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Key Points: 6 
- A new model of azimuthal anisotropy for horizontally polarized shear waves is 7 

presented 8 
- 1% anisotropy is detected in the mantle transition zone  9 
- Horizontally polarized shear wave anisotropy changes at the LAB and top of 10 

transition zone 11 
ABSTRACT 12 
We present a new mantle model (YB14SHani) of azimuthal anisotropy for horizontally 13 
polarized shear-waves (SH) in parallel with our previously published vertically polarized 14 
shear-wave (SV) anisotropy model (YB13SVani). YB14SHani was obtained from higher 15 
mode Love wave phase velocity maps with sensitivity to anisotropy down to ~1200 km 16 
depth. SH anisotropy is present down to the mantle transition zone (MTZ) with an 17 
average amplitude of  ~2% in the upper 250 km and ~1% in the MTZ, consistent with 18 
YB13SVani. Changes in SV and SH anisotropy were found at the top of the MTZ where 19 
olivine transforms into wadsleyite, which might indicate that MTZ anisotropy is due to 20 
the lattice preferred orientation of anisotropic material. Beneath oceanic plates, SV fast 21 
axes become sub-parallel to the absolute plate motion (APM) at a depth that marks the 22 
location of a thermally controlled lithosphere-asthenosphere boundary (LAB). In 23 
contrast, SH anisotropy does not systematically depend on ocean age. Moreover, while 24 
upper mantle SV anisotropy is anomalously high in the middle of the Pacific, as seen in 25 
radial anisotropy models, SH anisotropy amplitude remains close to the average for other 26 
oceans.  Based on the depth at which SV fast axes and the APM direction begin to align, 27 
we also found that the average thickness of cratonic roots is ~ 250 km, consistent with 28 
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Yuan and Romanowicz [2010] for North America. Here, we add new constraints on the 29 
nature of the cratonic LAB and show that it is characterized by changes in both SV and 30 
SH anisotropy.  31 
Key words: Surface waves and free oscillations, Tomography, Mantle 32 
1. INTRODUCTION 33 
The presence of seismic anisotropy, which is the directional dependence of seismic wave 34 
velocity, is required to explain a variety of seismic data. We often distinguish between 35 
azimuthal and radial anisotropy (also called polarization anisotropy or transverse 36 
isotropy). Azimuthal anisotropy characterizes wave velocity variations within the 37 
horizontal plane. Radial anisotropy quantifies the change in wave velocity between the 38 
horizontal and vertical directions of polarization or propagation. Evidence for radial 39 
anisotropy in the uppermost mantle first came from the discrepancy between shear-wave 40 
velocity models based on Rayleigh or Love wave dispersion data [Anderson, 1961]. 41 
Azimuthal anisotropy was first found beneath the Pacific from marine refraction 42 
experiments [Hess, 1964]. Many studies have since then confirmed the presence of 43 
seismic anisotropy in the top 250 km of the mantle and in the lowermost mantle (D” 44 
layer).  45 
The mechanism by which seismic anisotropy is generated is usually assumed to be either 46 
shape preferred orientation (SPO) of isotropic structures with contrasting elastic 47 
properties such as tubules or lenses, or lattice preferred orientation (LPO) of the 48 
crystallographic axes of elastically anisotropic minerals. In the mantle lithosphere, 49 
dislocation creep is likely to be the dominant deformation mechanism due to the presence 50 
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of high stress. Lithospheric “frozen-in” seismic anisotropy is generally attributed to 51 
olivine LPO relating to tectonic processes [Karato, 1989; Nicolas and Christensen, 2013; 52 
Silver, 1996] since this mineral has a high intrinsic anisotropy and aligns in the ambient 53 
stress field [Ismaı�l and Mainprice, 1998; Karato, 1989; Nicolas and Christensen, 2013; 54 
Zhang and Karato, 1995]. Asthenospheric anisotropy is often thought to be due to olivine 55 
LPO associated with present-day mantle deformation because the fast seismic direction 56 
often aligns with the absolute plate motion [Becker et al., 2003; Debayle et al., 2005; 57 
Debayle and Ricard, 2013; Gung et al., 2003; Smith et al., 2004; Yuan and Romanowicz, 58 
2010; Yuan and Beghein, 2013], and the preferred alignment of olivine is often used to 59 
determine the direction of mantle flow [Becker et al., 2003]. A recent experimental study 60 
reported, however, crystallographic preferred orientation (CPO) of iron-free olivine 61 
during diffusion creep [Miyazaki et al., 2013]. This may alter common views of mantle 62 
deformation, but the authors demonstrated that even in the case of diffusion strong A-63 
type fabric, i.e. with the fast axis almost parallel to the direction of mantle flow, is 64 
expected in the asthenosphere. In the D” layer, horizontal layering or aligned inclusions 65 
of a material with contrasting shear-wave properties was first proposed to explain 66 
observations of seismic anisotropy [Kendall and Silver, 1996]. More recent work has 67 
however shown that LPO of the post-perovskite phase offers another possible explanation 68 
[Oganov et al., 2005].  69 
While the top 250 km of the mantle and the D” layer are seismically anisotropic, the 70 
presence of seismic anisotropy in the deep upper mantle and bulk of the lower mantle is 71 
uncertain. There is, however, growing evidence for seismic anisotropy at greater depths 72 
than previously thought, both in shear-wave splitting measurements [Foley and Long, 73 
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2011; Fouch and Fischer, 1996; Wookey et al., 2002] and in global tomographic models 74 
[Beghein and Trampert, 2004; Beghein et al., 2006; Ferreira et al., 2010; Kustowski et 75 
al., 2008; Montagner and Kennett, 1996; Panning and Romanowicz, 2004; 2006; 76 
Trampert and van Heijst, 2002; Visser et al., 2008b; Yuan and Beghein, 2013]. 77 
Determining its presence inside and near the mantle transition zone (MTZ) is, 78 
nevertheless, important to gain insight on the style of mantle convection, which directly 79 
relates to the thermochemical evolution of the planet. Existing models of radial 80 
anisotropy present large discrepancies, however, and they are unable to robustly constrain 81 
whether the vertical or horizontal direction is faster for seismic wave propagation at those 82 
depths [Beghein and Trampert, 2004; Beghein et al., 2006; Ferreira et al., 2010; 83 
Kustowski et al., 2008; Montagner and Kennett, 1996; Panning and Romanowicz, 2004; 84 
2006; Visser et al., 2008b]. Some of the differences between models are due to the 85 
inherent non-uniqueness of the inverse problem [Beghein et al., 2006; Visser et al., 86 
2008b], whereas others originate from the chosen prior crustal model [Ferreira et al., 87 
2010], the method employed to calculate crustal corrections [Lekić and Panning, 2010], 88 
and prior assumptions regarding the anisotropic parameters [Beghein and Trampert, 89 
2004; Beghein et al., 2006]. In addition, the commonly proposed interpretation of radial 90 
anisotropy models in terms of LPO has recently been challenged [Wang et al., 2013] and 91 
a combination of LPO and fine layering may have to be invoked at least in the upper 92 
250km of the mantle. This would render the use of radial anisotropy models to constrain 93 
mantle flow very difficult.  94 
Until recently, very few models of azimuthal anisotropy displayed any significant signal 95 
below 250 km depth. This was mostly due to the limited vertical resolution of the data 96 
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employed. However, Trampert and van Heijst [2002] and Beghein et al. [2008] showed 97 
that long period surface wave overtones and Earth’s free oscillation data, respectively, are 98 
compatible with the presence of azimuthal anisotropy in the MTZ. More recently, we 99 
modeled three-dimensional (3-D) global variations in vertically polarized shear-wave 100 
azimuthal anisotropy from the inversion of Rayleigh wave higher modes [Yuan and 101 
Beghein, 2013]. These data have sensitivity to mantle structure down to about 1400 km 102 
depth and enabled us to determine that about 1% SV wave azimuthal anisotropy is 103 
present between 300 km to 800 km depth. In addition, we showed that, on average, the 104 
fast azimuth of propagation for SV waves changes across the mantle transition zone 105 
boundaries where phase changes are believed to occur. Because of the correlation 106 
between the location of phase transformations and changes in anisotropy amplitude and 107 
fast axes direction, we suggested that the detected MTZ anisotropy is linked to the nature 108 
and composition of the MTZ and caused by LPO of wadsleyite and ringwoodite.   109 
The goal of the present paper is to extend our previous global study of SV azimuthal 110 
anisotropy by adding constraints on horizontally polarized shear-wave azimuthal 111 
anisotropy. In particular, we aim at determining whether SH anisotropy is present in the 112 
deep upper mantle, and whether changes in anisotropy across the MTZ boundaries found 113 
in SV waves [Yuan and Beghein, 2013] can also be detected for SH anisotropy. We thus 114 
inverted anisotropic Love wave fundamental and higher mode phase velocity maps, 115 
which are sensitive to SH anisotropy down to depths of about 1200 km. While 116 
insufficient mineral physics data are currently available to uniquely interpret models of 117 
SV anisotropy in the MTZ in terms of mantle deformation, adding constraints on another 118 
elastic parameter will facilitate future interpretation of the results.  119 
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2. DATA 120 
The data used in this study are the anisotropic phase velocity maps obtained by Visser et 121 
al. [2008a] for Love wave fundamental modes and the first five overtones at periods 122 
comprised between 35 s and 175 s. More specifically, there were 16 fundamental modes 123 
between 35 s and 175 s, 16 first overtones between 35 s and 175 s, 13 second overtones 124 
between 25 s and 115 s, 10 third overtones between 35 s and 79 s, eight fourth overtones 125 
between 35 s and 63 s, and seven fifth overtones between 35 s and 56 s. The dispersive 126 
properties of surface waves make them ideal to provide depth constraints on Earth’s 127 
internal structure. While commonly used fundamental mode surface waves (periods 128 
between 50 s and 200 s) cannot resolve mantle structure beyond 250 km depth, the use of 129 
higher modes provide significantly improved sensitivity to larger depths. We were able to 130 
extend the sensitivity to the deep upper mantle and top of the lower mantle (Fig. 1). 131 
Relative perturbations in surface wave phase velocity c in a slightly anisotropic medium 132 
can be expressed as [Montagner and Nataf, 1986]: 133 
dc/c(T, Ψ) = c (T) c (T) cos 2Ψ c (T) sin 2Ψ c (T) cos 4Ψ c (T) sin 4Ψ(1) 134 
T is the period of the wave and Ψ is the azimuth of propagation. c0 is the phase velocity 135 
anomaly averaged over all azimuths, and ci (i=1,…,4) are anisotropic terms that represent 136 
the azimuthal dependence of the phase velocity. The relative phase velocity perturbations 137 
are determined with respect to a spherically symmetric reference Earth model. Yuan and 138 
Beghein [2013] modeled 3-D variations in SV azimuthal anisotropy using the 2Ψ 139 
anisotropy terms (c1 and c2) of the Rayleigh wave phase velocity maps obtained by Visser 140 
et al. [2008a]. In the present study, we used the 4Ψ terms (c3 and c4) of Visser et al. 141 
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[2008a]’s Love wave phase velocity maps to build a 3-D model of SH azimuthal 142 
anisotropy.  143 
Visser et al. [2008a] found that anisotropy was required in the construction of the phase 144 
velocity maps to explain their measurements for both Love and Rayleigh waves. They 145 
showed that the two types of surface wave data required 2Ψ and 4Ψ terms, even for 146 
fundamental modes.  Montagner and Tanimoto [1991] demonstrated, however, that a 4Ψ-147 
dependence is not expected in fundamental mode Rayleigh waves for realistic 148 
petrological models, and a 2Ψ-dependence is not expected for fundamental mode Love 149 
waves. These petrological arguments are often used to help determine the strength of 150 
anisotropy in fundamental mode phase velocity maps because it cannot be determined by 151 
the data alone and has therefore to be fixed by other constraints. Rayleigh wave 4Ψ and 152 
Love wave 2Ψ terms are thus generally strongly damped.  153 
In the study of Visser et al. [2008a], however, the Rayleigh wave data fit was 154 
significantly improved when including a 4Ψ-dependence. These 4Ψ terms could, in 155 
theory, help constrain SH anisotropy, but the sensitivity of the fundamental and higher 156 
modes to SH anisotropy is very small. Rayleigh wave phase velocity maps are better 157 
suited to constrain SV anisotropy by inversion of the 2Ψ terms, and SH anisotropy is best 158 
constrained by Love wave 4Ψ terms. Similarly, Love wave 2Ψ terms could potentially 159 
offer additional constraints on SV anisotropy. However, as discussed by Visser et al. 160 
[2008a], it is likely that the need for 2Ψ anisotropy in their fundamental Love wave phase 161 
velocity maps was driven by Love-Rayleigh coupling, implying that Love waves cannot 162 
be used reliably to invert for SV anisotropy. This was initially speculated by Montagner 163 
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and Tanimoto [1990] and later demonstrated by Sieminski et al. [2007]. While there is no 164 
evidence a priori that such coupling is also responsible for the 2Ψ terms in the higher 165 
mode Love wave phase velocity maps of Visser et al. [2008a], it cannot be ruled out yet. 166 
We thus prefer to employ the Love wave higher mode data to constrain SH anisotropy 167 
only, and to use Rayleigh waves to constrain SV anisotropy. Most importantly, Visser et 168 
al. [2008a] established that the Love wave 4Ψ anisotropy terms did not depend on 169 
whether 2Ψ terms were included in the construction of the phase velocity maps.  170 
Visser et al. [2008a] were able to obtain dispersion measurements of higher modes for a 171 
larger number of overtones than previously published by using a model space search 172 
approach. Overtones are inherently difficult to separate, but the use of the Neighbourhood 173 
Algorithm [Sambridge, 1999a; b] enabled them to determine the statistical significance of 174 
their measurements for the different modes, i.e. they were able to determine the number 175 
of higher modes reliably constrained by the seismograms. Their method also provided 176 
consistent phase velocity uncertainties. The lateral resolution of their phase velocity maps 177 
generally decreases with increasing overtone number. The authors estimated that 178 
fundamental mode models are resolved up to spherical harmonic degree 8 for the 2Ψ 179 
terms and spherical harmonic degree 9 for the 4Ψ terms. For the higher modes the lateral 180 
resolution was estimated to be of degree 5 and degree 6 for the 2Ψ and 4Ψ maps, 181 
respectively. This implies a resolving power of about 4500 km near the surface, 182 
decreasing to ~6500 km near MTZ depths. This change in resolution with depth is due to 183 
a reduction in the quality of the path azimuthal coverage resulting from a lower number 184 
of modes measured reliably as the overtone number increases (see Fig. 2 of Visser et al. 185 
[2008a]). This affected the ray coverage in the southeastern Pacific, southern Indian 186 
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Ocean, and southern Atlantic for the third through fifth higher modes. Ray coverage was 187 
however very good everywhere for the fundamental modes, and in most continental 188 
regions and the northwestern Pacific for the higher modes. Another factor that affected 189 
the resolution of the maps is the choice of the damping made by the authors. Their choice 190 
was such that the relative model uncertainty remained constant for all modes, resulting in 191 
phase velocity maps of decreasing resolution with increasing overtone number. Because 192 
the inferences made in this paper focus on large-scale anisotropy, using data of varying 193 
resolution should not strongly affect our results. 194 
Another common source of uncertainty when constructing anisotropic phase velocity 195 
maps is the existence of trade-offs between the different terms of Eq. (1), which can 196 
result in lateral heterogeneities or topography at discontinuities being mapped into the 197 
anisotropy. The resolution matrices calculated by Visser et al. [2008a] showed that there 198 
was little mapping of isotropic structure into the anisotropic terms. However, resolution 199 
matrices are functions of the regularization and parameterization applied, and are not 200 
ideal to evaluate the parameter trade-offs. In addition, despite the authors’ best efforts to 201 
minimize these trade-offs, one cannot completely separate the different terms because 202 
data coverage is imperfect owing to the uneven distribution of earthquakes and seismic 203 
stations over the globe. The phase velocity maps employed here consist, nevertheless, of 204 
a unique dataset of anisotropic higher mode Love waves and, keeping the caveats listed 205 
above in mind, our study should be seen as a first step toward mapping 3-D SH 206 
anisotropy in the mantle. 207 
3. METHODS 208 
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3.1. Parameterization and Inversion 209 
We modeled 3-D variations in SH anisotropy by inverting the 4Ψ terms (c3 and c4) of Eq. 210 
(1) for Love wave fundamental and higher modes [Montagner and Nataf, 1986]. These 211 
anisotropic terms are depth integrals of perturbations in elastic parameters Ec and Es that 212 
relate to SH azimuthal anisotropy:  213 
c (T) = E ( )N( ) KE(r, T)dr        (2)  214 
c (T) = E ( )N( ) KE(r, T)dr        (3)  215 
KE(r, T) represents the local partial derivative, also called sensitivity kernel, for relative 216 
perturbations in Ec and Es  with respect to Love parameter N [Love, 1927] at period T and 217 
radius r. Love parameter N is the elastic parameter that determines the velocity of 218 
horizontally polarized shear-waves. These sensitivity kernels were calculated based on 219 
normal mode theory [Takeuchi and Saito, 1972]. SH azimuthal anisotropy amplitude E 220 
and fast propagation azimuth Θ are given by: 221 
E = E E           (4) 222 
and 223 
Θ = arctan(E /E )               (5)  224 
Although the crust does not seem to have a strong effect on one-dimensional (1-D) shear-225 
wave velocity and anisotropy models [Marone and Romanowicz, 2007; Yuan and 226 
Beghein, 2013], it has been demonstrated that 3-D variations in crustal structure and their 227 
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effect on the partial derivatives can affect 3-D mantle models [Boschi and Ekström, 2002; 228 
Bozdağ and Trampert, 2010; Kustowski et al., 2007; Marone and Romanowicz, 2007]. By 229 
performing accurate crustal corrections one can reduce the mapping of crustal structure 230 
into the deep mantle. In order to account for the effect of the crust on the partial 231 
derivatives, we thus adopted an approach similar to that of Boschi and Ekström [2002]. 232 
We parameterized the Earth’s surface using 2° 2° cells following crustal model 233 
CRUST2.0 [Bassin et al., 2000], and created a local reference Earth model composed of 234 
PREM [Dziewonski and Anderson, 1981] and CRUST2.0 at each grid cell. Sensitivity 235 
kernels were calculated based on the new local reference model (Fig. S1). Inversions of 236 c3 and c4 were performed independently from one another at each grid cell using the local 237 
sensitivity kernels, and the anisotropy amplitude and fast directions were calculated on 238 
the grid using equations (4) and (5).  239 
E (r) and E (r) were parameterized vertically using 18 cubic spline functions S (r) of 240 
varying depth spacing between the surface and 1400 km (Fig. 2): 241 
E (r) = ∑ E S (r)         (6) 242 
E (r) = ∑ E S (r)         (7) 243 
The inverse problem can be written as: 244 
d = Am          (8)  245 
d is a vector containing the 4Ψ coefficient, m is a vector containing the model parameters, 246 
which are the spline coefficients E  or E , and A is the matrix whose elements Aij are the 247 
integral of the j-th sensitivity kernel K (r) weighted by the i-th spline S (r):  248 
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A = K (r)S (r)dr         (9) 249 
We solved Eq. (8) for Ec and Es separately at each grid cell using a singular value 250 
decomposition method [Jackson, 1972; Lanczos, 1961; Wiggins, 1972] in which A is a 251 n m matrix decomposed into the product:  252 

= T          (10) 253 
U is a n n matrix of eigenvectors that span the data space, V is a m m matrix of 254 
eigenvectors that span the model space, and  is a n m diagonal matrix whose columns 255 
are nonnegative eigenvalues λ . It can be shown that T and T  have the same p non-256 
zero eigenvalues λ . These λ  are called the singular values of A and are often ranked by 257 
decreasing magnitude.  can be partitioned into a p p submatrix  containing the p 258 
non-zero eigenvalues and a zero submatrix  : 259 
λ = λ  if i = j, i p          (11) 260 
λ = 0 if i  (i = 1, … , m)         (12) 261 
λ = 0 if j  (j = 1, … , n)          (13) 262 
We then have T =  where Up is a n p matrix whose columns are the p 263 
eigenvectors ui (i=1,…,p) of T that have non-zero eigenvalues. Vp is a m p matrix 264 
whose columns are the p eigenvectors vi  of T  that have non-zero eigenvalues.  265 
The generalized inverse of A can then be written as: 266 

= T          (14) 267 
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and the estimated model parameters  are given by: 268 
= T          (15) 269 

The sum in Eq. (15) is thus limited to the non-zero eigenvalues only, thereby reducing 270 
instabilities in the solution that can be caused by null eigenvalues.  271 
Because the smallest non-zero eigenvalues can also generate instabilities in the inverse 272 
problem, care needs to be exercised in choosing the number of eigenvalues that will 273 
contribute to the solution. Wiggins [1972] proposed to construct the inverse operator from 274 
the q p largest eigenvalues and corresponding eigenvectors. Here, we followed 275 
Matsu'Ura and Hirata [1982] to determine the cutoff number of eigenvalues. Their 276 
approach consists in normalizing matrix A by the data covariance matrix Cd and the prior 277 
model covariance matrix Cm: 278 

=          (16) 279 
 is the normalized matrix, and to keep all eigenvalues that are smaller or equal to unity: 280 

the sum is over all λ 1. We employed the uncertainties estimated by Visser et al. 281 
[2008a] for their phase velocity maps to build the data covariance matrix. With the 282 
employed method, the regularization is implicit in the choice of the prior model 283 
covariance matrix and modifying Cm is equivalent to changing the regularization in a 284 
least square inversion [Snieder and Trampert, 2000] as it yields a different cutoff in the 285 
number of eigenvalues. The model resolution matrix R reflects how well the true model, 286 mtrue, was represented by the estimated model, mest, and the trade-offs among the model 287 
parameters: 288 
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=          (17) 289 
If R=I, then mest= mtrue and the parameters are perfectly resolved. Calculating a 290 
resolution matrix can be computationally prohibitive for large inverse problems. Here, 291 
however, because we solved Eq. (8) for Ec and Es separately at each grid cell, thereby 292 
dividing the inverse problem into 2Nc small size inverse problems (of 18 unknowns each), 293 
where Nc is the number of grid cells, we were able to calculate the resolution matrix by 294 
singular value decomposition. The resolution matrix R is then given by [Menke, 1989]: 295 

= ( ) = ( T)( T) = T     (18) 296 
3.2 Generalized Spherical Harmonics, Power Spectrum, and Correlation 297 
In order to calculate the power spectra of our SH anisotropy model and that of Yuan and 298 
Beghein [2013]’s SV anisotropy model, we expanded the models in generalized spherical 299 
harmonics [Phinney and Burridge, 1973; Trampert and Woodhouse, 2003] up to degree 300 
20 and calculated the power spectrum for each anisotropic parameter following Becker et 301 
al. [2007]. The azimuthal dependence of the phase velocity described by Eq. (1) can be 302 
rewritten using tensors rather than scalars [Trampert and Woodhouse, 2003]: 303 
dc/c(ω, Ψ) = c (ω) τ ν ν σ ν ν ν ν      (19) 304 
Indices i,j,k,l take values of 1 and 2 corresponding to the latitude and the longitude, 305 
respectively. = ( cos Ψ , sin Ψ) is a unit vector in the direction of propagation. τ and σ 306 
are symmetric and trace-free tensors on the 2-D spherical surface. Their two independent 307 
components are given by:  308 
τ = τ = c (ω)         (20) 309 
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τ = τ = c (ω)         (21) 310 
σ = σ = σ = c (ω)       (22) 311 
σ = σ = c (ω)        (23) 312 
The non-zero contravariant components of these tensors are given by: 313 
τ = c (ω) ic (ω)        (24) 314 
τ = c (ω) ic (ω)        (25) 315 
σ = c (ω) ic (ω)        (26) 316 
σ = c (ω) ic (ω)        (27) 317 
τ   and τ  are thus complex conjugate of each other, and so are σ and σ .  318 
Phinney and Burridge [1973] showed that the contravariant components of a tensor M of 319 
any rank can be expanded in generalized spherical harmonics: 320 
m …(θ, ) = ∑ ∑ M …YN (θ, )    (28) 321 
The first sum starts at l = 2 for a second order tensor and at l = 4 for a fourth order 322 
tensor. The 2Ψ and 4Ψ anisotropy can thus be expanded as: 323 
τ (θ, ) = ∑ ∑ τ Y (θ, )L       (29) 324 
τ (θ, ) = ∑ ∑ τ Y (θ, )L       (30) 325 
σ (θ, ) = ∑ ∑ σ Y (θ, )L      (31) 326 
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σ (θ, ) = ∑ ∑ σ Y (θ, )L      (32) 327 
For a generalized spherical harmonic expansion up to degree L the number of coefficients 328 
for the 2Ψ terms is N = (2L 6)(L 1) because Y = 0 for l 2, and the number 329 
of coefficients for the 4Ψ terms is N = (2L 10)(L 3) because Y = 0 for l 4 330 
[Phinney and Burridge, 1973; Trampert and Woodhouse, 2003]. 331 
Following and generalizing the definitions introduced by Becker et al. [2007], we define 332 
the spectral power at spherical harmonic degree l of the model as: 333 
S = N ∑ pN           (33) 334 
N  represents is the number of generalized spherical harmonic coefficients at degree l 335 
(N = (2l 6)(l 1) for 2Ψ and N = (2l 10)(l 3) for 4Ψ). pi  �s the i-th 336 
component of a vector containing the real and imaginary parts of the generalized 337 
spherical harmonic coefficients τ  or σ  [Boschi and Woodhouse, 2006], depending 338 
on whether we calculate the spectra of the 2Ψ or 4Ψ model. We also adopt the same 339 
definition as Becker et al. [2007] for the correlation coefficient at degree l between two 340 
harmonic fields q and p:  341 
r = ∑N

∑N ∑N          (34) 342 
To calculate a correlation between two models expanded up to degree L, one replaces N  343 
by the total number of coefficients used, i.e. N  for a 2Ψ model or N  for a 4Ψ model. 344 
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This expression is also valid for an azimuthally averaged model (0 term of Eq. (1)), in 345 
which case the number of coefficients is N = (L 1) . 346 
4. MODEL RESOLUTION AND ROBUSTNESS 347 
We performed several tests, described below, to assess the quality of our SH anisotropy 348 
model. First, we tested that our main results, i.e. the presence of about 1% anisotropy in 349 
the MTZ and amplitude minimum near the top of the MTZ as described in section 5, is 350 
robust with respect to regularization. Second, we examined the vertical resolution of the 351 
sensitivity kernels used in this study with a series of synthetic tests. The input models in 352 
Fig. 3 simulate layering of SH anisotropy of decreasing amplitude with depth. We 353 
obtained the output models by using the same data uncertainties as in the real data 354 
inversions, and the same level of regularization as that chosen for our “preferred” model. 355 
We tested inversions of synthetic data with and without added noise. The curves labeled 356 
as “low noise” were obtained by perturbing each data by a random amount uniformly 357 
drawn between −50% and +50% of its original value; for the curve labeled as “high 358 
noise”, relative perturbations were between −100% and +100%. These tests show that our 359 
sensitivity kernels can resolve anisotropy amplitude in 80 km thick layers in the top 500 360 
km of the mantle, 100 km thick layers in the top 600 km, and 120 km thick layers in the 361 
upper 700 km.  This is independent of the amount of noise added to the synthetic data. 362 
The fast axes are not as well recovered as the amplitudes with added noise, but this is 363 
mostly the case for a high level of noise and the corresponding recovered amplitudes are 364 
often small. Other synthetic tests demonstrated that our inversion does not yield any 365 
significant downward leakage even with added noise (Fig. S2). We have thus great depth 366 
sensitivity throughout the upper mantle and MTZ.  367 
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Third, we calculated the resolution matrix for elastic parameter Ec (or identically for Es) 368 
obtained with our chosen regularization. Fig. 4 shows that the first 13 spline coefficients 369 
(which correspond approximately to the top 800 km) are relatively well resolved with 370 
little trade-offs among the different coefficients. The strongest trade-offs are found 371 
between spline coefficients 3 through 5, which roughly correspond to depths between 100 372 
km and 200 km (see Fig. 2).  373 
Of course, the reader should be cautioned that the true resolution of the model is not 374 
determined by the sensitivity kernels alone, but also by the lateral resolution of the phase 375 
velocity maps as discussed in section 2. In addition, a resolution matrix, which depends 376 
on the regularization applied, is not a perfect estimate of true parameter trade-offs. A 377 
better approach to assess the robustness of our model would be to perform synthetic tests 378 
with a 3-D input model of velocities and SH and SV anisotropy, which would be used to 379 
predict and then invert phase velocity maps, seismograms, and along-path phase velocity 380 
measurements. It would allow us to better explore the trade-offs between the isotropic 381 
and anisotropic terms of the phase velocity map, but it is, unfortunately, computationally 382 
very expensive and impractical. An even better approach would have been to explore the 383 
model space and randomly sample 3-D velocity and anisotropy models to obtain statistics 384 
on the best fitting models. Randomly generated models would be used to calculate along-385 
path phase velocities or full seismograms, which in turn would be compared to real data. 386 
Such forward modeling methods have been applied to solve much smaller size problems 387 
in the past (e.g. Beghein [2010]) and are better at quantifying model uncertainties and 388 
parameter trade-offs. It would, however, be too time consuming and computationally 389 
intensive to be feasible in the present case.  390 
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Finally, we performed statistical tests to determine whether the data used here require 391 
deep SH anisotropy or whether a model with shallower anisotropy would be able to 392 
explain the data equivalently well. Indeed, by allowing our inversion to extend to depths 393 
of 1400 km, we found that our preferred best fitting model, displayed anisotropy in the 394 
MTZ (see section 5). While a model with shallower anisotropy would likely not fit the 395 
data as well, the presence of deep anisotropy might not be warranted by the data if the 396 
misfit difference between the models results from an increase in the number of free 397 
parameters rather than from the data themselves. To determine whether the data 398 
employed truly require the presence of azimuthal anisotropy in the deep upper mantle, we 399 
thus performed new inversions of the same dataset in which we require the anisotropy to 400 
remain in the top 410 km (model A) and 670 km (model B). We then conducted F-tests 401 
[Bevington and Robinson, 2002] to compare the misfit of YB14SHani to these new 402 
models. F-tests are statistical tests that determine to what level of confidence the 403 
difference in variance reduction is significant, and enable us to calculate the probability 404 
that two models are equivalent. It makes use of the reduced χ  misfit defined in Eq. (35), 405 
the number of independent parameters given by the trace M of the resolution matrix, and 406 
the number N of data employed. The reduced χ  is given by Trampert and Woodhouse 407 
[2003]: 408 
χ = N M ( )T ( )       (35) 409 
where d is the data vector, m represents the model parameters, A is the kernel matrix, and 410 Cd is the data covariance matrix. The reduced χ2 and the trace of resolution matrix were 411 
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calculated at each grid cell for Ec and Es separately in the three models. We then 412 
calculated an average χ2 following Yuan and Beghein [2013]: 413 

= N ∑ (χ , χ , )N         (36) 414 
where Nc is the number of grid cells, and χ ,  and χ ,  are the reduced χ2 for Ec and Es at 415 
grid cell i, respectively. F-tests were performed using these averaged misfits and showed 416 
that the probability that model YB14SHani and model A are equivalent is less than 1% 417 
(Fig. 5). Similarly, we calculated a 91.5% probability that YB14SHani is not equivalent 418 
to model B. 419 
5. RESULTS AND DISCUSSION 420 
5.1 Average Anisotropy 421 
In Fig. 6(a) and (c) we compare the root mean square (rms) amplitude of YB14SHani and 422 
YB13SVani, and in Fig. 6(b) and (d) we display the global vertical auto-correlation 423 
function of the 2Ψ and 4Ψ models, respectively. When analyzing azimuthal anisotropy 424 
models, it is very useful to determine at which depth the fast axes for wave propagation 425 
change direction significantly as this can indicate layering in the mantle [Beghein et al., 426 
2014; Yuan and Romanowicz, 2010; Yuan and Beghein, 2013]. In Yuan and Beghein 427 
[2013] and Beghein et al. [2014] we calculated the vertical gradient of the SV fast axes 428 
direction as a function of depth to locate where the strongest changes in anisotropy 429 
occurred. It is, however, more difficult to quantify changes in fast axes direction with 430 
depth for SH waves because of the 90° periodicity of the 4Ψ terms (Eq. (1)). Instead, we 431 
calculated the vertical global auto-correlation (Eq. (32)) for the 4Ψ and 2Ψ models, 432 
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which we use as a proxy for the vertical gradient of the fast axes. The vertical auto-433 
correlation curves show how the anisotropy at one depth correlates with the anisotropy at 434 
another depth. Here, we calculated this function using Eq. (34) and a 40 km widow 435 
(correlation at depth z is the correlation between model at depth z 20 km and model at 436 
depth z 20 km), and the model amplitudes were normalized so that the calculated 437 
correlation reflects changes in fast axes only and does not account for vertical amplitude 438 
changes. Comparison of Fig. 6(d) and Fig. 2(b) of Yuan and Beghein [2013] shows that 439 
the depths at which the vertical auto-correlation is low for the 2Ψ model coincide with 440 
depths at which the SV fast axes change direction significantly (i.e. where the vertical 441 
gradients are high). We thus took a similar approach for the 4Ψ maps and chose to 442 
associate low auto-correlation values for the 4Ψ model with changes in SH fast axes.    443 
We found that the rms amplitude we obtained for G/L and E/N present several peaks in 444 
the uppermost mantle (Fig. 6). It is the strongest in the top 200 km with a peak of 1.5-2% 445 
for SH at 150 km depth and 2% for SV at 100 km depth, and both models display a 446 
smaller peak around 50 km and 250 km depth. The G/L and E/N amplitudes are thus 447 
consistent with one another and in agreement with previous estimates of SV anisotropy 448 
amplitudes in global and regional models [Debayle et al., 2005; Yuan and Romanowicz, 449 
2010], with the exception of the new model of Debayle and Ricard [2013], which 450 
displays amplitudes of ~3%. A recent study pointed out a large discrepancy between the 451 
amplitude of upper mantle radial anisotropy (which can be as high as 8% on average) and 452 
SV azimuthal anisotropy (typically of the order of 1-2% in the upper 200 km) in 453 
tomographic models [Wang et al., 2013]. The authors argued that LPO alone cannot 454 
explain these differences and that we need to invoke an additional mechanism such as a 455 
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layered structure to reconcile the two types of observations. While our model amplitudes 456 
appear to confirm that azimuthal anisotropy amplitudes are much lower than those of 457 
radial anisotropy, for both SH and SV waves, caution needs to be taken before 458 
interpreting such differences. Anisotropy amplitudes are strongly dependent on the 459 
regularization applied during the construction of the phase velocity maps, and 460 
regularization tends to lower amplitudes where spatial coverage is sparse or if the noise in 461 
the data is high [Chevrot and Monteiller, 2009].  462 
We also found that the SH and SV anisotropy amplitude minima are associated with 463 
changes in fast axes for both SH and SV waves. This can be seen between 50 km and 100 464 
km and at ~230 km depth, which is where the SV fast direction becomes sub-parallel to 465 
the present-day absolute plate motion (APM) as shown by Yuan and Beghein [2013]. 466 
Most interestingly, the two parameters display ~1% anisotropy inside the MTZ and an 467 
amplitude minimum at the top of the MTZ where the fast axes change direction. Yuan 468 
and Beghein [2013] demonstrated that the changes in SV anisotropy between 50 km and 469 
100 km depth and at ~230 km are not due to the chosen parameterization or the presence 470 
of discontinuities at 80 km and 220 km depth in the reference model used to calculate the 471 
sensitivity kernels. Similar tests were performed here for the SH model. We showed that 472 
the minimum in dlnE between 50 km and 100 km depth is not the result of the chosen 473 
depth parameterization by testing different parameterizations with more closely spaced 474 
and less closely space spline functions (Fig. S3(a)). We also tested the effect of 475 
discontinuities at 80 km and 220 km depth on the global average rms amplitude and 476 
found no significant change in the model (Fig. S3(b)). Using the PREM crust instead of 477 
CRUST2.0 resulted in some changes in the average amplitude profile in the top 200 km, 478 
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and shifted the amplitude minimum detected between 50 km and 100 km depth (Fig. 479 
S3(b)), implying that crustal structure is important to resolve and interpret details in the 480 
top 200 km of the model.   481 
As discussed by Yuan and Beghein [2013] for SV anisotropy, the presence of 1% SH and 482 
SV azimuthal anisotropy inside the MTZ could be due to the shape preferred orientation 483 
of tilted layers of material with contrasting elastic properties. However, because we also 484 
found changes in anisotropy near 410 km depth, where olivine is thought to go through a 485 
phase transformation, we suggest that the origin of the observed seismic anisotropy is 486 
more likely to be related to the nature of the MTZ. The detected amplitudes in the upper 487 
MTZ are consistent with mineral physics estimates for wadsleyite anisotropy [Kawazoe 488 
et al., 2013; Tommasi et al., 2004; Zha et al., 1997], and the changes in fast axes at 410 489 
km depth could simply be due to recrystallization during the phase change from olivine to 490 
wadsleyite. The interpretation of these anisotropy changes in terms of mantle flow and 491 
thermochemical evolution of the Earth is however not straightforward owing to the lack 492 
of mineral physics data on MTZ material anisotropy. For instance, recrystallization of the 493 
olivine structure during phase changes likely erases anisotropy before building up again, 494 
and therefore could explain the changes in SH and SV anisotropy at 410km. The presence 495 
of water inside or atop the transition zone might also change the anisotropic properties of 496 
the olivine structure in the MTZ and how it relates to mantle flow direction, as it does at 497 
uppermost mantle conditions [Jung and Karato, 2001]. Further investigations of the 498 
effect of water, pressure, or partial melt on the anisotropy of ringwoodite and wadsleyite 499 
are therefore needed before one can uniquely interpret our results.  500 
5.2 Global three-dimensional Model 501 
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Figs. 7 and 8 display maps between 100 km and 600 km depth for models YB14SHani 502 
and YB13SVani, respectively. Large lateral variations in amplitude and fast axes are 503 
observed in both models, which might suggest a complex mantle flow pattern at depth. 504 
Interestingly, regions of high (or low) SV anisotropy do not necessarily coincide with 505 
high (or low) SH anisotropy. On the contrary, it even appears that in some areas the two 506 
types of anisotropy are anti-correlated. For instance, most of the high SV anisotropy area 507 
at 100 km depth in northeastern and central Pacific has low SH anisotropy and vice versa 508 
for the northwestern Pacific. Similar observations can be made at other depths: A high 509 
amplitude dlnE signal can be found in central Pacific in the MTZ, but dlnG is small in 510 
that region (dlnG=G/L where L and G are elastic parameters that determine SV velocities 511 
and azimuthal anisotropy, respectively). This apparent anti-correlation between dlnG and 512 dlnE is, nevertheless, not global (Fig. S4).  513 
To our knowledge, the only other global inversion of 4Ψ anisotropy published so far is 514 
that of Trampert and van Heijst [2002] who used a slightly older higher mode Love wave 515 
dataset than in the present study. Because their study was focused on the MTZ, we can 516 
compare the models only at these depths. While there is general agreement between the 517 
models in terms of anisotropy amplitude in the MTZ, we found strong differences in the 518 
pattern of SH anisotropy. In both models, strong MTZ anisotropy can be found beneath 519 
Africa and the central Pacific, and low anisotropy near the East Pacific Rise, but the fast 520 
axes directions differ substantially. These discrepancies could result from differences in 521 
the datasets employed since they used the first and second overtone Love waves only, 522 
while the dataset we used here [Visser et al., 2008a] contained Love wave fundamental 523 
and higher modes up to the fifth overtone. Discrepancies between the models could also 524 
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arise from the different inversion techniques employed. We performed a classical linear 525 
inversion in which one typically has to compromise between data fit and model size 526 
[Snieder and Trampert, 2000], whereas Trampert and van Heijst [2002] chose a Backus 527 
and Gilbert [1968] approach in which the resolution kernel is optimized towards a 528 
desired shape and depth range.  529 
5.3 Anisotropy Beneath Oceanic Plates 530 
Fig. 9 illustrates how SH and SV anisotropy vary beneath oceanic plates. A detailed 531 
discussion of YB13SVani under oceanic plates can be found in another paper [Beghein et 532 
al., 2014]. Here we can compare YB13SVani with our new SH anisotropy model. 533 
Interestingly, we detect a change in uppermost mantle dlnE and dlnG with plate age only 534 
beneath the Pacific plate (Fig. 9(d) and (e)). In particular, the youngest parts of the 535 
Pacific plate present less SH anisotropy in the top 200 km than older regions (Fig. 9(g)), 536 
and less SV anisotropy than beneath the middle of the plate (Fig. 9(h)). We also find, as 537 
did Nishimura and Forsyth [1989], that uppermost mantle SV anisotropy amplitudes in 538 
the Pacific are the lowest for ages > 120 Ma (Fig. 9(h)). Remarkably, while SH 539 
amplitudes beneath the Pacific for mid-ages are close to the average values for other 540 
oceans (~2%), SV anisotropy is anomalously strong (up to 4%) in the 100-200 km depth 541 
range and for ages between ~40 Ma to ~120 Ma. Such a strong SV anisotropy is not 542 
found beneath other oceanic plates, though those are generally smaller than the Pacific 543 
plate and our data may not be able to resolve age differences beneath small plates.  544 
We also note, as in Yuan and Beghein [2013] and Beghein et al. [2014], that the Pacific is 545 
characterized by an age dependence of the alignment of the SV fast axis with the APM 546 
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calculated using the no-net rotation reference model NNR-NUVEL 1A [Gripp and 547 
Gordon, 2002]. Note that Yuan and Beghein [2013] demonstrated that using different 548 
reference frames did not significantly change the results for the Pacific plate. We showed 549 
[Beghein et al., 2014] that the interface marking the change in SV fast axis direction, 550 
from poor alignment with the APM at shallow depths to good alignment at greater depths 551 
follows an isotherm with a mantle temperature of 900 1100  in a half-space 552 
cooling model [Parker and Oldenburg, 1973]. A similar observation can be made for 553 
other oceans (Fig. 9): The fast SV wave direction tends to follow the APM over a 554 
narrower depth range for older plates than for young ones. More specifically, the 555 
alignment is good between ~150 km and 250 km depth for ages > 120 Ma and between 556 
~50 km and 250 km for ages lower than 80 Ma. In contrast, while SH anisotropy is lower 557 
beneath young Pacific crust than older crust, it does not present any systematic age-558 
dependence, and the relative dlnE amplitude does not follow a half-space cooling model 559 
(Figs. 9(g) and 10).  560 
The reduction in SV anisotropy amplitude in the Pacific for ages > 120 Ma and between 561 
100 km and 200 km was first detected by Nishimura and Forsyth [1989]. The authors 562 
postulated that it relates to changes in the horizontal direction of anisotropic fabric with 563 
depth rather than being due to a decrease of in situ anisotropy. They argued that the 564 
significant differences in the direction of APM and fossil seafloor spreading in the 565 
western Pacific might yield destructive interference of the shallow and deeper anisotropy 566 
contributions. Here, we demonstrate that the lower SV anisotropy amplitude in the 567 
western Pacific is close to the average amplitudes of other oceanic plates and is therefore 568 
not anomalously low.  569 
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On the contrary, SV azimuthal anisotropy in the middle of the plate is anomalously high. 570 
A similarly anomalous signal has also been observed in radial anisotropy models 571 
[Ekström and Dziewonski, 1998; Nettles and Dziewonski, 2008; Panning and 572 
Romanowicz, 2006], but its origin is not well understood. It appears, however, to coincide 573 
with a layer of low shear-wave velocities in which the SV fast axes are subparallel to the 574 
APM (see Debayle and Ricard [2013] and Fig. 9(i)). This anomalously high radial and 575 
SV azimuthal anisotropies may result from deformation by dislocation creep in an 576 
asthenospheric flow channel as previously suggested [Gaboret et al., 2003; Gung et al., 577 
2003] or from CPO during diffusion creep [Miyazaki et al., 2013]. Here, we show that, 578 
interestingly, the Pacific plate asthenosphere does not display any anomalous SH 579 
anisotropy, which may provide additional constraints on the origin of the signal in future 580 
research.  581 
No strong age dependence is found for SV anisotropy beneath ~200-250 km depth, but 582 
changes in E/N are visible in the MTZ and at ~300 km depth: the anisotropy strength at 583 
these depths is greater beneath oceans older than ~80Ma than under younger plates. We 584 
verified that this is independent of the regularization applied (Fig. S5). In addition, we 585 
think it is unlikely that these lateral variations result from vertical smearing or parameter 586 
trade-offs (see section 4), although a full model space search will be needed in future 587 
work to quantitatively assess these possibilities.   588 
Interestingly, the map of SH anisotropy at 500 km depth (Fig. 7) reveals that this 589 
apparent age signal comes primarily from the central Pacific and is oriented in the North-590 
South direction. While they are interesting, these variations may not have any physical 591 
relation to crustal ages and could illustrate the complexity of the SH anisotropy signal at 592 
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these depths, possibly in relation to the geometry of the convective cells or to the Pacific 593 
“superplume”. However, we caution and remind the reader of the limited lateral 594 
resolution of the data at these depths and the possibility that trade-offs between the 595 
isotropic and anisotropic terms of the phase velocity maps may affect the strength of the 596 
higher mode anisotropy.     597 
5.4 Anisotropy Beneath Archean Cratons 598 
Fig. 11 focuses on Archean cratons as defined in model 3SMAC [Nataf and Ricard, 599 
1996]. Panels (a) and (d) of Fig. 11 display averaged SV and SH amplitude profiles, 600 
panels 10(b) and 10(e) show the vertical auto-correlation for SV and SH fast axes, and 601 
panels 10(c) and 10(f) represent the angular difference between the APM and the SV fast 602 
axes. To calculate the vertical auto-correlation in a specific region, we isolated the 603 
targeted area by setting all other regions to zero before performing a generalized 604 
spherical harmonics expansion, and amplitudes were scaled so that the auto-correlation 605 
functions reflect vertical changes in fast axes and not in amplitude. As for the global 606 
average shown in section 5.1, we used Eq. (34) with a 40 km window to calculate vertical 607 
auto-correlation curves.  608 
The top panels of Fig. 11 are for all Archean cratons averaged together and the bottom 609 
panels are for the North American craton, which is sufficiently large for our data to 610 
resolve without significant contamination from other tectonic regions. As for oceanic 611 
plates, the APM was calculated in the no-net rotation reference frame [Gripp and 612 
Gordon, 2002]. In their regional study of the North American craton, [Yuan and 613 
Romanowicz, 2010] showed that their anisotropy fast axis directions were in better 614 
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agreement with the APM in the hotspot reference frame than in the no-net rotation 615 
reference frame. On the contrary, Yuan and Beghein [2013] showed that NNR-NUVEl1 616 
gives the best results for all cratons averaged together. This difference in the results is 617 
likely linked to the difference in lateral resolutions of the models, which was higher in the 618 
regional Yuan and Romanowicz [2010] study.  619 
As explained by Yuan and Romanowicz [2010], constraining the depth of the cratonic 620 
lithosphere has long been challenging. While estimates from isotropic velocity models 621 
can exceed 300 km [Grand, 1994], studies based on body wave conversion or receiver 622 
function analyses detect a seismic wave discontinuity at shallow depths around ~100-140 623 
km [Abt et al., 2010; Rychert and Shearer, 2009]. Radial anisotropy and SV azimuthal 624 
anisotropy models, however, yield LAB depths of ~250 km, in closer agreement with 625 
results from other types of data such as thermobarometry, heat flow measurements, and 626 
electrical conductivity [Gung et al., 2003; Yuan and Romanowicz, 2010]. Following Yuan 627 
and Romanowicz [2010], we used the depth at which the SV fast axes change direction 628 
and becomes aligned with the APM to determine the LAB depth. This proxy for the LAB 629 
depth is justified if we assume that strong horizontal shear associated with plate motion is 630 
present in the asthenosphere and aligns olivine fast axes in the direction of mantle flow. 631 
This change in anisotropy fast axes corresponds to a low in the auto-correlation function, 632 
equivalent to a high gradient in the fast axes direction, and an amplitude minimum. With 633 
this method we thus estimated an average LAB depth beneath Archean cratons of 250 km 634 
(Fig. 11(a) and (b)). A similar value is obtained from the analysis of SV anisotropy 635 
beneath the North American craton (Fig. 11(d) and (e)). This is consistent with Yuan and 636 
Romanowicz [2010]’s regional study of the North American craton, and here we show 637 
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that this is valid on average for all cratons. Interestingly, we also find that the LAB not 638 
only corresponds to a change in SV anisotropy, but is also associated with a change in SH 639 
anisotropy, which displays a minimum in amplitude (Fig. 11(a) and (d)) and in the 640 
vertical auto-correlation function (Fig. 11(b) and (e)).  641 
Several peaks in SH and SV anisotropy amplitudes are visible within this anisotropically 642 
defined lithosphere. For all the cratons averaged together, we detect an amplitude 643 
minimum in both types of anisotropy between 50 km and 100 km depth, coinciding with 644 
a peak in the vertical auto-correlation functions. Another minimum in amplitude and a 645 
peak in the vertical auto-correlation is also found around 140 km for SH waves and 180 646 
km depth for SV waves. We also find changes in SV fast direction around 50 km and 150 647 
km depth beneath the North American craton, but SH anisotropy displays more changes 648 
(at ~50 km, 120 km, and 180 km). We tested the robustness of these peaks and troughs in 649 dlnE at a few grid cells beneath continental regions and beneath the northeastern Pacific 650 
(Fig. S6). We showed that their position does not significantly change with the spline 651 
functions spacing, although if the spacing is too wide the model becomes vertically 652 
smoother and we lose some of the model features. In addition, we tested that the presence 653 
of the peaks does not strongly depend on the crustal model. This was done by comparison 654 
of our results with results obtained using the PREM crust instead of CRUST2.0. This 655 
includes an example at a grid cell beneath Tibet, which offers an end-member case as the 656 
Moho depth in that region differs significantly from the PREM Moho. Finally, we tested 657 
that the presence of discontinuities in the PREM mantle at 80 km and 220 km depth did 658 
not affect our results by smoothing the sensitivity kernels at these depths.  659 
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In their study of North America, Yuan and Romanowicz [2010] revealed a similar change 660 
in SV anisotropy within the continental lithosphere, which the authors related to chemical 661 
layering under the Archaean crust as evidenced by studies of xenoliths and xenocrysts. 662 
They also showed that this intra-continental boundary coincides with the depth of the 663 
shallow boundary detected by receiver function and body wave conversion studies. Here 664 
we detected multiple changes in SV and SH anisotropy within the cratonic lithosphere. 665 
The comparison with the results of Yuan and Romanowicz [2010] is however not 666 
straightforward and we do not attempt to explain the observed anisotropy changes in 667 
terms of internal boundaries at this stage. Trade-offs in the model parameters in the top 668 
200 km of the mantle (see section 3 for SH anisotropy and Yuan and Beghein [2013] for 669 
SV anisotropy) imply that our data may not be able to resolve the different peaks in the 670 
auto-correlation function. In addition, we are averaging our models over large regions, 671 
and lateral variations in the depth of the intermediate boundary as described by Yuan and 672 
Romanowicz [2010] are likely not resolved by our data. More detailed, higher resolution 673 
seismological studies of different cratons would be needed to make robust statements 674 
regarding the presence of multiple intra-lithospheric boundaries and to compare changes 675 
in SH and SV anisotropy within the cratonic lithosphere. Differences are also visible 676 
between the SV and SH models at 300 km depth: A low vertical auto-correlation is found 677 
for SH anisotropy but not for SV anisotropy. While this could have important 678 
geodynamics consequences, the presence of trade-offs among the SH anisotropy 679 
parameters in the uppermost mantle casts doubt on whether this difference is significant.  680 
5.5 Spectral Analysis 681 
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We expanded YB13SVani and YB14SHani in generalized spherical harmonics up to 682 
degree 20 and calculated their power spectra with Eq. (33). Figs. 12 and S7 show the 683 
power spectra for the two models at various depths. Because the generalized spherical 684 
harmonic expansion of a second order tensor starts at degree 2 (see section 3.2 for details), 685 
the SV model power spectrum does not have any power at lower degree. Similarly, the 686 
SH model power spectrum does not have any energy at degrees lower than 4 because it 687 
results from the generalized spherical harmonic expansion of a fourth order tensor.  688 
We observe a decay of �l with l for both the 2Ψ and 4Ψ models at most depths, with a 689 
loss of power for l 8. This is similar to the power spectrum of the SV anisotropy model 690 
obtained by Montagner and Tanimoto [1991]. This power loss at high degrees may not, 691 
however, reflect the actual strength of the anisotropy on Earth, and might instead be 692 
related to a loss of resolvable power in the data due to the regularization applied by 693 
Visser et al. [2008a] during the construction of the phase velocity maps. Indeed, as 694 
explained in section 2, the chosen regularization resulted in an estimated resolution of 695 
about degree eight for the fundamental modes and about degree six for the higher modes.  696 
We detect a dominant degree two in SV anisotropy between ~100 km and ~200 km depth, 697 
and in degree four SH anisotropy between ~100 km and ~150 km depth. Montagner and 698 
Tanimoto [1991] had also observed a dominant degree two SV anisotropy at those depths, 699 
in addition to a peak in degree six. This, together with the dominance of degree four in 700 
their radial anisotropy model, was later interpreted in terms of a simple convection flow 701 
pattern by comparison with the corresponding degrees of the hotspots distribution and 702 
geoid [Montagner and Romanowicz, 1993]. Here, we find a small peak in SV power at 703 
degree five instead located at 100 km and 150 km depth, and a peak in degree five SH 704 
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anisotropy at 100 km depth. This might indicate a more complex convection pattern than 705 
the simple model of Montagner and Romanowicz [1993]. To insure that this degree five 706 
signal is not due to inadequate crustal corrections, we verified that the power spectrum of 707 
the Moho depth does not present a peak at degree five (Fig. S8). We found, however, that 708 
this peak in σ5 can also be found in the power spectra of the 2Ψ terms of the Rayleigh 709 
wave phase velocity maps that have sensitivity in the uppermost mantle (n = 0, 1, and 2 710 
in Fig. 13(a) and (b)), but are not present in the spectra of data with little sensitivity to 711 
these depths (n = 3 and n = 6 in Fig. 13 (a) and (b)). This demonstrates that the degree 712 
five signal is constrained by the phase velocity maps themselves and not due to modeling 713 
artifacts on our part.  714 
The strongest power for SV anisotropy is found at 100 km depth for all degrees, and we 715 
generally find that most of the SV anisotropy strength is concentrated in the top ~200 km. 716 
For SH anisotropy too, the strongest power is located in the top 200 km for degree 5 and 717 
higher, but we note a large degree four at 600 km depth as well.  The power spectrum at 718 
600 km depth rapidly decreases for higher angular orders. This relatively large degree 4 719 
SH anisotropy in the transition zone is not matched by any particularly large SV 720 
anisotropy at any angular degree. Indeed, at 600 km, the SV model has a σ4 comparable 721 
to or lower than that calculated at other depths. This behavior can be found in the Love 722 
wave data spectra (Fig. 13(c) and (d)), which show that modes with sensitivity to the 723 
transition zone have higher σ4 than modes with no sensitivity at these depths. We 724 
therefore conclude that this signal is contained in the phase velocity data and is unlikely 725 
to be due to vertical trade-offs among model parameters.  726 
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Fig. 14 compares the vertical auto-correlation for SH and SV anisotropy calculated for all 727 
degrees of the generalized spherical harmonic expansion, with the vertical auto-728 
correlation of the models truncated at degree eight, and truncated at degree four for SH 729 
anisotropy, and degree two for SV anisotropy. We find that the change in SV anisotropy 730 
at the top of the MTZ is stronger at degree two, and the change in SH anisotropy is 731 
stronger at degree four. This change in fast axes at the MTZ upper boundary is therefore 732 
a large-scale signal. We also note differences in the depths of the peaks and troughs of 733 
the SH and the SV models, but they are well below the vertical resolution of our model 734 
and therefore not significant.  735 
6. CONCLUSIONS 736 
Love wave fundamental and higher mode phase velocity maps were inverted for SH 737 
azimuthal anisotropy in the top 800 km of the mantle. We found a general agreement 738 
between the average amplitudes of our new SH anisotropy model and the SV azimuthal 739 
anisotropy model we previously obtained from Rayleigh wave higher modes [Yuan and 740 
Beghein, 2013], and changes in both SV and SH fast axes generally occur at similar 741 
depths. The upper 250 km of the mantle are characterized by average SH and SV 742 
anisotropy of ~2%, and we detected ~1% anisotropy for both types of waves in the MTZ. 743 
The top of the MTZ is also associated with a change in SV and SH fast axes. Because this 744 
is a depth at which the olivine to wadsleyite high-pressure phase change is thought to 745 
occur, we inferred that changes in the anisotropic properties of MTZ material are likely at 746 
the origin of the observed MTZ signal. The change in fast axes around 410 km depth may 747 
result from recrystallization during the phase transformation, a change in slip system, or 748 
depth changes in mantle flow direction, which would indicate strong mantle layering. 749 
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Interpretation of the model in terms of mantle flow and consequences for the 750 
thermochemical evolution of the planet are, however, non unique and further mineral 751 
physics and geodynamics studies of the anisotropy of MTZ minerals and the effect of 752 
pressure, water, or partial melt are needed.  753 
Our SV anisotropy model beneath the Pacific and other oceanic plates presents a 754 
systematic dependence upon crustal age. It is consistent with a thermal origin of the 755 
oceanic LAB beneath the Pacific basin, and the anisotropy of the Pacific asthenosphere is 756 
consistent with LPO of olivine due to present-day mantle flow. In contrast, we did not 757 
find any relation between the amplitude or fast axes of our new SH anisotropy model 758 
with ocean age. Moreover, our results revealed that while uppermost mantle SV 759 
anisotropy is anomalously large in the middle of the Pacific plate, as is radial anisotropy, 760 
SH anisotropy has amplitudes close to average values for other oceans at this depth. This 761 
provides new constraints on the Pacific upper mantle anisotropy signal whose origin has 762 
been subject of debate for the past 15 years.  763 
Beneath Archean cratons, our results suggest an average LAB depth of ~250 km, 764 
consistent with estimates from a regional SV azimuthal anisotropy model of the North 765 
American craton [Yuan and Romanowicz, 2010]. Here we demonstrated that the cratonic 766 
LAB is not only associated with changes in SV anisotropy, but also with changes in SH 767 
anisotropy, thereby providing new constraints on the origin of this interface.  768 
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Figure 1: Sensitivity kernels calculated using PREM [Dziewoński and Anderson, 1981] for 1 
elastic parameter E with respect to N (N ρ SH  for all the modes used in this study. Each line 2 
corresponds to one of the modes employed.  3 
Figure 2: Cubic spline functions used to parameterize the model vertically. The spacing between 4 
them is 50 km in the top 300 km and 100 km spacing at larger depths. The dashed curve 5 
highlights the shape of a single spline with a peak at 150 km depth. 6 
Figure 3: Synthetic tests with input models (thin dotted curves) simulating azimuthal anisotropy 7 
layers of 60 km ((a) and (b)), 80 km ((c) and (d)), 100 km ((e) and (f)), and 120 km ((g) and (h)) 8 
thickness. The input amplitude decreases with depth and the input model fast axes change by 45° 9 
from one layer to the next. The output models were obtained using the same data uncertainties as 10 
for the real data inversions, and the same level of regularization as that chosen for our “preferred” 11 
model. The thick solid line represents the output model obtained without adding noise to the 12 
synthetic data. The thick dashed line and the thin solid line are for an output models obtained 13 
with noise in the data as detailed in the main text.   14 
Figure 4: Model resolution matrix. The numbers indicate the different spline parameters (Eqs. 15 
(6) and (7)).  16 
Figure 5: Averaged reduced χ  for different trace of resolution matrix obtained by changing the 17 
prior model covariance (section 3.1). The reduced χ  was calculated for a model with anisotropy 18 
in the top 410 km (model A), in the top 670 km (model B) and our SH anisotropy model 19 
YB14SHani. The squares mark the regularization chosen for the F-tests.  20 
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Figure 6:  Root mean square relative SH anisotropy amplitude (a) compared to the SV 21 
anisotropy amplitude of models YB13SVani [Yuan and Beghein, 2013], DKP2005 [Debayle et 22 
al., 2005], and DR2013 {Debayle and Ricard, 2013} (c), and global vertical auto-correlation for 23 
the 4ψ  (b) and the 2ψ (d) models expanded in generalized spherical harmonics up to degree 20. 24 
The thick horizontal dashed line shows changes in SH and SV anisotropy near the top of the 25 
MTZ. 26 
Figure 7: Lateral variations in SH anisotropy at different depths. The crosses show the fast 27 
propagation direction and their length is proportional to the amplitude of the anisotropy. The 28 
background grey scale is also indicative of the anisotropy relative amplitude. White lines 29 
represent the plate boundaries and black lines are for coastlines. The maximum anisotropy 30 
amplitude is displayed on the top of each panel. 31 
Figure 8: Lateral variations in SV anisotropy [Yuan and Beghein, 2013] at different depths. The 32 
bars show the fast propagation direction and their length is proportional to the amplitude of the 33 
anisotropy. The background grey scale is also indicative of the anisotropy relative amplitude. 34 
White lines represent the plate boundaries, black lines are for coastlines, and arrows display the 35 
APM direction calculated using NNR-NUVEL 1A [Gripp and Gordon, 2002]. The maximum 36 
anisotropy amplitude is displayed on the top of each panel. 37 
Figure 9: Average amplitude for /  (left, this model) and /  (middle, Yuan and Beghein 38 
[2013]), and angular difference between the APM and SV fast axes (right, Yuan and Beghein 39 
[2013]) for all oceans (top), all oceans minus the Pacific plate (middle row), and for the Pacific 40 
plate only (bottom) calculated for different oceanic crust ages. 41 
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Figure 10: Uppermost mantle relative SH anisotropy amplitude averaged over the Pacific plate 42 
as a function of crustal age. The black solid line represents a half-space cooling model [Parker 43 
and Oldenburg, 1973] assuming 1350  for the mantle temperature, and 10  44 
for the thermal diffusivity. 45 
Figure 11: (a) and (c) Average amplitude for E/N (this model) and G/L [Yuan and Beghein, 46 
2013], (b) and (d) vertical auto-correlation for the 2  and 4  terms as a function of depth, and 47 
(c) and (f) angular difference between the APM and SV fast axes (rightmost panel) beneath all 48 
Archean cratons averaged together (top) and the North American craton (bottom) as defined in 49 
model 3SMAC [Nataf and Ricard, 1996]. The dashed line represents the estimated average depth 50 
of the cratonic LAB following Yuan and Romanowicz [2011]. 51 
Figure 12: Power spectrum calculated up to spherical harmonic degree 20 for model 52 
YB13SVani (top) and YB14SHani (this study, bottom) at various depths.  53 
Figure 13: Power spectrum calculated up to spherical harmonic degree 20 for the Rayleigh 54 
waves 2Ψ terms (a) and for the Love wave 4Ψ terms (c) and corresponding sensitivity kernels 55 
((b) and (d)).  56 
Figure 14: Vertical auto-correlation function for SH (a) and SV (b) anisotropy calculated for our 57 
models expanded up to degree 20 and for truncated expansions of the models.  58 
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