the resulting metadata from when the potential 

customer received the price estimate. That is then used to create several subsequent variables which are Variable 

1, Variable 2 and Variable 3. 

 

Variable 1 has discrete values that range from 0-23. This variable can be analyzed using the graph below: 

 

[Figure 2.1: Distribution of Variable 1] 

 

First by looking at the volume we see some clear patterns, most noticeably that there is a lower volume of 

price estimates being generated in the window of values 23 & 0-7. Then the record count rises to its peak and then 

tails off throughout the range of 8-22. The orange line corresponding to the Positive Outcome Ratio has 

significant variability and may be easier to comment on if Variable 1 were bucketed in some way. Due to the low 

number of observations for some of the values within the range it is hard to put much importance into the 
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corresponding Positive Outcome Ratio for that value but it does appear that generally the Positive Outcome Ratio 

is higher for the higher volume values in the range 8-17. 

 

Variable 2 has discrete values that range from 0-6. A visual representation of Variable 2 is below: 

 

 

[Figure 2.2: Distribution of Variable 2] 

 

Generally more row ID’s are created during the middle of the range of values, with 1 and 2 having the 

most volume and then tailing off gently towards the end of the range. Values 0 and 7 have the lowest volume as 

well as the lowest Positive Outcome Ratios. We can see relative to the reference line of the dataset’s overall 

Positive Outcome Ratio that row ID’s generated on Variable 2 values of 3, 1, 4 and 5 (in order from highest to 

lowest) are all above the average Positive Outcome Ratio while 2, 0 and 7 are all below the average.  

 

Next is Variable 3 which is a binary indicator variable that represents whether the row ID was generated 

between the Variable 1 range of 8-21. When examining the data through this lens we see the following: 
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Variable 3 Count Row ID Count Positive outcome Positive Outcome Ratio 

Yes 42,837 2,216 5.17% 

No 11,790 517 4.39% 

[Table 2.2: Variable 3 Counts] 

 

This is consistent with some observations from Variable 1, Row ID’s created during the Variable 1 ranges 

of 8-21 have a slightly higher Positive Outcome Ratio (by 0.78%).  

 

Next available predictor is Variable 5 which is a numerical variable specifically measured in dollars. 

Variable 5 has observations corresponding to three tiers, representing the robustness of the product offering. The 

tiers are low, medium and. Summary statistics for the various tiers are in the table below: 

Variable 

5 Tier 

Mean Standard 

Deviation 

Minimum 25th 

Percentile 

50th 

Percentile 

75th 

Percentile 

Maximum 

Low 2,077 1,457 282 1,047 1,728 2,617 54,205 

Medium 3,153 1,784 526 1,963 2,688 3,842 65,356 

High 3,514 1,925 585 2,216 3,017 4,274 66,325 

[Table 2.3: Variable 5 Summary Statistics] 

 

We can see that the relationships between the tiers across the various metrics is fairly consistent, with an 

increase across the board from low to medium and then to high. It is likely that using all of these three tiered 

options in model fitting is not necessary and we can just select one to better represent the overall phenomenon 

without relying on redundant variables. 

 

Next up is the Variable 4. This is generated by the company website and corresponds to criteria that the 

potential customer has entered in the steps leading up to the Variable 5 value being displayed. There are several 

components that factor into Variable 4’s number value and the components are cumulative. Summary statistics for 

Variable 4 are below: 

Mean Standard 

Deviation 

Minimum 25th 

Percentile 

50th 

Percentile 

75th 

Percentile 

Maximum 

13,918 18,418 16 300 6,136 21,391 245,446 

[Table 2.4: Variable 4 Summary Statistics] 
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The first thing to note is the presence of some high outliers, because conceptually this variable should be 

less than the numerical value of Variable 5 for that individual price estimate. It is most likely that these high 

outliers and the subsequently high standard deviation are a result of errors in the data collection and it is probably 

best that these observations are removed before model fitting. 

 

As previously mentioned the numerical value of Variable 4 is the result of cumulative components which 

are represented separately as Variable 11. A histogram for the Variable 11 is below: 

 

 

[Figure 2.3: Variable 11 Distribution] 

 

We can see a minimum of 1 and a maximum of 8, with most price estimates falling in the 2-3 range for 

Variable 11. The high outlier problem is slightly less apparent here when the count of price estimates is tallied up 

by the Variable 11 counts, but we can see that there is a long right tail. We can see a positive relationship here 

between the Variable 11 value and the percentage of those price estimates that result in positive outcomes. The 
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high Variable 11 values such as 7 or 8 are based on a small number of observations so we have insufficient 

evidence to have much confidence in the POR readings for those values. 

 

The next variable is composed of discrete values between 1-4 and will be referred to as Variable 13. An 

overview of the variable is below: 

Variable 13 Count Row ID Count Positive outcome Positive Outcome Ratio 

1 36,103 1,722 4.77% 

2 15,584 867 5.56% 

3 2,239 116 5.18% 

4 701 28 3.99% 

[Table 2.5: Variable 13 Summary Statistics] 

 

Variable 13 cannot have a value smaller than 1, and no records had a value larger than 4. One is the most 

common Variable 13 value with over double the observations of the next highest Variable 13 value of two. It 

seems as though Variable 13 values of 2-3 have the marginally higher than average Positive Outcome Ratios 

where price estimates with Variable 13 values of 1 followed by those with a Variable 13 value of 4 have a 

subsequently lower Positive Outcome Ratios.  

 

The next available factor is also represented as discrete integers and will be referred to as Variable 14. It 

is a good indication of whether or not the potential customer has an existing relationship with the company at the 

time of receiving the price estimate. This variable has a range of zero to three in the dataset and the corresponding 

summary is found below in the table: 

Variable 14 Count Row ID Count Positive outcome Positive Outcome Ratio 

0 37,812 1,676 4.43% 

1 13,921 891 6.40% 

2 2,889 166 5.74% 

3 5 0 0.00% 

[Table 2.6: Variable 14 Summary Statistics] 
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Price estimates with Variable 14 values of one and two show higher than average Positive Outcome 

Ratios while those with values of zero show a lower than average Positive Outcome Ratio while having the 

highest number of observations. Variable 14 values of three only has five price estimates does not have enough 

observations to lead to much insight. This seems to suggest that the company has better success with customers it 

already has a relationship with at the time of the price estimate being generated. 

 

The next variable is another collection of discrete integers and will be referred to as Variable 12. The 

variable’s most common value is zero which accounts for 87% of all price estimates. The summary statistics are 

in the table below: 

Variable 12 Count Row ID Count Positive outcome Positive Outcome Ratio 

0 47,445 2,428 5.12% 

1 6,890 294 4.27% 

2 290 11 3.79% 

3 2 0 0.00% 

[Table 2.7: Variable 12 Summary Statistics] 

 

This variable shows a negative relationship with the outcome variable, each increase in the value of 

Variable 12 shows that the cohort is less likely to have their price estimate result in a positive outcome. Only 

Variable 12 values of zero is above the average Positive Outcome Ratio while observations with Variable 12 

values of 3 do not have enough observations to yield meaningful metrics.  

 

The next variable is another discrete numerical variable and will be referred to as Variable 6. Positive 

Outcome Ratio summary information is displayed in the table below: 

Variable 6 Count Row ID Count Positive outcome Positive Outcome Ratio 

1 42,129 1,934 4.59% 

2 9,104 588 6.46% 

3 2,528 155 6.13% 

4 865 56 6.47% 

6 1 0 0.00% 

[Table 2.8: Variable 6 Summary Statistics] 
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Variable 6 values of one which make up the majority of the dataset is actually the only group with a 

significant number of observations that is below the average Positive Outcome Ratio. All other Variable 6 price 

estimate categories such as two, three or four have Positive Outcome Ratios that are at least one percent above the 

average.  

 

Another piece of information available to us from the customer’s price estimate information is Variable 8 

which is a continuous numerical variable. To examine this variable we can take an average of the values for all 

observations based on Variable 18 which is a categorical variable with 58 distinct values in our data set. 

Examining the average Variable 8 grouped by Variable 18 against the average of Variable 5 gives us some insight 

as to the distribution of this variable. 

 

 [Figure 2.4: Scatter Plot of Variable 8 by Variable 18] 

 

Mean Standard 

Deviation 

Minimum 25th 

Percentile 

50th 

Percentile 

75th 

Percentile 

Maximum 

24.58 11.42 6 18 21 27 292 

[Table 2.9: Variable 8 Summary Statistics] 
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From this summary we see that Variable 8 is another skewed variable in our dataset, there is the main 

cluster of observations in the low twenties and then some extremely high outliers. 

 

Another continuous numerical variable in the dataset is referred to as Variable 7. It has a fairly wide range 

of values from a minimum of 346 to a max of 59,364. We can see the distribution below: 

Mean Standard 

Deviation 

Minimum 25th 

Percentile 

50th 

Percentile 

75th 

Percentile 

Maximum 

11,667 2,822 346 12,501 12,501 12,501 59,364 

[Table 2.10: Variable 7 Summary Statistics] 

 

There are 41,053 observations that have exactly 12,501 as the Variable 7 value for that price estimate. 

This may have to do with the way the data collection prompt is provided to potential customers as they navigate 

through the website. This sort of pattern in a continuous numerical variable casts doubt on the reliability of it for 

model fitting and should be monitored closely. 

 

The next variable is another discrete numerical variable, this one will be referred to as Variable 9. It has 

the following distribution: 
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[Figure 2.5: Variable 9 Distribution] 

 

With summary statistics below: 

Mean Standard 

Deviation 

Minimum 25th 

Percentile 

50th 

Percentile 

75th 

Percentile 

Maximum 

7.69 6.69 -1 3 6 12 40 

[Table 2.11: Variable 9 Summary Statistics] 

 

The variable has a long right tail with the main cluster of observations being < 10. Given the business 

context of this variable this range of values is reasonable. 

 

Next is Variable 10 which represents the total number of visits to the website that customer had relating to 

that Row ID. The relevant statistics for this variable are represented in the table below: 

Variable 10 Count Row ID Count Positive 

outcome 

Positive Outcome 

Ratio 

Percent of Total 

1 50,594 2,577 5.09% 92.62% 

2 812 53 6.53% 1.49% 

3 27 1 3.70% 0.05% 

4 2 0 0% 0.00% 
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[Table 2.12: Variable 10 Summary Statistics] 

 

We see here that this Variable 10 predictor is skewed, with 92% of all price estimates having a value of 1. 

This makes sense as the price estimate process is fairly short and most people should be expected to complete it in 

one visit. 

 

Next is Variable 16 which contains values as a percentage out of 100. This variable tracks how far 

through the total number of steps in the online price estimate process the potential customer made it through. The 

data set contains several versions of the website and so the step labels in the web tracking data vary and this 

metric was created to track how far a potential customer made it out of the total number of steps at that particular 

version of the web page. Summary statistics for the Variable 16 are below: 

Mean Standard 

Deviation 

Min 25th 

Percentile 

50th 

Percentile 

75th 

Percentile 

Max 

59.9% 2.79% 3.84% 58.33% 60.00% 61.53% 100% 

[Table 2.13: Variable 16 Summary Statistics] 

 

Quartile 1 POR Quartile 2 POR Quartile 3 POR Quartile 4 POR 

3.62% 4.68% 5.88% 5.50% 

[Table 2.14: Positive Outcome Ratio by Quartile of Variable 16] 

 

The data is centered around the 60% mark, this is in part because the data pipeline leading up to this point 

filters out records that do not reach a certain base percentage. There are however some low outliers, these are 

probably the result of errors in the collection of the data and those records should be removed.  

 

Following the distribution of Variable 16 we can divide the observations into quartiles and get the 

Positive Outcome Ratio for each of those quartiles. This is shown in the table above, we can see that the Positive 

Outcome Ratio increases from quartile 1 to quartile 3 with the 4th quartile having a slightly lower Positive 

Outcome Ratio. 
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The next available variable is Variable 17 which is measured in minutes expressed as an integer. 

Summary statistics are available in the table below: 

Mean Standard 

Deviation 

Min 25th 

Percentile 

50th 

Percentile 

75th 

Percentile 

Max 

5.04 6.21 0 2 3 6 117 

[Table 2.15: Variable 17 Summary Statistics] 

 

Variable 17 Bin 0 1-3 4-7 8-10 10+ 

Positive 

Outcome Ratio 

3.13% 4.24% 5.72% 6.96% 5.76% 

[Table 2.16: Positive Outcome Ratio by Variable 17 Bins] 

 

This variable shows some outliers on each end but a cluster of observations around the 5-minute mark. 

We can also probably believe that there are some data collection issues here which may explain the lower outliers 

as it should be impossible to have a valid observation in 0 minutes. Additionally, the upper outliers, including the 

max of 117 minutes are probably due to data collection errors as well. It is probably worth considering trimming 

outlier observations here as well as potentially binning the data to help a model overcome some of the variability 

in this metric. 

 

When we put the Variable 17 values into bins and take the Positive Outcome Ratio of those bins we can  

get an idea of the relationship between Variable 17 values and the chance of a positive outcome. The Positive 

Outcome Ratio grows from the 0 minute bin up until the 8-10 minute bin which has the max value at 6.96%. Then 

there is a slight decrease for the 10+ minute bin. 

 

That is the end of the exploratory data analysis section in which all available features have been 

evaluated. The insights gained from this process will help move forward with the effort in several ways. First, 

where features have shown that they have records which are either invalid values or just outliers there will be an 

opportunity to use the insights from the exploratory data analysis to eliminate these from our record set that will 
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be used for the evaluation runs so that these invalid or outlier values do not negatively impact the model training 

and evaluation process. Then, using the insights on which variables have imbalances in their distributions and the 

corresponding relationship to the outcome variable, steps can be taken to transform these features into a format 

that will give the model a better chance at being able to make accurate classifications using that information. 
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CHAPTER 3 

Data Cleaning and Transformation 

 

Based on the findings from the exploratory data analysis several data cleaning measures were performed. 

First observations were removed that have a Variable 4 value of >= 50,000. Then rows were removed that had 

several core columns with null values. Then observations with a Variable 8 value of 65 or over were removed. 

The final dataset for model fitting contains 46,268 rows. 

 

 Then the following transformations were applied. Variable 17 values were binned with values 

following within the following ranges: 0, 1-3, 3-7, 7-10, 10+. Variable 6 is transformed into a categorical where 

values of 1 are coded as “single” and values > 1 are coded as “multi”. Variable 14 is transformed into a 

categorical where values of 0 are coded with “no” and values > 0 are coded with “yes”.  

 

Then one-hot encoding[1] was applied to the following fields: 

• Variable 17 

• Variable 6 

• Variable 1 

• Variable 2 

• Variable 3 

• Variable 14 

 

 The result of this process is that when the final data set will be fed to the model these categorical 

variables that have the one hot coding will no longer be represented by one categorical variable but will now have 

one feature per category of that variable, and will have a value of 1 or 0 based on whether that individual record’s 

feature value falls within that category that the new column represents. 
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A standard scaling process[2] was then applied to the following fields: 

• Variable 4 

• Variable 5 

• Variable 7 

• Variable 8 

• Variable 9 

 

 The scaling process will apply to each observation the process of subtracting the mean and dividing by 

the standard deviation for each numerical variable which will reduce the overall spread of the distribution. The 

goal of performing this transformation is to make the numerical variables more standard and have the model 

training process be less susceptible to outliers. 

 

This leaves us with the final set of 17 post-transformation features for model fitting and evaluation: 

• Outcome Indicator 

• Variable 10 

• Variable 11 

• Variable 13 

• Variable 16 

• Variable 17 (categorical) 

• Variable 6 (categorical) 

• Variable 14 (categorical) 

• Variable 1 (categorical) 

• Variable 2 (categorical) 

• Variable 3 (categorical) 
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• Variable 12 (categorical) 

• Variable 4 (scaled) 

• Variable 5 (scaled) 

• Variable 7 (scaled) 

• Variable 8 (scaled) 

• Variable 9 (scaled) 

 

 These 16 variables will be the data elements that are used in the model fitting and evaluation. The 

categorical variables are fed to the model in the form of one column per category value in that variable due to the 

one-hot encoding procedure. 
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CHAPTER 4 

Sampling & Modeling Approach 

 

The model fitting strategy is to test the effects of various sampling approaches and analyze the resulting 

effects on a model’s ability to accurately make predictions on our imbalanced set of observations. The goal of this 

section is to define and detail those approaches. All the different trials will follow the same structure of applying a 

train test split[3] to the dataset and randomly creating a test set that is 25% of the final dataset size. Sampling 

methods will be applied to the resulting training set and model performance will be evaluated after it is fit on this 

post-sampling training set. 

 

Before experimenting with the other sampling methods there will be one run with no sampling which will 

serve as a baseline comparison to the other methods. This run should show us how well a model is able to 

categorize observations when trained on the naturally heavily imbalanced training set with an overall Positive 

Outcome Ratio that will be around the data set’s original 5%. 

 

The next sampling technique that will be tested is Random Over Sampling[4]. This technique will over-

sample the minority class from the dataset by picking samples at random with replacement. Specifically the 

minority of price estimates that did result in a positive outcome will be randomly sampled with replacement so 

that the overall post-sample Positive Outcome Ratio of the training set will be higher than the pre-sample Positive 

Outcome Ratio. This is achieved by increasing the overall number of records in the training set. This strategy is 

fundamentally asking the question of whether the model will perform better when the class imbalance in the 

dataset is reduced by repeating examples from the minority class. Some general concerns about this type of 

strategy is whether the resulting training set which will end up having duplicate records is able to generalize to the 

test set and beyond. When we are working with such a heavy imbalance in the data set where the minority class 

makes up only 5% of the overall records in the data set then to over-sample to reach a balanced dataset will need 
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to re-sample from the minority class an extremely high number of times to reach the balance and introduces the 

possibility of the model over-fitting on the heavily over-sampled minority class records in the post-sample 

training set. 

 

The next sampling technique is Synthetic Minority Over-Sampling Technique (SMOTE)[5]. SMOTE is 

an oversampling technique that over-samples the minority class by taking each minority class sample and 

introducing synthetic examples along the line segments joining any/all of the k minority class nearest neighbors. 

Depending upon the amount of over-sampling required, neighbors from the k nearest neighbors are randomly 

chosen[6]. The idea with the SMOTE strategy is to try and create a training set that is slightly more varied than 

the direct over-sampling approach. The post-sample training set will have more records than the pre-sample 

training set and it will have a higher Positive Outcome Ratio. With SMOTE there will not be records that are 

direct duplicates in the training set and instead a synthetic collection of records will supplement the minority class 

instead. The goal here is to be able to carry the model prediction performance outside of training better by having 

the model train on a dataset that has more variation than the direct over-sampling approach. 

 

The next sampling method being tested is Random Under Sampling[7]. This technique will under-sample 

the majority class by randomly picking samples without replacement. The result of this method is a smaller 

dataset than the pre-sample training set size and it will also have a higher Positive Outcome Ratio.  The main 

difference here compared to the previous sampling strategies is that while we are still reducing the overall class 

imbalance with all of our sampling methods, this under-sampling approach will do so by reducing the number of 

records in the training set as opposed to the previous methods which increased the size of the training set by 

sampling. Something to keep in mind here with a data set that is so heavily imbalanced where the minority class 

makes up only  5% of the total records, then if you were to under-sample down to a 1:1 ratio and have a resulting 

training set that is balanced you will by losing a lot of your majority class records. Whether or not this will have a 

negative effect on model performance is situational. Depending on how homogeneous the majority class 

observations are determines how much variability may be lost when observations get left out of the post-sample 
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train set based on random selection. Acknowledging the possibility of missing out on information about the 

majority class that could be helpful in prediction, the resulting Positive Outcome Ratio will be modified using the 

sampling strategy parameter where the ratio of majority : minority examples in the post-sample training set is 

varied. 

 

The parameter that will be adjusted in the testing runs to try and counteract the above phenomenon is 

called the Sampling Strategy. This will help not have to leave out so many records when over-sampling as well as 

not have to re-sample the minority class as heavily when under-sampling. When a float value is passed to this 

parameter it corresponds to the desired ratio of the number of samples in the minority class over the number of 

samples in the majority class after resampling. Therefore, the ratio expressed as:  

Sample Ratio = (Number of samples in the minority class)/(Number of samples in the majority class) 

 

Another parameter that will be situationally adjusted will be the random state. The random state is an 

integer that is used as a seed by the random number generator component of any of the methods. Modifying this 

parameter gives the option for a different set of records to be randomly selected at the various steps in the process. 

 

The modeling technique that will be used to evaluate performance for each run of the experiment is a 

Random Forest model. The random forest is a meta estimator that fits a number of decision tree classifiers on 

various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. 

A parameter of the random forest that will be evaluated is the number of estimators also known as the number of 

trees in the forest. Model performance will be evaluated using it’s Out-of-Bag Error which is the average error for 

each training observation calculated using predictions from the trees that do not contain that training observation 

in their respective bootstrap sample[8]. The goal here is to select the model that is performing the best for the 

training iterations of that sampling run and then take that version of the model to be used in test set evaluation. 
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CHAPTER 5 

Model Fitting and Evaluation 

A set of 14 different runs, each with a unique set of parameters will be established and the performance of 

each run will be compared with the rest of the cohort to understand the strengths and weaknesses of each 

variation. This collection obviously does not contain every possible set of parameters that it is possible to evaluate 

but the hope is that the set is enough to help us gain some insight into strategies that are effective for our 

imbalanced classification problem. 

Sample 

Run 

Sampling 

Technique 

Random 

State 

Sampling 

Strategy 

Pre-

Sample 

Training 

Size 

Post-

Sample 

Positive 

outcome 

Count 

Post-

Sample 

Not 

Positive 

outcome 

Count 

Post 

Sample 

Training 

Size 

Post 

Sample  

Training 

Positive 

Outcome 

Ratio 

A NONE 18 N/A 34,701 1,776 32,925 34,701 5.12% 

B OVER 18 ‘auto’ 34,701 32,925 32,925 65,850 50.00% 

C OVER 7 ‘auto’ 34,701 32,886 32,886 65,772 50.00% 

D OVER 18 0.25 34,701 8,231 32,925 41,156 20.00% 

E OVER 18 0.50 34,701 16,462 32,925 49,387 33.33% 

F OVER 18 0.75 34,701 24,693 32,925 57,618 42.86% 

G SMOTE 18 ‘auto’ 34,701 32,925 32,925 65,850 50.00% 

H UNDER 18 ‘auto’ 34,701 1,776 1,776 3,552 50.00% 

I UNDER 25 ‘auto’ 34,701 1,815 1,815 3,630 50.00% 

J UNDER 1995 ‘auto’ 34,701 1,806 1,806 3,612 50.00% 

K UNDER 7 ‘auto’ 34,701 1,815 1,815 3,630 50.00% 

L UNDER 18 0.25 34,701 1,776 7,104 8,880 20.00% 

M UNDER 18 0.50 34,701 1,776 3,552 5,328 33.33% 

N UNDER 18 0.75 34,701 1,776 2,368 4,144 42.86% 

[Table 5.1: Sampling Strategy Overview] 

 

Run A has no sampling and the data set remains imbalanced with a 5.12% Positive Outcome Ratio. This 

will serve as a baseline due to the fact that the data set is left in its natural state and will be useful to compare all 

other runs against.  

 

Rows B-F are using the over-sampling strategy with modifications to the parameters between them. One 

of the parameters that varies between the over-sampling runs is that a different random seed is tested to see how 
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having a different shuffle of the data affects the model performance. The other is the sampling strategy which is 

tested with values of 0.25, 0.50 and 0.75. The effect of this can be seen in the counts for the Post-Sample Positive 

outcome Count where the value grows as the sampling strategy parameter value grows. This plays out in the 

Positive Outcome Ratio value for those runs which also has a positive relationship with the sampling strategy 

parameter value.   

 

Rows G is where SMOTE was applied. This run uses the SMOTE procedures to generate synthetic 

samples to represent the minority class in the training set. The result is that there are a balanced number of 

Positive outcome/No-Positive outcome observations in the training set, where the difference between the Pre-

Sample Positive outcome Counts and Post-Sample Positive outcome Counts represents the number of synthetic 

observations generated by the SMOTE procedure. 

 

The remaining rows, H-N, are various iterations through the under-sampling approach exploring several 

different random seeds as well as three different sampling strategy parameters. Specifically, Runs H-K are 

identical other than the random seed which is changed for each run to help us understand the effect of different 

shuffles of the data and how they influence model performance. Runs K, L, M, N all use the same random seed 

but experiment with different sampling strategy values. The effect of this can be seen by looking at the Post-

Sample Positive outcome Count and Positive Outcome Ratio values for these runs, both of which have a positive 

ratio with the sampling strategy technique 

 

Random Forest models were applied to each of the 14 sample runs and tree numbers of 100, 200, 300, 

500, 750, 1000, 2000 were tested with their out of bag error values compared to the other tree numbers from that 

sample run. The lowest error for that run was selected for the subsequent steps of the process for that sample run. 
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Sample 

Run 

100 Tree 

Error 

200 Tree 

Error 

300 Tree 

Error 

500 Tree 

Error 

750 Tree 

Error 

1000 Tree 

Error 

2000 Tree 

Error 

A 0.051785 0.051468 0.051267* 0.051324 0.051324 0.051267 0.051324 

B 0.001716 0.000987 0.001093 0.001109 0.000835 0.000850 0.000774* 

C 0.002098 0.001262 0.001186 0.001003 0.000927 0.000912 0.000775* 

D 0.006026 0.005613 0.005467 0.005175 0.005175 0.004495* 0.004835 

E 0.001863 0.001296 0.001174 0.001114 0.001134 0.001012 0.000992* 

F 0.001822 0.001458 0.001198 0.001059 0.000989 0.001007 0.000955* 

G 0.024935 0.024784 0.024875 0.024571* 0.024647 0.024571 0.024586 

H 0.413007 0.405124 0.397804 0.396678 0.391329* 0.394144 0.391892 

I 0.407163 0.389807 0.398623 0.394215 0.387052 0.388154 0.388124* 

J 0.416113 0.411130 0.406977* 0.410853 0.408638 0.407530 0.409468 

K 0.395041 0.387603 0.381267 0.381818 0.381267 0.380441 0.378788* 

L 0.224775 0.219482 0.219707 0.216667* 0.220721 0.220045 0.218243 

M 0.355856 0.355668 0.347410 0.344032* 0.349287 0.349287 0.348724 

N 0.404681 0.385859 0.388996 0.388996 0.389720 0.386100 0.383205* 

[Table 5.2: Random Forest Error Rates] 

* = best fitting random forest tree count that run 

 

The above table lists the out of bag error values for each of the sample runs. 2,000 trees was most 

commonly selected as the optimal number of trees and 500 trees was the next most common. 100 and 200 trees 

were both never selected as the optimal number of trees in the random forest. For each given run, the version of 

the random forest with the best fitting tree count according to its out-of-bag error value will be used for the 

following evaluation of that run. 

 

It is worth calling attention to the differences in the out-of-bag error values themselves between the runs. 

Before we have even had a chance to evaluate our model on the test set of observations these differences provide 

us something interesting to analyze. Runs B-F corresponding to the over-sampling runs have the lowest out-of-

bag error values for their runs regardless of the number of trees being evaluated. The baseline, Run A, with no 

sampling generally has a slightly higher out-of-bag error value. Run G out-of-bag errors are slightly higher than 

Run A, with Run G representing the SMOTE approach. Then the under-sampling runs, H-K, have the highest out-

of-bag error values for the tree number evaluation step. What this means is that when the Random Forest Model is 

attempting to validate it’s performance while iterating through the training set, the over-sampling runs are having 
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the highest number of correct predictions. Something to keep in mind is whether or not this is due to over-fitting 

on the training data, how we will be able to tell is by evaluating the test set with various metrics to see how 

performance translates from training to testing for the various sampling strategies. 

 

The resulting random forest models were fit on the test set and resulting accuracy metrics are contained in 

the table below: 

Sample Run Actual No 

Positive 

outcome & 

Predicted No 

Positive 

outcome 

Actual No 

Positive 

outcome & 

Predicted 

Positive 

outcome 

Actual 

Positive 

outcome & 

Predicted No 

Positive 

outcome 

Actual Positive 

outcome & 

Predicted 

Positive 

outcome 

F1 Score 

A 10,934 1 632 0 0.000 

B 10,921 14 630 2 0.006 

C 10,954 20 588 5 0.016 

D 10,926 9 631 1 0.003 

E 10,923 12 631 1 0.003 

F 10,923 12 630 2 0.006 

G 10,922 13 632 0 0.000 

H 6,290 4,645 233 399 0.141 

I 6,315 4,659 230 363 0.129 

J 6,270 4,695 212 390 0.137 

K 6,057 4,917 213 380 0.129 

L 10,445 490 570 62 0.105 

M 8,856 2,079 398 234 0.159 

N 7,383 3,552 294 338 0.149 

[Table 5.3: Confusion Matrix and F1 Score] 

 

This table gives us insight into the classification accuracy of each run when evaluated against the testing 

set which the model had no previous exposure to. A pattern that is immediately noticeable is that runs A-G 

showed poor performance in terms of producing true positives and the corresponding F1 score values suffered as 

a result. This sheds some light on the differences in the out-of-bag error value differences we noticed in the 

training runs and indicates that these runs may suffer from an over-fitting problem.  
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Runs H-N which correspond to the under-sampling runs all out-perform runs A-G in the F1 score and 

show a much higher number of true positives in the testing data. It is important to note that there are also many 

more false positives for these runs as well, but given the specific business context and intended use case this is 

less important than maximizing true positives and is an acceptable byproduct of doing so. From the cohort of 

under-sampling runs M, N and H showed the most promise. It is interesting to note that between runs H, I, J, K 

the only thing that changed was the random seed for that run. This shows that under-sampling with a 1:1 parity of 

outcome class examples in the training data under this context of originally imbalanced training data may be 

susceptible to the sampling shuffle of that particular run. It is possible that the sampling strategy parameter usage 

in runs M & N provided more robustness and insulation to this variability as less majority-class records are 

removed from the training set in these runs than in H, I, J, K. 

 

Another accuracy metric that we can use that more closely align with the business use case are the 

strategy is to rank the test records based on predicted likelihood of a positive outcome in descending order. Then, 

the records are divided into five even buckets and the actual positive outcome is calculated for each bucket in 

each run. Performance for this metric can be judged in several ways, important factors include the Positive 

Outcome Ratio in the first bucket for that run as well as whether the Positive Outcome Ratio decreases in each 

consecutive bucket from the predictions on the test set.  The metrics from this approach are displayed in the table 

below: 

Sample Run Test Set 

Positive 

Outcome 

Ratio 

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 

A 5.46% 8.86% 6.87% 4.97% 3.93% 2.68% 

B 5.46% 8.82% 6.31% 5.36% 4.24% 2.59% 

C 5.13% 7.61% 6.48% 5.27% 3.89% 2.38% 

D 5.46% 8.34% 7.22% 4.93% 4.15% 2.68% 

E 5.46% 8.82% 6.40% 5.23% 4.15% 2.72% 

F 5.46% 8.64% 6.74% 4.80% 4.32% 2.81% 

G 5.46% 8.82% 6.91% 4.50% 4.54% 2.55% 

H 5.46% 9.68% 6.09% 5.79% 3.67% 2.08% 

I 5.13% 8.43% 6.09% 5.58% 3.98% 1.56% 

J 5.20% 9.33% 6.61% 4.48% 3.11% 2.12% 
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K 5.13% 8.69% 6.09% 5.36% 3.72% 1.77% 

L 5.46% 9.51% 7.00% 4.54% 3.93% 2.33% 

M 5.46% 10.11% 6.48% 5.06% 3.63% 2.03% 

N 5.46% 9.64% 6.96% 4.80% 3.76% 2.16% 

[Table 5.4: Model Evaluation Bucketing Approach] 

 

Some observations from the table are that the highest Bucket 1 Positive Outcome Ratio is for run M 

which was the under-sampling run that also had the highest F1 score. The lowest Bucket 1 Positive Outcome 

Ratio is for run C which was the over-sampling run that also did very poorly in the confusion matrix and F1 score. 

The Positive Outcome Ratio for each consecutive bucket is descending for all runs so that shows that they are all 

able to rank the test set records in a way that is directionally correct. It is also interesting to note that even when 

using this unconventional model performance evaluation metric runs M, H, N still perform the best which is 

consistent with the more conventional evaluation strategy of the confusion matrix and F1 score. Given the context 

of the business application, these Bucket 1 Positive Outcome Ratios mean that the model would be able to 

prioritize opportunities for agents to work much more efficiently than when just following up on opportunities at 

random. 

 

It is worth noting that the differences between the runs when evaluated by the Bucket 1 Positive Outcome 

Ratio from this strategy are less drastic than when evaluating with the confusion matrix and resulting F1 score 

where there were wider proportional differences. This suggests that the variation in business impact of 

implementing the various strategies is not as large as the variation of more precise conventional statistical model 

evaluation metrics. 

 

The Random Forest model is also able to give us some insight into which of the variables is the most 

valuable in terms of informing accurate prediction and here is that feature importance breakdown for the top 7 

features of each sample run: 
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Sample 

Run 

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 

A Variable 5 

(0.185) 

Variable 8 

(0.112) 

Variable 9 

(0.107) 

Variable 4 

(0.097) 

Variable 

16 (0.046) 

Variable 7 

(0.029) 

Variable 

11 (0.025) 

B Variable 5 

(0.187) 

Variable 8 

(0.111) 

Variable 9 

(0.106) 

Variable 4 

(0.097) 

Variable 

16 (0.46) 

Variable 7 

(0.030) 

Variable 

11 

(0.025) 

C Variable 5 

(0.187) 

Variable 8 

(0.111) 

Variable 9 

(0.107) 

Variable 4 

(0.98) 

Variable 

16 (0.46) 

Variable 7 

(0.030) 

Variable 

11 (0.026) 

D Variable 5 

(0.187) 

Variable 8 

(0.111) 

Variable 9 

(0.106) 

Variable 4 

(0.097) 

Variable 

16 (0.046) 

Variable 7 

(0.031) 

Variable 

11 (0.025) 

E Variable 5 

(0.188) 

Variable 8 

(0.111) 

Variable 9 

(0.107) 

Variable 4 

(0.98) 

Variable 

16 (0.047) 

Variable 7 

(0.031) 

Variable 

11 (0.026) 

F Variable 5 

(0.187) 

Variable 8 

(0.111) 

Variable 9 

(0.107) 

Variable 4 

(0.97) 

Variable 

16 (0.046) 

Variable 7 

(0.031) 

Variable 

11 (0.025) 

G Variable 16 

(0.235) 

Variable 5 

(0.080) 

Variable 9 

(0.072) 

Variable 8 

(0.062) 

Variable 4 

(0.058) 

Variable 

17 (0.031) 

Variable 2 

(0.024) 

H Variable 5 

(0.193) 

Variable 9 

(0.111) 

Variable 8 

(0.107) 

Variable 4 

(0.096) 

Variable 

16 (0.048) 

Variable 7 

(0.027) 

Variable 

11 (0.026) 

I Variable 5 

(0.194) 

Variable 8 

(0.109) 

Variable 9 

(0.105) 

Variable 4 

(0.095) 

Variable 

16 (0.050) 

Variable 

11 (0.027) 

Variable 7 

(0.027) 

J Variable 5 

(0.189) 

Variable 8 

(0.110) 

Variable 9 

( 0.104) 

Variable 4 

(0.098) 

Variable 

16 (0.048) 

Variable 7 

(0.028) 

Variable 

11 (0.026) 

K Variable 5 

(0.199) 

Variable 9  

( 0.109) 

Variable 8 

(0.106) 

Variable 4 

(0.096) 

Variable 

16 (0.049) 

Variable 

11 (0.028) 

Variable 7 

(0.026) 

L Variable 5 

(0.193) 

Variable 8 

(0.111) 

Variable 9  

( 0.107) 

Variable 4 

(0.098) 

Variable 

16 (0.049) 

Variable 7 

(0.027) 

Variable 

11 (0.026) 

M Variable 5 

(0.197) 

Variable 8 

(0.111) 

Variable 9  

( 0.107) 

Variable 4 

(0.098) 

Variable 

16 (0.050) 

Variable 

11 (0.027) 

Variable 7 

(0.026) 

N Variable 5 

(0.193) 

Variable 9  

( 0.106) 

Variable 8 

(0.107) 

Variable 4 

(0.098) 

Variable 

16 (0.049) 

Variable 

11 (0.026) 

Variable 7 

(0.026) 

[Table 5.5: Feature Importance] 

 

The important features are fairly consistent for each run. Variable 5 consistently in the top two variables 

by importance, and is first in all runs except for run G. Other than that, the Variable 9 and it’s Variable 8 value are 

consistently among the most important features. 
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CHAPTER 6 

Conclusion 

 

The objective of this research paper is to experiment with strategies that influence model performance 

when performing classification in an imbalanced dataset. The previous sections have covered topics such as 

exploratory data analysis where a fundamental understanding of the dataset was established, followed by the steps 

that were taken to prepare the dataset for classification. Then a set of procedures were defined and executed 

giving insight into how different sampling strategies affect model performance. 

 

Some insights that this provided were that the runs that utilized Random Under Sampling seemed to 

provide better model fitting outcomes. This was visible using conventional metrics such as the F1 Score as well as 

the “bucketing” strategy employed to understand the model performance in scenarios that aligned with the 

business use case. In particular, runs labeled H, M, and N showed the most promise during testing. It is worth 

noting that Run H’s parameters may be susceptible to the shuffle of the data in the particular random seed that it 

was run with. We can see that other runs with the same parameters but a different random seed such as runs I, J, K 

had lower F1 Scores as well as lower Positive Outcome Ratios in the first bucket of the ranked test set. The other 

highest performing runs M & N however, showed that improvements to the Random Under Sampling approach 

can be observed when modifying the sampling strategy parameter.  The result of this modification in both runs is 

that the training dataset remains imbalanced and preserves the majority-minority class dynamic but reduces the 

imbalance of the outcomes for data points in the training set. It is possible that in addition to increasing the 

model’s performance that this sort of sampling strategy could also make the approach more robust to changing the 

random shuffle of the data set. 

 

It is worth noting that another effect of the Random Under Sampling strategies that showed the most 

performance was that there were more false positives in the test set evaluation. This could be an issue in some 
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contexts but given the particular business problem that is aiming to be solved over the course of this research 

paper false positives were acceptable and less important than maximizing the true positives in the model 

predictions. 

 

Another interesting observation was that whether we were evaluating model performance using 

conventional statistical metrics or our less conventional bucketing strategy that better aligned with the business 

use case, we were able to see that the same runs were performing the best across the different model evaluation 

strategies. This was an encouraging finding and gives reason to be optimistic that conventional statistical metrics 

will be directly useful when trying to build a solution to a real-world problem that will be implemented in a 

business context. 

 

Therefore, we arrived at the end of the analysis and were able to demonstrate the ability to understand a 

business problem and the available data points, gain insight and perform operations on that dataset, and then 

iterate through model fitting with different strategies to arrive at an optimized solution to the original business 

problem. Given the correct context, it may be worth experimenting with Random Under Sampling strategies to 

manipulate the imbalance in a dataset for the goal of classification. 

 

 Future work to expand upon this research could be to run the analysis on a larger data set collected over a 

longer time period. Especially if there was a way to influence the data collection to get a more well-rounded set of 

observations and ideally balance out some of the skewed distributions that we saw in some of the variables. It 

would also be interesting to see the same overall set of sampling experimentation applied to other data sets with 

various levels of imbalance between their majority and minority classes. It would be interesting to see if the 

findings from this particular data set still provide useful results when the imbalance in the classes is not quite as 

heavy. There are of course more combinations of random seeds and sampling strategies that could be evaluated as 

well as investigating whether other types of models than the random forest see similar effects of these sampling 

methods. 
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The final item that is important to mention is that even though some runs showed more promise in 

addressing the task at hand, their generalizability remains in question. Specifically with runs H-K there is a lot of 

potential for variability between samples which cast doubt on whether the approach would generalize to other 

datasets as effectively or not. Future work should be done on the topic to fully understand the uncertainty caused 

by random under sampling. It would be worthwhile to generate a large number of training datasets and measure 

the average performance of each method across those collection of training runs, understanding the mean and 

standard deviation of the model’s accuracy under those conditions across many training runs would provide much 

more insight into the reliability of the under sampling methods. 
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