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1. Introduction

The observed smallness of neutrino masses finds an attractive explanation in the see-saw

mechanism [1]–[5]. The light neutrino masses are, at tree-level, given by the famous see-saw

relation

mν = −(mDiracν )T M−1mDiracν . (1.1)

This relation emerges from integrating out heavy, singlet neutrinos with mass matrix M .

The Dirac neutrino mass mDiracν is proportional to the neutrino Yukawa coupling Yν .

Clearly, the see-saw operates at high energy scales while its implications are measured

by experiments at low scales. Therefore, the neutrino masses given by eq. (1.1) are subject

to quantum corrections, i.e. they are modified by renormalization group (RG) running.

The running of neutrino masses and lepton mixing angles has been investigated in-

tensively in the literature. For non-hierarchical neutrino mass spectra, RG effects can be

very large and they can have interesting implications for model building. For example,

lepton mixing angles can be magnified [6]–[10], bimaximal mixing at high energy can be

compatible with low-energy experiments [11, 12, 13] or the small mass splittings can be

generated from exactly degenerate light neutrinos [14]–[19]. On the other hand, facing the

high precision of future neutrino experiments, rather small RG corrections are important

as well. For instance, deviations from θ13 = 0 or maximal mixing θ23 = π/4 are induced

by RG effects [20, 21, 22] also for a hierarchical spectrum. However, in most studies only

the running of the dimension 5 operator has been considered, which is only appropriate for

the energy range below the mass scale of the heavy singlets.

The importance of including the effects from energy ranges above and between these

mass thresholds when analyzing RG effects in GUT models has been pointed out in [23,

24, 25, 26, 27, 11, 8, 12, 13, 21]. They are typically at least as important as the effects from

– 2 –
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below the thresholds since the relevant couplings, i.e. the entries of Yν , can be of order one,

regardless of tan β.1 Previous studies have investigated the RG effects above the see-saw

scales mainly numerically.

In this paper we derive formulae which allow to understand the running of the neutrino

parameters above the see-saw scales analytically. We further provide a software package

for analyzing the RG evolution (with correct treatment of non-degenerate see-saw scales)

numerically. We apply our results to investigate consequences of the running above the

see-saw scales for model building and leptogenesis and compare the size of RG corrections

to the precision of future experiments.

The paper is organized as follows: In section 2, we review how the predictions for

neutrino masses can be evolved from the GUT scale to the electroweak scale. Section 3 is

dedicated to the analytic understanding of RG effects in see-saw scenarios with special em-

phasis on the range between MGUT and the highest see-saw scale. In section 4, we analyze

the running between the see-saw scales in more detail. Section 5 contains a brief descrip-

tion of the accompanying Mathematica packages for numerical RG analyses (a detailed

documentation is available at http://www.ph.tum.de/~rge/). In section 6, we discuss

applications to model building and related topics. Alternatives to the simplest see-saw

scenario are briefly discussed in section 7. Finally, section 8 contains our conclusions.

2. Running neutrino masses in see-saw scenarios

In this section, we discuss how to obtain the RG evolution of neutrino masses, starting from

initial conditions at a very high energy scale.2 An important technical issue is that the

heavy singlet neutrinos involved in the see-saw mechanism have to be integrated out one

by one. Thus, one has to consider a series of effective theories [26, 27]. We will focus on the

SM and the MSSM amended by three singlet neutrinos N i
R or three singlet superfields �

i,

respectively. The discussion can be applied to other scenarios, such as multi-Higgs models,

and a different number of singlets in a straightforward way.

We consider the lagrangian of the SM extended by

L
ν = −NRYν`Lφ̃† −

1

2
NRMNCR + h.c. , (2.1)

where `L := (`1L, `
2
L, `

3
L)
T denotes the left-handed lepton doublets, φ is the Higgs doublet

and φ̃ = iτ2φ∗ its charge conjugate. The superscript C denotes charge conjugation of

fermion fields, and NCR := (NR)
C. In the supersymmetric case, φ is replaced by the Higgs

doublet Hu coupling to the up-type quarks.

In order to define mass and mixing parameters as functions of the renormalization scale

µ above the highest see-saw scale, we consider the effective light neutrino mass matrix

mν(µ) = −
v2

2
Y T
ν (µ)M−1(µ)Yν(µ) , (2.2)

1Large entries of Yν could be important in models of gauge-Yukawa unification (see, e.g., [28]), and may

even be important for precision gauge unification in the MSSM [29].
2In the following we will refer to this high energy scale as MGUT, although it can be any other scale

where additional new physics, apart from the heavy singlet neutrinos, has to be taken into account.
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where Yν and M are µ-dependent. The relevant Higgs vev is v = 246GeV in the SM and

v = 246GeV · sinβ in the MSSM.3 mν is the mass matrix of the three light neutrinos as

obtained from block-diagonalizing the complete 6× 6 neutrino mass matrix, following the

standard see-saw calculation. The scale-dependent mixing parameters are obtained from

mν(µ) and the running charged lepton Yukawa matrix Ye(µ). In section 3 we are going

to analyze the energy dependence of the parameters in the lepton sector such as neutrino

masses, lepton mixing angles and CP phases above the highest see-saw scale analytically.

Therefore, we will make use of the RGE for the composite quantity mν , calculated from

those for Yν and M [31, 32, 24, 25]. It is given by

16π2
dmν

dt
= (Ce Y

†
e Ye + Cν Y

†
ν Yν)

T mν +mν (Ce Y
†
e Ye +Cν Y

†
ν Yν) + ᾱmν (2.3)

with t := ln(µ/µ0),

Ce = −
3

2
, Cν =

1

2
in the SM, (2.4a)

Ce = Cν = 1 in the MSSM, (2.4b)

and (with Ye, Yd and Yu being the Yukawa matrices of charged leptons, down- and up-type

quarks, respectively)4

ᾱSM = − 9

10
g21 −

9

2
g22 + 2Tr

(
Y †
ν Yν + Y †

e Ye + 3Y †
d Yd + 3Y †

uYu
)
, (2.5a)

ᾱMSSM = −6

5
g21 − 6g22 + 2Tr

(
Y †
ν Yν + 3Y †

uYu

)
. (2.5b)

The RGE (2.3) governs only the evolution of the light neutrino mass matrix above the

highest see-saw scale, which is given by the mass eigenvalue M3 of the heaviest singlet N 3R.

For µ < M3, we obtain the correct RG evolution by integrating out N 3R. This leads to the

appearance of an effective neutrino mass operator

Lκ =
1

4

(3)
κfg (`

C
L
f · φ) (`gL · φ) + h.c. , (2.6)

where f, g ∈ {1, 2, 3} are family indices and where the dot indicates the SU(2)L-invariant

contractions. The coefficient of this operator is obtained by the (tree-level) matching

condition5
(3)
κgf = 2(Y T

ν )g3M
−1
3 (Yν)3f , (2.7)

3As indicated in eq. (2.2), we do not take into account the running of the Higgs vev. In principle, v

runs as well, so that mν actually does not yield the physical neutrino masses. However, the evolution of

v depends on the renormalization scheme and on the definition of the Higgs mass, see e.g. [30], so that

there is no straightforward definition of a neutrino mass with a running vev. In any case, the mixing angles

and phases are independent of the value of v. This definition has shown appropriate for the applications

discussed in this paper, such as leptogenesis.
4We use GUT charge normalization for the gauge coupling g1.
5We do not discuss finite threshold corrections, which arise due to the fact that the singlet neutrinos do

not decouple abruptly [33]. The resulting uncertainty in the low-energy results is typically not larger than

that due to two-loop effects. In the REAP software package described in section 5, the corrections can be

implemented approximately by integrating out N 3
R slightly below M3.

– 4 –
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which is imposed at µ =M3. This expression is specified in the mass basis for the singlets,

i.e. in the basis where M is diagonal. Let us mention that finding the matching scale

properly requires some care as the mass matrix M (and consequently the eigenvalue M3)

itself is subject to the RG evolution. As a consequence, for scales below M3 the effective

neutrino mass matrix can be described as a sum of two contributions,

mν = −v
2

4

(
(3)
κ+ 2

(3)

Y T
ν

(3)

M−1
(3)

Yν
)
. (2.8)

The 2 × 3 Yukawa matrix
(3)

Yν is obtained by simply removing the last row of Yν in the

basis where M is diagonal. The 2 × 2 mass matrix
(3)

M is found from M by removing the

last row and column. By construction, mν is a continuous function of the renormalization

scale. The RG evolution of the second term on the right-hand side of eq. (2.8) is governed

by eq. (2.3) with Yν replaced by
(3)

Yν . The running of the first term, on the other hand, is

determined by the RGE [27]

16π2
d

(3)
κ

dt
=
(
Ce Y

†
e Ye + Cν

(3)

Y †
ν

(3)

Yν
)T (3)
κ+

(3)
κ
(
Ce Y

†
e Ye + Cν

(3)

Y †
ν

(3)

Yν
)
+

(3)

ᾱ
(3)
κ (2.9)

with Ce and Cν as in eqs. (2.4) [34, 35, 36, 37], and

(3)

ᾱSM = −3g22 + 2Tr
((3)
Y †
ν

(3)

Yν + Y †
e Ye + 3Y †

d Yd + 3Y †
uYu

)
+ λ , (2.10a)

(3)

ᾱMSSM = −6

5
g21 − 6g22 + 2Tr

((3)
Y †
ν

(3)

Yν + 3Y †
uYu

)
. (2.10b)

One can now evolve the effective neutrino mass matrix down to the scale M2 and

repeat the matching procedure there. From integrating out N 2R at µ = M2, the Yukawa

matrix gets further reduced and the effective neutrino mass operator receives an additional

contribution. After a subsequent RG evolution to µ = M1, the procedure is repeated for

N1R. The emerging effective theories, as well as the quantities relevant to neutrino masses

in each of them, are illustrated in figure 1.

In summary, the running of the effective neutrino mass matrix mν above and between

the see-saw scales is given by the running of two parts,

mν = −v
2

4

(
(n)
κ+ 2

(n)

Y T
ν

(n)

M−1
(n)

Yν
)
. (2.11)

where n labels the effective theory (cf. figure 1). In the SM and the MSSM, the 1-loop

β-functions for mν in the various effective theories can be summarized as

16π2
d

(n)

X

dt
=
(
CeY

†
e Ye + Cν

(n)

Y †
ν

(n)

Yν
)T (n)

X +
(n)

X
(
CeY

†
e Ye + Cν

(n)

Y †
ν

(n)

Yν
)
+

(n)

ᾱX
(n)

X , (2.12)

where
(n)

X stands for
(n)
κ or for 2

(n)

Y T
ν

(n)

M−1
(n)

Yν , respectively. The coefficients Ci and ᾱi are listed

in table 1.

– 5 –



J
H
E
P
0
3
(
2
0
0
5
)
0
2
4

µ
|

M1

|

M2

|

M3

|

MGUT

integrate out N1

R

integrate out N2

R

integrate out N3

R

EFT 1

κ

EFT 2

(2)

κ ,
(2)

Yν ,
(2)

M

EFT 3

(3)

κ ,
(3)

Yν ,
(3)

M

‘Full’

theory

Yν , M

mν = −
v2

2
Y T

ν
M−1Yνmν = −

v2

4

(3)

κ −

−
v2

2

(3)

Y T

ν

(3)

M−1
(3)

Yν

mν = −
v2

4

(2)

κ −

−
v2

2

(2)

Y T

ν

(2)

M−1
(2)

Yν

Figure 1: Validity ranges of the effective theories (EFTs) in the renormalization scale µ. At a scale

close to the mass thresholds Mi, the EFTs are related by matching conditions. Although we show

this illustration for 3 heavy singlets, it is straightforward to generalize it to an arbitrary number

(cf. [27]).

Model
(n)

X Ce Cν flavour-trivial term
(n)

ᾱX

SM
(n)
κ −32 1

2 2Tr
((n)

Y †
ν

(n)

Yν + Y †
e Ye + 3Y †

d Yd + 3Y †
uYu

)
− 3g22 + λ

SM 2
(n)

Y T
ν

(n)

M−1
(n)

Yν −32 1
2 2Tr

((n)

Y †
ν

(n)

Yν + Y †
e Ye + 3Y †

d Yd + 3Y †
uYu

)
− 9
10g

2
1 − 9

2g
2
2

MSSM
(n)
κ 1 1 2Tr

((n)

Y †
ν

(n)

Yν + 3Y †
uYu

)
− 6
5g
2
1 − 6g22

MSSM 2
(n)

Y T
ν

(n)

M−1
(n)

Yν 1 1 2Tr
((n)

Y †
ν

(n)

Yν + 3Y †
uYu

)
− 6
5g
2
1 − 6g22

Table 1: Coefficients of the β-functions of eq. (2.12), which govern the running of the effective

neutrino mass matrix in minimal see-saw models.

3. Analytic understanding of the RG evolution

The methods of [38, 31, 39, 20] can be used to derive differential equations for the running of

the neutrino masses, mixing angles and CP phases in the see-saw scenario. In this section,

we concentrate on the full theory above the highest see-saw scale. The corresponding

differential equations for the running below the see-saw scales have been discussed in [40,

39, 20]. We abbreviate the flavour-dependent terms in the RGE (2.3) by

P := Ce Y
†
e Ye + Cν Y

†
ν Yν . (3.1)

Due to the appearance of the neutrino Yukawa couplings, the running depends on more

parameters than below the see-saw scale. In particular, since the see-saw formula does

– 6 –



J
H
E
P
0
3
(
2
0
0
5
)
0
2
4

not allow to determine Yν uniquely from the light neutrino mass matrix, the running is no

longer determined by (the RG extrapolation of) low-energy parameters only. Moreover,

Y †
e Ye and Y †

ν Yν are not simultaneously diagonalizable in general. As a consequence, the

RG evolution generates off-diagonal entries in the charged lepton Yukawa couplings, even

if one starts in a basis where they are diagonal (cf. the RGEs in appendix D). This is also

different from the situation below the see-saw scale and makes the results more complicated.

In a given basis, Y †
e Ye and mν can be diagonalized by unitary matrices, Ue and Uν ,

respectively. The lepton mixing matrix is given by UMNS = U †
eUν . Keeping the basis fixed,

both matrices change with the renormalization scale, so that the RGEs of the mixing

parameters consist of two parts, one coming from the RG change of Ue, and the other

from the change of Uν . We will refer to these as Ue and Uν contribution in the following.6

Further details and the derivation of the formulae are given in appendix B.

We will first discuss the Uν contribution, which is often dominant. An important result

is that in the RGEs above the see-saw scale, the same mass squared differences appear in

the denominators as below the see-saw scale, so that

∆θ12,∆ϕ1,∆ϕ2,∆δ ∝
1

∆m2sol
, (3.2a)

∆θ13,∆θ23 ∝
1

∆m2atm
, (3.2b)

where, as usual, ∆m2atm := m23 −m22 and ∆m2sol := m22 −m21.7 Thus, θ12 and the phases

generically still run faster than θ13 and θ23. Besides, the running is suppressed by a strong

normal mass hierarchy, as it is the case below M1. For the unphysical phases8, we find a

generically larger change ∆δe ∝ 1/∆m2sol, while ∆δµ,∆δτ ∝ 1/∆m2atm.

Often, the evolution will be dominated by a single element of P . Then, the derivatives

of the masses and mixing parameters are given by this element times the corresponding

entry in the tables of section 3.3 and appendix C. We will discuss an example in section 6.1.

Of course, if several entries of Pfg are relevant, one obtains the analytic description by

simply adding up their contributions. The tables are given in the basis where Ye is diagonal

and where the unphysical phases in the MNS matrix are zero (cf. appendices B.1 and B.5).

In order to keep the expressions reasonably short, we only present the first order of the

expansion in the small CHOOZ angle θ13. We furthermore use the abbreviation

ζ :=
∆m2sol
∆m2atm

. (3.3)

Its current best-fit value is ζ ≈ 0.038 [41]. Note that this value is measured at low energy.

It can change significantly, if the running of the mass eigenvalues is not a simple rescaling.

6One might wonder whether it is possible to simplify the situation by working in the basis where P is

diagonal. This is not the case, since the Ue contribution depends on a different linear combination of Y †e Ye
and Y †ν Yν .

7For specific textures, this observation has been made in [11, 8]. The result can also be obtained by

using the formulae of [39].
8The term “unphysical phases” is somewhat misleading here, since the distinction between physical and

unphysical parameters is not completely trivial in the full theory, cf. appendix B.5.
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θ̇12 θ̇13 θ̇23

d. n.h. i.h. d. n.h. i.h. d. n.h. i.h.

P11
m2

∆m2
sol

1 ζ−1 O(θ13) O(θ13) O(θ13) O(θ13) O(θ13) O(θ13)

P22
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

√
ζ O(θ13) m2

∆m2
atm

1 1

P33
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

√
ζ O(θ13) m2

∆m2
atm

1 1

ReP21
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

1 1 m2

∆m2
atm

√
ζ O(θ13)

ReP31
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

1 1 m2

∆m2
atm

√
ζ O(θ13)

ReP32
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

√
ζ O(θ13) m2

∆m2
atm

1 1

ImP21
m2

∆m2
sol

O(θ13) ζ−1 m2

∆m2
atm

1 1 m2

∆m2
atm

√
ζ O(θ13)

ImP31
m2

∆m2
sol

O(θ13) ζ−1 m2

∆m2
atm

1 1 m2

∆m2
atm

√
ζ O(θ13)

ImP32 O(θ13) O(θ13) O(θ13) m2

∆m2
atm

√
ζ O(θ13) m2

∆m2
atm

√
ζ O(θ13)

Table 2: Generic enhancement and suppression factors for the evolution of the angles, yielding

an estimate of the size of the RG effect. The table entries correspond to the terms in the mixing

parameter RGEs with the coefficient given by the first column. A ‘1’ indicates that there is no

generic enhancement or suppression. ‘d.’ stands for a degenerate neutrino mass spectrum, i.e.

∆m2
atm ¿ m2

1 ∼ m2
2 ∼ m2

3 ∼ m2. ‘n.h.’ denotes a normally hierarchical spectrum, i.e. m1 ¿ m2 ¿
m3, and ‘i.h.’ means an inverted hierarchy, i.e. m3 ¿ m1 . m2.

The tables in the appendix show that the numerators of the RGEs are of the order

of m2i in the generic case, i.e. if there are no significant cancellations. Then, the generic

enhancement and suppression factors given in table 2 yield a first estimate of the RG

change of the mixing angles. In particular, they allow to understand analytically when the

evolution is enhanced or suppressed compared to the naive estimate

∆θnaiveij =
1

16π2
Pfg × ln

MGUT
M∗

, (3.4)

where Pfg is assumed to dominate the running and M∗ is the corresponding see-saw scale.

The analogous factors for the CP phases are given in table 3. The size of quantum correc-

tions can thus be estimated by multiplying ∆θnaiveij with the corresponding enhancement

or suppression factor. As the mass hierarchy is weaker in the neutrino sector than in the

quark sector, the change of the mixing parameters in the MNS matrix is larger than that

of the ones in the CKM matrix.

The RG evolution can deviate significantly from the generic estimate, if cancellations

occur. For example, for non-zero ϕ1 − ϕ2, the running of θ12 usually gets damped (as it is

the case below the see-saw scales [42]). Such effects can be understood from the complete

formulae in appendix C. However, care should be taken when estimating the RG effects

for special phase configurations with extreme cancellations, such as ϕ1 − ϕ2 = π, as terms

proportional to θ13 (which are neglected in our formulae) can become important then.
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3.1 Running of the mixing angles

From the generic enhancement and suppression factors for the evolution of the solar angle in

table 2, we see that all terms in θ̇12 are enlarged by m2/∆m2sol for quasi-degenerate masses.

Thus, there will be large RG effects, if the different terms do not cancel each other. The

term involving ImP32 is an exception, because its leading order is proportional to θ13, so

that it only plays a role in special cases. In the case of a strong normal hierarchy, there is no

enhancement. However, for a moderate hierarchy where the square of the lightest neutrino

mass is small compared to ∆m2atm but larger than ∆m2sol the running is still enhanced

by m21/∆m
2
sol. This is similar for an inverted hierarchy, where the evolution is generically

enhanced by ζ−1, because the masses m1 and m2 are almost degenerate. Thus, the RG

change of θ12 is generically large for an inverted hierarchy and for a degenerate spectrum,

and small for a normal hierarchy. This conclusion is unchanged compared to the region

below the see-saw scale.

The enhancement and suppression factors of θ13 are similar to those of θ23. The

evolution of both angles does not depend on P11 for θ13 = 0. The terms proportional

to the other Pfg are enhanced by m2/∆m2atm in the degenerate case, so that we expect

significant effects here as well. However, as already mentioned, they are usually smaller

than those for θ12. For both hierarchical spectra, the running is slow. For a diagonal P and

an inverted hierarchy with m3 = 0, θ13 does not run at all, if it vanishes at some energy,

as it is the case below the see-saw scale [43]. However, this is no longer true if P21 or P31
is non-zero.

As far as the dependence of the RGEs on the mixing parameters is concerned, we find

from table 12 that the terms in the RGEs which are proportional to the diagonal elements

of P exhibit basically the same behavior as the RGEs below the see-saw scale [20]. The

running of θ12 and θ23 is damped by non-zero Majorana phases, while the situation is more

complicated for θ13. In particular, the value of the Dirac phase in the case θ13 = 0 is

determined by the condition that δ̇ remain finite. Additionally, the running is suppressed

if the mixing angles are small, as it is the case in the quark sector. (This is another reason

why the leptonic mixings run faster than the quark mixings [44].)

If the diagonal elements are equal, their contributions to the RGEs cancel exactly.

This follows from the fact that the mixing angles do not change under the RG, if P is

the identity matrix and thus does not distinguish between the flavours. Of course, this

statement holds also for the RGEs of the CP phases. It provides a consistency check for

the results.

Interesting new effects occur for non-zero off-diagonal elements in P . Some of their

coefficients in the RGEs do not vanish for vanishing mixings, so that non-zero mixing angles

are generated radiatively. Because of this, it is possible to reach low-energy parameter

regions that are compatible with experiment even if the neutrino mass matrix is diagonal

at the GUT scale [10]. This is in striking contrast to the region below the see-saw scale

and to the quark sector. The terms proportional to the real parts of the off-diagonal Pfg
exhibit the same dependence on the Majorana phases as the diagonal elements. Some of

them are suppressed for large angles θ12 and θ23. For example, the ReP23 contribution to

– 9 –
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ϕ̇i δ̇

d. n.h. i.h. d. n.h. i.h.

P11
m2

∆m2
sol

O(θ13) ζ−1 m2

∆m2
sol

√
ζ ζ−1

P22
m2

∆m2
sol

√
ζ ζ−1 m2

∆m2
atm

θ−113 + m2

∆m2
sol

√
ζθ−113 ζ−1

P33
m2

∆m2
sol

√
ζ ζ−1 m2

∆m2
atm

θ−113 + m2

∆m2
sol

√
ζθ−113 ζ−1

ReP21
m2

∆m2
sol

√
ζ ζ−1 m2

∆m2
atm

θ−113 + m2

∆m2
sol

θ−113 θ−113 + ζ−1

ReP31
m2

∆m2
sol

√
ζ ζ−1 m2

∆m2
atm

θ−113 + m2

∆m2
sol

θ−113 θ−113 + ζ−1

ReP32
m2

∆m2
sol

√
ζ ζ−1 m2

∆m2
atm

θ−113 + m2

∆m2
sol

√
ζθ−113 ζ−1

ImP21
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

θ−113 + m2

∆m2
sol

θ−113 θ−113 + ζ−1

ImP31
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

θ−113 + m2

∆m2
sol

θ−113 θ−113 + ζ−1

ImP32
m2

∆m2
atm

1 1 m2

∆m2
atm

θ−113 + m2

∆m2
atm

√
ζθ−113 ζ−1

Table 3: Generic enhancement and suppression factors for the evolution of the CP phases, yield-

ing an estimate of the size of the RG effect. The table entries correspond to the terms in the

mixing parameter RGEs with the coefficient given by the first column. A ‘1’ indicates that there

is no generic enhancement or suppression. ‘d.’ denotes a degenerate neutrino mass spectrum, i.e.

∆m2
atm ¿ m2

1 ∼ m2
2 ∼ m2

3 ∼ m2. ‘n.h.’ denotes a normally hierarchical mass spectrum, i.e.

m1 ¿ m2 ¿ m3, and ‘i.h.’ means an inverted hierarchy, i.e. m3 ¿ m1 . m2.

θ̇23 vanishes for maximal atmospheric mixing. The influence of the imaginary parts has

quite a different dependence on the mixing parameters, in particular on the Majorana

phases. The corresponding terms become maximal for non-vanishing phases, for instance

for ϕ1 − ϕ2 = π/2 in the case of θ12. Thus, the usual damping of the running by non-

zero Majorana phases does not always take place above the see-saw scales. However, the

maximal damping for ϕ1 − ϕ2 = π (or ϕi = π in the case of θ23) still occurs, since the

coefficients of ImPfg are zero then. Some examples for the running with large imaginary

entries in P will be discussed in section 6.4.

3.2 Running of the phases

The CP phases show a fast running in general. The corresponding generic enhancement

and suppression factors are given in table 3. As for the RGE of the Dirac phase δ, there is

always a term proportional to θ−113 , which is further enhanced for a degenerate spectrum.

This implies that the running of δ is in general significant for small θ13, irrespectively of

the hierarchy.9 For θ13 = 0, δ and δ̇ are undefined. However, it is possible to define an

analytic continuation yielding a smooth evolution [20]. In addition, for the degenerate or

9Note, however, that in measurable quantities δ appears always in combination with sin θ13, so that the

RG change of predictions for experiments may not be significant.
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inversely hierarchical spectrum, the running of δ gets enhanced by terms proportional to

m2/∆m2sol or ζ
−1, respectively. The coefficients of Pfg in δ̇ are given in table 13, from

where one obtains the RGE as δ̇ = θ−113 δ̇
(−1) + δ̇(0) + O(θ13).

The situation is similar for the Majorana pha-
16π2 (ϕ̇1 − ϕ̇2)

P11 −4S12 cos 2θ12
P22 4S12c223 cos 2θ12
P33 4S12s223 cos 2θ12
ReP21 −8S12c23 cos 2θ12 cot 2θ12
ReP31 8S12s23 cos 2θ12 cot 2θ12
ReP32 −4S12 cos 2θ12 sin 2θ23
ImP21 −4Q−

12c23 cot 2θ12
ImP31 4Q−

12s23 cot 2θ12
ImP32 0

Table 4: Coefficients of Pfg in the

slope of the Majorana phase difference

for θ13 = 0. The abbreviations Sij and

Q±
ij depend on the mass eigenvalues and

phases only, and enhance the running for

a degenerate mass spectrum since they

are of the form fij(mi,mj , ϕ1, ϕ2)/(m
2
j−

m2
i ). They are listed in table 11. We

use the abbreviations cij = cos θij and

sij = sin θij (cf. appendix A.1).

ses. By the same reasoning as for the running of

the solar angle, the generic RG effects are large for

degenerate masses and for an inverted hierarchy,

while they are suppressed for a strong normal hi-

erarchy. The coefficients of Pfg in ϕ̇i are given in

table 14. These formulae are also important to un-

derstand the evolution of the mixing angles in some

cases. An example will be discussed in section 6.4.

The evolution of the Majorana phase difference

is governed by a simple equation, which can be read

off from table 4. It indicates strong running, since

the slope is still inversely proportional to ∆m2sol.

However, in the case of equal Majorana phases,

only the imaginary entries in P and terms propor-

tional to θ13 contribute to the running. Besides,

the contribution proportional to the real parts is

suppressed for large solar mixing.

If Y †
ν Yν is close to the identity matrix, its con-

tribution to the running is very small, since the

terms proportional to the diagonal entries cancel

approximately. Then, only the contribution from Y †
e Ye remains, so that the evolution

above the see-saw scales is essentially the same as below. However, many GUT models

suggest a hierarchical structure for Yν like for the other Yukawa matrices. Then the main

contribution will be due to P33 and the next-to-leading contribution will be from ReP32, if

Y †
ν Yν is almost diagonal in the basis with diagonal Y †

e Ye. Thus, the phase difference tends

to decrease while running down,10 as it is the case below the see-saw scales.

3.3 Running of the masses

Below the see-saw scales, the evolution of the mass eigenvalues is, to a good approximation,

described by a universal scaling caused by the flavour-independent part of the RGE [40,

39, 20]. This flavour-independent term, however, becomes smaller at high energies. In the

MSSM, it can even cross zero at some intermediate scale. Therefore, the flavour-dependent

terms play a more important role above the see-saw scales, the more so they can be larger

if the entries of Yν are order one.

We list the coefficients in the slope of the mass eigenvalues and of the ∆m2s in table 5

and table 6, respectively. Clearly, the RGE for each mass eigenvalue is proportional to the

mass eigenvalue itself. As a consequence, the mass eigenvalues can never run from a finite

10More accurately, it runs away from π and towards either 0 or 2π, i.e. |ϕ1−ϕ2| decreases for |ϕ1−ϕ2| < π

and increases for |ϕ1 − ϕ2| > π.
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16π2 ṁ1/m1 16π2 ṁ2/m2 16π2 ṁ3/m3
ᾱ 1 1 1

P11 2c212 2s212 0

P22 2s212c
2
23 2c212c

2
23 2s223

P33 2s212s
2
23 2c212s

2
23 2c223

ReP21 −2 sin 2θ12c23 2 sin 2θ12c23 0

ReP31 2 sin 2θ12s23 −2 sin 2θ12s23 0

ReP32 −2 sin 2θ23s212 −2 sin 2θ23c212 2 sin 2θ23
ImP21 0 0 0

ImP31 0 0 0

ImP32 0 0 0

Table 5: Coefficients of Pfg in the slope of the mass eigenvalues for θ13 = 0.

8π2 ddt∆m
2
sol 8π2 ddt∆m

2
atm

ᾱ ∆m2sol ∆m2atm
P11 2s212m

2
2 − 2c212m

2
1 −2s212m22

P22 2c223
[
c212m

2
2 − s212m21

]
2s223m

2
3 − 2c212c

2
23m

2
2

P33 2s223
[
c212m

2
2 − s212m21

]
2c223m

2
3 − 2c212s

2
23m

2
2

ReP21 2 sin 2θ12c23
[
m22 +m21

]
−2 sin 2θ12c23m22

ReP31 −2 sin 2θ12s23
[
m22 +m21

]
2 sin 2θ12s23m

2
2

ReP32 −2 sin 2θ23
[
c212m

2
2 − s212m21

]
2 sin 2θ23

[
m23 + c212m

2
2

]

ImP21 0 0

ImP31 0 0

ImP32 0 0

Table 6: Coefficients of Pfg in the slope of the mass squared differences for θ13 = 0.

value to zero or vice versa. In other words, the rank of the effective neutrino mass matrix

is conserved under the renormalization group. In contrast, the mass squared differences

can, in principle, run through zero. This, however, requires a very high value of m1.

The flavour-independent term in the MSSM is subject to large cancellations (cf.

eq. (2.5b)). Note that the running of the mass eigenvalues strongly depends on the top

Yukawa coupling yt, since the term ᾱ contains 6y2t , and on the gauge couplings, which run

differently for different SUSY breaking scales. This could, at least partially, explain why

there exist mutually inconsistent numerical results for the scaling of the mass eigenvalues

below the see-saw scales [20, 45, 46].

Between and above the see-saw scales, the running is strongly influenced by the neu-

trino Yukawa couplings. In particular, depending on the size of the Yν entries, ᾱMSSM can

turn negative or not. For order one Yν entries, it typically stays positive. However, in

such a situation, ᾱMSSM becomes small so that P can dominate the running. Consider,

for instance, the case of a dominant P33 entry. Here, the coefficient of ṁ2 is enhanced

compared to the ṁ1 coefficient by (m2/m1) cot
2 θ12 (cf. table 5). In many cases θ12 is at

high scales much smaller than its low-energy value, so that m2 runs much faster than m1.
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Figure 2: Example where the flavour-dependent terms dominate the running of the mass eigen-

values for M3 ≤ µ ≤MGUT in the MSSM. We use Yν = diag(0.02, 0.1, 1) and m1 = 0.04 eV at the

GUT scale as well as a SUSY breaking scale of 200GeV and tanβ = 50. M is chosen such that the

low-energy parameters are compatible with experiment. The different gray-shaded areas indicate

the ranges of the effective theories (cf. figure 1).

As a consequence, ∆m2sol can be significantly enhanced even for not too degenerate spectra.

A relatively drastic example is shown in figure 2. Clearly, the discrepancy in the scaling

of ∆m2sol and ∆m2atm stems from the flavour-dependent terms P . As tan β is large in this

example, the P33 induced terms cause important effects already below the see-saw scale.

The dominant effect, however, is the running in the range M3 ≤ µ ≤ MGUT, i.e. over less

than two orders of magnitude. By inspecting the tables, we find that analogous features

are present if other elements of P are large. In particular, one can enhance the evolution

of ∆m2atm as well. Therefore we expect many models which predict realistic values for the

masses at tree level to be ruled out by several standard deviations due to RG effects.

If, on the other hand, the eigenvalues of Y †
ν Yν are much smaller than 1, ᾱMSSM typically

flips its sign. The entries of P are now small if tanβ is small, and for large tan β they

are dominated by Y †
e Ye. Hence, for small tan β, ᾱMSSM still dominates the running of the

masses (away from its zero point). In contrast, for large tan β, the contribution of P (being

now dominated by Y †
e Ye) is of similar importance, as it is the case for the running of the

effective neutrino mass operator κ at high energies. Since ᾱ can be negative at scales close

to the GUT scale now, the contributions from the diagonal entries in P can decrease the

RG effects. The off-diagonal entries again can both increase and decrease them.

Finally, let us mention that since the terms in ṁi involving the imaginary part of P

are proportional to sin θ13, they do not contribute in the approximation of vanishing θ13.

Clearly, in the SM, ᾱ dominates the running if Yν is small.

3.4 Ue contribution to the running

As mentioned in the beginning of this section, the RGE for Ye contains non-diagonal terms

above and between the thresholds, so that there is an additional contribution to the running
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of the leptonic mixing angles and CP phases. In the see-saw scenario, the RGE for Ye above

M3 is given by

16π2
dYe
dt

= Ye (De Y
†
e Ye +Dν Y

†
ν Yν) + αe Ye =: Ye F + αe Ye (3.5)

with

De =
3

2
, Dν = −3

2
in the SM, (3.6a)

De = 3 , Dν = 1 in the MSSM. (3.6b)

As usual, αe is flavour diagonal (cf. appen-
16π2 θ̇Ue

12 16π2 θ̇Ue
13 16π2 θ̇Ue

23

F11 0 0 0

F22 0 0 0

F33 0 0 0

ReF21 −c23 −s23 cos δ 0

ReF31 s23 −c23 cos δ 0

ReF32 0 0 −1
ImF21 0 −s23 sin δ 0

ImF31 0 −c23 sin δ 0

ImF32 0 0 0

Table 7: Coefficients of Ffg in the Ue contribu-

tion to the slope of the mixing angles for θ13 = 0

and ye, yµ ¿ yτ .

dix D). The resulting contributions to the

evolution of the angles for vanishing θ13 and

ye, yµ ¿ yτ are listed in table 7. They can

simply be added to the expressions discussed

above (cf. appendix B.4).

In contrast to the latter, all non-zero

terms in the Ue contribution have a generic

enhancement factor of 1. The reason for this

is the strong hierarchy among the charged

lepton masses. As a consequence, the Ue
contribution is negligible compared to the

Uν contribution, if the relevant factor in ta-

ble 2 is much larger than 1. If it is close to

1, both contributions are generically of the

same order of magnitude. The Ue contribution can even be dominant if the factor is small.

This is also possible, if cancellations occur between the leading-order terms in the RGEs.

To get a feeling for the size of the effects discussed in this section, let us consider a

rough estimate. We assume that the running is linear on a logarithmic scale, that it is

dominated by a single entry y in Yν , which is related to the light neutrino mass m3 and

the see-saw scale M3 by m3 =
v2

2
y2

M3
, and that the relevant term in table 7 is of the order

of 1. Then we find

|∆θUe| ∼ |θ̇Ue | lnMGUT
M3

∼ Dνy
2
(
0.027 + 0.006 ln

m3/0.1 eV

y2

)
. (3.7)

Thus, the change is small, but it can still be relevant in the context of precision studies

(e.g. the change of θ13), if y is large.

4. Running between the see-saw scales

Between the see-saw scales, the singlets are partly integrated out, which implies that only

a (n−1) × 3 submatrix of the neutrino Yukawa matrix remains. Therefore, we expect

that the running between the thresholds caused by the neutrino Yukawa matrix can differ

significantly from the running above or below them.
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Figure 3: Figure (a) shows the diagram which gives the contribution proportional to the Higgs

self-coupling in the β-function of the neutrino mass operator in the SM. Figure (b) shows its finite

counterpart with the heavy singlet running in the loop. The gray box labeled by κi corresponds to

the contribution to the effective neutrino mass operator from integrating out the heavy singlet N i
R.

We now discuss the running due to the terms in the β-functions with a flavour structure

proportional to the unit matrix. Below and above the see-saw scales, they only cause a

common scaling of the elements of the neutrino mass matrix and thus leave the mixing

angles and phases unchanged. Between the thresholds, however, the effective neutrino

mass matrix consists of the two parts
(n)
κ and 2

(n)

Y T
ν

(n)

M−1
(n)

Yν , as shown in eq. (2.11). Here, the

mixing angles and phases change in general, unless both parts are scaled equally. From

table 1, we see that in the SM, the β-functions
(n)

βκ and
(n)

β2Y T
ν M−1Yν , have different coefficients

in the terms proportional to the gauge couplings and to the Higgs self-coupling [27]. This

difference can be understood by looking at the corresponding diagrams of the “full” and

the effective theory. For instance, the diagram for the correction to the effective vertex

proportional to λ and its counterpart with the heavy singlet running in the loop are shown

in figure 3.

Diagram (a) is UV divergent, whereas diagram (b) is UV finite. We thus get no

contribution proportional to λ for the β-function of the composite operator. The situation

is similar for some of the diagrams corresponding to the vertex corrections proportional to

the gauge couplings. Thus, in the SM, the RG scaling of the two parts
(n)
κ and 2

(n)

Y T
ν

(n)

M−1
(n)

Yν
of the effective mass matrix between the thresholds, caused by the interactions with trivial

flavour structure, is different. This implies a running of the mixing angles and CP phases in

addition to the running of the mass eigenvalues.11 This effect can even give the dominant

contribution to the running of the mixing angles, as for instance in the example shown in

figure 4 (from [11]).

Due to the non-renormalization theorem in supersymmetric theories,
(n)

βκ and
(n)

β2Y T
ν M

−1Yν

are identical in the MSSM (see table 1 on p. 6), so that we can use the RGEs of section 3 be-

tween the see-saw scales as well. In particular, the enhanced running between the thresholds

due to terms with a trivial flavour structure does not occur. Of course, the heavy degrees

of freedom have to be integrated out first, i.e. all parameters have to be replaced by the

effective ones between the thresholds.

11To see this, let us assume that UT
(
(n)
κ + 2

(n)

Y T
ν

(n)

M−1
(n)

Yν
)
U is diagonal. Then UT

(
a
(n)
κ + b 2

(n)

Y T
ν

(n)

M−1
(n)

Yν
)
U

is in general only diagonal if a = b (common scaling).
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Figure 4: Running from maximal solar mixing at MGUT to the experimentally preferred angle of

the LMA solution. The figure shows an example in the SM with a negative CP parity for m2 and

a Yukawa matrix Yν = 0.5 · diag(ε2, ε, 1) at MGUT with ε = 3.5 · 10−3 and a normal mass hierarchy

(from [11]). The lightest neutrino has a mass of 0.004 eV (at low energy). The gray-shaded areas

illustrate the validity ranges of the effective theories emerging from integrating out the heavy singlet

neutrinos.

5. Mathematica packages for numerical RG analyses

5.1 Numerical solution of the RGEs

The Mathematica package REAP (Renormalization Group Evolution of Angles and Phases)

numerically solves the RGEs of the quantities relevant for neutrino masses, for example the

dimension 5 neutrino mass operator, the Yukawa matrices and the gauge couplings. The

β-functions for the SM, the MSSM and two Higgs doublet models with
�
2 symmetry for

FCNC suppression (2HDM) with and without right-handed neutrinos are implemented. In

addition, the same models are available for Dirac neutrinos. New models can be added by

the user. The heavy singlet neutrinos can be integrated out automatically at the correct

mass thresholds, as described in section 2.12 The software can also be applied to type-

II see-saw models as long as one only considers the energy region below the additional

see-saw scale M∆, where the new physics such as Higgs triplets only leads to another

contribution to the effective neutrino mass operator. The package can be downloaded from

http://www.ph.tum.de/~rge/REAP/. Mathematica 5 is required.

5.2 Extraction of mixing parameters from mass matrices

The package MixingParameterTools (MPT) allows to extract the physical lepton masses,

mixing angles and CP phases from the mass matrices of the neutrinos and the charged

leptons. Thus, the running of the neutrino mass matrix calculated by REAP can be trans-

lated into the running of the mixing parameters and the mass eigenvalues. For the defi-

12We do not consider SUSY threshold corrections [47], as they are usually numerically less important [48].
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nition of the mixing parameters, see appendix A.1 and the documentation of the package.

MixingParameterTools can also be useful as a stand-alone application in order to study

textures without running, and it is not bound to the analysis of neutrino masses only

but may be used for quark and superpartner mass matrices as well. Therefore, it can be

obtained separately from REAP at http://www.ph.tum.de/~rge/MPT/.

5.3 Example calculation

The following simple example demonstrates how to use the Mathematica packages to cal-

culate the RG evolution of the neutrino mass matrix in the MSSM extended by three heavy

singlet neutrinos. Of course, further documentation is provided together with the packages.

1. The package corresponding to the model at the highest energy has to be loaded. All

other packages needed in the course of the calculation are loaded automatically. (Note

that ‘ is the backquote, which is used in opening quotation marks, for example.)

Needs["REAP‘RGEMSSM‘"]

2. Next, we specify that we would like to use the MSSM with singlet neutrinos and

tanβ = 50. Furthermore, we set the SUSY breaking scale to 200GeV and use the

SM as an effective theory below this scale.

RGEAdd["MSSM",RGEtan\[Beta]->50]

RGEAdd["SM",RGECutoff->200]

3. Now we have to provide the initial values. For instance, let us set the GUT-scale

value of θ12 to 45◦ and that of the first Majorana phase to 50◦. Besides, we use a

simple diagonal pattern for the neutrino Yukawa matrix and the default values of the

package for the remaining parameters.

RGESetInitial[2*10^16,

RGE\[Theta]12->45 Degree,RGE\[Phi]1->50 Degree,

RGEY\[Nu]->{{1,0,0},{0,0.5,0},{0,0,0.1}}]

4. RGESolve[low,high] solves the RGEs between the energy scales low and high. The

heavy singlets are integrated out automatically at their mass thresholds.

RGESolve[100,2*10^16]

5. Using RGEGetSolution[scale,quantity] we can query the value of the quantity

given in the second argument at the energy given in the first one. For example, this

returns the mass matrix of the light neutrinos at 100GeV:

MatrixForm[RGEGetSolution[100,RGEM\[Nu]]]

– 17 –

http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/MPT/


J
H
E
P
0
3
(
2
0
0
5
)
0
2
4

6. To find the leptonic mass parameters, we use the function MNSParameters[mν,Ye]

(which also needs the Yukawa matrix of the charged leptons). The results are given

in the order {{θ12, θ13, θ23, δ, δe, δµ, δτ , ϕ1, ϕ2}, {m1,m2,m3}, {ye, yµ, yτ}}.

MNSParameters[

RGEGetSolution[100,RGEM\[Nu]],RGEGetSolution[100,RGEYe]]

7. Finally, we can plot the running of the mixing angles:

Needs["Graphics‘Graphics‘"]

mNu[x_]:=RGEGetSolution[x,RGEM\[Nu]]

Ye[x_]:=RGEGetSolution[x,RGEYe]

\[Theta]12[x_]:=MNSParameters[mNu[x],Ye[x]][[1,1]]

\[Theta]13[x_]:=MNSParameters[mNu[x],Ye[x]][[1,2]]

\[Theta]23[x_]:=MNSParameters[mNu[x],Ye[x]][[1,3]]

LogLinearPlot[{\[Theta]12[x],\[Theta]13[x],\[Theta]23[x]},

{x,100,2*10^16}]

6. Applications

We now apply the analytical and numerical tools described in the previous sections to some

specific cases with interesting RG effects above, between and below the see-saw scales within

the conventional see-saw scenario.

6.1 RG effects for a dominant (Yν)33

Many unified models relate the Yukawa couplings of the different charged fermions and the

neutrinos, e.g. Yν ∼ Yu or Yν ∼ Ye. For the charged fermions, the quantities accessible

through observation are Y †Y , where Y denotes the corresponding Yukawa matrix. It is

convenient to work in the basis where Y †
uYu and Y †

e Ye are diagonal and positive, and the

diagonal entries are ordered ascendingly. In this basis, all three combinations Y †Y have

a dominant 33 entry. In this subsection, we shall assume a similar pattern for Y †
ν Yν ,

i.e. (Y †
ν Yν)33 ≈ y23 À (Y †

ν Yν)ij 6=33. Given such a hierarchy for Y †
ν Yν , the RG corrections

∆θ13 := θ13(MSUSY)− θ13(MGUT) and ∆θ23 can be approximated by

∆θ13 ≈
−1
32π2

[
Cey

2
τ ln

(MGUT
MSUSY

)
+ Cνy

2
3 ln

(MGUT
M∗

)]
sin 2θ12 sin 2θ23 ×

× m3
∆m2atm (1 + ζ)

[m1 cos(ϕ1 − δ) − (1 + ζ)m2 cos(ϕ2 − δ)− ζm3 cos δ] (6.1)

∆θ23 ≈
1

32π2

[
Cey

2
τ ln

(MGUT
MSUSY

)
+ Cνy

2
3 ln

(MGUT
M∗

)]
sin 2θ23 ×

× 1

∆m2atm

[
c212 |m2 eiϕ2 +m3|2 + s212

|m1 eiϕ1 +m3|2
1 + ζ

]
, (6.2)
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where M∗ denotes the mass scale of the heavy neutrino(s) with the large Yukawa cou-

plings.13 To obtain these results, we read off the RGEs from table 12, and integrated them

with the approximation of constant coefficients. This is reasonably accurate, since the

running of θ13 and θ23 is almost linear on logarithmic scales [20].14

In the SM, the term proportional to y2τ is negligible, since the Yukawa coupling is not

enhanced by tan β. However, the y23 contribution can be large, and it is not suppressed for

small tan β. Furthermore, except for y3 andM∗, only (the RG extrapolation of) low-energy

parameters enter the expressions (6.1) and (6.2).

In the case of the solar angle, the running is strongly non-linear when the RG change

is large. Then, the approximation used in the above equations does not yield reliable

results. Even by integrating the RGE (assuming θ12 to vary but the other parameters to be

constant), one arrives at an expression which does not represent an accurate approximation

in many cases because of the running of ∆m2sol. Nevertheless, an inspection of the RGE

reveals several qualitative features of the running such as the damping influence of the

phases, as discussed in section 3.1.

The running of the Majorana phases may be regarded as encouraging for the prospects

of neutrinoless double β decay experiments: it is known that even if the mass eigenvalues

are large enough to make a discovery in future experiments possible, cancellations may

strongly suppress the amplitude [49]. This can directly be seen from the fact that the

amplitude is governed by the effective neutrino mass

〈mν〉 =
∣∣∣m1 c212c213 eiϕ1 +m2 s

2
12c
2
13 e

iϕ2 +m3 s
2
13 e

2iδ
∣∣∣ , (6.3)

which is obviously suppressed if ϕ1 − ϕ2 is close to π. However, for dominant P33, the

difference of Majorana phases is driven away from π at low energies due to RG effects (cf.

the discussion in section 3.2). This implies that cancellations tend to be avoided. Note

that the contribution from Y †
e Ye, which persists below the see-saw scales, increases the

effect [20].

6.2 Neutrino Yukawa couplings with two large entries

As another example, let us assume that the neutrino Yukawa matrix contains two domi-

nant entries, (Yν)33 ≈ e−iγ(Yν)32 ≈ y3 with an arbitrary phase γ, as it is the case in many

models where the large atmospheric mixing angle emerges from Yν in the basis where Ye
is diagonal. Then (Y †

ν Yν)33 ≈ (Y †
ν Yν)22, which causes a cancellation between the contribu-

tions proportional to these terms in the RGEs of θ13 and θ23. Thus, using the same linear

13For the analytic estimates, we ignore complications due to the generically non-degenerate see-saw

scales [27].
14A comparison with numerical calculations shows that this is unchanged in the presence of neutrino

Yukawa couplings.
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approximation as in section 6.1, we obtain the changes

∆θ13 ≈
−1
32π2

[
Cey

2
τ ln

(MGUT
MSUSY

)
sin 2θ23 − 2Cνy

2
3 cos γ ln

(MGUT
M∗

)
cos 2θ23

]
sin 2θ12 ×

× m3
∆m2atm (1 + ζ)

[m1 cos(ϕ1 − δ) − (1 + ζ)m2 cos(ϕ2 − δ) − ζm3 cos δ] +

+
1

16π2
Cνy

2
3 sin γ ln

(MGUT
M∗

)
sin 2θ12 ×

× m3
∆m2atm (1 + ζ)

[m1 sin(ϕ1 − δ) − (1 + ζ)m2 sin(ϕ2 − δ) + ζm3 sin δ] (6.4)

∆θ23 ≈
1

32π2

[
Cey

2
τ ln

(MGUT
MSUSY

)
sin 2θ23 − 2Cνy

2
3 cos γ ln

(MGUT
M∗

)
cos 2θ23

]
×

× 1

∆m2atm

[
c212 |m2 eiϕ2 +m3|2 + s212

|m1 eiϕ1 +m3|2
1 + ζ

]
−

− 1

8π2
Cνy

2
3 sin γ ln

(MGUT
M∗

) m3
∆m2atm

[
c212m2 sinϕ2 + s212

m1 sinϕ1
1 + ζ

]
+

+
1

16π2
Dνy

2
3 cos γ ln

(MGUT
M∗

)
. (6.5)

The change proportional to the real part of P32 vanishes for maximal atmospheric mixing.

Hence, the neutrino Yukawa couplings only contribute significantly to the running of θ13 in

this case, if (Yν)32 has a large imaginary part and if the CP phases are not close to 0 or π.

In ∆θ23, they always play a role by inducing off-diagonal elements in Y †
e Ye, which leads to

the last term in eq. (6.5). This term is actually dominant in the case of CP conservation

and small tan β.

6.3 RG corrections and precision measurements

In this section, we will estimate the order of magnitude of RG effects in see-saw models

and compare it to the precision of future measurements of neutrino mixing (see also [21,

19, 50, 51] for related works). We shall first consider the effects of a large P33 as an

example. For instance, P33 can be generated from the entry (Yν)33. Note that this is only

an example. RG effects from different structures of Yν can be understood and estimated

using the analytic formulae of section 3. Graphically, the RG corrections caused by P33
in the MSSM with tanβ = 20 are illustrated in figure 5. We have assumed the initial

values θ13 = 0, θ23 = π/4 and θ12 + θC = π/4 (where θC is the Cabibbo angle) at high

energy, which may be especially interesting from a theoretical point of view [52, 53, 54].

The changes of θ13 and θ23 have been calculated from the approximations (6.1) and (6.2).

We would like to stress that the mass squared differences are running quantities as well and

taking them as constant, as it was done in eqs. (6.1) and (6.2), restricts the accuracy of

the estimates. For producing the plots in figure 5, we have used the values of ∆m2atm and

∆m2sol at µ = 1014GeV. For the considered parameter ranges and for mt(mt) = 175GeV

and MSUSY = 1TeV, the mass squared differences at µ = 1014GeV are about a factor

1.75 larger than the low-energy values. Note that their running depends sensitively on

the value of the top mass and on the SUSY breaking scale. The change of θ12 has also
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Figure 5: Estimated RG corrections to θ13 = 0, θ23 = π/4 and θ12 + θC = π/4 with a large

P33 in the MSSM with tanβ = 20, MSUSY = 1TeV and a normal neutrino mass ordering. For

instance, P33 can be generated from the entry (Yν)33 in the neutrino Yukawa matrix, which was

assumed here. The running between the electroweak and the GUT scale has been calculated using

the approximate formulae (6.1) and (6.2). For producing the plots we have used ∆m2
atm and ∆m2

sol

at µ = 1014 GeV, which, for the considered parameter ranges, are about a factor 1.75 larger than

the low energy values. In figure (a) and (c) the CP phases have been set to zero, and in figure (b)

ϕ1 = 0 and ϕ2 = π was assumed, leading to un-suppressed running. Besides, the initial condition

θ13 = 0 as well as the best-fit values for the remaining parameters have been used.

been determined assuming a linear running, which is possible here because only rather

small neutrino masses and a moderate value of tan β are considered in the plot. We have

used those values for the Majorana phases that do not damp the RG evolution, as well

as best-fit values for the oscillation parameters. For the see-saw scale associated with the
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Current Beams D-CHOOZ T2K+NuMI Reactor-II JPARC-HK NuFact-II

0.14 0.061 0.032 0.023 0.014 10−3 6× 10−5

Table 8: Current and expected sensitivities for sin2 2θ13 at the 90% CL [55, 56, 57]. The entry

“Beams” includes the conventional beam experiments MINOS, ICARUS and OPERA. The last

entry refers to an advanced stage neutrino factory with experiments at two different baselines.

The sensitivity of a first stage neutrino factory (“NuFact-I”) is similar to that of JPARC-HK. For

a description of the experiments and the assumptions used in the analysis, see [55, 56, 57] and

references therein. The numbers should be treated with some care, since they depend on the true

values of the other oscillation parameters, in particular ∆m2
atm.

Current Beams T2K+NuMI JPARC-HK NuFact-II

0.16 0.1 0.050 0.020 0.055

Table 9: Current and expected sensitivities for |0.5− sin2 θ23| [22]. The numbers are the minimal

values required to exclude maximal mixing at the 90% CL. “Current” is the current limit from Su-

perKamiokande [58], “Beams” means conventional neutrino beams. See [22] and references therein

for a description of the experiments and the analysis methods. As in table 8, the results depend on

the true values of the other oscillation parameters.

large Yukawa coupling, we have used the approximation

M∗ ≈M33 ≈
v2

2
(Yν)

2
33 (m

−1
ν )33 . (6.6)

To justify this, let us reconstruct M from Yν and mν using the inverse of the see-

saw formula (2.2), M = − v2

2 Yνm
−1
ν Y T

ν , for a dominant entry (Yν)33 in Yν and not

too large neutrino masses, m1 . 0.1 eV. In this case, one can see from m−1
ν =

Uν diag(m−1
1 ,m−1

2 ,m−1
3 )UT

ν that all entries of the inverse light neutrino mass matrix are

usually of the same order of magnitude.15 Consequently, M33 is dominated by the term

proportional to (Yν)
2
33, i.e. the one given in eq. (6.6). Furthermore, M33 is the dominant

entry in M , so that it is approximately equal to the largest eigenvalue M3 =M∗.

We find that the RG changes are comparable to the sensitivities of planned precision

experiments (cf. tables 8 and 9) in the shaded parts of the parameter space, providing a

reason to be optimistic about the potential of these experiments to find interesting results

and to constrain model parameters. Compared to the change due to the charged lepton

Yukawa couplings alone [20], the gray-shaded regions are expanded, since the contribution

from the neutrino Yukawa couplings has the same sign in the case we considered. For a very

strong mass hierarchy, we find very small RG effects in our example. One reason for this is

the decrease of the enhancement factors in the RGEs, as discussed in section 3.1, but this

is not the main effect. What is more important is the increase of M∗. From eq. (6.6) we

find that it is roughly proportional to m−1
1 for a strong hierarchy, so that it becomes close

to or even larger than MGUT. Consequently, the RG effects from (Yν)33 become negligible,

and we are left with the change proportional to y2τ . This change is small here, since we are

using a moderate value of tan β = 20.

15Only for a narrow range in m1 and a large difference of the Majorana phases, a suppression of the

element (m−1
ν )33 is possible. Then, eq. (6.6) may not be a good approximation.
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(b) Evolution of the atmospheric mass squared difference ∆m2
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Figure 6: Example for the running of θ23, figure (a), and ∆m2
atm, figure (b), for a hierarchical

neutrino spectrum. The plots show the RG evolution in the MSSM for tanβ = 55 (solid lines),

40 (dashed lines) and 10 (dotted lines) with θ23 = 45◦ at high energy and present best-fit values

for the other parameters as constraints at low energy. We have used (Yν)33 = (Yν)32 = 1 at the

see-saw scale M3 (in the basis where M and Ye are diagonal) as an example (note that we use

RL-convention for Yν). We have furthermore assumed that the right-handed neutrino with mass

M3 dominates in the see-saw formulae, as in heavy sequential dominance [59, 60], which allows to

approximately calculate M3 from m3 in the hierarchical scheme. To a good approximation, only

one see-saw scale is relevant for the running in this case. The gray regions correspond to energies

above this scale. The evolution of ∆m2
atm depends quite sensitively on the value of the top mass

and on the SUSY breaking scale. We have used mt(mt) = 175GeV and MSUSY = 1TeV.

In order to demonstrate that RG corrections from Yν are not necessarily negligible for

a strongly hierarchical spectrum, let us consider another example, where two elements of

Yν are large. The evolution of the atmospheric mixing angle and mass squared difference is

shown in figure 6 for θ23 = π/4 at high energy in the MSSM with different values of tan β
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and a strong normal mass hierarchy. In this example, we have taken (Yν)33 = (Yν)32 = 1

at M3 and assumed the other entries in Yν to be small in the basis where M and Ye
are diagonal. We have furthermore assumed that the right-handed neutrino with mass

M3 dominates in the see-saw formula, as it is the case for heavy sequential dominance

(HSD) [59, 60].16 This allows to approximately calculate M3 ≈ v2(Yν)
2
33m

−1
3 with m3 ≈√

∆m2atm in this case, and to consider only one see-saw scale M∗ = M3 when discussing

the running. eq. (6.5) then simplifies to

∆θ23 ≈
1

32π2
y2τ ln

(MGUT
MSUSY

)(
1 + 2

√
ζc212 cosϕ2

)
+

1

16π2
ln

(
MGUT

√
∆m2atm

v2

)
. (6.7)

The resulting change of θ23 is in the range of about [1◦, 5◦]. Thus, even with a strong

normal mass hierarchy, the change of the mixing angles can be within the sensitivity of

future long baseline experiments. The phase ϕ1 is irrelevant due to m1 = 0, and ϕ2 cannot

cause a significant damping as it appears together with the rather small quantity
√
ζ. In

figure 6, it has been set to 0.

As argued in section 6.2, the running of Ue (the second term in eq. (6.7)) cannot be

neglected in this example, because the Uν contribution is strongly suppressed due to the

cancellation between the terms proportional to P22 and P33 and the vanishing of the term

proportional to P23 for maximal atmospheric mixing and real Yν . Even without cancella-

tions, both contributions are generically of the same order of magnitude for hierarchical

neutrino masses. Another lesson that can be learned from this example is that a complete

cancellation of the running is very unlikely. Hence, we always expect RG effects to be

comparable to the sensitivity of planned precision experiments if there are large Yukawa

couplings and if Yν and Ye are not simultaneously diagonal.

6.4 Large RG effects despite phases

The main new effect above the see-saw thresholds is the appearance of off-diagonal terms in

the Yukawa couplings. As large off-diagonal entries in the Yukawa matrices are postulated

in a lot of fermion mass models in order to explain the large lepton mixing angles, we expect

an important impact on the running in many cases. As mentioned in section 3.1, the effect

of large imaginary entries in P is especially unusual, since their coefficients in the RGEs

of the mixing angles θ12 and θ23 vanish for zero Majorana phases and become maximal if

the phases or their difference equal π/2. Thus, a fast running is now also possible for large

Majorana phases. A numerical example with

Yν(MGUT) =



0.001 0 0

0 0.01 0

−0.4i 0 0.5


⇒ Y †

ν Yν(MGUT) =




0.16 0 0.2i

0 0.0001 0

−0.2i 0 0.25


 , (6.8)

i.e. a large and purely imaginary P31 (as usual given in the basis where Ye is diagonal and

all unphysical phases are zero) is shown in figure 7. We used the MSSM with tan β = 30,

MSUSY = 1TeV, a normal hierarchy, m1 = 0.08 eV, ∆m2sol = 1.2 · 10−4 eV2, ∆m2atm = 4 ·
10−3 eV2, ϕ1 = π/2, ϕ2 = 0 and bimaximal mixing at the GUT scale MGUT = 2 ·1016 GeV.

16RG effects in this case have been discussed numerically in [26], in agreement with our analytic results.
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Figure 7: Fast running of the solar angle despite large Majorana phases ϕ1 = π/2, ϕ2 = 0 in

the MSSM with tanβ = 30, MSUSY = 1TeV and a normal mass hierarchy. The evolution is

dominated by the large imaginary part of P31, see eq. (6.8). Further initial conditions at the GUT

scale MGUT = 2 · 1016 GeV were bimaximal mixing, m1 = 0.08 eV, ∆m2
sol = 1.2 · 10−4 eV2, and

∆m2
atm = 4 · 10−3 eV2.

Reasonable values for the low-energy oscillation parameters are reached, and ∆m2sol
stays positive. The running of the solar angle from maximal mixing to smaller values

is caused by the term proportional to ImP31 in the RGE. A negative value of ImP31 is

required for θ̇12 > 0 (cf. table 12), which is necessary to avoid running to the “dark side”

of the solar oscillation parameters (corresponding to ∆m2sol < 0 with our conventions).

Alternatively, one could choose ImP31 > 0 and exchange the initial phases, i.e. ϕ1 = 0,

ϕ2 = π/2. The terms proportional to the diagonal elements P11 and P33 do not play a

significant role here, since they have opposite signs and therefore cancel approximately. The

example demonstrates that for sufficiently large off-diagonal entries in Y †
ν Yν , it is possible

to avoid the requirement of an inverse hierarchy of the neutrino Yukawa couplings which

was found for diagonal Y †
ν Yν [11, 12, 13].

Adding another large imaginary entry in the 32-element,

Yν(MGUT) =



0.001 0 0

0 0.01 0

−0.4i −0.5i 0.5


⇒ Y †

ν Yν(MGUT) =




0.16 0.2 0.2i

0.2 0.25 0.25i

−0.2i −0.25i 0.25


 , (6.9)

yields a rather extreme behavior of θ12, as shown in figure 8. The highest see-saw scale

lies at about 8 · 1013GeV here, i.e. the turnaround in the running is not a threshold

effect. Instead, it is due to the evolution of the Majorana phases, c.f. the lower plot

in figure 8. Their difference initially equals π/2 but quickly starts to increase as soon

as θ12 has moved away from π/4. The evolution is dominated by the term propor-

tional to ImP31, which is largest for ϕ1 − ϕ2 = π. At this point, sin(ϕ1 − ϕ2) changes

its sign, causing a sign change in the contributions of the imaginary parts of the off-
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Figure 8: Highly non-linear running of θ12 and the Majorana phases in an example with large

imaginary entries in the neutrino Yukawa matrix (see eq. (6.9)). We used the MSSM with tanβ =

10, MSUSY = 1TeV and the following initial conditions at MGUT = 2 · 1016 GeV: θ12 = θ23 = π/4,

θ13 = 0, ϕ1 = π/2, ϕ2 = 0, normal hierarchy, m1 = 0.08 eV, ∆m2
sol = 1.1 · 10−4 eV2, ∆m2

atm =

4 · 10−3 eV2.

diagonal Yukawa couplings to the RGE for θ12. This explains the minimum in the evo-

lution of this angle. At lower energies, the difference of the Majorana phases reaches

a value of about 4.4 and remains approximately constant afterwards.17 From table 14,

one would expect this value to be closer to 2π. The difference is due to the subleading

contributions to the running (the terms proportional to sin θ13 and the charged lepton

contribution), which become relevant here because of the strong damping of the leading

terms.

17This happens even if the heaviest singlet neutrino is not integrated out, i.e. even if the large Yukawa

couplings are not removed from the theory.
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6.5 Leptogenesis and RG corrections

Leptogenesis [61] is an attractive explanation of the observed baryon-to-photon ratio nB/nγ
= (6.5+0.4−0.3) · 10−10 [62]. It typically operates at the mass scale of the lightest right-handed

neutrino. In such a scenario, we have to deal with three scales: the GUT scale where

the predictions for the model parameters are fixed, the scale of leptogenesis where the

parameters have to be right for successful baryogenesis, and the low scale at which the

parameters can be measured in experiments. In particular, one cannot use GUT scale

parameters or experimental results directly in order to test the viability of leptogenesis in

a given model, rather one has to take into account quantum corrections. In the energy

range between the leptogenesis scale M1 and the electroweak scale MEW, we can consider

the running of the effective neutrino mass operator. For relating the see-saw parameters

at the GUT scale with the ones at M1, the evolution above and between the see-saw scales

has to be considered.

6.5.1 Corrections to decay asymmetries and to the neutrino mass bound

The decay asymmetry for leptogenesis in the SM [63] can be written as

ε1 ≈
3

8π

M1
v2

1

(YνY
†
ν )11

∑

f,g

Im[(Yν)1f (Yν)1g(m
∗
ν)fg] , (6.10)

if M1 ¿ M2,M3. In the MSSM, it is a factor of 2 larger. In the case of a type II see-

saw and for M1 ¿ M∆, where M∆ is the mass of the SU(2)L-triplet Higgs, the decay

asymmetry for type II leptogenesis via the lightest right-handed neutrino coincides with

the result for the conventional see-saw [64]. In the SM or for a moderate tan β in the

MSSM, the RG running from MEW to M1 leads mainly to a scaling of the neutrino mass

matrix mν . Including the RG effects results in an enhancement of the decay asymmetry for

leptogenesis by roughly 20% in the MSSM and 30% – 50% in the SM [65, 20]. The decay

asymmetry can be calculated by the REAP package described in section 5 as a function of

energy. Thus, one can easily check if a particular high-energy model for fermion masses

is able to produce a large enough asymmetry. Let us remark that also the running of the

mixing angles can be very important for the calculation of the baryon asymmetry, as has

been shown recently for non-thermal leptogenesis models [66].

The requirement of successful baryogenesis via thermal leptogenesis imposes con-

straints on fermion mass models and even places an upper bound on the mass of the

light neutrinos [67]. With respect to quantum corrections to this mass bound, it turns

out that there are two effects operating in opposite directions, which partially cancel each

other [20, 45, 68]: on the one hand, the increase of the mass scale leads to a larger de-

cay asymmetry compared to the one at low energies. On the other hand, it results in a

stronger washout driven by Yukawa couplings. Taking into account these effects and fur-

ther corrections, one finds that the upper bound on the neutrino mass scale becomes more

restrictive.
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6.5.2 Models for resonant leptogenesis and RG corrections

As an example where the running above the lowest see-saw scale can have large effects,

we consider the RG corrections to the small mass splitting ∆M = |M1 −M2| for resonant
leptogenesis [63, 69, 70, 71]. Here, the decay asymmetry is enhanced compared to eq. (6.10).

For resonance effects in the decay asymmetries to be maximal, a mass splitting of 12 times

one of the decay widths (in the MSSM)

Γ1 ≈
M0
8π

(YνY
†
ν )11 , Γ2 ≈

M0
8π

(YνY
†
ν )22 , (6.11)

with M2 ≈ M1 := M0, is required. Given a model for neutrino masses with such a small

mass splitting defined at MGUT, the decay rate can be affected significantly by the RG

evolution of the mass matrix of the heavy right-handed neutrinos fromMGUT toM1 ≈M2.
Resonant leptogenesis with exactly degenerate heavy singlets at MGUT has been discussed,

e.g., in [72, 73, 74]. The running of M and Yν between MGUT and M1, taking into account

the effects between the see-saw thresholds, can be computed conveniently using the software

packages presented in section 5.

7. Alternative scenarios

For the examples in section 6, we have focused on the conventional see-saw mechanism in

the SM and in the MSSM. We now give a brief outlook on other scenarios. Some of them

are already implemented in the software packages REAP/MPT introduced in section 5.

7.1 Type-II see-saw

A generalization of the conventional see-saw is the type-II see-saw [75, 76, 77], where an

additional contribution to the neutrino mass matrix, e.g. from an induced vev of a SU(2)L-

triplet Higgs, is present. Below the additional see-saw scale given by the mass M∆ of the

triplet, it can be integrated out, only leaving an additional contribution to the effective

neutrino mass operator. The packages REAP/MPT and the analytic formulae for the running

of the neutrino parameters can thus be applied for analyzing type-II see-saw scenarios

below M∆. Above M∆, the RGEs are modified due to the additional interactions.

7.2 Dirac neutrinos

At present it is not known whether the nature of neutrino masses is Dirac or Majorana.

The RG evolution of Dirac neutrino masses is studied in [44]. The packages REAP/MPT can

also be used in this case.

7.3 Two Higgs models

We restrict our discussion to a class of 2HDMs where flavour changing neutral currents

(FCNCs) are naturally absent [78, 79, 80]. The Yukawa couplings of the theory are given by

L
2HDM
Yukawa = −

2∑

i=1

{
z(i)e eRY

(i)
e `Lφ

(i)† + z(i)ν NRY
(i)
ν `Lφ̃

(i)† +

+ z
(i)
d dRY

(i)
d QLφ

(i)† + z(i)u uRY
(i)
u QLφ̃

(i)†
}
+ h.c. , (7.1)
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where either z
(1)
f or z

(2)
f has to be zero for each f ∈ {e, ν, d, u} in order to ensure the

absence of FCNCs. In order to generate masses via Yukawa couplings, z
(1)
f = 1 for z

(2)
f = 0

and vice versa. By convention, the right-handed charged leptons always couple to the first

Higgs, i.e. z
(1)
e = 1, z

(2)
e = 0.

It is known that in these kind of models there are (at least) two effective neutrino mass

operators. Furthermore, RG effects are comparatively large, since one has both the tan β

enhancement as well as the absence of cancellations due to the SUSY non-renormalization

theorem. An analytic understanding of the RG effects is more difficult to obtain, since the

two components of the effective neutrino mass matrix

mν = −v
2
1

4
κ(11) − v22

4
κ(22) (7.2)

run differently. Here, more investigations are needed, which are beyond the scope of this

study. With the REAP package, an extensive numerical analysis is possible. Recently, the

RGEs in multi-Higgs models have been derived [81]. The structure of the β-functions is

very similar.

7.4 Split SUSY

Let us note that the RGEs for the effective neutrino mass operator in the SM describe the

running in the framework of ‘split supersymmetry’ [82, 83] as well, except for a contribution

to the flavour-trivial part of the RGE (cf. appendix D.3). This implies in particular that

running effects for the mixing angles are suppressed compared to the MSSM (with not

too small tanβ). The negative g22 contribution to the flavour-trivial part of the RGE

gets replaced by a positive g11 contribution. This effect increases the running of the mass

eigenvalues.

7.5 Other alternative sources of neutrino masses

If the dimension 5 neutrino mass operator does not give the leading contribution, possible

alternative sources to the light neutrino masses can have interesting consequences. Neutrino

masses can e.g. emerge from the Kähler potential in supersymmetric theories. It has

been observed that in this case, large mixing angles can be an infrared fixed point of the

renormalization group [84, 85]. In the SM, effects of additional dimension 6 operators on

the running of the dimension 5 neutrino mass operator have been considered in [86].

8. Discussion and conclusions

We have discussed the running of neutrino masses and leptonic mixing parameters in

see-saw models involving singlet neutrinos. At energies above the masses of these heavy

particles, their Yukawa couplings to the left-handed leptons play an important role. As

they may be of order 1, they can cause significant quantum corrections. We have derived

approximate renormalization group equations (RGEs) for the mixing angles, CP phases

and mass eigenvalues. Due to the large number of parameters in the see-saw scenario, the

details of the running strongly depend on the specific model under consideration. One is
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still able to obtain an extensive analytic understanding of the RG effects. It is instructive

to compare the RGEs of the physical mixing parameters {ψ`} = {θ12, θ32, θ23, δ, ϕ1, ϕ2}
above the see-saw scales,

µ
d

dµ
ψ` =

f`(mk,phases)

m2i −m2j
× F (ν)` (Yν , Ye, {ψ`}) + F

(e)
` (Yν , Ye, {ψ`}) (8.1)

to those describing the evolution below the see-saw scales. The latter are obtained by

replacing F
(ν)
` (Yν , Ye, {ψ`}) by F`(Ye, {ψ`}) and F (e)` by zero in eq. (8.1). Most importantly,

the structure of the RGEs of the mixing parameters is the same above and below the see-

saw scales. Hence, there are features common to the evolution above and below. For a

degenerate spectrum, the first mass quotient in (8.1) becomes large, yielding strong RG

effects. There are, however, important differences as well. First, the dimensionless function

F`(Ye, {ψ`}) vanishes for zero mixing, which is not the case for F
(ν)
` (Yν , Ye, {ψ`}). Zero

mixing angles are hence not stable under the RG in the full see-saw framework. Second, in

the SM or the MSSM with small tan β, RG effects are small below the see-saw scales. In

contrast, above the entries of Yν can be of order one and cause important running effects.

Third, the RGE contains the F
(e)
` (Yν , Ye, {ψ`}) term, which describes the radiative rotation

of Y †
e Ye in the presence of neutrino Yukawa couplings Yν . Finally, between the thresholds,

there are important effects in non-supersymmetric theories which stem from the different

scaling of different parts of the effective neutrino mass matrix.

We listed the leading order RG coefficients for the mixing parameter RGEs in ex-

tensive tables. Our results allow to obtain a qualitative understanding of generic effects

such as the influence of the CP phases and that of the absolute neutrino mass scale. For

example, non-zero phases often damp the running, but some terms in the RGEs are ac-

tually enhanced by them. A rough quantitative estimate of the size of the RG effects

is possible as well. Although the change of the mixing angles is quite small for strongly

hierarchical masses (in the case of a normal hierarchy), it turns out that often it is still

comparable to the sensitivities of planned oscillation experiments. Therefore, quantum

corrections should not be neglected in any study of fermion mass models if one aims

at theoretical predictions whose precision matches that of the experiments. The neu-

trino mass eigenvalues always change significantly due to the RG evolution. This means

that a model predicting precisely the measured value of ∆m2atm = 2.1 · 10−3 eV2 at the

GUT scale would actually be excluded by several standard deviations. Another conse-

quence is a correction to the mass bound from thermal leptogenesis. Furthermore, the

running of the masses of the singlet neutrinos is important for models of resonant leptoge-

nesis.

In order to obtain precise quantitative results, the complete system of coupled RGEs

has to be solved. Therefore, one has to resort to numerical calculations. For this purpose,

we have developed a set of Mathematica packages, which are available at the web page

http://www.ph.tum.de/~rge/. The package REAP solves the RGEs and thus provides the

neutrino mass matrix as well as the other parameters such as Yukawa couplings at each

energy. In models with heavy singlet neutrinos, they are integrated out automatically at

the corresponding mass thresholds. Thus, the effects of non-degenerate singlet masses,
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which are generally sizable, are correctly taken into account. From the results of REAP,

MixingParameterTools allows to extract the values of the mixing angles, phases and mass

eigenvalues.
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A. Conventions for mixing parameters and experimental data

A.1 Conventions

Here, we describe our conventions concerning mixing angles and phases. For a general

unitary matrix we choose the so-called standard-parametrization

U = diag(eiδe , eiδµ , eiδτ ) · V · diag(e−iϕ1/2, e−iϕ2/2, 1) (A.1)

where

V =




c12c13 s12c13 s13e
−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13


 (A.2)

with cij and sij defined as cos θij and sin θij, respectively.

The MNS mixing matrix UMNS is defined to diagonalize the effective neutrino mass

matrix mν in the basis where Y †
e Ye = diag(y2e , y

2
µ, y

2
τ ),

UT
MNSmν UMNS = diag

(
m1,m2,m3

)
. (A.3)

The mass eigenvalues mi are positive, and m1 < m2 < m3 for a normal hierarchy or

m3 < m1 < m2 for an inverted hierarchy, respectively. For our conventions for extracting

the mixing parameters from the MNS matrix, we would like to refer the reader to ref. [20]

and the documentation of the MixingParameterTools package associated with this study.

A.2 Experimental data

An overview over the best-fit values and allowed ranges for the neutrino oscillation param-

eters resulting from a global fit to the experimental data [41] is given in table 10.
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Parameter Best-fit value 3σ range

θ12 33.2◦ 28.7◦ .. 38.1◦

θ23 45.0◦ 35.7◦ .. 55.6◦

θ13 0◦ 0◦ .. 13.1◦

∆m2sol 7.9 · 10−5 eV2 (7.1 .. 8.9) · 10−5 eV2
|∆m2atm| 2.1 · 10−3 eV2 (1.3 .. 3.2) · 10−3 eV2

Table 10: Overview of experimental results for neutrino oscillation parameters [41].

B. Derivation of the analytic formulae

This appendix contains a couple of technical details relevant for the derivation of the

analytic formulae discussed in the main part. Our derivation is based on earlier works [38,

31, 39], but differs from them by a few steps allowing to express the running of the mixing

parameters by the mixing parameters themselves rather than mixing matrix elements [20]

(see also [87] for real couplings).

B.1 General strategy

In an arbitrary basis, one can define unitary matrices Uν and Ue by

Uν(t)
T mν(t)Uν(t) = diag

(
m1(t),m2(t),m3(t)

)
, (B.1a)

Ue(t)
† Y †

e Ye(t)Ue(t) = diag
(
y2e(t), y

2
µ(t), y

2
τ (t)

)
, (B.1b)

where mν is the effective light neutrino mass matrix of eq. (2.2). The MNS matrix is then

given by

UMNS(t) = U †
e (t)Uν(t) . (B.2)

For convenience, we choose to work in a basis, called reference basis in the following, where

Y †
e Ye(t0) = diag

(
y2e(t0), y

2
µ(t0), y

2
τ (t0)

)
. (B.3)

Obviously, Ue(t0) = � and UMNS(t0) = Uν(t0).

Let us now consider the changes caused by changing the renormalization scale according

to t0 → t0 +∆t (with ∆t being small). The RGE (2.3) for mν induces a change

mν(t0 +∆t) = mν(t0) +
∆t

16π2
[
P (t0)

T mν(t0) +mν(t0)P (t0) + ᾱ(t0)mν(t0)
]
+

+ O
(
(∆t)2

)
(B.4)

with P = (Ce Y
†
e Ye + Cν Y

†
ν Yν) in the energy region above the highest see-saw scale. We

restrict our derivation to this region. As explained in section 4, the results for the MSSM

can also be applied between the see-saw scales after replacing Yν by
(n)

Yν . However, this is

not possible in the SM. Due to the change of mν ,

Uν(t0 +∆t) = Uν(t0) + ∆t Uν(t0)T + O
(
(∆t)2

)
, (B.5)
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where T is to be calculated below. This relation, however, does not give the full RG change

of UMNS, since also Y †
e Ye gets rotated,

Y †
e Ye(t0 +∆t) = Y †

e Ye(t0) +
∆t

16π2

[
F †(t0)Y

†
e Ye(t0) + Y †

e Ye F (t0) + f(t0)Y
†
e Ye(t0)

]

+ O
(
(∆t)2

)
, (B.6)

where F = (De Y
†
e Ye + Dν Y

†
ν Yν) and f = 2Reαe. Hence, Ue(t0 + ∆t) is different from

Ue(t0) = � in general,

Ue(t0 +∆t) = Ue(t0) + ∆t Ue(t0)X + O
(
(∆t)2

)
, (B.7)

with X to be calculated below.

Using eq. (B.2) together with eqs. (B.5) and (B.7), we thus get two contributions to

the change of the MNS matrix,

UMNS(t0 +∆t) = UMNS(t0) + ∆t
[
UMNS(t0)T +X† UMNS(t0)

]
+ O

(
(∆t)2) . (B.8)

We call them the Uν and the Ue contribution. Following the analysis of [20], this relation

allows to derive RGEs for the mixing parameters.

Before going to the actual calculation, we would like to stress that to derive the mixing

parameter RGEs, it is useful to work in the reference basis. The resulting equations,

however, are basis-independent. Of course, if one changes the basis, one needs to transform

P and F accordingly, which means that the tables in section 3 and appendix C are changed

as well.

B.2 RG corrections induced by P

This part of the derivation coincides with the one performed in [20] except for the fact that

we have to deal with a non-diagonal P . Rather than repeating the analysis of [20], we just

summarize the results: the evolution of Uν is found to be described by

U †
ν U̇ν = T , (B.9)

where the entries of T are given by

16π2 ImTij = −mi −mj

mi +mj
ImP ′

ij , (B.10a)

16π2 ReTij = −mi +mj

mi −mj
ReP ′

ij . (B.10b)

mi denote the eigenvalues of the effective neutrino mass matrix mν (cf. appendix A.1), and

P ′ = U †
ν P Uν .

B.3 Contribution from the running of Ye

Let us now derive the Ue contribution to the RGEs stemming from the fact that Y †
e Ye

changes its structure under the RG. To calculate the corresponding change of the MNS
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matrix, we only need the running of the unitary matrix Ue which diagonalizes Y †
e Ye. Using

eq. (3.5), it is easy to check that

16π2
d

dt
Y †
e Ye = F † Y †

e Ye + Y †
e Ye F + 2Reαe Y

†
e Ye . (B.11)

Plugging this into the inverse of eq. (B.1b), Y †
e Ye = Ue diag(y2e , y

2
µ, y

2
τ )U

†
e =: UeDU †

e , we

obtain

d

dt
(UeDU †

e ) = U̇eDU †
e + UeD U̇ †

e + UeḊ U †
e

=
1

16π2

(
F †UeDU †

e + UeDU †
eF + 2Reαe UeDU †

e

)
. (B.12)

Multiplying by U †
e from the left and by Ue from the right yields

U †
e U̇eD +D U̇ †

eUe + Ḋ =
1

16π2

(
F ′ †D +DF ′ + 2ReαeD

)
, (B.13)

where F ′ := U †
e F Ue. The evolution of Ue can be written as

d

dt
Ue = UeX , (B.14)

where X is anti-hermitean. Inserting this relation and using the anti-Hermiticity yields

Ḋ =
1

16π2

(
F ′ †D +DF ′ + 2ReαeD

)
−X D +DX . (B.15)

By analyzing the off-diagonal parts, we find

y2i Xij −Xij y
2
j = − 1

16π2

[
(F ′ †)ij y

2
j + y2i F

′
ij

]
, (B.16)

where y1 ≡ ye etc. For hermitean F , this can be written as

16π2Xij =
y2j + y2i
y2j − y2i

F ′
ij . (B.17)

Due to the strong hierarchy of the charged lepton Yukawa couplings, the yi dependent factor

is approximately ±1. The corresponding equations for the Uν contribution, eqs. (B.10),

contain the light neutrino mass eigenvalues, so that a significant enhancement of Tij , the

analogon of Xij , occurs for quasi-degenerate neutrino masses. In this case, we expect the

Ue contribution to give only a small correction, unless severe cancellations occur in the Uν

contribution. However, for a strong normal neutrino mass hierarchy, both contributions are

generically of the same order of magnitude. The diagonal parts of X, which only influence

the evolution of the unphysical phases, remain undetermined.
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B.4 Combination of both contributions

Inserting eqs. (B.9) and (B.14) into eq. (B.2), we find at t = t0 in the reference basis

d

dt
UMNS = UMNS T +X† UMNS (B.18)

or

U †
MNS U̇MNS = T − U †

MNSX UMNS =: RTX . (B.19)

Note that this is a relation for UMNS where both X and T depend on how we split UMNS
into Ue and Uν . Specifically, in an arbitrary basis we have

U †
MNS U̇MNS = Ue T U

†
e − U †

ν X Uν . (B.20)

As both sides of the last equation are anti-hermitean, the derivatives of the mixing param-

eters are found from the system of linear equations

∑

k

A(k) ξ̇k + iS(k) ξ̇k = RTX , (B.21)

where {ξk} := {θ12, θ13, θ23, δ, δe, δµ, δτ , ϕ1, ϕ2}. The real matrices A(k) and S(k) are an-

tisymmetric and symmetric, respectively. Hence, each A(k) has 3 characteristic elements

and each S(k) has 6, so that we can regard eq. (B.21) as a system of 9 linear equations,




A
(1)
12 · · · A

(9)
12

A
(1)
13 · · · A

(9)
13

A
(1)
23 · · · A

(9)
23

S
(1)
11 · · · S

(9)
11

S
(1)
12 · · · S

(9)
12

S
(1)
13 · · · S

(9)
13

S
(1)
22 · · · S

(9)
22

S
(1)
23 · · · S

(9)
23

S
(1)
33 · · · S

(9)
33




︸ ︷︷ ︸
=:B




θ̇12

θ̇13

θ̇23

δ̇

δ̇e

δ̇µ

δ̇τ

ϕ̇1

ϕ̇2




︸ ︷︷ ︸
= ξ̇

=




Re(RTX)12

Re(RTX)13

Re(RTX)23

Im(RTX)11

Im(RTX)12

Im(RTX)13

Im(RTX)22

Im(RTX)23

Im(RTX)33




︸ ︷︷ ︸
=: v

. (B.22)

v can be split into two parts,

v = vT + vX , (B.23)

where vT is built from T and vX is built from −U †
MNSX UMNS. In particular, each ξ̇k, for

instance θ̇12, is the sum of two contributions, one from T (i.e. from the running of mν) and

one from X (i.e. from the running of Ye).

B.5 Comment: ‘unphysical’ phases

The RGEs in the full theory contain the entries of P . However, the phases appearing in

the off-diagonal elements of P are not basis-independent, rather they can be changed by a
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transformation using the ‘unphysical’ phases δe, δµ and δτ only. To see this, let us perform

(in the basis where Y †
e Ye is diagonal) a transformation K,

`L
K−→ K `L , eR

K−→ K eR , (B.24)

where K = diag(eiφ1 , eiφ2 , eiφ3) is a diagonal phase matrix. Y †
e Ye is invariant under this

transformation, yet it changes the effective neutrino mass matrix according to

mν
K−→ K∗mν K

† . (B.25)

Hence, also UMNS gets changed under this transformation,

UMNS
K−→ K UMNS , (B.26)

i.e. K affects the phases δe, δµ and δτ in the standard parametrization (A.1). Furthermore,

it rotates the phases of the off-diagonal entries of Y †
ν Yν as

Y †
ν Yν

K−→ K Y †
ν Yν K

† . (B.27)

This shows that one has to specify both the phases δe, δµ, δτ and the arguments of the

off-diagonal entries of Y †
ν Yν , as one set of parameters can be traded for the other. In other

words, two theories with equal P but different phases δf are not equivalent. In the main

text, we use the convention

δe = δµ = δτ = 0 . (B.28)

As a technical comment, we would like to mention that in order to diagonalize a

general neutrino mass matrix mν , the parameters δe, δµ and δτ are needed. Only after the

transformation with K = diag(e−iδe , e−iδµ , e−iδτ ), one can write the MNS matrix without

δe, δµ and δτ . The step of going to the basis where δe = δµ = δτ = 0 has often not been

mentioned explicitly in the literature. In this context, we would like to comment that, of

course, δe, δµ and δτ are subject to quantum corrections with their RGEs depending on the

physical parameters. δ̇e has a term proportional to 1/∆m2sol whereas δ̇µ and δ̇τ are both

proportional to 1/∆m2atm.
18

C. RGE coefficients

In the following, we show the RGEs for the lepton mixing parameters obtained from the

derivation discussed above. We give the first order of the expansion in the small CHOOZ

angle θ13. We furthermore use the abbreviation ζ for the ratio of the mass squared differ-

ences, cf. eq. (3.3).

The results are presented in the form of tables which list the coefficients of Pfg =

(Ce Y
†
e Ye + Cν Y

†
ν Yν)fg in the RGEs. Thus, if only a single element of P is dominant, the

18The corresponding formulae below the see-saw scales can be obtained from the web page

http://www.physik.tu-muenchen.de/~mratz/AnalyticFormulae/. There, the RG evolution of the δf

phases depends on the physical parameters, but the RGEs of the physical parameters are independent

of the δf phases.
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Q±
13 =

|m3±m1eiϕ1 |2

∆m2
atm(1+ζ)

S13 = m1m3 sinϕ1

∆m2
atm(1+ζ)

Q±
23 =

|m3±m2eiϕ2 |2

∆m2
atm

S23 = m2m3 sinϕ2

∆m2
atm

Q±
12 =

|m2eiϕ2±m1eiϕ1 |2

∆m2
sol

S12 = m1m2 sin(ϕ1−ϕ2)
∆m2

sol

A±
13 =

(m2
1+m

2
3) cos δ±2m1m3 cos(δ−ϕ1)

∆m2
atm(1+ζ)

B±13 =
(m2

1+m
2
3) sin δ±2m1m3 sin(δ−ϕ1)

∆m2
atm(1+ζ)

A±
23 =

(m2
2+m

2
3) cos δ±2m2m3 cos(δ−ϕ2)

∆m2
atm

B±23 =
(m2

2+m
2
3) sin δ±2m2m3 sin(δ−ϕ2)

∆m2
atm

C1213 = m1

∆m2
sol(1+ζ)

[(1 + ζ)m2 sin (ϕ1 − ϕ2)− ζm3 sin (2δ − ϕ1)]

C2313 = m3

∆m2
atm(1+ζ)

[m1 sin (2δ − ϕ1) + (1 + ζ)m2 sinϕ2]

C1223 = m2

∆m2
sol

[m1 sin (ϕ1 − ϕ2)− ζm3 sin (2δ − ϕ2)]

C1323 = m3

∆m2
atm(1+ζ)

[m1 sinϕ1 + (1 + ζ)m2 sin (2δ − ϕ2)]

D1 = m3

∆m2
atm(1+ζ)

[m1 cos (δ − ϕ1)− (1 + ζ)m2 cos (δ − ϕ2)] sin δ

D2 = m3

∆m2
atm(1+ζ)

[m1 cos (2δ − ϕ1)− (1 + ζ)m2 cos (2δ − ϕ2) + ζm3]

Table 11: Definition of the abbreviations used in tables 4 and 12–14.

32π2 θ̇12 64π2 θ̇13 32π2 θ̇23

P11 Q+12 sin 2θ12 0 0

P22 −Q+12 sin 2θ12c223
(
A+23 −A+13

)
sin 2θ12 sin 2θ23

(
Q+23c212 +Q+13s212

)
sin 2θ23

P33 −Q+12 sin 2θ12s223 −
(
A+23 −A+13

)
sin 2θ12 sin 2θ23 −

(
Q+23c212 +Q+13s212

)
sin 2θ23

ReP21 2Q+12 cos 2θ12c23 4
(
A+13c212 +A+23s212

)
s23

(
Q+23 −Q+13

)
sin 2θ12s23

ReP31 −2Q+12 cos 2θ12s23 4
(
A+13c212 +A+23s212

)
c23

(
Q+23 −Q+13

)
sin 2θ12c23

ReP32 Q+12 sin 2θ12 sin 2θ23 2
(
A+23 −A+13

)
sin 2θ12 cos 2θ23 2

(
Q+23c212 +Q+13s212

)
cos 2θ23

ImP21 4S12c23 4
(
B−13c212 + B−23s212

)
s23 2 (S23 − S13) sin 2θ12s23

ImP31 −4S12s23 4
(
B−13c212 + B−23s212

)
c23 2 (S23 − S13) sin 2θ12c23

ImP32 0 2
(
B−23 − B−13

)
sin 2θ12 4

(
S23c212 + S13s212

)

Table 12: Coefficients of Pfg in the RGEs of the mixing angles θij in the limit θ13 → 0. The

abbreviationsA±
ij , B±ij , Sij andQ±

ij depend on the mass eigenvalues and phases only, and enhance the

running for a degenerate mass spectrum, since they are of the form fij(mi,mj , phases)/(m
2
j −m2

i ).

They are listed in table 11.
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64π2 δ̇(−1)

P11 0

P22 −
(
B+23 − B+13

)
sin 2θ12 sin 2θ23

P33
(
B+23 −B+13

)
sin 2θ12 sin 2θ23

ReP21 −4
(
B+13c212 + B+23s212

)
s23

ReP31 −4
(
B+13c212 + B+23s212

)
c23

ReP32 −2
(
B+23 − B+13

)
sin 2θ12 cos 2θ23

ImP21 4
(
A−
13c
2
12 +A−

23s
2
12

)
s23

ImP31 4
(
A−
13c
2
12 +A−

23s
2
12

)
c23

ImP32 2
(
A−
23 −A−

13

)
sin 2θ12

64π2δ̇(0)

P11 −8
((
C2313 + S12 − S23

)
c212 +

(
C1323 + S12 − S13

)
s212
)

P22 8
((
(S12 − S23) c223 + C2313s223

)
c212 +

(
(S12 − S13) c223 + C1323s223

)
s212
)

P33 8
((
C2313c223 + (S12 − S23) s223

)
c212 +

(
C1323c223 + (S12 − S13) s223

)
s212
)

ReP21 −16S12c23 cot 2θ12 + 4 (2D1c23 + (S23 − S13) s23 tan θ23) sin 2θ12

ReP31 16S12s23 cot 2θ12 − 4 (2D1s23 + (S23 − S13) c23 cot θ23) sin 2θ12

ReP32 −16
(
S23c212 + S13s212

)
cos 2θ23 cot 2θ23 − 8

(
C1213c212 + C1223s212

)
sin 2θ23

ImP21 −8Q−
12c23 csc 2θ12 − 2

(
2D2c23 +

(
Q−
23 −Q−

13

)
cos 2θ23 sec θ23

)
sin 2θ12

ImP31 8Q−
12s23 csc 2θ12 + 2

(
2D2s23 −

(
Q−
23 −Q−

13

)
cos 2θ23 csc θ23

)
sin 2θ12

ImP32 −8
(
Q−
23c
2
12 +Q−

13s
2
12

)
cot 2θ23

Table 13: Coefficients of Pfg in the derivative of the Dirac CP phase. The complete RGE is given

by δ̇ = θ−1
13 δ̇

(−1) + δ̇(0) + O(θ13). The abbreviations A±
ij , B±ij , Q±

ij , Cklij and Di depend on the mass

eigenvalues and phases only, and are listed in table 11.

derivatives of the mixing parameters are found from the corresponding rows in the tables.

Of course, if several entries of Pfg are relevant, their contributions simply add up. While

the complete RGEs are basis-independent, the table entries do depend on the choice of the

basis, since P is basis-dependent. We use the basis where Ye is diagonal and where the

unphysical phases in the MNS matrix are zero.
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16π2ϕ̇1

P11 −4S12c212
P22 4S12c212c223 − 4

(
S23c212 + S13s212

)
cos 2θ23

P33 4S12c212s223 + 4
(
S23c212 + S13s212

)
cos 2θ23

ReP21 −4S12c23 cos 2θ12 cot θ12 − 2 (S23 − S13) cos 2θ23 sec θ23 sin 2θ12

ReP31 4S12s23 cos 2θ12 cot θ12 − 2 (S23 − S13) cos 2θ23 csc θ23 sin 2θ12

ReP32 −8
(
S23c212 + S13s212

)
cos 2θ23 cot 2θ23 − 4S12c212 sin 2θ23

ImP21 −2Q−
12c23 cot θ12 −

(
Q−
23 −Q−

13

)
cos 2θ23 sec θ23 sin 2θ12

ImP31 2Q−
12s23 cot θ12 −

(
Q−
23 −Q−

13

)
cos 2θ23 csc θ23 sin 2θ12

ImP32 −4
(
Q−
23c
2
12 +Q−

13s
2
12

)
cot 2θ23

16π2ϕ̇2

P11 −4S12s212
P22 4S12c223s212 − 4

(
S23c212 + S13s212

)
cos 2θ23

P33 4S12s223s212 + 4
(
S23c212 + S13s212

)
cos 2θ23

ReP21 −4S12c23 cos 2θ12 tan θ12 − 2 (S23 − S13) cos 2θ23 sec θ23 sin 2θ12

ReP31 4S12s23 cos 2θ12 tan θ12 − 2 (S23 − S13) cos 2θ23 csc θ23 sin 2θ12

ReP32 −8
(
S23c212 + S13s212

)
cos 2θ23 cot 2θ23 − 4S12s212 sin 2θ23

ImP21 −2Q−
12c23 tan θ12 −

(
Q−
23 −Q−

13

)
cos 2θ23 sec θ23 sin 2θ12

ImP31 2Q−
12s23 tan θ12 −

(
Q−
23 −Q−

13

)
cos 2θ23 csc θ23 sin 2θ12

ImP32 −4
(
Q−
23c
2
12 +Q−

13s
2
12

)
cot 2θ23

Table 14: Coefficients of Pfg in the RGEs of the Majorana phases for θ13 = 0.

D. RGEs for see-saw models

In order to calculate the RG evolution of the effective neutrino mass matrix, the RGEs for

all the parameters of the theory have to be solved simultaneously. We therefore summarize

the RGEs for the minimal see-saw extensions of the SM, of the class of 2HDMs described in

section 7.3, and of the MSSM. We list the MS 1-loop results in the SM and 2HDM, as well as

the 2-loop RGEs for the effective neutrino mass operator, the singlet mass matrix and the

Yukawa couplings in the MSSM. For further RGEs and references, see e.g. [88, 89, 90, 91].

We use the notation defined in section 2. In particular, a superscript (n) denotes a quantity
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between the nth and the (n+1)th mass threshold. The RGEs for the SM, 2HDM or MSSM

without singlet neutrinos can be recovered by setting the neutrino Yukawa coupling to zero.

In the full theories above the highest see-saw scale, the superscript (n) has to be omitted.

The RGEs for the gauge couplings are well-known and not affected by the additional

singlets at 1-loop order. They are given by

16π2 βgA := 16π2 µ
dgA
dµ

= bA g
3
A , (D.1)

with (bSU(3)C , bSU(2)L , bU(1)Y ) = (−7,− 196 , 4110) in the SM, (−7,−3, 215 ) in the 2HDMs and

(−3, 1, 335 ) in the MSSM. For U(1)Y , we use GUT charge normalization.

D.1 The RGEs in the extended SM

In the SM extended by singlet neutrinos, the RG evolution is governed by the β-functi-

ons [31, 27]

16π2
(n)

βκ = −3

2
(Y †

e Ye)
T (n)
κ− 3

2

(n)
κ (Y †

e Ye) +
1

2

((n)

Y †
ν

(n)

Yν
)T (n)
κ+

1

2

(n)
κ
((n)

Y †
ν

(n)

Yν
)
+

+ 2 Tr(Y †
e Ye)

(n)
κ+ 2 Tr

((n)

Y †
ν

(n)

Yν
)
(n)
κ+ 6 Tr(Y †

uYu)
(n)
κ+

+ 6 Tr(Y †
d Yd)

(n)
κ− 3g22

(n)
κ+ λ

(n)
κ , (D.2a)

16π2
(n)

βM =
((n)

Yν
(n)

Y †
ν

) (n)

M +
(n)

M
((n)

Yν
(n)

Y †
ν

)T
, (D.2b)

16π2
(n)

βYν =
(n)

Yν

{
3

2

((n)

Y †
ν

(n)

Yν
)
− 3

2
(Y †

e Ye) + Tr
((n)

Y †
ν

(n)

Yν
)
+Tr(Y †

e Ye)+

+ 3 Tr(Y †
uYu) + 3 Tr(Y †

d Yd)−
9

20
g21 −

9

4
g22

}
, (D.2c)

16π2
(n)

βYe = Ye

{
3

2
Y †
e Ye −

3

2

(n)

Y †
ν

(n)

Yν −
9

4
g21 −

9

4
g22+

+Tr

[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

]}
, (D.2d)

16π2
(n)

βYd = Yd

{
3

2
Y †
d Yd −

3

2
Y †
uYu −

1

4
g21 −

9

4
g22 − 8 g23+

+Tr

[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

]}
, (D.2e)

16π2
(n)

βYu = Yu

{
3

2
Y †
uYu −

3

2
Y †
d Yd −

17

20
g21 −

9

4
g22 − 8 g23+

+Tr

[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

]}
, (D.2f)

16π2
(n)

βλ = 6λ2 − 3λ

(
3g22 +

3

5
g21

)
+ 3 g42 +

3

2

(
3

5
g21 + g22

)2
+

+ 4λ Tr

[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

]
− (D.2g)

− 8 Tr

[
Y †
e Ye Y

†
e Ye +

(n)

Y †
ν

(n)

Yν
(n)

Y †
ν

(n)

Yν + 3Y †
d Yd Y

†
d Yd + 3Y †

u Yu Y
†
uYu

]
.

We use the convention that the Higgs self-interaction term in the lagrangian is − λ
4 (φ

†φ)2.

– 40 –



J
H
E
P
0
3
(
2
0
0
5
)
0
2
4

D.2 The RGEs in extended 2HDMs

Here, we list the β-functions for the class of 2HDMs described in section 7.3 [92, 32, 37].

The coefficients z
(i)
f determine which fermion couples to which Higgs, cf. eq. (7.1).

16π2
(n)

βκ(ii) =
(
1
2 − 2δi1

) [
κ(ii)(Y †

e Ye) + (Y †
e Ye)

Tκ(ii)
]
+

+

[
z(i)ν 2Tr(

(n)

Y †
ν

(n)

Yν) + δi12Tr(Y
†
e Ye) + z(i)u 6Tr(Y †

uYu) + z
(i)
d 6Tr(Y †

d Yd)

]
κ(ii) +

+ λiκ
(ii) + δi1λ

∗
5κ
(22) + δi2λ5κ

(11) − 3g22κ
(ii) , (D.3a)

16π2
(n)

βM =
((n)

Yν
(n)

Y †
ν

) (n)

M +
(n)

M
((n)

Yν
(n)

Y †
ν

)T
, (D.3b)

16π2
(n)

βYν =
(n)

Yν

{
3

2

(n)

Y †
ν

(n)

Yν +
(
1
2 − 2 z(1)ν

) 3

2
Y †
e Ye −

9

20
g21 −

9

4
g22+

+

2∑

i=1

z(i)ν Tr

[
δi1Y

†
e Ye +

(n)

Y †
ν

(n)

Yν + 3z
(i)
d Y †

d Yd + 3z(i)u Y †
uYu

]}
, (D.3c)

16π2
(n)

βYe = Ye

{
3

2
Y †
e Ye +

(
1
2 − 2 z(1)ν

) (n)

Y †
ν

(n)

Yν −
9

4
g21 −

9

4
g22+

+Tr

[
Y †
e Ye + z(1)ν

(n)

Y †
ν

(n)

Yν + 3z
(1)
d Y †

d Yd + 3z(1)u Y †
uYu

]}
, (D.3d)

16π2
(n)

βYd = Yd

{
3

2
Y †
d Yd +

(
1

2
− 2

2∑

i=1

z(i)u z
(i)
d

)
Y †
uYu −

1

4
g21 −

9

4
g22 − 8g23+

+
2∑

i=1

z
(i)
d Tr

[
δi1Y

†
e Ye + z(i)ν

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3z(i)u Y †

uYu

]}
, (D.3e)

16π2
(n)

βYu = Yu

{
3

2
Y †
uYu +

(
1

2
− 2

2∑

i=1

z(i)u z
(i)
d

)
Y †
d Yd −

17

20
g21 −

9

4
g22 − 8g23+

+

2∑

i=1

z(i)u Tr

[
δi1Y

†
e Ye + z(i)ν

(n)

Y †
ν

(n)

Yν + 3z
(i)
d Y †

d Yd + 3Y †
uYu

]}
. (D.3f)

For the parameters of the Higgs interaction lagrangian, the β-functions are [92] (Note that

we use different conventions for the renormalizable Higgs couplings, as specified in [37].)

16π2
(n)

βλ1 = 6λ21 + 8λ23 + 6λ3λ4 + λ25 − 3λ1

(
3g22 +

3

5
g21

)
+ 3g42 +

3

2

(
3

5
g21 + g22

)2
+

+ 4λ1 Tr

(
Y †
e Ye + z(1)ν

(n)

Y †
ν

(n)

Yν + 3z
(1)
d Y †

d Yd + 3z(1)u Y †
uYu

)
− (D.4a)

− 8Tr

(
Y †
e YeY

†
e Ye + z(1)ν

(n)

Y †
ν

(n)

Yν
(n)

Y †
ν

(n)

Yν + 3z
(1)
d Y †

d YdY
†
d Yd + 3z(1)u Y †

uYuY
†
uYu

)
,
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W̃ a

φ

Figure 9: Additional diagrams contributing to the wavefunction renormalization of the Higgs in

split SUSY. The Higgsino is denoted by φ̃, and B̃ and W̃ a represent the Bino and the Winos.

16π2
(n)

βλ2 = 6λ22 + 8λ23 + 6λ3λ4 + λ25 − 3λ2

(
3g22 +

3

5
g21

)
+ 3g42 +

3

2

(
3

5
g21 + g22

)2
+

+ 4λ2 Tr

(
z(2)ν

(n)

Y †
ν

(n)

Yν + 3z
(2)
d Y †

d Yd + 3z(2)u Y †
uYu

)
−

− 8Tr

(
z(2)ν

(n)

Y †
ν

(n)

Yν
(n)

Y †
ν

(n)

Yν + 3z
(2)
d Y †

d YdY
†
d Yd + 3z(2)u Y †

uYuY
†
uYu

)
, (D.4b)

16π2
(n)

βλ3 = (λ1 + λ2) (3λ3 + λ4) + 4λ23 + 2λ24 +
1

2
λ25 − 3λ3

(
3g22 +

3

5
g21

)
+

9

4
g42 +

+
27

100
g41 −

9

10
g21g

2
2 + 4λ3 Tr

(
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

)
−

− 4Tr

(
z(2)ν Y †

e Ye
(n)

Y †
ν

(n)

Yν + 3
(
z
(1)
d z(2)u + z

(2)
d z(1)u

)
Y †
d Yd Y

†
uYu

)
, (D.4c)

16π2
(n)

βλ4 = 2 (λ1 + λ2)λ4 + 4 (2λ3 + λ4)λ4 + 8λ25 − 3λ4

(
3g22 +

3

5
g21

)
+

9

5
g21g

2
2 +

+ 4λ4 Tr

(
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

)
+

+ 4Tr

(
z(2)ν Y †

e Ye
(n)

Y †
ν

(n)

Yν + 3
(
z
(1)
d z(2)u + z

(2)
d z(1)u

)
Y †
d Yd Y

†
uYu

)
, (D.4d)

16π2
(n)

βλ5 = λ5

[
λ1 + λ2 + 8λ3 + 12λ4 − 6

(
3

5
g21 + 3g22

)
+

+ 2Tr

(
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

)]
. (D.4e)

D.3 Split supersymmetry

The β-functions for the renormalizable couplings in the framework of split SUSY are listed

in ref. [83]. The diagrams contributing to the RGE of the effective neutrino mass operator

are those relevant in the SM, amended by two diagrams involving Higgsinos and gauginos

(cf. figure 9). These diagrams contribute to the flavour-trivial part of the RGE.

At 1 loop, we obtain for the divergent parts of the renormalization constants in dimen-

sional regularization and in the MS scheme

δZφ,1 = − 1

16π2

[
2 Tr

(
3Y †

uYu + 3Y †
d Yd + Y †

e Ye

)
+

3

10
(ξ1 − 1)g21 +

3

2
(ξ2 − 1)g22

]
,

δZ`L,1 = − 1

16π2

(
Y †
e Ye +

3

10
ξ1 g

2
1 +

3

2
ξ2 g

2
2

)
,
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δκ,1 = − 1

16π2

{
2κ (Y †

e Ye) + 2(Y †
e Ye)

Tκ−
[
λ+

3

5

(
3

2
− ξ1

)
g21 +

(
3

2
− 3ξ2

)
g22

]
κ

}
,

where ξ1 and ξ2 are the gauge parameters in Rξ gauge. Zi := � + δZi,1
1
ε + · · · (ε := 4− d)

are wavefunction renormalization constants, and δκ := δκ,1
1
ε + · · · is defined via the

counterterm for the dimension 5 operator,

Cκ =
1

4
δκfg (`CL

f · φ) (`gL · φ) + h.c.

Using the method described in [36], we then find the 1-loop β-function

16π2 βSplit SUSYκ = −3

2
(Y †

e Ye)
Tκ− 3

2
κ (Y †

e Ye) +

+

[
λ+

3

5
g21 + 2Tr

(
3Y †

uYu + 3Y †
d Yd + Y †

e Ye

)]
κ . (D.6)

Clearly, the term involving the gauge couplings in the flavour-diagonal part differs from

the SM case.

D.4 The RGEs in the MSSM extended by heavy singlets

We give the 2-loop RGEs for the quantities Q ∈
{

(n)
κ,

(n)

M,
(n)

Yν , Yd, Yu, Ye

}
in the form

µ
d

(n)

Q

dµ
=

(n)

β
(1)
Q +

(n)

β
(2)
Q . (D.7)

The 1-loop parts are given by [32, 27]

(4π)2
(n)

β (1)κ = (Y †
e Ye)

T (n)
κ+

(n)
κ (Y †

e Ye) +
((n)

Y †
ν

(n)

Yν
)T (n)
κ+

(n)
κ
((n)

Y †
ν

(n)

Yν
)
+

+ 2Tr
((n)

Y †
ν

(n)

Yν
)(n)
κ+ 6Tr(Y †

uYu)
(n)
κ− 6

5
g21

(n)
κ− 6g22

(n)
κ , (D.8a)

(4π)2
(n)

β
(1)
M = 2

((n)

Yν
(n)

Y †
ν

) (n)

M + 2
(n)

M
((n)

Yν
(n)

Y †
ν

)T
, (D.8b)

(4π)2
(n)

β
(1)
Yν

=
(n)

Yν

{
3
(n)

Y †
ν

(n)

Yν + Y †
e Ye +Tr

((n)

Y †
ν

(n)

Yν
)
+ 3Tr(Y †

uYu)−
3

5
g21 − 3g22

}
, (D.8c)

(4π)2
(n)

β
(1)
Yd

= Yd

{
3Y †

d Yd + Y †
uYu + 3Tr(Y †

d Yd) + Tr(Y †
e Ye)−

7

15
g21 − 3g22 −

16

3
g23

}
, (D.8d)

(4π)2
(n)

β
(1)
Yu

= Yu

{
Y †
d Yd + 3Y †

uYu +Tr(
(n)

Y †
ν

(n)

Yν) + 3Tr(Y †
uYu)−

13

15
g21 − 3g22 −

16

3
g23

}
, (D.8e)

(4π)2
(n)

β
(1)
Ye

= Ye

{
3Y †

e Ye +
(n)

Y †
ν

(n)

Yν + 3Tr(Y †
d Yd) + Tr(Y †

e Ye)−
9

5
g21 − 3g22

}
. (D.8f)

The results for the 2-loop parts, which are an extension of the usual 2-loop β-functions
for the MSSM [93], are [94]

(4π)4
(n)

β (2)
κ =

[
− 6Tr(YuY

†
d YdY

†
u )− 18Tr(YuY

†
uYuY

†
u ) − 2Tr(

(n)

YνY
†
e Ye

(n)
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ν )−

− 6Tr(
(n)

Y †
ν

(n)

Yν
(n)

Y †
ν
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8

5
g2
1 Tr(Y

†
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†
uYu) +

207
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−
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e YeY
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, (D.9a)
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The 2-loop β-functions for the gauge couplings in the presence of Yν can be found in [29].
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