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Abstract

Bayesian experiment design and estimation for probabilistic modeling of
biological systems

by

Marc Martin Casas

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Ali Mesbah, Chair

Computational models have emerged as a key tool to study and characterize the
behavior of biological systems. In order to accurately describe biological systems,
computational models need to capture inherently complex features of biological
behavior, such as nonlinear and probabilistic dynamics. Probabilistic models of
biological systems can account for our lack of knowledge in model structure or
parameters (uncertainty), as well as the physical sources of probabilistic behavior
leading to heterogeneity.

Uncertainty quantification and optimal experiment design frameworks play
a key role in the development of probabilistic models for biological systems, as
they can enable system learning from informative experimental data by improving
the accuracy of model structures and parameter estimates. Despite the extensive
implementation of uncertainty quantification and experimental design frameworks
in complex engineering systems, their application in biological systems has been
lagging. This is because of their high computational cost, which can be further
exacerbated when accounting for the large number of parameters and cellular con-
stituents that characterize biological models. There is a need for computationally
efficient tools that can capture complex biological properties to enable learning of
biological systems in a systematic manner.

In this thesis, we present novel uncertainty quantification and optimal experi-
ment design tools that can capture complex traits of biological behavior, namely
uncertainty, heterogeneity, nonlinearities, and large numbers of parameters and
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cellular constituents. More specifically, we introduce novel surrogate modeling
methods for fast propagation of sources of uncertainty and heterogeneity, which
enable the application of uncertainty quantification and optimal experiment design
tools in biological systems. Subsequently, we introduce novel Bayesian methods
for the estimation of genome-scale model parameters from noisy, sparse, and in-
complete biological datasets. Additionally, we introduce computationally efficient
methods to design experiments that yield informative data to refine parameter
estimates and model structures in an offline and online manner (i.e., in the course
of an experiment). The contributions of this thesis will create new opportunities
for seamless implementation of uncertainty quantification and optimal experiment
design for systematic and hypothesis-based modeling in biological systems.
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Chapter 1

Introduction

This chapter discusses the importance of uncertainty quantification and optimal
experiment design for building accurate models that can capture and/or reduce
uncertainty and heterogeneity in biological systems. The chapter highlights the
need to capture probabilistic features of biological systems (i.e., uncertainty and
heterogeneity) in our model predictions. Subsequently, the importance of using
uncertainty quantification and experiment design tools to build representative
models that can quantify uncertainty and/or heterogeneity in biological systems is
discussed. The chapter is closed with a discussion on the novel contributions of
this dissertation.

1.1 Computational models in biological

systems

Computational models have emerged as a key tool to study and characterize
the complexity of biological systems. The main goal of computational models
is to replicate the true dynamics (i.e., behavior) of the system under study by
explaining how components within a cell interact dynamically and predicting
quantities of interest over time (e.g., metabolite concentrations, cellular traits).
Computational models are also useful to generate and test hypotheses about the
underlying system dynamics, as well as designing experiments that can validate
such hypotheses. Modeling of biological systems has been used to aid discovery
and generate insights, such as elucidating new molecular mechanisms [8, 18],
validating hypothesis [21], and mapping biochemical networks [29].

Computational models can take many forms and serve many purposes [15].
Stelling (2009) classified models of biological systems into: i) interaction-based
static models with no stoichiometric or parametric information, such as topologi-
cal network analyses [5], ii) constraint-based static models with stoichiometric
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DATA COLLECTION

PARAMETER ESTIMATION

MODEL STRUCTURE SELECTION

DESIGN OF EXPERIMENTS

VALIDATED MODEL FOR SYSTEMS ANALYSIS

Is model accurate?

Data for model re!nement

YES

NO

Figure 1.1: The iterative process of building models for biological systems. Available model
structures and parameter estimates can be defined from prior mechanistic system information
and preliminary experimental data. If the model is not accurate enough, more experimental
data is gathered to refine the model structure and the estimates for the parameters. The process
is repeated until acceptable accuracy is achieved. Figure adapted from [9]

constraints but no parameters, such as Flux Balance Analysis (FBA) [25] and, iii)
mechanism-based dynamic models with stoichiometric constraints and parametric
information, such as differential algebraic equation based models [14]. Some efforts
have been made to adapt constraint-based models to dynamic frameworks [19]
(i.e., dynamic Flux Balance Analysis (dFBA)). We refer the reader to [14] for a
comprehensive review on static and dynamic models.

Building dynamic models is a largely iterative process, which requires the
interplay of both theoretical and experimental methods (see Figure 1.1). First, a
priori mechanistic information and available experimental data can be used to
define a model structure and estimate its parameter values. After refining the
parameter estimates and validating the model predictions with additional datasets,
a working model is generated. The predictions of the working model can then
be used to design further experiments. The availability of more data allows for
further model refinement, which will likely improve the model predictive capability
and hence the quality of the insights it can provide. In addition to quantity of
data, its quality will significantly affect model prediction quality. Noisy and sparse
system measurement data often leads to non-physical uncertainty in the employed
model structure (i.e., biochemical reaction network) and/or model parameter
values. An approach to quantify our uncertainty in the range of possible model
structures or parameters is by use of probability distributions [32, 34]. As a result,
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probabilistic models that can account for uncertainty are useful for appraising
model prediction quality.

Uncertainty is a non-physical source of probabilistic behavior that originates
from incomplete system knowledge and/or noisy measurements. However, physical
sources of variability can also lead to probabilistic dynamics and outcomes in
individual cells. In the context of cell populations, this probabilistic behavior
has been shown to lead to phenotypic heterogeneity, even within clonal cell
populations [12]. By accounting for both physical and non-physical sources of
probabilistic behavior in our model building process, we can develop more accurate
models that capture the heterogeneity of biological systems, while quantifying
our degree of belief in model predictions (i.e., uncertainty). We refer the reader
to [32, 34] for a thorough review on probabilistic modeling of biological systems.

1.2 Sources of probabilistic behavior in

biological system modeling

1.2.1 Physical sources: heterogeneity

Generation of heterogeneity within cell populations is a regular occurrence in
biological systems [33]. Varying degrees of cell-to-cell variability can spontaneously
arise within cell populations under homogeneous experimental conditions, possibly
leading to complex heterogeneous mosaics of phenotypic behavior [30]. The
molecular basis for population heterogeneity has been classically attributed to
genetic factors; however, clonal cell populations (i.e., cells with identical genetic
expression patterns) can show non-trivial levels of cell-to-cell variability due to
non-genetic sources of population heterogeneity. Huang et al. (2009) proposed a
tiered classification scheme of non-genetic variability sources (Figure 1.2), which
considered extrinsic and intrinsic sources of heterogeneity. Extrinsic sources
comprised those factors foreign to the cell that have a different impact across a
cell population (e.g., temperature gradients), whereas intrinsic sources as those
processes that occur within each cell. Huang et al. (2009) further divided intrinsic
sources into population noise, when non-genetic traits are broadly distributed
across a population of cells, and temporal noise when a cellular trait varies due to
local concentration fluctuations of cellular constituents.

The advent of novel experimental tools allowing for quantification of temporal
fluctuations in enzymatic reactions and cell-to-cell trait variability has facilitated
the characterization of extrinsic and intrinsic sources of noise. Examples of such
techniques are single-molecule kinetic assays, which allow for the characterization
of enzyme catalytic rate fluctuations (i.e., temporal noise) [35], or single-cell
assays that accurately describe the distribution of a cellular trait or constituent
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Figure 1.2: Impact and sources of heterogeneity in the dynamics of cell populations. a)
Graphic description of the intrinsic sources of heterogeneity in biological systems. Population
noise refers to cellular traits and constituents that are probabilistically distributed across a
population of cells, for instance, due to asymmetric distribution of molecules upon cell division.
b) Temporal noise describes local fluctuations in the concentration of cell constituents over
time. c) Extrinsic sources, here depicted as a gradient of temperature or other effectors, can
differentially affect cells within a population thus generating heterogeneity. d) The sources of
probabilistic behavior will affect the dynamics of heterogeneity within the cell population over
time, here described with an arbitrary cell trait or constituent x. The overall aggregation of
single cell trajectories in terms of quantities of interest (i.e., x) can be quantified with probability
distributions describing population heterogeneity at any given time point.
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concentration across a cell population (i.e., population noise) [31]. Models cap-
turing extrinsic and intrinsic sources of noise will output the range of physically
possible outcomes associated with cell dynamics, weighted by their probability of
occurrence.

1.2.2 Non-physical sources: system uncertainty

In addition to physical, stochastic sources of heterogeneity, probabilistic models
can also be employed to capture our lack of knowledge of a system (i.e., system
uncertainty). Classically, our uncertainty can be reflected in the model structure
when the underlying architecture or network described by the model is partially
unknown, model parameters when we are unable to perfectly know the exact value
of a model parameter, or initial concentrations of the model, for example, when
the amount of cellular constituents in a cell upon division is unknown.

System uncertainty mainly arises from our inability to observe the system fully
and at all times. This is due to the fact that, in general, current analytical tools
in biology yield incomplete and noisy observations of the system. For example,
measurements might be rarely accessible or available (i.e., sparse), or might require
the termination of the system under study (e.g., flow cytometry, laser ablation),
thus generating irreproducibility. In addition to their sparsity, the noisy nature
of experimental data leads to a range of parameter values that can explain the
data similarly well. The degree of confidence in a certain parameter value can
typically be characterized with a probability distribution.

The interpretation of outputs in probabilistic models of biological systems
capturing uncertainty significantly differs from those capturing physical sources
of heterogeneity. Upon improvement of our knowledge in the system, uncertainty
in model outcomes can be eliminated. Heterogeneity, on the other hand, can be
modulated or reduced, but cannot be eliminated upon perfect system knowledge. If
a cellular trait is deterministic (i.e., no physical variability), estimation procedures
with perfect knowledge of the system would yield a perfect single point estimate.
Conversely, if the trait is affected by heterogeneity, perfect knowledge of the system
would yield a distribution strictly describing the impact of physical sources.

1.3 Probabilistic modeling of cellular dynamics

The general framework for probabilistic modeling of a biological system relies
on the so-called Chemical Master Equation (CME) [10]. The CME is a master
equation describing the probability that the system is in a given state at a given
time. The CME framework describes the system state as the discrete number
of molecules of each cell constituent at any given time. The equation is derived
from the probabilities of transition among all feasible system states, which are a
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function of the rates of biochemical reactions in the system. Given that the CME
framework accounts for each individual reactant and reaction in the system, it is
prohibitively expensive to implement for large systems (i.e., whole-cell) and large
cell populations. We refer the reader to [10], [23] for detailed background and
derivation information on the CME, its approximations, and applications.

Gillespie (2000) showed that there is a regime where the CME and its discrete
dynamics can be approximated by a continuous-state equation, called the chemical
Langevin Equation (CLE). This approximation regime involves assuming large
numbers of molecules and fast reaction firing frequency, which allow for the
quantification of system constituents as real-valued quantities (i.e., concentration
instead of molecular count). The dimensionality of the CME models is proportional
to the total number of molecules of all cell constituents in the system. Conversely,
the dimensionality of the CLE models is proportional to the number of modeled
cell constituents, which can render the CLE a computationally tractable approach
to modeling cell dynamics. Furthermore, CLE models are compatible with widely
available differential equation solvers and integrators [11].

In this thesis, we describe cellular dynamics using models of the CLE form. In
the context of uncertainty or heterogeneity, the CLE models can be expressed as

ẋ(t) = µ(x, θ)dt+ σ(x, θ)dw, (1.1)

where x is the vector of concentrations of cellular constituents, with initial
conditions x0; θ is the vector of model parameters; t is time; and w is the
vector of fluctuations of cellular constituents defined as a Wiener process with zero
mean and Σ variance w ∼ N(0,Σ). The functions µ and σ denote the so-called
drift and diffusion processes, respectively. The drift term µ describes the main
driving force of the system (i.e., kinetic reactions), and diffusion denotes stochastic
fluctuations affecting the vector of cellular constituents x. When Eq. (1.1) is
comprised of only the drift term µ, the model will reduce to a set of deterministic
set of ordinary equations (i.e., no stochastic fluctuations). If the diffusion term is
included, Eq. (1.1) can be used to model sources of temporal noise as defined in
Section 1.2.1.

Eq.(1.1) provides a flexible framework to model the sources of heterogeneity
and uncertainty, as both the initial concentrations of cell constituents x0 and
model parameters θ can capture sources of probabilistic behavior. Capturing x0

as a probability distribution can describe uncertainty in the initial concentration
of certain cellular constituents, and/or intrinsic population noise derived from
the asymmetric distribution of molecules upon cell division [13]. On the other
hand, capturing model parameters as probability distributions can account for
uncertainty in the true parameter values, extrinsic (e.g., temperature gradients),
as well as intrinsic population sources of heterogeneity. Lastly, intrinsic temporal
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noise, which arises due to stochastic fluctuations in the concentration of cell
constituents, can be captured with the noise process w. In addition to extrinsic
and intrinsic non-genetic sources of heterogeneity, the modeling framework defined
by Eq. (1.1) has been shown to efficiently capture genetic and epigenetic differences
across cells [1, 20].

In the remainder of this thesis, we describe both uncertainty and heterogeneity
sources with the vector Θ = [x0; θ], which encompasses initial concentrations and
parameters that are probabilistically distributed across the cell population. In
addition, uncertainty in the underlying model structure can be accounted for with
competing drift functions µ1, µ2, ..., which capture different hypothesis regarding
the underlying biochemical dynamics of the system.

1.4 Uncertainty quantification and experiment

design in biological systems

Numerical simulation of Eq. (1.1) will yield the time evolution of specific cellular
traits or properties over time across the population of cells. Three computational
challenges stem from Eq. (1.1) with probabilistic Θ. First, the propagation of
Θ through the cellular dynamics of interest. Second, the characterization of
the statistical properties of Θ from available experimental data, so that the cell
population model is representative of the entire cell population. And third, the
design of informative experiments that can yield data to generate knowledge about
the system, such as improving the model structure µ or the estimates for Θ.

Uncertainty quantification (UQ) tools have been used to quantify, characterize,
and reduce uncertainty in a range of experimental settings [24]. Given the
analogous mathematical treatment of heterogeneity and uncertainty, UQ tools can
be effortlessly extended to heterogeneity quantification, reduction, and modulation.
The field of UQ can be mostly categorized into two main problems: the forward
and the inverse problems (see Figure 1.3). The forward problem consists in
the propagation of physical or non-physical sources of heterogeneity in terms
of measurable outputs. The inverse problem consists in providing estimates for
model structures or parameters given system observations, such as metabolite
concentration data.

However, more often than not, the quantity and quality of available experimen-
tal measurements are insufficient to appropriately characterize model parameters
in estimation procedures. This motivates the need to design better experiments
that maximize the information content of the data provided by each experiment,
with minimal consumption of experimental resources. Model-based Optimal Ex-
periment Design (OED) capitalizes on the use of model predictions to design
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Figure 1.3: Depiction of the relationship between forward and inverse uncertainty quantification
(UQ) problems, and optimal experiment design (OED). The forward problem starts from
probabilistic Θ describing uncertainty and/or heterogeneity in the parameters, as well as model
structure uncertainty, and aims to describe the impact of such probabilistic behavior in the
output of interest. Conversely, the inverse problem attempts to infer and characterize, from
system observations, the original sources of probabilistic behavior in Θ or the most valid model
structure. The more informative the experimental data used for the inverse problem, the better
the estimation of Θ can be expected. OED frameworks are important for elucidation of biological
systems, as they can significantly improve the efficacy of the inverse problem by designing
experiments that yield informative data for learning about the system.

experiments that maximize the information content of the desired metrics, for
instance, for parameter estimation or model structure elucidation [3, 4] (see
Figure 1.3). The model is employed as a proxy for the real system, and an
experimental design that maximizes the predicted data utility is defined as the
most optimal experimental design. In an analogous way to uncertainty reduction
around parameters or model structures, OED frameworks could also be employed
to reduce heterogeneity in the desired model outcomes or quantities of interest.

1.5 Optimal experiment design for parameter

estimation and model structure selection

OED frameworks have been defined for a variety of purposes [2]. Generally,
OED objectives can be categorized into two main categories: i) selection of a
model structure, and ii) improvement of estimates for model structure parameters.
The usefulness of measurement data is largely dependent on the objective of
the experiment; for example, experiments can be designed to increase sensitivity
to model parameters when performing parameter estimation, or to differentiate
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among competing model output predictions when performing model structure
selection. In this section, we introduce formulation for a general OED framework
so that it can be adapted for parameter estimation or model structure selection.
Reviews on OED and its formulation for biological designs can be found in [3]
and [16].

First, let us define the variables of an experimental setting. Following notation
from Eq. (1.1), the system observations can be defined as

yi = hi(x, t,Θ, d) + εi, i = 1, . . . , ny (1.2)

where y is the vector of measurement outputs, h is the vector of functions with
size ny that describes the relationship between each experimental output and
cellular constituents, ε is the vector of measurement noise with size ny, and d are
physical variables of the experiment that can be manipulated. d is intentionally
defined to be a general design variable, which can comprise measurement times,
input to the system, or other controllable experimental settings as will be defined
further for each type of experiment.

For the sake of generality, we define the following optimization framework for
experimental design

maxd Φ(x,Θ)

subject to: A set of models of form 1.1

System constraints

(1.3)

where Φ is a scalar metric of the experiment that measures the desired outcome.
An important remark is that, given that there is uncertainty or heterogeneity in
the model(s), the objective Φ will be typically represented as an expectation over
all potential system outcomes. Upon solving, the problem defined by Eq. (1.3)
yields the most optimal design d∗ that is able to maximize the scalar metric of
information content. In the ensuing sections, we introduce the specific adaptations
of Φ in Eq. (1.3) for OED for model structure selection and parameter estimation.

1.5.1 OED for model structure selection

In OED for model structure selection, we are interested in selecting the most
representative model out of a set of competing models. Let H denote the set of
competing model structures to describe the dynamics of a given system, with
known prior probabilities of being the correct model P(Hi). OED for model
discrimination aims to determine, provided certain system measurements y, which
model in the set is the most representative of the underlying system dynamics.
Making use of conditional probabilities, the problem of model selection can be
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stated as selecting the model hypothesis P(Hi) such that the probability of the
correct model given experimental data is maximized [26]

i ∈ argmaxj P(Hj|y, d). (1.4)

Bayes rule can mathematically describe the change in our degree of belief
(i.e., probability) that a given model is correct, provided experimental data y, as
follows [7]

P(Hj|y, d) =
P(y|Hj, d)P(Hj)

P(y|d)
, (1.5)

where P(Hj|y, d) describes an updated degree of belief in model hypothesis j,
provided experimental data y and design d. P(y|Hj, d) describes the likelihood
function, which captures the probability of the observed experimental data belong-
ing to the model hypothesis j in the current experimental setting; P(Hj) is our
degree of belief in hypothesis j prior to gathering data y, and P(y|d) is the total
probability of observing experimental evidence y across all candidate models.

Using Bayes rule, the model selection criterion (i.e., i ∈ argmaxj P(Hj|y, d))
yields several regions Ri within the experimental measurement space where our
degree of belief is higher for model hypothesis i than for the remaining hypotheses
(see Figure 1.4). If our experimental measurements belong to the region R0, then
H0 will be selected. If any other model hypothesis other than H0 is selected, a
model selection error will have occurred.

The objective of the OED problem for model selection, Φ, can be related to
the probability of model selection error, defined as [6]

P(error) =
∑
i

∑
j 6=i

P(y ∈ Rj, Hi|d). (1.6)

An optimal experiment design that minimizes the overlap among regions R
will also minimize the probability of model selection error (and maximize Φ), thus
leading to more confidence in the selection of the model. The probability of model
selection error is a direct function of the experimental design d. As a result, it
can be advantageous for selecting the model that is most representative of the
underlying system dynamics.

1.5.2 OED for parameter estimation

In OED for parameter estimation, we are interested in selecting the most optimal
experiments for estimating model parameters from noisy, indirect, and incomplete
measurement datasets. Following the definition of the CLE model in Eq. (1.1),
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Figure 1.4: Illustration of model selection for a given experimental design d. In the case of
multiple competing model structures, model selection results in a number of decision regions in
the observation space. If the observation lies in R1, then the model selection algorithm will
select model 1. The overlap between distributions of competing model predictions gives rise to
the probability of model selection error (shown by grey area). Graph was adapted from [6].

with system observations y, uncertainty and/or heterogeneity Θ and the Bayes’
rule, one can derive the definition of so-called expected experimental utility as
follows [17]

U(d) =

∫
Y

∫
O
u(d, y,Θ)P(Θ, y|d)dΘdy, (1.7)

where Y and O are the measurement and uncertainty and/or heterogeneity spaces,
and u(d, y,Θ) is the utility function. The utility function is to reflect how useful
the experiment is for the estimation of model parameters as tightly as possible.
Given that y is noisy and Θ is oftentimes probabilistically distributed, Eq. (1.7)
is defined as an expectation over both the measurement and the uncertainty
and/or heterogeneity spaces. The objective of the OED framework for parameter
estimation, Φ, will be equivalent to the expectation of utility U(d). A suitable
example of a choice for the utility function u(d, y,Θ) include the Kullback-Leibler
(KL) distance, which quantifies the difference between the distributions of the
parameter estimates before and after the experiment is performed. The experi-
mental design that leads to the largest change in our parameter estimates will be
the one with the largest KL distance, and will thus be the most informative.

The performance of OED using Eq. (1.7) as the objective of the optimiza-
tion, without any further approximations, constitutes a so-called Bayesian OED.
Bayesian OED is very computationally challenging to perform because the utility
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is a function of the full distributions of Θ and the measurement noise, as shown
by the double integral in Eq. (1.7). Approximations of measurement noise as
zero-mean Gaussian with diagonal covariance, and linearly approximating the sys-
tem output trajectories y around the optimal value of the distributed parameters
Θ, leads to classical OED approaches. Classical OED approaches optimize some
scalar metric of the so-called Fisher Information Matrix (FIM), which describes the
weighted sensitivity of system outputs with respect to the distributed parameters.

1.5.3 Challenges of OED implementation

There exist several challenges to the implementation of Eq. (1.3) for both param-
eter estimation and model structure selection. First of all, the propagation of
probabilistic behavior in Θ in terms of model predictions is challenging and often-
times prohibitively expensive. Secondly, no closed-form expression of Eq. (1.6)
and Eq.(1.7) are available to easily compute the objective of the OED, Φ. Finally,
the possibly probabilistic constraints in the OED problem (see Eq. (1.3)) are
intractable. In this thesis, we introduce novel approaches that can circumvent the
challenges associated with the implementation of OED for both model structure
selection or parameter estimation.

1.6 Outline of the thesis

This dissertation contributes to the area of quantification of uncertainty and
heterogeneity in biological systems. Specifically, this thesis introduces novel com-
putational methods and frameworks that allow to circumvent common challenges
in uncertainty quantification and experiment design for optimization-based ap-
plications. Namely, we introduce new methods for the propagation of sources of
uncertainty and/or heterogeneity, as well as the estimation of model parameters
and structures from uncertain data. Subsequently, we introduce multiple OED
frameworks that allow for the design of experiments or protocols that can perform
model selection and classical parameter estimation in an offline or online manner
(i.e., in the course of the experiment). The introduced frameworks are based on
both Bayesian and Classical OED frameworks. The outline of the thesis is as
follows.

In Chapter 2, we introduce a novel framework for the estimation of model
parameters in whole-cell models with thousands of biochemical reactions, with
the availability of very few data points. In particular, the framework deals with
dynamic Flux Balance Analysis models (i.e., DFBA), which are static models
coupled with ordinary differential equation systems to capture system dynamics.
DFBA models are largely prone to discontinuities, which precludes the use of
UQ methods on this type of models. A novel approach that is able to perform
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efficient parameter estimation in DFBA models is introduced in this chapter. The
contributions of Chapter 2 have been submitted as [27].

Chapter 3 presents a method for OED for model structure selection based
on the construction of the full distribution of model predictions. The efficacy of
the method is demonstrated in a model of JAK2/STAT5 signaling pathway in
the presence of intrinsic population noise. Chapter 4, conversely, introduces two
OED methods for model structure selection that rely on the statistics of model
predictions, instead of their full construction. This allows for their implementation
in an online manner (i.e., as the experiment is taking place). The efficacy of
these OED methods are demonstrated in so-called fault diagnosis on a continuous
bioreactor, where models of faulty and normal operation are selected to identify
the state of the system at any given time. The contributions of Chapters 3 and 4
have been published in [21, 22, 26].

Chapter 5 presents a novel Bayesian OED method for parameter estimation
in nonlinear dynamic systems, which allows for the use of prior information of
parameter estimates. The Bayesian OED framework enables design of experiments
that cause the most change from prior to posterior parameter estimates (i.e., the
most informative experiment designs). The contributions of Chapter 5 have been
published in [28].

Finally, in Chapter 6, we lay out our perspectives on future work that can
be performed in the field. We anticipate that the frameworks presented in this
thesis will pave the way for real-time implementation of Bayesian OED methods
for model structure selection and parameter estimation.
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Chapter 2

Estimation of parameters in
genome-scale biological models

Modeling of large-scale biological systems with thousands of biochemical reactions
and metabolites (e.g., whole-cell models) can be prohibitively expensive. This is
particularly true when performing computationally intensive procedures, such as
parameter estimation from noisy data (i.e., inverse uncertainty quantification),
or quantifying the error or heterogeneity in model predictions (i.e., forward uncer-
tainty quantification). In this chapter, we introduce a surrogate modeling approach
that enables faster forward and inverse uncertainty quantification methods in
genome-scale biological models. The computational efficiency of the surrogate
modeling approach enables the performance of Bayesian estimation of parameters
in genome-scale metabolic networks for the first time.∗

2.1 Introduction

The utility of mathematical modeling in biology is on the rise due to computational
advancements and the increasing availability of data provided by high-throughput
experimental techniques [14]. Mathematical models that capture complex features
of cellular behavior, such as whole-cell scale interaction of cellular constituents
and probabilistic behavior, can be used to gain mechanistic insight into biological
systems by enabling the performance of model parameter estimation from available
experimental data. However, parameter estimation procedures can be prohibitively
expensive to perform, especially if the employed mathematical model has large
dimensionality.

Flux Balance Analysis (FBA) models are an example of a class of mod-
els that can capture whole-cell dynamics. FBA is widely used for modeling

∗The content of this chapter was published in [49].
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cellular metabolism in a large range of metabolic and biochemical engineering
problems [47, 48]. Given a constrained metabolic network, FBA assumes the
intracellular fluxes are regulated by the cell to optimize a predefined cellular
objective function (e.g., maximizing the biomass growth rate [65]) subject to mass
balances of the intracellular metabolites and other feasibility constraints (e.g.,
bounds on the substrate uptake and product secretion rates). However, FBA
only identifies metabolic flux distributions at steady-state and, thus, provides no
information on metabolite concentrations or the dynamic behavior of the fluxes.
A dynamic extension to FBA, commonly referred to as dynamic FBA (DFBA),
was originally developed in [39] and has been subsequently applied in several
engineering applications [27, 29, 36, 44]. In DFBA models, the intracellular fluxes
are given by the solution of a FBA model, which is coupled to a set of dynamic
equations that describe the time-varying nature of the extracellular substrate and
product concentrations as a function of the extracellular environment [25]. The key
assumption in DFBA is that the intracellular fluxes equilibrate instantaneously
such that the sizes of the intracellular metabolite pools remain unchanged. This
”quasi steady-state” assumption is valid as long as the intracellular dynamics are
significantly faster than the extracellular dynamics.

Prediction of the behavior of biological systems, such as those described by
DFBA models, can be subject to various sources of uncertainty including: (i)
unknown model parameters; (ii) unknown model structure; and (iii) experimental
uncertainty such as measurement error [34]. Accurate characterization of these
uncertainties, as well as their impact on the quality of model predictions, is vital
when applying these models in decision-support or optimization tasks such as
parameter estimation and optimal experiment design. The task of uncertainty
quantification (UQ) can be divided into two major problems: forward uncertainty
propagation and inverse uncertainty analysis. The forward problem focuses on
propagating all uncertainties through the model to predict the overall uncertainty
in the outputs, whereas the inverse problem aims to calibrate the model with
experimental data [23, 61, 70]. However, the most commonly used UQ methods
are intractable for expensive-to-evaluate computational models [43, 62], which
has severely limited their application to DFBA models. For example, the inverse
problem has been tackled in [33] using a variant of maximum likelihood estimation
(MLE) to estimate parameters of a yeast DFBA model. The MLE method
for DFBA models is formulated as a bilevel optimization that is challenging
to solve and, thus, is limited to small metabolic network sizes [59]. To give
an idea of scale, this reformulation procedure was recently applied to in-silico
optimization of the production of recombinant proteins in Pichia pastoris using a
simplified network with 37 metabolites and 47 reactions [19], which is far from
the available genome-scale model (e.g., iPP668) that consists of 1361 reactions
and 1177 metabolites [12].
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In this work, we present a novel surrogate modeling approach that enables
forward and inverse UQ methods to be executed significantly faster on genome-
scale DFBA models. We assume that the underlying model structure is accurate,
meaning that the uncertain inputs in this work are model parameters or initial
conditions (referred to as “parameters” for short). A variety of surrogate modeling
techniques have been proposed and used in the context of UQ [4, 46]. We focus
on polynomial chaos expansions (PCEs) due to their ability to closely match
the exact model response using limited computational resources in a variety of
engineering applications [5, 52, 69, 71]. In the context of biological systems, PCE
has been applied to both parameter estimation [56] and model discrimination [42].
A prerequisite in PCE is that the model response be a smooth function of
the parameters, such that it can be accurately approximated by a collection
of polynomials. Whenever the model has non-smooth behavior, the PCE may
converge very slowly or even fail to converge altogether [66, 67]. This is a key
challenge in DFBA models, as they become singular (i.e., loss of differentiability;
a type of non-smoothness) at certain time points due to the underlying quasi
steady-state assumption [25, 28, 30]. Thus, we aim to develop an extension of PCE
that can adequately capture the non-smooth character of DFBA models. Inspired
by [67], we propose a multi-element approach that decomposes the parameter space
into a collection of non-overlapping regions so that the model response behaves
smoothly within each chosen region. We also present a simple procedure for
selecting the elements based on our ability to detect singularities when integrating
the DFBA model. Separate PCE models can then be constructed in each of these
elements, such that the overall model response is approximated by a piecewise
polynomial function.

We adopt a regression-based approach for constructing the PCEs from a finite
set of DFBA model evaluations [10, 18, 60]. Consequently, the model can be
treated as a black-box, i.e., the original DFBA solver need not be modified in any
way and its solution can be directly obtained from readily available toolboxes.
Although any regression method can be used in principle, we focus on sparse
regression methods, as they are particularly advantageous in problems with a large
number of parameters [5, 56]. Sparse regression has the ability to systematically
locate the terms in the PCE that have the greatest impact on the model response,
meaning they avoid heuristic exclusion of terms in the expansion. This is important
in DFBA models since they often involve many parameters due to their multi-scale
nature, i.e., the fact that they capture both intracellular and extracellular effects.

To demonstrate the effectiveness of the proposed surrogate modeling framework,
we apply it to accelerate Bayesian inference of parameters in the substrate uptake
kinetic expressions of diauxic growth of a batch monoculture of Escherichia coli
on glucose/xylose mixed media. The metabolic network reconstruction used for E.
coli is iJ904, which is a genome-scale model that contains 1075 reactions and 761
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metabolites [55]. Parameter estimation is performed using measurements of the
concentrations of extracellular metabolites and biomass that are taken at certain
time points throughout the batch. We selected this particular example, not only
because experimental data is available in [17], but also due to the fact that reported
parameter estimates were determined using a trial-and-error procedure [27], likely
due to the complexity of the genome-scale model. Thus, one of our main objectives
is to formalize this exercise of estimating parameters in DFBA models using a
very general Bayesian framework. We focus on Bayesian methods because they
have several advantages over MLE including: (i) avoid the need to solve a large-
scale bilevel optimization problem; (ii) provide an explicit representation of the
uncertainty in the estimates in terms of a probability distribution, as opposed
to a single point estimate; and (iii) avoid numerical challenges due to insensitive
parameters or complex measurement noise models. We also demonstrate how the
proposed multi-element PCE method can be applied to forward UQ problems
such as global sensitivity analysis and estimation of the probability distribution
of the system outputs.

2.2 Methods

In this section, we introduce the model class of interest, summarize our proposed
multi-element polynomial chaos surrogate modeling approach, and discuss some
key aspects of the numerical implementation.

2.2.1 Dynamic flux balance analysis (DFBA)

We are interested in modeling a microbial cultivation process using DFBA, in
which the bioreactor is viewed as a combination of the fluid medium (extracellular
environment) and the microorganisms (intracellular environment). Cell walls act
as physical boundaries between these two phases, through which certain chemical
metabolites are exchanged. The DFBA model can then be mathematically
formulated as [30]:

q̇(t) = f(t,q(t),v(q(t))), q(t0) = q0, (2.1)

with v(q(t)) being an element of the solution set of the flux balance model

v(q) ∈ argmaxv h(v,q) (2.2)

s.t. Sv = 0,

vLB(q) ≤ v ≤ vUB(q),

where q denotes to the state variables describing the extracellular environment
(e.g., concentrations of substrates, biomass, and products) with time derivative
q̇ and initial conditions q0; v denotes the metabolic fluxes that include both
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intracellular fluxes and exchange rates; S is the stoichiometric matrix of the
metabolic network; and vLB(q) and vUB(q) are the lower and upper bounds on
the fluxes, respectively, which are functions of the extracellular concentrations.
The vector function f , specified by the set mass balances in the extracellular
medium, defines the rate of change of each component of z0 and must be integrated
to determine the concentration profiles over time. The scalar function h is the
cellular objective that is maximized by the cells. Whenever more than one
microbial species is present in the culture, then multiple flux balance models of
the form (2.2) must be incorporated into (2.1), as shown in [25].

DFBA models can be classified as ordinary differential equations with embed-
ded optimization (ODEO) wherein the lower-level FBA optimization can either be
a linear program (LP) or nonlinear program (NLP). The vast majority of DFBA
simulation has focused on LP objectives, though NLP objectives were recently
tackled in [72]. DFBA simulation strategies can be broadly categorized as: (i)
static optimization approach (SOA) [39], (ii) dynamic optimization approach
(DOA) [39], (iii) direct approach (DA) [30], and (iv) interior point reformulation
(IPR) [59]. In SOA, a forward Euler scheme is used to integrate (2.1) while the
FBA (2.2) is solved at each time step using a suitable solver. SOA is known
to be inefficient, especially for stiff problems that require small time steps to
ensure convergence, due to the fact that (2.2) must be repeatedly solved. DOA,
on the other hand, discretizes the time horizon and then converts the DFBA
model into a NLP problem; however, this approach cannot be easily applied
to genome-scale metabolic networks due to the large number of variables and
constraints that are introduced. DA directly includes the solver for the FBA (2.2)
in the right hand side evaulator f . Thus, DA can take advantage of implicit ODE
integrators that employ adaptive step sizes and error control, which reduces the
number of integration steps when compared to SOA. The IPR method is based
on the fact that the optimization problem in ODEO models can be replaced by
their Karush-Kuhn-Tucker (KKT) optimality conditions, which can subsequently
be relaxed using logarithmic barrier functions so that the DFBA model can be
transformed into a set of implicit ODEs. However, IPR introduces a new source
of error since the relaxed solution only converges to the true optimal solution as
the barrier parameter approaches zero.

Although any one of these methods can be used to integrate DFBA models in
this work, the DA approach has the ability to provide highly accurate solutions
in a reasonably efficient manner. Another advantage of DA is that the solution
set to the FBA (2.2) can be made unique through the use of lexicographic
optimization [25, 28], which avoids numerical issues that are known to plague
other DFBA simulation methods (e.g., see [24, Chapter 3]). Since DA requires
continuous monitoring and identification of any active set changes in (2.2), it
constitutes a dynamic simulation involving discrete events (i.e., a hybrid system).



CHAPTER 2. ESTIMATION OF PARAMETERS IN GENOME-SCALE
BIOLOGICAL MODELS 22

Next, we propose a novel surrogate modeling approach that can systematically
handle the hybrid nature of DFBA models.

2.2.2 Sparse multi-element polynomial chaos

We assume that the DFBA model involves a set of M ≥ 1 input parameters,
denoted by x = (x1, . . . , xM), that can appear in the initial conditions z0, rate
of change function f , cellular objective h, and/or the flux limits vLB,vUB. We
are interested in an output of the DFBA model (commonly referred to as the
model response) that can be any desired function of the states or fluxes including,
for example, the metabolite or biomass concentrations at specific time points
or even post-processed quantities such as the time that a certain metabolite is
consumed. The output can be represented by some function y =M(x), which
may not be known analytically, but can be evaluated by integrating (2.1)-(2.2)
using previously discussed approaches. An exact value for y can be obtained when
the parameters x are perfectly known; otherwise, these outputs must be treated
as uncertain. Parametric uncertainty can be generally represented by a random
vector X with some known probability density function (PDF) fX(x), implying
the model response is also a random variable Y = M(X). Although we focus
on a scalar output for notational clarity, the developed procedure can easily be
applied separately to each component of a random vector Y .

Since M can be computationally expensive to evaulate, we aim to construct a
polynomial chaos (PC) surrogate model that closely approximates the functionM,
but is much cheaper to evaluate for any given parameter value. In the PC method,
the model response is expanded in terms of a set of multivariate polynomials
that are orthonormal with respect to fX . PC expansions (PCEs) are known to
be efficient and accurate approximations to the model response whenever M is
sufficiently smooth, but can converge very slowly (or even fail to converge) when
singularities or discontinuities are present [66]. This issue is inherent to DFBA
models because they are defined in terms of non-smooth functions such as (2.2).
Inspired by [67], we instead look to develop a multi-element (ME) extension of
standard PCE. Let S ⊆ RM denote the support of the random parameters, such
that X ∈ S. The idea behind ME-PCE is then to decompose S into a finite
number Ne of non-overlapping elements

S =
Ne⋃
k=1

Sk, Sk1 ∩ Sk2 = ∅, k1 6= k2. (2.3)

Based on this decomposition, we define the following indicator random variables

ISk(X) =

{
1 if X ∈ Sk
0 otherwise.

k = 1, . . . , Ne, (2.4)
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as well as a new set of conditional random variables Xk = X|(ISk(X) = 1) with
PDF

fXk
(xk) =

fX(xk)

Pr(ISk(X) = 1)
=

fX(xk)∫
Sk
fX(x)dx

. (2.5)

We look to construct local PCEsMp
k(Xk) in element Sk using the locally orthonor-

mal basis φk,α(Xk), where α = (α1, . . . , αM) ∈ NM is a multi-index truncated at
|α| = α1 + · · ·+ αM ≤ p that represents the total order of the polynomials. The
ME-PCE approximationMp(X) over the entire random field can then be defined
as

Mp(X) =
Ne∑
k=1

Mp
k(X)ISk(X) =

Ne∑
k=1

∑
|α|≤p

yk,αφk,α(X)ISk(X), (2.6)

where yk,α ∈ R are the coefficients of the expansion in the kth element. Let L2
X

be the space of all real-valued, square integrable functions with respect to fX .
Whenever Y has finite variance (i.e., M ∈ L2

X) and the support S is compact,
the series (2.6) converges to the M(X) in the L2

X sense [67]

lim
p→∞

E
{

(M(X)−Mp(X))2} (2.7)

=
Ne∑
k=1

Pr(ISk(X) = 1) lim
p→∞

∫
Sk

(M(xk)−Mp
k(xk))

2 fXk
(xk)dxk = 0,

where the equality above follows from the law of total expectation. In the case of
a single element Ne = 1, the ME-PCE reduces to a standard global PCE. After
selecting a decomposition of the form (2.3), we must perform the following steps
in each of the elements: (i) construct the basis functions and (ii) compute the
expansion coefficients. An overview of the calculations involved in these steps is
provided next.

The local basis polynomials are assumed to be orthonormal with respect to
the conditional PDF (2.5). That is,∫

Sk

φk,α(xk)φk,β(xk)fXk
(xk)dxk = δαβ, (2.8)

for all α,β ∈ NM where δαβ = 1 if α = β and 0 otherwise. The complexity of
determining the polynomials {φk,α}|α|≤p depends fully on the structure of fXk

.
Whenever the uncertain parameters are statistically independent, i.e.,

fXk
(xk) =

M∏
i=1

fXk,i(xk,i), Sk = [ak,1, bk,1)× · · · × [ak,M , bk,M), (2.9)
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where fXk,i denotes the marginal PDF of the ith element of Xk, then (2.8)
reduces to simply the tensor product of M one-dimensional polynomials that
are orthonormal with respect to fXk,i . These polynomials are known for certain
distributions, which is often referred to as generalized polynomial chaos (gPC) [71],
and can be generated numerically for random variables with arbitrary marginal
distributions using readily available algorithms that are based on three-term
recurrence relationships [22]. The most general case of Xk having dependent
elements can be tackled in one of the following two ways. The orthonormality
conditions (2.8) can be simultaneously imposed in M dimensions using numerical
approaches presented in, e.g., [20, 50, 54], which is often referred to as arbitrary
polynomial chaos (aPC). Alternatively, the dependent random vector Xk can be
transformed into a new standard random vector Zk with independent elements.
As long as this is an isoprobabilistic transformation that preserves the PDFs
of the random vectors, then gPC can be applied to the transformed function
M(Xk) = M(Tk(Zk)) where Tk is most commonly chosen as the Rosenblatt
transformation [57]. In this work, we focus on the Rosenblatt transformation
approach to ensure that the proposed method can be easily implemented using
readily available toolboxes. It should be noted that the convergence rate can
drop when Tk is highly nonlinear, and aPC would be preferred in these situations
(see [53] for an example comparing aPC to gPC); however, this was not an issue
in the chosen case study.

The second step in constructing the ME-PCE is to determine the coefficients
of the expansion in each element. We are now interested in approximating the
composition of the model response with the appropriate transformation, i.e.,
gk =M◦ Tk. For notational simplicity, we drop the subscript k as the following
steps are the same within each element. The PCE for g(Z) is then stated as

gPCE(Z) =
∑
α∈A

âαφα(Z) = â>φ(Z), (2.10)

where A is the set of multi-indices retained in the expansion, and â and φ are,
respectively, vectors of the coefficients and polynomial basis functions. Let P
denote the total number of terms retained in the series (2.10). To mitigate the
exponential growth in P when using a total degree truncation, we define A using
the so-called hyperbolic truncation scheme, which selects all multi-indices that
satisfy [5]

A = {α ∈ NM : ‖α‖q ≤ p}, ‖α‖q =

(
M∑
i=1

αqi

)1/q

, (2.11)

where 0 < q ≤ 1. Lower values for q limit the number of high-order interac-
tion terms considered, leading to sparse solutions, while q = 1 results in the
standard truncation scheme |α| ≤ p where P = (M+p)!

M !p!
. The hat on coefficients
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â signifies that we can only obtain numerical estimates of the true coefficients
a = E{g(Z)φ(Z)} in general. These estimates can be obtained using either
intrusive approaches (e.g., Galerkin projection [23]) or non-intrusive approaches
(e.g., pseudo-spectral projection [13], regression [62]). The term “non-intrusive”
indicates that the coefficients are estimated from only a finite set of parameter
realizations Z = {z(1), . . . ,z(N)}, referred to as the experimental design (ED).
These samples can be chosen in various ways including Monte Carlo sampling,
quasi-random samples derived from Sobol or Halton sequences, or sparse grids to
name a few [60]. The computational model is then evaluated at every point in
the ED, i.e., Y = {y(1), . . . , y(N)} with y(i) = g(z(i)) for all i = 1, . . . , N . As such,
non-intrusive approaches are “black-box” in the sense that they can be applied to
any function and do not require any modification to the deterministic solver.

To further sparsify the PCE, without discarding potentially important inter-
action terms, the coefficients are estimated using the regularized least squares
problem

â = argmin
a∈RP

‖Y −Φa‖2
W + λ‖a‖1, (2.12)

where ‖ · ‖W is the weighted Euclidean norm, Φ ∈ RN×P contains the values of
all polynomial bases evaluated at all ED points, W ∈ RN×N is a diagonal weight
matrix with elements W (i, i) = w(z(i)) that are functions of the sample points,
and ‖a‖1 =

∑
α∈A |aα| is a regularization term that forces the minimization to

favor low-rank solutions. It can be shown that limN→∞ â = a converges to the
true coefficients by increasing the number of samples in the ED for λ = 0 [53],
which corresponds to the weighted least squares solution Φ>WΦâ = Φ>WY.
Since this problem only has a unique solution for N ≥ P (typically N = cP
with c ∈ [2, 3]), the regularization term is added to ensure a unique solution
exists even when N < P . This problem is commonly referred to as lasso (least
absolute shrinkage and selection operator) in the fields of statistics and machine
learning [63].

Methods for solving (2.12) require a proper choice of λ, which specifies the
number of non-zero coefficients, and they usually rely upon rigorous estimation
of the PCE approximation error. A natural error choice is the relative mean
square error, defined as ε = E{(g(Z) − gPCE(Z))2}/Var(g(Z)), that can be
estimated using either the normalized empirical error or cross-validation. Since
the normalized empirical error suffers from overfitting (i.e., always decreases when
the number of terms in the series P increases, even when ε actually increases),
cross-validation is preferred as it leads to error estimates that are much less
sensitive to overfitting. In cross-validation, the surrogate model is evaluated at
additional sample points that were not used when estimating the coefficients of
the PCE. The true model output is then compared with the polynomial surrogate
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at these points to estimate the overall error. In K-fold cross validation, the full
ED is randomly partitioned into K equally sized subsets. Of these K subsets,
only one is used as validation data, while the remaining K − 1 subsets are used
as training data. This procedure is repeated K times, with each of the K subsets
used once as validation data, and the resulting K errors are then averaged to
produce a single error estimate. The special case of K = N is the so-called
leave-one-out (LOO) error. In the context of linearly parametrized regression, the
LOO error can be analytically calculated by [45]

ErrLOO =
1

N

N∑
i=1

(
g(z(i))− gPCE(z(i))

1− hi

)
, (2.13)

where hi is the ith diagonal term of the matrix Φ(Φ>Φ)−1Φ>. The relative LOO
error, denoted by εLOO, is then equal to (2.13) divided by the sample-based
estimate of the model response variance. Additional correction factors can be
included to further reduce the sensitivity of the error estimates to overfitting. A
particular choice of corrected relative LOO error that has been illustrated to be a
robust and conservative estimator for ε, even for small sample sizes, is given by [9]

ε?LOO = εLOO
N

N − P

(
1 +

tr(C−1
emp)

N

)
, Cemp =

1

N
Φ>Φ. (2.14)

In this work, we adopt the hybrid least angle regression (LAR) method to solve
(2.12) for the expansion coefficients [5]. LAR is an efficient procedure for variable
selection that is aimed at selecting the predictors (i.e., the basis polynomials φk,α)
that have the greatest impact on the model response among a potentially large
set of candidates [16]. Hybrid LAR is a variant of the original LAR that uses a
modified cross-validation scheme in terms of ε?LOO. This modification relies on
only a single call to the LAR procedure, which provides significant savings in
computational cost when compared to the original method. A potential limitation
of hybrid LAR is that the truncation set A must be fixed a priori, which can be
mitigated by employing a basis-adaptive algorithm. The basis-adaptive strategy
involves fitting a sparse PCE for multiple orders and then selecting the one with
the lowest error. In this way, the maximum degree is driven by the data directly,
as opposed to being heuristically chosen by the user.

The efficiency and accuracy of the ME-PCE surrogate strongly depends on
the chosen decomposition (2.3). It is desired to decompose the support such
that the model response behaves smoothly in every element, meaning the best
decomposition will depend on the type of singularities present in the function. In
DFBA models, the singularities represent points in time that the extracellular
state variables are not differentiable, and often arise whenever the solution to
the FBA (2.2) changes abruptly. Note that these abrupt changes correspond to a
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switch in the intracellular behavior and may occur, for example, when a metabolite
is fully consumed. Since these singularities can be related back to the feasibility
of (2.2), they can be straightforwardly detected during integration of the DFBA
model equations. However, the time of occurrence of any singularity depends
on the value of the parameters, which are uncertain in this work. Therefore, we
propose to decompose the support S into two elements S1 and S2 that denote,
respectively, the set of parameters for which the singularity has not and has
occurred. This idea is best illustrated through a simple example.

Consider the following non-smooth ODE system, ẏ = −x if y > 0 and ẏ = 0
otherwise, with initial condition y0 > 0, whose solution is given by

y(t, x) =

{
y0 − tx, if y0 > tx,

0, otherwise.
(2.15)

This function is not differentiable at time ts(x) = y0/x, which can be thought of
as the “singularity manifold” in the parameter space x ∈ S. In other words, this
represents the boundary that separates S1 and S2. For any given time t, the two
elements are given by

S1(t) = {x ∈ S : ts(x) > t}, S2(t) = {x ∈ S : ts(x) ≤ t}. (2.16)

The same decomposition principle applies in multi-dimensional DFBA problems
with a couple of caveats. The first issue is that we cannot rely on an analytic
solution for ts(x) since DFBA models are most often only solvable numerically.
As long as the singularity manifold is sufficiently smooth in the parameters, we
can straightforwardly construct a global PCE to represent this function using
the tools discussed above. The second issue relates to the fact that S1 and S2

are not guaranteed to have simple geometrical representations. Therefore, it can
be advantageous to further break down these elements into a set of regions with
more standard shapes.

A flowchart that summarizes the main steps required to construct the proposed
black-box ME-PCE for DFBA models is shown in Figure 2.1. The ME-PCE
approach produces the following piecewise polynomial surrogate model for M

M(x) ≈MME-PCE(x) =
Ne∑
k=1

gPCE
k (T −1

k (x))ISk(x), (2.17)

where T −1
k denotes the inverse of the isoprobabilistic transform Tk. The steps for

evaluating (2.17) for any parameter x ∈ S can then be summarized as: find the
element k in which the parameter lies x ∈ Sk; calculate the standardized parameter
values zk = T −1

k (x); and evaluate the corresponding PCE surrogate model at the
standardized point gPCE

k (zk). By performing these steps on a collection of Monte
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Carlo samples, we can directly approximate statistical properties of the model
response Y =M(X) including moments, parametric sensitivities, or even its full
distribution.

Select quantity and time of interest

Simulate DFBA model with nominal parameters & 
locate singularities when switch occurs in FBA solution

Get representation of singularity manifold, i.e., 
time that singularity occurs as function of parameters

Decompose parameter space into non-overlapping 
elements separated by singularity manifolds 

For every element:
- build locally orthonormal polynomials
- sample local parameter space
- fit local polynomial coefficients
- calculate cross-validated error

Less than target error?

UQ with ME-PCE surrogate model

Additional samples 
or increase order

No

Yes

Figure 2.1: Flowchart for the proposed ME-PCE surrogate modeling approach. The quantity
and time of interest correspond to a scalar output of the DFBA model and, in general, the
decomposition of the parameter space depends on these values. When an exact solution is
not available for the singularity manifold, it can be approximated with a global PCE. The
coefficients in each element can be fit using a regularized least squares method (e.g., hybrid
LAR) and should be made adaptive (w.r.t. samples and/or order) to ensure that a target error
level is achieved. The fitted piecewise polynomial surrogate model can then be used for any
desired UQ task.

2.2.3 Numerical implementation

The implementation of both DFBA model integration and construction of sparse
PCEs are non-trivial and error-prone. To help make the proposed method more
easily usable, the overall approach was constructed to be compatible with readily
available toolboxes. The simulation of DFBA models can be done with a variety
of toolboxes including COBRA [3], ORCA [40] and DFBAlab [25], which can all
be executed in MATLAB. We use DFBAlab throughout this work, which is a
DA solver that performs lexicographic optimization to render unique exchange
fluxes, because it exhibits important numerical advantages when compared to
the readily available alternatives (see [24, 28] for more details). The sparse PCE
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models are estimated using UQLab [41], which includes implementations of the
state-of-the-art methods discussed above. UQLab also allows for multiple PCEs
with different input distributions to be fit and used simultaneously, such that it is
ideal for dealing with many elements at once.

2.3 Results

The case study is based on a DFBA model of a batch fermentation reactor con-
sisting of an E. coli monoculture, which has been investigated for the production
of valuable chemicals such as ethanol. Here, the simulation represents the initial
phase of batch operation of the E. coli fermentation reactor under aerobic growth
on glucose and xylose mixed media [27]. No ethanol production is observed
under aerobic conditions (i.e., this phase is mainly used to increase the biomass),
such that the concentration of ethanol can be omitted from the dynamics. This
problem is commonly used as a benchmark for comparing DFBA solvers (see,
e.g., [24, 28, 59]), as it exhibits stiff dynamics and multiple singularities.

The dynamic mass balance equations for the extracelluar environment of the
form (2.1) can be summarized as follows:

ḃ(t) = µ(t)b(t), (2.18)

ġ(t) = −ug(t)b(t),
ż(t) = −uz(t)b(t),

where b(t), g(t), and z(t) denotes the biomass, glucose, and xlyose concentrations,
respectively, at time t. The uptake kinetics for glucose, xylose, and oxygen are
given by Michaelis-Menten kinetics

ug(t) = ug,max
g(t)

Kg + g(t)
, (2.19)

uz(t) = uz,max
z(t)

Kz + z(t)

1

1 + g(t)
Kig

, (2.20)

uo(t) = uo,max
o(t)

Ko + o(t)
, (2.21)

where ug,max, uz,max, uo,max, Kg, Kz, Ko, and Kig are parameters of the model
that correspond to the maximum substrate uptake rates, saturation constants, and
inhibition constants. It is assumed that the reactor oxygen concentration, o(t), is
controlled and is therefore constant. The growth rate µ(t), on the other hand, is
determined from the metabolic network model of wild-type E. coli. The chosen
metabolic network reconstruction was iJR904 [55], which contains 1075 reactions
and 761 metabolites. The cells are assumed to maximize growth, implying (2.2)
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is an LP of the form

µ(t) = min
v

c>v, (2.22)

s.t. Sv = 0,

vgext = ug(t),

vzext = uz(t),

voext = uo(t),

vLB ≤ v ≤ vUB,

where c is a vector of weights that represent the contribution of each flux to
biomass formation while vgext , vzext , and voext are, respectively, the exchange
fluxes for glucose, xylose, and oxygen (i.e., elements of the flux vector v). Thus,
the metabolic network interacts with the extracellular environment through the
exchange fluxes in (2.19)-(2.21).

Table 2.1: Parameter estimates obtained from [8]

Parameter Value Units
ug,max 10.5 mmol/g/hr
Kg 0.0027 g/L
uz,max 6 mmol/g/hr
Kz 0.0165 g/L
Kig 0.005 g/L
uo,max 15 mmol/g/hr
Ko 0.024 g/L

The initial conditions of the batch are assumed to be fixed at 0.03 g/L of
inoculum, 15.5 g/L of glucose, and 8 g/L of xylose, the oxygen concentration is
kept constant at 0.24 mmol/L, and S, c, vLB, and vUB are specified by the iJR904
FBA model. However, the parameters in the substrate uptake rates (2.19)-(2.21)
should be fit to experimental data since they cannot be easily predicted from
first-principles. This problem was partially tackled in [27], where most of the
parameters were fixed according to estimates provided in the literature, while
uz,max and Kig were adjusted by trial-and-error to match transient measurements
of biomass, glucose, and xylose. The reported parameter estimates are given
in Table 2.1. Since o(t) is fixed, uo,max and Ko can be lumped into a single
parameter uo. Hence, the six parameters X = (ug,max, Kg, uz,max, Kz, Kig, uo)
are not perfectly known and modeled as a random vector whose elements are
independent and uniformly distributed around ±10% of the nominal values. The
support S of the uncertain parameters X can then be stated as

S = [9.45,11.55]mmol/g/hr× [0.0024, 0.0030]g/L× [5.4, 6.6]mmol/g/hr (2.23)

× [0.0149, 0.0182]g/L× [0.0045, 0.0055]g/L× [12.27, 15]1/hr.
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The problems of inverse and forward UQ are intractable on the full E. coli DFBA
model due to the genome-scale metabolic network and non-smooth behavior. In
the following, we demonstrate how challenging UQ tasks can be enabled with the
proposed surrogate modeling approach.

All reported computations are performed in MATLAB R2016a on a MacBook
Pro with 8 GB of RAM and a 2.6 GHz Intel i5 processor. The DFBA model is
simulated using DFBAlab with default options for integration and LP optimization
tolerances. CPLEX was used as the LP solver and MATLAB’s ode15s was used
as the integrator.

2.3.1 Decomposition of parameter space

Before selecting the element decomposition, we must first simulate the DFBA
model to locate any significant singularities. The extracellular glucose, xylose,
and biomass concentration profiles are plotted in Figure 2.2 for one hundred
randomly sampled parameter values. For a given realization of the parameter, the
full simulation requires approximately 1.3 seconds of CPU time.
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Figure 2.2: Monte Carlo simulation of E. coli DFBA model. The genome-scale model is
integrated from 0 to 8.5 hours for 100 different parameter realizations that are independently
drawn from the uniform prior density. The consumption of xylose only occurs after glucose is
fully exhausted, which is a strong function of the parameters.

At the start of the batch, glucose is consumed preferentially over xylose. Once
glucose has been depleted, the LP solution switches and xylose becomes the main
carbon source. The final batch time is then specified as the time that both glucose
and xylose have been fully depleted, at which point the LP becomes infeasible
and the solution ceases to exist. The E. coli stop growing at this point due to the
lack of a carbon source. Although physically the cells would begin to die in this
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situation, DFBA models cannot directly predict the cell death phase and thus we
assume the biomass remains constant for simplicity. The time-to-consumption of
glucose tg and xylose tz represent the two sources of singularities in this problem,
and clearly depend on the value of the model parameters. Since we cannot
analytically derive these functions, we look to construct PCE approximations for
tg and tz instead.

We initially focus on tg because glucose is consumed first. Since tg depends
smoothly on the parameters, we can fit a global PCE over the entire support
(2.23). Two different fitting methods are investigated: classical full PCE with
coefficients estimated using ordinary least squares, and basis-adaptive sparse PCE
with coefficients estimated using hybrid LAR. In full PCE, the degree varies from
1 to 6 with N = 2P model evaluations performed where P denotes the basis size.
In sparse PCE, the maximum degree of the basis is allowed to vary from 2 to
30 and a hyperbolic truncation scheme (2.11) is used with q = 0.75. Both of
these computational schemes are carried out using UQLab, and all experimental
designs (EDs) are composed of parameter samples drawn from a quasi-random
(low-discrepancy) Sobol’ sequence. Figure 2.3a plots the RMSE versus the number
of model evaluations used to fit the surrogate. We can clearly see that sparse
LAR-based PCE consistently outperforms full PCE, achieving more than an order-
of-magnitude lower RMSE using about 1000 model evaluations. The resulting
sparse polynomial surrogate model is first used to approximate the Sobol’ indices
of tg(X), which are a commomly used tool in global sensitivity analysis for ranking
the random parameters according to their weight in the variance of the model
response (Figure 2.3b). The Sobol’ indices can be computed analytically from the
PCE coefficients [62], which requires less than one second of CPU time in this case,
and shows that only ug,max and uo contribute significantly to the variance of tg(X).
The surrogate model can also be used to efficiently estimate the density function
of tg(X), as plotted in Figure 2.3c. From the set of samples used to estimate
this density function, we can determine that tg ranges from approximately 6.31
to 7.87 hr, suggesting that g(t;X) is a non-smooth function of X ∈ S for any
t ∈ [6.31, 7.87] hr. We can split S into two disjoint regions in a similar fashion
to (2.16), which is plotted in Figure 2.3d for the fixed time point t = 7 hr. The
red regions represent parameters with positive glucose concentrations, while the
blue region represents parameters with zero glucose concentrations. Only the
projection of the 6d space onto the two sensitive parameters is plotted in Figure
2.3d since we do not need to split the support with respect to the insensitive
parameters. As expected, the blue and red regions are approximately equal size
because around half of the density of tg(X) is below 7 hours, as shown by the red
line in Figure 2.3c.

The same procedure described above for tg was carried out for tz, as shown
in Figure 2.5. We again see that sparse PCE consistently produces significantly
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Figure 2.3: Parameter space decomposition for glucose. (a) Surrogate model validation error
for time-to-consumption of glucose tg versus the number of DFBA evaluations used in model
fitting. (b) Sensitivity of tg to the uncertain parameters. Global sensitivity indices are estimated
inexpensively using the surrogate model. (c) Estimated PDF of tg based on 1e+6 surrogate
model evaluations. (d) Decomposition of support of the prior density into six non-overlapping
elements at time 7 hr, projected onto the two most sensitive parameters. The blue region is
composed of parameters for which glucose is zero, estimated using the surrogate model, while
the red region represents parameters with non-zero glucose concentrations.

lower RMSE when compared to full PCE (Figure 2.5a). The global sensitivity
analysis on the surrogate model shows that three parameters contribute to the
variance of tz(X), mainly ug,max, uz,max, and uo (Figure 2.5b). Parameters ug,max
and uo are important for glucose consumption while uz,max is important for xylose
consumption. From the estimated density function of tz(X), we observe that its
support ranges from approximately 7.33 to 9.12 hr (Figure 2.5c). Before time
7.33 hr, we can use the same element breakdown based on tg only since the
xylose singularity has yet to happen. For times t ∈ [7.33, 7.87] hr, the supports
of tg(X) and tz(X) partially overlap, meaning the xylose singularity must be
incorporated into the element breakdown. We thus have three situations that
must be represented with separate elements: (i) {x ∈ S : tg(x) > t} are parameter
values for which xylose remains at its initial condition since glucose has yet to be
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exhausted; (ii) {x ∈ S : tz(x) > t} are parameter values for which some xylose
has been consumed but not fully; and (iii) {x ∈ S : tz(x) ≤ t} are parameter
values for which xylose has been fully consumed. An example representation of
these regions for 7.75 hr is shown in Figure 2.4.

Figure 2.4: Parameter space decomposition for xylose at 7.75 hr. The decomposition is
projected onto the three (out of six) most sensitive parameters. The green region represents
parameter values for which xylose remains at its initial condition since glucose has yet to be
exhausted. The red regions represent parameter values for which some xylose has been consumed
but not yet zero. The blue region represents parameter values for which xylose has been fully
consumed.

After time 7.87 hr, the first region becomes the empty set and we only have
two remaining regions to model. These latter two regions are shown in Fig 2.5d
for t = 8.5 hr, which depicts the projection of non-zero (red) and zero (blue)
xylose values onto the three sensitive parameters. In this case, the blue region is
much larger than the red region due to the fact that the majority of the density
of tz(X) is below 8.5 hr, as indicated by the red line in Figure 2.5c.

The “true” value of the RMSE that is reported in Figs. 2.3-2.5 was estimated
using a large validation set that consists of 20,000 evaluations of the full DFBA
model, which requires over 7 hours of CPU time in this case. Ideally, these
additional model evaluations could be avoided by directly estimating the RMSE
from the ED either empirically or using cross-validation techniques. The empirical
estimate of the RMSE is simply based on sample-based approximations to the
integral expressions for mean and variance. Cross-validation looks to obtain a more
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Figure 2.5: Parameter space decomposition for xylose. (a) Surrogate model validation error
for time-to-consumption of xylose tz versus the number of DFBA evaluations used in model
fitting. (b) Sensitivity of tz to the uncertain parameters. Global sensitivity indices are estimated
inexpensively using the surrogate model. (c) Estimated PDF of tz based on 1e+6 surrogate
model evaluations. (d) Decomposition of support of prior density into a two non-overlapping
elements at time 8.5 hr, projected onto the three sensitive parameters. The blue region is
composed of parameters for which xylose is zero, estimated using the surrogate model, while
the red region represents parameters with non-zero xylose concentrations.

robust RMSE estimate by splitting the ED into various training and validation
sets, fitting different models with each training set, and averaging the prediction
error (over the validation set) of each model. We focus exclusively on the corrected
LOO error ε?LOO in (2.14). Table 2.2 gives the estimated RMSE values for sparse
PCE surrogate models fit using different sized EDs. We observe that the empirical
estimator greatly underpredicts the “true” RMSE found from the large validation
set. In fact, for the smallest size N = 10, the empirical estimate is a factor of
104 smaller than the true RMSE. The cross-validated RMSE, on the other hand,
predicts the correct order in all considered cases except N = 10 where it is only
off by a factor of 10 instead of 104. Note that ε?LOO is used within the hybrid
LAR algorithm to select the best surrogate out of all potential candidates.
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Table 2.2: Relative mean square error estimates for time-to-consumption of glucose surrogate
models under multiple experimental design sizes

N Validation Cross-validation Empirical

10 1.014e-02 1.268e-03 2.601e-06
50 2.230e-04 3.718e-04 2.130e-04
100 1.616e-04 1.347e-04 5.333e-05
150 7.864e-05 6.468e-05 2.820e-05
200 5.787e-05 3.898e-05 2.416e-05
500 1.817e-05 1.273e-05 7.679e-06

The validation error is computed using a large set of samples not used in the
fitting procedure, such that it closely matches the true error. Cross-validation
and empirical error, however, are computed using only points in the original
experimental design. Cross-validation partitions the experimental design into
various training and validation sets, such that multiple models can be fit and
their prediction errors averaged, in order to compute more robust error estimates
than its empirical counterpart. Here, a corrected leave-one-out cross-validation
procedure is utilized.

2.3.2 ME-PCE surrogate model validation

Once models for the singularity manifolds, i.e., tg(X) and tz(X) are determined,
we can use them to construct ME-PCE surrogate models for the extracellular
concentrations based on the strategy summarized in Figure 2.1. In principle this
can be done at any time of interest, but we focus on time 7 hr for glucose and time
8.5 hr for xylose and biomass for illustrative purposes. The two key choices are
the breakdown of elements and design of the ED. We manually defined the regions
to be in terms of simple geometries for convenience sake, implying a variety of
other choices would likely further improve the results shown in this section. If
the conditional random variable Xk with PDF (2.5) does not have independent
elements as per (2.9), then it was transformed to a collection of i.i.d. uniform
random variables using the Rosenblatt transformation. The examples of when the
transformation is necessary are the red triangular regions R3 and R5 in Figure
2.3d and the red truncated triangular pyramid in Figure 2.5d. Out of a total
number of samples N , a fixed number of samples Nk is allocated to every element
k = 1, . . . , Ne. In this case, Nk ∝ Pr(X ∈ Sk) is proportional to the probability
that the parameter lies in that element, which is equivalent to the ratio of the
volume of Sk to that of S for the uniform density considered here. All EDs are
populated with quasi-random Sobol’ sequences to ensure fair comparisons below.

The convergence properties of the proposed ME-PCE surrogate model and
a comparison of predictions to the exact DFBA model on a large validation set
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for glucose at time 7 hr are shown in Figure 2.6. The RMSE for ME-PCE shows
a more than quadratic rate of convergence with respect to number of model
evaluations, which is a significant improvement over the first-order and half-
order rates observed with sparse and full global PCE, respectively (Figure 2.6a).
Thus, the incorporation of both sparse regression and the elemental breakdown of
the support provide substantial gains in accuracy. The benefits of much lower
RMSE can be observed in parity plot (Figure 2.6b), which shows the ME-PCE
and global PCE surrogate model predictions versus the exact glucose value for
2× 104 validation simulations. The ME-PCE surrogate consistently matches the
DFBA model over the entire range of possible values while the global PCE shows
significant deviations around 0, 2, 4, and 6.5 g/L even though the same number of
samples are used to fit each of these models. Similarly good results were obtained
for xylose at time 8.5 hr, which are summarized in Figure 2.7. Although the rate
of convergence is not quite as large here, the RMSE for ME-PCE is consistently
more than an order-of-magnitude lower than global PCE for every considered
ED size (Figure 2.7a). The fact that this differs from glucose suggests there is a
delicate balance between the size of the ED and the number/shape of the elements.
Additionally, the parity plot for xylose (Figure 2.7b) shows more pronounced
differences between the ME-PCE and global PCE surrogates than that for glucose,
mainly due to the fact that the global xylose model predicts a large spread around
zero that includes many non-physical negative values. The convergence and parity
plots for the biomass surrogates at time 8.5 hr, based on the element breakdown
shown in Figure 2.8, are summarized in Figure2.9. The only difference in the
case of biomass is that the concentrations are non-zero throughout the entire
parameter support.
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Figure 2.6: Surrogate model accuracy for glucose. (a) Surrogate model validation error for
glucose at time 7 hr versus the number of model evaluations used in fitting procedure for sparse
ME-PCE, sparse global PCE, and full global PCE. (b) Parity plot for the sparse ME-PCE and
sparse global PCE surrogate models, fit using 1000 model evaluations, for 2× 104 validation
simulations.
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Figure 2.7: Surrogate model accuracy for xylose. (a) Surrogate model validation error for
xylose at time 8.5 hr versus the number of model evaluations used in fitting procedure for sparse
ME-PCE, sparse global PCE, and full global PCE. (b) Parity plot for the sparse ME-PCE and
sparse global PCE surrogate models, fit using 1000 model evaluations, for 2× 104 validation
simulations.

Figure 2.8: Parameter space decomposition for biomass at 8.5 hr. The decomposition is
projected onto the three (out of six) most sensitive parameters. The blue dots represent
parameters for which xylose is zero, which were estimated using a surrogate model for tz. The
breakdown mimics that for xylose at 8.5 hr, except more elements are required since the biomass
concentration is non-zero throughout the entire parameter support.



CHAPTER 2. ESTIMATION OF PARAMETERS IN GENOME-SCALE
BIOLOGICAL MODELS 39

10
1

10
2

10
3

number of model evaulations

10
-4

10
-3

10
-2

10
-1

10
0

R
M

S
E

full global PCE

sparse global PCE

sparse ME-PCE

(a)

7 8 9 10 11 12

exact model

7

8

9

10

11

12

s
u
rr

o
g
a
te

 m
o
d
e
l

sparse global PCE (N=1000)

sparse ME-PCE (N=1000)

y=x

(b)

Figure 2.9: Surrogate model accuracy for biomass. (a) Surrogate model validation error
for biomass at time 8.5 hr versus the number of model evaluations used in fitting procedure
for sparse ME-PCE, sparse global PCE, and full global PCE. (b) Parity plot for the sparse
ME-PCE and sparse global PCE surrogate models, fit using 1000 model evaluations, for 2× 104

validation simulations.

2.3.3 Bayesian parameter inference using sequential
Monte Carlo

We focus on the inverse UQ problem of estimating parameters from data, which
can be greatly accelerated using the ME-PCE strategy. The same data set used
in [27] is assumed here, which includes measurements of the extracellular biomass,
glucose, and xylose concentrations at t ∈ {0, 5.5, 6, 6.5, 7, 7.25, 7.75, 8, 8.25, 8.5}
hr. The measurements are assumed to be corrupted with noise

Db
i = b(ti;X) + Eb

i , i = 1, . . . , 10, (2.24)

Dg
i = g(ti;X) + Eg

i , i = 1, . . . , 10,

Dz
i = z(ti;X) + Ex

i , i = 1, . . . , 10,

where Di = (Db
i , D

g
i , D

z
i ) and Ei = (Eb

i , E
g
i , E

z
i ) are, respectively, vectors of the

measured data and noise at the ith time point. The concatenated data (resp.
noise) vector is denoted by D = (D1, . . . ,D10) (resp. E = (E1, . . . ,E10)). The
measurement noise variables are modeled as independent zero-mean Gaussian
random variables with state-dependent variance that equals 5% of the measured
signal, i.e.,

Ev
i ∼ N (0, σ2

v,i(X)), σv,i(X) = 0.05|v(ti;X)|, v ∈ {b, g, z}. (2.25)

Given a set of measurements, the change in the state of information about the
parameters is given by Bayes’ rule [34]

fX|D(x|d) =
fD|X(d|x)fX(x)

fD(d)
, (2.26)
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where fX|D is the posterior density (i.e., parameter density given realized data);
fD|X is the likelihood function (i.e., data density given fixed parameters); fX is
the prior density (i.e., parameter density before observing data); and fD is the
evidence (i.e., marginal data density). As Bayesian inference looks to characterize
the full posterior density, it directly provides an explicit representation of the
uncertainty in the parameter estimates, which is an important advantage over
alternative optimization-based formulations that only provide point estimates.

The prior and likelihood function must be specified before solving (2.26).
We assume the same uniform prior used to construct the ME-PCE surrogate
models though these can differ in general. The likelihood function describes the
discrepancy between the observed data and the model predictions in a probabilistic
way. The likelihood function, which is fully specified by the data and noise models
(2.24)-(2.25), is given by

fD|X(d|x) =
10∏
i=1

∏
v∈{b,g,z}

1√
2πσ2

v,i(x)
exp

(
−(dvi − v(ti;x))2

2σ2
v,i(x)

)
. (2.27)

Although we use a Gaussian likelihood here, the same framework can be applied
to any choice of likelihood function and thus can be easily modified to incorporate
other potentially important factors including sensor bias or asymmetric noise.

Since (2.26) cannot be solved analytically in practical situations, we must
resort to sample-based approximations that rely on generating samples from
the target posterior distribution. A variety of methods have been developed for
sampling from the unknown posterior fX|D including Markov Chain Monte Carlo
(MCMC) [2, 7, 68] and sequential Monte Carlo (SMC) [11, 15, 37] algorithms.
The proposed surrogate models can be used to accelerate any sampling-based
method; however, we focus on SMC since this is a class of completely parallel
algorithms. Since MCMC is not inherently parallelizable, it can take on the order
of hours to converge even for cheap polynomial models as illustrated in [56]. SMC
is based on the concept of importance sampling, which can be straightforwardly
implemented in an iterative fashion such that the posterior is updated every time
a new measurement is available. For a given number of particles N , the SMC
approximation to (2.26) can be summarized as follows:

1. Initialization: set k = 1 and generate samples and weights {xi, wi}Ni=1 from
prior.

2. Reweighting: update the weights wi ← wi × wk(xi) where wk(xi) ∝
fDk|X(dk|xi).

3. Resampling: resample {xi, wi}Ni=1 for particles with equal weights {xri , 1
N
}Ni=1.
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4. Loop: set k ← k + 1 and {xi, wi}Ni=1 ← {xri , 1
N
}Ni=1. Return to Step 2 if

k < kf .

When the algorithm stops at final time kf (equal to 10 in this case), the particle
system targets the posterior distribution of interest. We use systematic resampling
in Step 3 due to its computational simplicity and good empirical performance,
though a variety of other methods are available [37]. Step 2 is usually the
computational bottleneck because the model must be repeatedly solved in order
to evaluate the likelihood weight factors using (2.27). Therefore, we propose to
replace the evaluation of v(ti;x) with a ME-PCE surrogate model vME-PCE(ti;x)
for every v ∈ {b, g, z} and i = 1, . . . , 10. We must then construct a total of 30
surrogates before running the SMC algorithm.

We follow the same basic strategy describe in the previous section for con-
structing the ME-PCE surrogate models. The main difference is that we now
have multiple time points of interest for every concentration. Since the singularity
manifolds evolve over time, the element breakdown will be different for any of
the time points that fall within the range of tg(X) and/or tz(X). This issue is
illustrated graphically for glucose in Figure 2.10, which has four measurement
times that overlap with tg(X). The element breakdown for all 30 models can
be determined from the global PCE representations of tg(X) and tz(X), which
both achieved ε?LOO < 10−3 using the same ED with 200 parameter realizations.
Once the elements have been selected, we must choose how to design the ED and
simulate the DFBA model for all 30 quantities of interest. Although treating each
measurement time independently is simple, it can be inefficient since the model
has to be integrated from the initial condition in every case. If we instead recycle
points in the ED, we can avoid repetitive computations by integrating between
time points wherein the model is initialized using the solution at the end of the
previous interval. Ideally the same ED could be used for all time points, but this
is unlikely when the size and shape of the elements change substantially over time.
Thus, we recommend to sequentially add points to the ED whenever the target
error is not met. Using this methodology, all 30 surrogates were fit using a total
of less than 2500 DFBA model evaluations with errors ε?LOO consistently lower
than 10−3. Note that the cost of estimating the expansion coefficients using the
hybrid LAR method was less than 30 seconds in all cases, indicating that the
DFBA simulation is the dominant cost during surrogate model construction.

Figure 2.11 shows the posterior density estimated using SMC with N = 5×105

particles for a synthetic data set wherein the likelihood weights are evaluated
using the inexpensive ME-PCE surrogates. The synthetic data was obtained by
simulating the genome-scale E. coli DFBA model with fixed parameters (red lines
in Figure 2.11) and adding random noise realizations from (2.25) to the resulting
model outputs, and is shown with ‘x’ marks in Figure 2.12. The nearly 2500 DFBA
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Figure 2.10: Element breakdown for glucose concentration over time. (a) Four elements at
time 6.5 hr. (b) Six elements at time 7.0 hr. (c) Four elements at time 7.25 hr. (d) Two
elements at time 7.75 hr.

simulations used to construct the surrogates requires ∼ 55 minutes while the
surrogate-based SMC algorithm, which takes advantage of vectorization, finishes
in ∼ 1 minute of CPU time. Therefore, the full Bayesian inference problem can
be solved in around 1 hr using the proposed method that represents a roughly
200-fold savings in computational cost when compared to SMC without surrogates
that would require ∼ 7.5 days of CPU time under the same settings (5×105 DFBA
model evaluations at a cost of 1.3 seconds per evaluation). To verify that the
SMC algorithm provides sensible results, we plotted the DFBA model predictions
under the MAP estimates (i.e., parameters that maximize the posterior) in Figure
2.12, which closely matches the synthetic data.

The estimated posterior density in Figure 2.11 also provides interesting physical
insights. Three of the parameters (Kg, Kz, Kig) are unobservable with the current
data set since their posterior (green) and prior (blue) densities are equivalent. This
observation could not easily be made before running the estimation procedure due
to the nonlinear and indirect relationship between D and X. The data is sensitive
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to (ug,max, uz,max, uo); however, these parameters are highly correlated as seen in
off-diagonal plots of their joint densities in Figure 2.11. As such, the currently
available data from a single batch is insufficient for providing accurate estimates
for all of the parameters of interest. Additionally, the evolution of the marginal
posterior densities of the observable parameters over time is shown in Figure 2.13.
Since glucose is mostly consumed by 7.25 hr, the densities of ug,max and uo remain
constant for the remaining batch time. The density of uz,max, however, is constant
before 7.25 hr because xylose remains mostly at its initial condition. Also, notice
that at 7.75 hr the density of uz,max is positively skewed away from the true value
since the noise realization happened to be a large negative value. The next few
measurements quickly correct this behavior, which results in a posterior density
that is a fairly accurate representation of the true value for uz,max.

ug,max

ug,max

Kg

uz,max

Kz

Kig

uo

Kg uz,max Kz Kig uo

Figure 2.11: Posterior distributions of the estimated model parameters. The diagonal subplots
represent marginal densities while the off-diagonal subplots represent two-dimensional projections
of samples from the joint density. Blue denotes the posterior density while green denotes the
prior density. The red line represents the true parameter values used to generate synthetic data
for estimation purposes.

2.3.4 Forward uncertainty propagation

Let Y =M(X) denote a vector of all model responses. The forward UQ problem
looks to characterize the uncertainty in the model predictions via propagating
uncertainty in the parameters through M. This can involve estimating either
the prior predictive distribution fY (before any data has been collected), or the
posterior predictive distribution fY |D (after data has been obtained). The only
difference between these two problems is that M is evaluated at i.i.d. samples
drawn from the prior in the former and the posterior in the latter. The densities
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Figure 2.12: Comparison of model predictions and synthetic data. The model predictions,
shown with solid lines, were obtained by integrating the DFBA model with the maximum a
posteriori (MAP) estimates of the parameters, which correspond to the mode of the posterior
density in Figure 2.11. The ‘x’ marks represent synthetic data generated by corrupting model
predictions for the true (unknown) parameters with randomly generated noise.
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Figure 2.13: Evolution of the posterior marginal densities for the observable model parameters
over time. Each subplot shows the histogram of parameter posterior samples estimated using
the sequential Monte Carlo method. The x-axis represents the range in values of the parameters
and the y-axis represents frequencies. The red line represents the true parameter values.
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of the model predictions estimated using 1× 105 samples are shown in Figure 2.14.
By replacing the DFBA model with the ME-PCE surrogate, these histograms
were obtained in less than 30 seconds of CPU time. As expected, the prior
predictive are much wider than the posterior predictive distributions, indicating
there is significant uncertainty before incorporating data. In addition, we see that
many of these distributions have sharp changes and long tails due to the non-
smooth behavior, which can be accurately captured with the proposed ME-PCE
approach. It is also interesting to note that the posterior predictive distributions
have low variance, even though the parameters are not perfectly estimated,
which highlights the impact that nonlinearity can have on both estimation and
uncertainty propagation.

2.4 Discussion

In this work, we develop a novel surrogate modeling approach for handling discon-
tinuous (non-smooth) behavior in large-scale computational models of biological
systems. Discontinuities occur in many biological models including bistable switch-
ing [21], positive feedback loops [32], and intracellular transport delays [6], to
name a few. The developed surrogate model can vastly accelerate uncertainty
quantification (UQ) tasks, such as calibrating the model with experimental data
(inverse problem) and quantifying confidence in the model predictions (forward
problem). The proposed approach is based on a extension of state-of-the-art poly-
nomial chaos expansion (PCE) methods, which is able to accurately reconstruct
the discontinuous model response from a limited number of expensive model
evaluations. The main idea behind this so-called multi-element (ME) extension
to PCE is to systematically decompose the set of possible parameters into a
collection of non-overlapping regions so that the model response is smooth within
each element. We focus on genome-scale DFBA models in this chapter, however,
the basic concept can be applied to any nonlinear, discontinuous model in the
presence of uncertainty.

We demonstrate advantages of the proposed sparse ME-PCE surrogate model
on a DFBA model of E. coli fermentation reactor under aerobic growth on
glucose and xylose mixed media that utilizes a genome-scale metabolic network
reconstruction with 1075 reactions and 761 metabolites. We showcase how ME-
PCE surrogates can be used to enable both inverse and forward UQ with respect
to six uncertain parameters related to the substrate uptake kinetics. These six
parameters were estimated with a trial-and-error procedure in past work [27]
and, thus, our goal was to repeat this procedure using fully Bayesian methods.
The posterior parameter distribution was estimated using sequential Monte Carlo
with 5 × 105 samples, which would have required ∼ 7 days of CPU time to
compute using the full DFBA model, but took around one hour total (including
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Figure 2.14: Predicted probability distributions of extracellular concentrations. (a) Model
predictions using parameter samples from the prior. (b) Model predictions using parameter
samples from the posterior. (a-b) Each subplot shows the histogram of samples obtained by
substituting i.i.d. samples from the parameter distribution into the corresponding ME-PCE
surrogate model. The x-axis represents the range in values of the model outputs and the y-axis
represents frequencies.
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cost of fitting) when ME-PCE surrogates were used. The resulting posterior
distribution yielded significant physical insights including that the available
data set is insufficient to estimate the six parameters reliably, with three of the
parameters being completely unobservable. We also demonstrate how the prior and
posterior predictive distributions can be estimated with negligible computational
cost by evaluating the ME-PCE surrogate model for many randomly sampled
parameter realizations. Global sensitivity analysis can also easily be performed
to determine how much each kinetic parameter influences the variability in the
model responses. Note that this observed speed-up is expected to be even greater
for more complex DFBA models, such as those with nonlinear cellular objectives,
multiple cultures, or even larger metabolic networks due to the increased cost of
the simulations.

2.4.1 Potential improvements to surrogate model

The efficacy of the ME-PCE surrogate modeling approach critically relies on the
choice of elements as well as the selection of parameter values in the experimental
design (ED). We observed large improvements over global PCE using simple
element geometries and random sampling for the ED; however, we expect even
further gains in the convergence rate by developing procedures for optimizing these
choices. For example, adaptive methods have been developed for decomposing the
random parameter space using sensitivity information to decide which elements to
split [67]. A similar concept could be applied to models of the singularity manifolds
in this work (e.g., tg(X)) for automatically partitioning the parameter space, even
when there are multiple sensitive parameters. These methods would likely benefit
from the incorporation of more advanced geometries than simple boxes. After the
parameter support has been partitioned, the ED points in each element should be
chosen to maximize their information content. Multiple approaches have been
recently developed to tackle this challenging problem including coherence-optimal
sampling [26] and numerical “moment-matching” optimization [53, 54]. When
model evaluations are time consuming, it can be useful to build up the ED
sequentially by iteratively enriching the initial ED. Although some work has been
done in this area, the choice of elements and the ED are generally coupled in
the multi-element version of the problem and remains largely unexplored in the
literature.

2.4.2 Alternative methods for uncertainty quantification

The proposed ME-PCE surrogate modeling approach can be used to accelerate
a wide-range of UQ methods. This includes alternative parameter estimation
methods such as Markov chain Monte Carlo, maximum likelihood estimation,
and maximum a posteriori estimation. Although not an issue in the case study,
sequential Monte Carlo can suffer from degeneracy wherein fewer and fewer
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particles retain significant weight. This sample degeneracy can be protected
against by adding a rejuvenation step that “moves” the resampled particles
according to a Markov chain transition kernel [11]. This operation does not change
the target distribution, but does reduce impoverishment since identical replicates
of a single particle are replaced with new values. Even though the move step is
computationally demanding, it can still benefit from parallel processing. Another
way to reduce sample degeneracy is to sample from a distribution that more closely
matches the posterior than the prior, which is especially useful for diffuse priors or
concentrated likelihoods. One such example is the so-called Laplace approximation
to the posterior, which assumes the posterior is normally distributed around the
maximum a posteriori estimate with covariance approximated from a second-
order Taylor series of the logarithm of the posterior distribution [38, 64]. The
ME-PCE surrogates can also be used to accelerate methods for Bayesian model
selection, which involves computing the probability that every model in a set of
potential models matches available data. This is often an important problem is
systems biology since uncertainty in model structure can significantly impact the
conclusions of parameter inference [35].

2.4.3 Extensions to optimal experiment design

The selection of optimal conditions for conducting experiments (e.g., measurement
times, initial conditions, and time-varying input profiles) is important for ensuring
maximum information is extracted from the observations, especially when the
experiments are expensive and time-consuming to perform. For example, it may
be useful to change the feed rate or the measurement times in the considered case
study so that the data ensures tight parameter estimates are obtained. Optimal
experiment design (OED) has been extensively studied in the classical framework
wherein the design criteria are defined as some scalar function of the Fisher
information matrix (FIM) [1]. More recently, OED has been tackled from a fully
Bayesian perspective that replaces the approximated classical design criteria with
an expected utility function that is rigorously chosen from a decision-theoretic
point of view [8, 51, 58].

The ME-PCE surrogate models could be used to efficiently evaluate classical
or Bayesian design criteria at any fixed experimental condition. However, the
parameter space decomposition depends strongly on the experiment, such that
separate surrogates need to be constructed for all experiments of interest. This
is not a major challenge when only a small, finite number of experiments (on
the order of ten) are considered, but is intractable for continuous design spaces.
Developing efficient procedures for both classical and Bayesian OED in genome-
scale DFBA models is an important area for future research. One possible direction
is to treat the experiment design variables as parameters when constructing the
surrogate model, as suggested in [31] for global PCE. However, developing methods
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for automatically choosing elements, as mentioned above, would be critical to
ensure similar ideas would be viable in ME-PCE because the model responses are
undoubtedly sensitive to the design variables.
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25. J. A. Gomez, K. Höffner, and P. I. Barton. Dfbalab: A fast and reliable
MATLAB code for dynamic flux balance analysis. BMC Bioinformatics,
15:409, 2014.

26. J. Hampton and A. Doostan. Coherence motivated sampling and conver-
gence analysis of least squares polynomial chaos regression. Computer
Methods in Applied Mechanics and Engineering, 290:73–97, 2015.

27. T. J. Hanly and M. A. Henson. Dynamic flux balance modeling of microbial
co-cultures for efficient batch fermentation of glucose and xylose mixtures.
Biotechnology and Bioengineering, 108:376–385, 2011.
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Chapter 3

Optimal experiment design for
offline model structure selection

The ability to discriminate between computational model structures depicting
competing hypotheses and subsequently selecting the most representative one can
be useful in a variety of contexts. Oftentimes, several competing hypothesis are
proposed to describe the underlying molecular mechanisms of a biological system.
Selecting the most representative model is imperative for obtaining meaningful
insights into the true system dynamics. In this chapter, we introduce an OED
method to elucidate biochemical network structures in an offline setting.∗

3.1 Introduction

Computational models can play a central role in unraveling the fundamental mech-
anisms of biological systems, as they facilitate systematic design of experiments
and dynamical analysis of complex networks of biochemical reactions [2]. The pre-
dictive quality of computational models critically hinges on selection of adequate
descriptions of molecular mechanisms (i.e., model structures) that characterize
the system dynamics. Multiple competing model structures, which correspond
to different hypotheses for molecular mechanisms, typically exist for describing
the dynamics of the same cellular processes. Optimal experiment design (OED)
tools for model discrimination can assist in the invalidation of model structures
that cannot adequately describe experimental data (e.g., [13, 17]). However, a
key challenge in OED for biological systems arises from cell-to-cell variability
in a cell population, i.e., cell traits may differ within a cell population [8]. The
heterogeneity of biological systems can significantly increase the complexity of
model discrimination.

∗The content of this chapter was published in [12]
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Numerous studies have elucidated the critical role of population heterogeneity
in major biological processes such as embryogenesis, tumorigenesis or survival
[1, 6, 19]. Biological sources of cell population variability can be broadly classified
into genetic and non-genetic. Genetic sources arise from spontaneous or induced
mutation of the genetic material within a cell population. On the other hand,
generation of variability in isogenic cell populations has revealed the importance
of non-genetic factors that give rise to phenotypic heterogeneity [8]. Non-genetic
heterogeneity mainly results from extrinsic or intrinsic sources, which can in
their turn be classified into temporal and population noise (see Chapter 1). In
this chapter, modeling of the population variability exclusively focuses on time-
invariant cell-to-cell differences or population noise.

The goal of this chapter is to demonstrate the effectiveness of using a proba-
bilistic OED framework [14, 18] for model structure selection (i.e., discrimination)
in the presence of population heterogeneity. Probabilistic OED allows for design-
ing system input(s) that can discriminate between distributions of cellular outputs
(within a cell population) predicted by the competing models. Thus, upon appli-
cation of the optimal input(s) to the biological system, invalidation of inadequate
model structures can be achieved. In this work, probabilistic OED is performed
for the erythropoietin-induced JAK2/STAT5 signaling pathway, for which several
competing model structures can describe experimental data equally well under
nominal stimulation levels [20]. The population heterogeneity that arises from
population noise is modeled by time-invariant, probabilistic distribution of kinetic
parameters of the underlying biochemical reactions of the signaling pathway.

3.2 Modeling population noise in the

JAK2/STAT5 signaling pathway

The family of JAK/STAT signaling pathways is ubiquitous in mammalian cells,
and is of relevance to the fields of stem cell and cancer research - its activation
leads to modulation of expression of genes involved in growth, differentiation,
migration, apoptosis, and other vital cellular processes [4, 5, 7, 9, 15]. JAK/STAT
signaling can be stimulated with a large range of hormones, cytokines, and
growth factors [16]. In mammals, four different JAKs and seven different STATs
exist [16]. This work focuses on the eryhropoietin-stimulated pathway involving
JAK2 and STAT5 (i.e., JAK2/STAT5 pathway), which is critical for growth and
differentiation of hematopoietic progenitor cells [3, 21]. The key components of
the signaling system include: (i) Erythropoietin Receptor (EpoR), which is a
transmembrane receptor that interacts with the extracellular pathway ligand, (ii)
Janus Kinase 2 (JAK2), which interacts with the cytosolic domain of EpoR, and
(iii) Signal Transducer and Activator of Transcription 5 (STAT5), which can be
in monomeric or dimeric form.
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A schematic diagram of the JAK2/STAT5 signaling system is shown in Fig-
ure 3.1. EpoR subunits undergo multimerization upon stimulation by erythro-
poietin [16]. The cytoplasmic domain of each EpoR monomer interacts with a
JAK2 tyrosine kinase. When two JAK2 proteins transphosphorylate each other,
they become functionally active and induce phosphorylation of EpoR and other
downstream signaling biomolecules, including STAT5 monomers. Phosphorylated
STAT5 monomers dimerize in the cytoplasm and translocate into the nucleus,
where they act as a transcription factor for upregulation of target genes. The
dynamics of the JAK2/STAT5 signaling system are typically described by the
four forms of the STAT5 molecules in the pathway [20]: unphosphorylated cyto-
plasmic STAT5 monomer x1, phosphorylated cytoplasmic STAT5 monomer x2,
cytoplasmic STAT5 dimer x3, and the transcriptionally active nuclear STAT5
dimer x4. The input to the pathway, u, consists of the level of phosphorylation of
EpoR, which can be stimulated by extracellular erythropoietin (Epo).

Swameye et al. [20] have reported several model structures for the JAK2/STAT5
signaling pathway in murine B cells. This work considers two competing models
of the signaling pathway (denoted by superscripts [1] and [2]) that could describe
the population-average experimental results reported in [20] with comparable
statistical significance. Model 1, which assumes nucleocytoplasmic shuttling of
STAT5 in the cell, takes the form
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Model 2, which also assumes nucleocytoplasmic shuttling while accounting for a
bidirectional kinetic flow in the dimerization of STAT, is described by
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In (3.1) and (3.2), k1 and k2 are the rates of phosphorylation and dimerization of
STAT, k−2 is the rate of spontaneous disintegration of STAT dimers into monomers,
k3 and k4 are the rates of transport in and out of the nucleus, respectively, and τ
is the residence time of STAT dimers in the nucleus. The (measurable) outputs of
the pathway are phosphorylated STAT5 and total STAT5 in the cytoplasm, which
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Figure 3.1: Depiction of the JAK2/STAT5 signaling pathway [16].

are denoted by y1 = k5(x2 + 2x3) and y2 = k6(x1 + x2 + 2x3), respectively; k5 and
k6 being scaling parameters. In a population of cells, cell-to-cell differences in
kinetic rates or initial conditions can give rise to population noise. To capture
population noise in the competing models (3.1) and (3.2), the kinetic rates and
time-delay parameter are assumed to take beta distributions across the population
of cells. The bounds of the beta distributions were adopted from the confidence
intervals provided in [20]. The time-invariant differences in the kinetic and time-
delay characteristics of individual cells in a population will give rise to noise in
constituents of the signaling pathway (and thus, in the outputs y1 and y2). The
impact of each kinetic and time-delay mechanism on heterogeneity of pathway
outputs is likely to be different, reflecting their unequal contributions to the
pathway dynamics. An analysis of the impact of variability in the kinetic rates
and time-delay parameter on population noise can provide insight into molecular
mechanisms of generation of population noise.

For illustrative purposes, the effect of probabilistic variability in k3 on popula-
tion noise is presented in Figure 3.2, which shows snapshots of population noise in
the output y1 at time instant 60 min (predicted by Model 1). The distributions of
y1 are constructed based on propagating the probability distributions of the kinetic
rates and time-delay parameter through the pathway dynamics using Monte Carlo



CHAPTER 3. OPTIMAL EXPERIMENT DESIGN FOR OFFLINE MODEL
STRUCTURE SELECTION 60

Figure 3.2: Distribution of the cytoplasmic phoshporylated STAT5 (y1) within a population of
cells at 60 min when k3 takes a point estimate (a) and k3 is distributed with the same (b) and
triple (c) the standard deviation reported in [20]. The variability of other kinetic parameters
among individual cells is accounted for.

simulations. In Figure 3.2a, k3 is assigned a population-average value, whereas in
Figs. 3.2b and 3.2c, k3 is distributed respectively with the same and triple the
standard deviation reported in [20]. It is evident that the variability of k3 across
individual cells of a population affects the population noise of the output y1.

3.3 Probabilistic optimal experiment design

problem

The probabilistic OED problem is formulated as a nonlinear optimization problem
that aims to maximize the dissimilarity between probability distributions of
outputs of competing models [14, 18]. The optimization problem is subject to input
and state constraints. The Kolmogorov distance [10] is used as a metric to quantify
(dis)similarity between outputs of competing models. The generalized polynomial
chaos (gPC) framework is used for propagation of population heterogeneity over
pathway dynamics [23]. In gPC, each (probabilistic) system state is approximated
by an expansion of orthogonal polynomial basis functions, which are defined
based on the known descriptions of probabilistic uncertainties. The statistical
moments of stochastic states can be efficiently computed from the coefficients of
PC expansions or, alternatively, PC expansions can be used as a surrogate for the
nonlinear system model to efficiently perform Monte Carlo simulations.



CHAPTER 3. OPTIMAL EXPERIMENT DESIGN FOR OFFLINE MODEL
STRUCTURE SELECTION 61

3.4 Model discrimination in the presence of

population noise

This work seeks to discriminate between predictions of the competing models
(3.1) and (3.2) in the presence of population noise. Figure 3.3 shows the dynamics
of cytoplasmic phosphorylated STAT5 (y1) predicted by the competing models
upon EpoR stimulation with a nominal level of extracellular erythropoietin.
The predictions of population-average y1 by the competing models (depicted by
continuous profiles) are very similar, which is consistent with the results reported
in [20]. More importantly, the predicted distributions of y1 (due to population
noise), which can be seen from distribution snapshots in Figure 3.3 (at times 30,
45, and 60 min), overlap significantly. This makes the discrimination between
predictions of models (3.1) and (3.2) impractical under the nominal stimulation
level.

A probabilistic optimal experiment design approach [14, 18] is employed for
discriminating between the competing models (3.1) and (3.2) in the presence of
population noise. The distinct feature of the probabilistic OED approach lies
in the ability to systematically account for population noise generation in the
signaling pathway when the optimal input for model discrimination is designed.
The probabilistic OED approach aims to separate the predicted distributions of
pathway outputs within a population of cells. If the predicted distributions of one
of the outputs are separated at least at one time instant, the competing models
can be discriminated. Figure 3.4a shows the evolution of distribution of y1 when
the optimal input designed by probabilistic OED is applied to the competing
models (3.1) and (3.2) under 1,000 realizations of the sources of population noise
generation. The optimal input allows for discriminating between the predicted
distributions of y1 within a cell population at 60 min.

The performance of the optimal input designed by probabilistic OED is
compared to that of standard OED (e.g., [11]), which disregards the time-invariant
cell-to-cell differences within a population of cells. The optimal input designed
by standard OED is able to separate the population-average predictions of the
competing models (compare Figure 3.4b with Figure 3.3). However, it fails to
effectively discriminate between the predicted distributions of y1 across the cell
population.

3.5 Discussion

The use of computational models in combination with state-of-the-art measure-
ment techniques can significantly improve our understanding of cellular processes
that are prone to cell-to-cell variability. The above discussed OED approaches are
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intended to complement experimental efforts, in particular when collecting rich
experimental data is limited by various technical constraints and/or availability of
resources. OED tools are invaluable for reducing the experimental effort required
for elucidation of competing hypotheses of molecular mechanisms in biological
systems. Accounting for the presence of cell-to-cell variability in a population
of cells can be critical to achieving accurate quantitative representations of the
underlying dynamics of a cell population. Traditional quantitative methods (such
as western blotting and qPCR) typically yield end-point, population-average infor-
mation and, consequently, can mask heterogeneity within a population [22]. On
the other hand, real-time, single-cell resolution techniques can surface cell-to-cell
differences and, if high throughput, can provide a complete picture of population
heterogeneity [22]. The above discussed probabilistic OED approach enables dis-
crimination between competing models regardless of the employed measurement
technique (population-average or single-cell measurement). Comparison of the
results of standard and probabilistic OED reveals that accounting for popula-
tion heterogeneity allows for more effective experiment designs to achieve model
discrimination with high confidence. In the presented case study, probabilistic
OED not only achieved a better discrimination of the population-average behavior
of the outputs as compared to standard OED, but also led to separation of the
distributions of outputs of the competing models.

Figure 3.3: Evolution of distributions of cytoplasmic phosphorylated STAT5 (y1) within a
cell population under nominal stimulation as predicted by the competing models 3.1 and 3.2.
The continuous profiles depict the population-average behavior and the histograms depict the
distribution of y1 within a population of cells. Distributions correspond to time instants 30, 45,
and 60 min.
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Figure 3.4: Evolution of distributions of cytoplasmic phoshporylated STAT5 (y1) within a cell
population (predicted by the competing models (3.1) and (3.2)) when the signaling pathway is
stimulated with the optimal input designed by (a) probabilistic OED and (b) standard OED.
The histograms are generated by applying the optimal inputs to (3.1) and (3.2) under 1,000
realizations of the sources of population noise generation. The continuous profiles depict the
average y1 within the cell population. Distributions correspond to time instants 30, 45, and 60
min after initiation of stimulation.
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Chapter 4

Optimal experiment design for
online model structure selection

Online model structure selection is imperative for gaining insight into experiment
execution or operation as it takes place. In this chapter, we present two com-
putationally efficient optimal experiment design methods that can discriminate
between competing model structures in online settings. A useful application of
the presented online optimal experiment design methods is fault diagnosis, which
consists in the discrimination of models describing normal and faulty operation
in experimental or industrial settings. Fault diagnosis is achieved by designing
an experiment that minimizes tractable optimization objectives, which allows to
maximize the probability of selecting the most representative model structure (i.e.,
diagnose the fault) in real time. Simulation results on a continuous bioreactor
demonstrate the effectiveness of both methods for online model structure selection
for fault diagnosis in practical settings.∗

4.1 Introduction

In Chapter 3, we introduced a method to design experiments that enables eluci-
dation of biochemical networks in an offline manner. The offline nature of the
optimal experiment design (OED) method allowed for full reconstruction of all
model outcomes as a probability distribution, given that computational cost was
not a limitation. Conversely, computational efficiency is a key feature of online
OED frameworks, as they must allow for real-time learning of the system under
study. An emerging application of online OED is fault detection and diagnosis,
where several plausible models describing normal and faulty modes of system
operation are discriminated in real time.

∗The content of this chapter was published in [35] and [26]
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Online OED for model selection in the context of fault detection and diagnosis
allows for maintaining stable, reliable, and profitable operation of technical systems
in the presence of component malfunctions, drifting system parameters, and other
abnormal events [32]. However, nonlinear system dynamics as well as system
uncertainty, disturbances, and measurement noise often render model selection
a challenging task in practical applications. OED for online model selection in
the context of fault diagnosis is further compounded by the growing complexity
of technical systems and the increasingly stringent requirements on their high-
performance operation, which necessitate retaining the system within admissible
operational constraints during fault diagnosis.

To address the aforementioned challenges, a wide range of methods for fault
detection and diagnosis have been developed including residual- and observer-
based methods [13, 16, 34], set-based approaches [32], and data-based methods [13].
The vast majority of these methods are passive, where the status of the system
is deduced only from measurements acquired during nominal operation, which
are then compared with model predictions or historical data. However, system
uncertainties or the corrective actions of a controller, when the system is under
feedback control, can often obscure faulty behavior to an extent that impairs
reliable fault diagnosis. In these cases, auxiliary input signals can be applied to
the system to enhance the detectability and isolability of faults in the system
measurements [11]. This notion has led to development of OED for online model
selection for active fault diagnosis in which an input sequence to the system is
designed to diagnose the system faults within a given time window in the presence
of uncertainty. [8]

For systems with deterministic, bounded uncertainty, OED methods have
been reported for designing input sequences that are “robust” to worst-case
realizations of system uncertainty. These methods, which are typically developed
for linear systems, look to minimize the energy of the input sequence while
ensuring separation of the reachable sets of all model hypotheses [4, 11, 40].
In [41], a tractable approach was presented for solving the online problem for
linear systems subject to bounded disturbances and measurement noise by using
zonotopes for efficient computation. OED for nonlinear systems with sufficiently
small nonlinearity was addressed in [3]. In [38], a set-based approach for providing
”robustness certificates” was used for model selection of nonlinear systems.

When probabilistic descriptions of system uncertainty are available, a more
natural approach to OED for online model selection involves accounting for the
stochastic system uncertainty in designing the input sequence. In a stochastic
setting for OED, the uncertainty in model parameters and initial conditions, as
well as system disturbances and measurement noise, can be characterized in terms
of probability distributions instead of sets [47]. By accounting for distributional
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information in the OED problem, the designed input sequences can handle system
uncertainty in a (possibly) less conservative manner than OED methods that adopt
a set-based description of uncertainty. In the context of fault diagnosis, OED
for model selection for linear systems subject to additive stochastic disturbances
and measurement noise has been explored in Refs. [6, 7], and further extended to
jump Markov linear systems in [5]. These methods use an upper bound on the
probability of model discrimination error, defined in terms of the Bhattacharyya
coefficient [22], as the optimization criteria [22]. In [28], an OED method was
presented for nonlinear systems with probabilistic uncertainty in model parameters
and initial conditions, where generalized polynomial chaos [45] was used for
obtaining a tractable surrogate problem. A tractable OED approach for nonlinear
systems was presented in [29], where results from randomized optimization were
used to provide theoretical guarantees for fault detection.

This chapter addresses the problem of OED for online model selection for
nonlinear systems subject to white-noise stochastic disturbances and measurement
noise, with probabilistic model uncertainty in parameters and initial conditions.
The probabilistic model uncertainty represents our incomplete knowledge of the
system. Two computationally efficient methods are introduced.

In the first method, and similarly to [7], the probability of model hypothesis
discrimination error is used as the tractable optimization criterion. Input and
state constraints are enforced to guarantee safe system operation that is minimally
intrusive during the fault diagnosis experiment. State constraints are enforced
as a chance constraint to provide flexibility and minimal conservatism in dealing
with stochastic system uncertainty. A key challenge in solving the proposed OED
problem arises from efficient propagation of the stochastic system uncertainty
through the nonlinear system dynamics. There exists no closed-form expression
for evaluating the probability distribution of the predicted states variables as a
function of the input sequence. This method adopts two uncertainty propagation
methods, based on linearization and unscented transformation (UT), for tractable
propagation of the moments of the state variables.

In the second method, non-intrusive generalized polynomial chaos (gPC)
is combined with UT using conditional probability rules to jointly propagate
both model uncertainty and stochastic disturbances. The proposed sample-based
uncertainty propagation method, which draws from the benefits of gPC and UT for
handling model uncertainty and disturbances, respectively, is particularly suitable
for optimization, since it can approximate the statistics of system variables with
a fairly small number of samples that are chosen systematically. Inspired by
the k-nearest neighbors scheme, classically used for data clustering [14, 17], the
optimization criterion is defined in terms of a sample-based measure of distance
between probabilistic predictions of model hypotheses for the normal and faulty



CHAPTER 4. OPTIMAL EXPERIMENT DESIGN FOR ONLINE MODEL
STRUCTURE SELECTION 69

system operation.

The optimization criteria for both methods do not require the generation
of histograms and thus circumvent the need for full probability distribution re-
construction. The performance of the proposed OED methods for online model
selection in the context of fault diagnosis is demonstrated on a continuous biore-
actor case study for online diagnosis of multiple operation scenarios.

The chapter is organized as follows. First, a general background on model
selection is provided. The OED problem formulation is then presented, including
the details of the model structure, the OED problem in a stochastic setting, and
the main challenges in solving the latter problem. This is followed by the descrip-
tion of each presented OED for online model selection method, which includes
the summary of the adopted uncertainty propagation techniques for approximat-
ing moments of the state/output probability distributions, the description and
derivation of the optimization criteria, and discussions on the offline and online
implementation of the tractable OED problems. Lastly, the performance of the
proposed OED methods is demonstrated on a continuous bioreactor with multiple
fault scenarios including operational and structural changes to the process.

Notation. Hereafter, Rn denotes the set of real vectors with n elements and
Rn×m denotes the set of real matrices with n rows and m columns. N = {1, 2, . . .}
is the set of natural numbers and N0 = N∪{0}. xa:b = [x>a , x

>
a+1, . . . , x

>
b ]> denotes

a concatenated vector of the sequence of values of x from discrete time a to b.
diag(·) represents a block diagonal matrix. P (A) denotes the probability of event
A. For a random vector X, p(X) denotes the probability density function (pdf)
of X, E[X] or X̄ denotes the expected value of X, and cov(X) or ΣX denotes the
covariance matrix of X. For random vectors X and Y , the cross covariance between
X and Y is denoted by cov(X, Y ) = ΣXY = E[(X − X̄)(Y − Ȳ )]. X | Y denotes
that the random vector X is conditioned on realization Y , with conditional pdf
p(X | Y ). The hat accent ·̂ is used to denote estimated or approximate variables.

4.2 Background: Model Selection

Consider a finite number of possible model hypotheses {Hi} with known prior
probabilities P (Hi). We look to investigate the decision-theory problem of classi-
fying a system observation y, under a given input u, as coming from one of the
model hypotheses {Hi}. It is well-known that the decision rule that minimizes
the probability of error, denoted by P (error), in hypothesis selection is the Bayes
decision rule, which aims at selecting the hypothesis with the largest a posteri-
ori probability [14]. The problem of Bayesian hypothesis selection (aka model
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selection) can be expressed as follows

select Hi such that i = argmaxj P (Hj | y,u). (4.1)

According to Bayes rule, P (Hj | y,u) = p(Hj,y | u)/p(y | u) = p(y |
Hj,u)P (Hj)/p(y | u), where the denominator can be neglected in the opti-
mization Problem (4.1) since it is independent of Hj . As shown in Figure 4.1, the
Bayes decision rule yields a number of decision regions Ri that are defined with
respect to the observation space, i.e.,

Ri = {y : p(Hi,y | u) > p(Hl,y | u), ∀l 6= i}. (4.2)

If y ∈ Ri, then hypothesis Hi is selected. This implies that P (y ∈ Rj, Hi | u)
is the probability of incorrectly selecting the model hypothesis j when the true
hypothesis is i. By adding all these probabilities across all possible model pairs,
the following expression is derived for the probability of selecting the incorrect
hypothesis, known as the Bayes risk

P (error) =
∑
i

∑
j 6=i

P (y ∈ Rj, Hi | u) (4.3)

=
∑
i

∑
j 6=i

P (y ∈ Rj | Hi,u)P (Hi)

=
∑
i

∑
j 6=i

∫
Rj

p(y | Hi,u)P (Hi)dy.

In fact, the Bayes risk can be used for quantifying the probability of error of the
optimal hypothesis selection. The Bayes risk is dependent on the system inputs u.
As such, it is clearly advantageous to select an input trajectory that minimizes
the Bayes risk. The latter will be the focus of this chapter for nonlinear systems
with stochastic uncertainty.

Consider an uncertain, nonlinear system described by a discrete-time model of
general form

H :

{
xk+1 = f(xk, uk, wk, θ)
yk = h(xk, vk, θ),

(4.4)

where k ∈ N0 is the discrete time index; x ∈ Rnx , u ∈ Rnu , and y ∈ Rny

denote the system states, manipulated inputs, and measured outputs, respectively;
w ∈ Rnw denotes the system disturbances; v ∈ Rnv denotes measurement noise;
θ ∈ Rnθ denotes model parameters; and f : Rnx × Rnu × Rnw × Rnθ → Rnx and
h : Rnx × Rnv × Rnθ → Rny describe the (possibly) nonlinear system dynamics
and measurement functions, respectively.

Due to imperfect knowledge of the system, the initial conditions x0 and
parameters θ in (4.4) are modeled as probabilistic uncertainties with (possibly)
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joint pdf p(x0, θ). The system disturbances {wk}k∈N0 and measurement noise
{vk}k∈N0 satisfy the following conditions:

1. wk and vk are independent and identically distributed (i.i.d.) sequences
with known pdfs p(wk) and p(vk), respectively;

2. wl, and vt are mutually independent (i.e., white-noise random sequences)
for all l, t ∈ N0, and are independent of x0 and θ.

The system is subject to hard input constraints uk ∈ U , where the set U ⊂ Rnu

is assumed to be closed and bounded. The system is also subject to (possibly
nonlinear) state constraints xk ∈ X ⊆ Rnx . Since the system evolves as a
stochastic process, the state constraints are enforced as a chance constraint of the
form

P (xk ∈ X | H) ≥ 1− ε, k ∈ N, (4.5)

where X is a collection of nc inequality state constraints; P (x ∈ X | y) =
∫
X
p(x |

y)dx denotes the probability that the event x ∈ X occurs given a realization of the
random variable y; and ε is the maximum allowed probability of state constraint
violation.

Now, consider that a finite number nf of models, with known dynamics of the
form (4.4), exist to describe potential fault scenarios of the system. Denote the set
of models by H , {H0, H1, . . . , Hnf}, where Hi represents the system information

R0 R1 R2

p(H0,y | u)

p(H1,y | u)

p(H2,y | u)

y

Figure 4.1: Illustration of Bayesian hypothesis selection for a given input u. In the case of
multiple models, hypothesis selection generally results in a number of decision regions in the
observation space. If the observation y lies in the region Ri (i.e., y ∈ Ri), then the hypothesis
selection yields hypothesis Hi. Note that even when the Bayes hypothesis selection is optimal,
there is a finite probability of error related to overlap of the likelihood distributions (shown by
the shaded region). Adapted from [7].
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required for specifying the ith model

Hi = {f (i), h(i), p(i)(x0, θ), p
(i)(wk), p

(i)(vk),X (i), ε(i)}.
The superscript (i) is used to distinguish variables in (4.4) for each model Hi ∈ H.
The nominal system model (i.e., no faulty behavior) is denoted by the superscript
i = 0, while i = 1, . . . , nf refers to the different fault models. Note that all models
must have the same manipulated inputs u and measured outputs y, suggesting
that nu and ny are the same for all Hi ∈ H. However, the other model attributes
such as the state and output functions, state constraints, and model uncertainty
descriptions can be different for the various Hi ∈ H. For notational convenience,
the superscripts (i) are dropped in the remainder of the chapter unless otherwise
stated.

Remark 1 The prior P (Hi) for each model can be determined in a number of
ways. For example, there may exist explicit knowledge about the likelihood of
the different model hypotheses, or the priors can represent the system belief from
an estimator. If no a-priori knowledge is available, an uninformative prior can
be utilized such that all models are considered to have an equal probability of
occurrence, i.e., P (Hi) = 1/(nf + 1) for all Hi ∈ H.

The model selection framework presented above readily applies by defining the
observations y to be a collection of system measurements and the input trajectory
u as the manipulated inputs.

4.2.1 OED for model structure selection

The goal of this work is to present an OED framework for designing an input
sequence that minimizes the probability of model selection error in H, while
satisfying the input and state constraints of the system. Due to the stochastic
nature of system uncertainty in (4.4), the optimal input sequence should be
designed such that the system evolves through a trajectory of state probability
distributions that minimizes the Bayes risk [6]. For a finite (prespecified) planning
horizon N ∈ N, the OED problem can be stated as follows.

Problem 1 (OED for model structure selection) Determine the input se-
quence u0:N−1 that minimizes the probability of selecting the wrong model P (error)
while satisfying input constraints uk ∈ U , k = 0, . . . , N − 1 and chance constraints
(4.5) for all possible models Hi ∈ H.

The designed input sequence should then be applied to the system to observe its
behavior and, accordingly, select the model hypothesis that best (in a probabilistic
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sense) describes the measurements. The constraints U and X must be defined such
that the designed input sequence ensures safe and least intrusive system operation
during the experiment. Note that the chance constraints (4.5) can be converted
to hard state constraints by setting ε = 0 when the stochastic system uncertainty
is bounded. In addition, the input constraints can be straightforwardly modified
to limit the rate of input changes or the total input energy [18, 39].

OED can be performed in an open-loop fashion where the optimization in Prob-
lem 1 is solved only once, offline, yielding an input sequence that is subsequently
applied to the system. In offline OED, system measurements collected during
the implementation of the optimal input sequence are not used for re-planning of
the experiment. This can reduce the effectiveness of the designed input sequence
due to unmodeled system uncertainties and disturbances in the models Hi ∈ H.
Alternatively, the OED problem can be solved online in a closed-loop fashion. In
this case, Problem 1 is solved repeatedly at every measurement sampling time,
when new system information becomes available. At each sampling time, only the
first element of the optimal input sequence is applied to the system, and the new
measurements are used to re-plan the experiment via recomputing the optimal
input sequence. The so-called receding-horizon implementation of the optimal
input sequence allows for incorporating measurement feedback into the OED
problem. Thus, online OED can provide some degree of robustness to unmodeled
system uncertainties and disturbances. Note that online OED requires solving
Problem 1 quicker than the measurement sampling intervals so that the designed
input sequences can be implemented in real time.

4.2.2 Challenges of OED for model structure selection

To solve Problem 1, the following challenges must be addressed:

1. Stochastic uncertainty propagation: Stochastic uncertainties x0, θ, and
w0:N−1 must be propagated through the nonlinear dynamics of each model
Hi ∈ H to evaluate the distribution of the concatenated observation vector
p(y0:N | Hi, u0:N−1). This is required for computing the Bayes risk P (error) in
(4.3). Traditional sample-based approaches to uncertainty propagation, such
as Markov-Chain Monte Carlo [15], are prohibitively expensive and ill-suited
for gradient-based optimization methods.

2. Computation of the Bayes risk P (error): There exist no closed-form
expressions for the distribution p(y0:N | Hi, u0:N−1) or the decision regions
Ri, making evaluation of P (error) particularly challenging. This is further
compounded by the multivariate integral in the Bayes risk.
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3. Chance constraint evaluation: Chance constraints are generally nonconvex
and intractable [10, 31]. This is because chance constraint evaluation involves
solving a multivariate integral of state pdfs, for which no closed-form expression
exists.

Although construction of the multivariate distribution p(y0:N | Hi, u0:N−1) is
inherently difficult, p(y0:N | Hi, u0:N−1) can be efficiently approximated in terms of
its moments obtained from (i) linearization [24], (ii) the unscented transform [44],
or (iii) generalized polynomial chaos (gPC) [45]. The first method presented in this
chapter adopts linearization and UT for moment-based uncertainty propagation,
whereas the second method adopts UT and gPC. To address the second challenge
stated above, an upper bound of the Bayes risk P (error) and a metric of the
k-nearest neighbors distance are used as tractable objectives amenable to online
optimization. Lastly, an approximate, moment-based surrogate is derived for the
chance constraint (4.5) for both methods to avoid sample-based integration or
construction of the state pdfs. In the remainder of the chapter, the methods used
for obtaining a tractable surrogate for Problem 1 are outlined. The tractable OED
problems are then presented both in their offline and online implementations.

4.3 Method 1: OED for online model selection

using the Bayes Risk

This section presents a computationally tractable surrogate for Problem 1 and the
used uncertainty propagation methods to approximate state and output statistics.
The proposed OED problem relies on a bound on the Bayes risk, P (error), which
is derived for discrimination between multiple model hypotheses. The bound
on P (error) is used as the fault diagnosis criterion for posing the optimization
in Problem 1, where the chance constraint is approximated using a moment-
based surrogate. Subsequently, an algorithm is presented for receding-horizon
implementation of the optimization problem, which enables online re-planning of
the fault diagnosis experiment. Lastly, the OED method is demonstrated on a
bioreactor case study.

4.3.1 Uncertainty Propagation

A closed-form solution for exact propagation of stochastic system uncertainty
(i.e., uncertain parameters and/or disturbances) through general nonlinear models
does not exist [12]. Sampled-based approaches to uncertainty propagation can be
expensive for optimization applications since they require many model simulation
runs that must be repeated for any candidate decision variables. In this work,
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we look to propagate moments of p(y0:N | Hi, u0:N−1) to avoid sample-based con-
struction of the distribution. To reduce the computational complexity of Problem
1, p(y0:N | Hi, u0:N−1) is approximated as a multivariate Gaussian distribution
so that it can be fully represented in terms of its first two moments. Two ap-
proaches are presented for obtaining closed-form expressions for the moments of
p(y0:N | Hi, u0:N−1) as a function of the input sequence. The first approach relies
on linearization of the nonlinear model equations, which is a common approach
used in, for example, the development of the extended Kalman filter (EKF) [24].
On the other hand, in the second approach linearization is circumvented by using
the unscented transformation (UT) for calculating statistics of a random variable
that undergoes a nonlinear transformation [44]. The UT method is particularly
useful when the system dynamics are highly nonlinear, so that the linearization
method provides a poor approximation of the nonlinear dynamics. In the UT
method, a set of samples, called sigma points, are selected around the mean of the
random variables. The sigma points are then propagated through the nonlinear
model equations to construct new mean and covariance estimates for the random
variables. A key advantage of the UT method is that Jacobian calculations,
which can be cumbersome for complex functions or even impractical for non-
smooth/non-differentiable functions, are no longer required. In the following, the
linearization and UT methods for propagating the moments of p(y0:N | Hi, u0:N−1)
are presented for the augmented state and parameter system dynamics.

Augmenting States with Parameters

To simplify presentation, a new “augmented” state vector is defined as

zk =
[
x>k , θ

>
k

]>
,

where the system dynamics (4.4) are augmented with artificial “parameter dynam-
ics” θk+1 = θk that enforce the time-invariant nature of the unknown parameters.
The augmented system dynamics are described by

zk+1 =

[
xk+1

θk+1

]
=

[
f(xk, uk, wk, θk)

θk

]
= fz(zk, uk, wk) (4.6a)

yk = h(xk, vk, θk) = hz(zk, vk), (4.6b)

fz : Rnz ×Rnu ×Rnw → Rnz and hz : Rnz ×Rnv → Rny are defined appropriately,
with nz = nx + nθ. p(z0) = p(x0, θ) denotes the pdf of the initial augmented state.
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Linearization

The nonlinear dynamics of the augmented system (4.6a) can be linearized using a
first-order Taylor series‡

zk+1 ≈ fz(ẑk, uk, w̄) +
∂fz
∂zk

∣∣∣∣
ẑk,uk,w̄

(zk − ẑk) +
∂fz
∂wk

∣∣∣∣
ẑk,uk,w̄

(wk − w̄), (4.7)

where ẑk ≈ z̄k = E[zk] denotes the approximated mean of the augmented states
and w̄ = E[wk]. Taking the expectation of (4.7) yields the following recursion for
the mean

ẑk+1 = fz(ẑk, uk, w̄), ẑ0 = E[z0]. (4.8)

Define δzk = zk− ẑk, so that (4.7) can be rewritten as a linear time-varying (LTV)
system

δzk+1 = Akδzk + Ekδwk, (4.9)

where δz0 has a known pdf; δwk = wk − w̄; and

Ak =
∂fz
∂zk

∣∣∣∣
ẑk,uk,w̄

, Ek =
∂fz
∂wk

∣∣∣∣
ẑk,uk,w̄

.

Let Σ̂zk = E[δzkδz
>
k ] ≈ Σzk denote the approximate covariance of the augmented

states. A recursive expression for this covariance can now be derived from (4.9)

Σ̂zk+1
= AkΣ̂zkA

>
k + EkΣwE

>
k , Σ̂z0 = Σz0 . (4.10)

Accordingly, the covariance of the augmented states over the planning horizon N
(including cross-correlation in time) can be approximated by stacking (4.9) into

δz0:N = Aδz0 + Eδw0:N−1, (4.11)

where

A =



I
A1

A1A2
...∏N−1

i=1 Ai∏N
i=1Ai


, E =



0 0 · · · · · · 0
I 0 0

A1 I
. . .

...

A2A1 A2 I
. . .

...
...

...
. . . 0∏N−1

i=1 Ai
∏N−1

i=2 Ai · · · AN−1 I




E0

E1
...

EN−2

EN−1


‡The dynamics are linearized only with respect to the states and the disturbances (not the

inputs) for improved accuracy. In this way, the dynamics are locally linearized around any
candidate input sequence that captures variability in the covariance of the predicted outputs
through changes in the Jacobian matrices.
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such that

Σ̂z0:N = AΣz0A
> + EΣw0:N−1

E>, (4.12)

with Σw0:N−1
= diag(Σw, . . . , Σw). Note that A and E are functions of the input

sequence u0:N−1 (since the linearization is performed locally with respect to an
input trajectory) as well as the moments z̄0 and Σz0 of the initial augmented
states.

Likewise, the measurement function (4.6b) can be linearized around ẑk and
v̄ = E[vk]

yk ≈ hz(ẑk, v̄) +
∂hz
∂zk

∣∣∣∣
ẑk,v̄︸ ︷︷ ︸

Ck

(zk − ẑk) +
∂hz
∂vk

∣∣∣∣
ẑk,v̄︸ ︷︷ ︸

Mk

(vk − v̄), (4.13)

which leads to the following approximations for the mean and covariance of the
system outputs

ŷk = hz(ẑk, v̄) (4.14a)

Σ̂yk = CkΣ̂zkC
>
k +MkΣvM

>
k . (4.14b)

Stacking (4.13) over the planning horizon N leads to

δy0:N = Cδz0:N + Mδv0:N , (4.15)

with

C = diag(C0, . . . , CN), M = diag(M0, . . . ,MN).

The predicted covariance of the outputs over the horizon N is then given by

Σ̂y0:N = CΣ̂z0:NC> + MΣv0:NM> (4.16)

= CAΣz0A
>C> + CEΣw0:N−1

E>C> + MΣv0:NM>,

where Σv0:N = diag(Σv, . . . , Σv). Note that Σ̂y0:N is a symmetric matrix that
accounts for cross-correlation in the system outputs at different times, i.e.,

Σ̂y0:N ≈ Σy0:N =


Σy0 Σy0y1 · · · Σy0yN

Σy1y0 Σy1 · · · Σy1yN
...

...
. . .

...
ΣyNy0 ΣyNy1 · · · ΣyN

 .
The accuracy of the above discussed uncertainty propagation method based on
model linearization can be improved by retaining the higher-order terms in (4.7).
In addition, the method can be straightforwardly extended for computing higher-
order moments of the augmented states (such as skewness and kurtosis) through
taking expectations of polynomial expressions of (4.11) and (4.15).
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Unscented Transform

UT method. The general notion of the UT method is first described for
propagation of an n-dimensional random vector x ∈ Rn through a nonlinear
function y = g(x). Let x have a known mean x̄ and covariance matrix Σx. Define
a set of 2n+ 1 sigma points {Xi}2n

i=0 such that

X0 = x̄

Xi = x̄+
(√

(n+ λ)Σx

)
i

i = 1, . . . , n

Xi = x̄−
(√

(n+ λ)Σx

)
i

i = n+ 1, . . . , 2n,

with the mean weights {W (m)
i }2n

i=0 and covariance weights {W (c)
i }2n

i=0 given by

W
(m)
0 =

λ

(n+ λ)

W
(c)
0 =

λ

(n+ λ)
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

1

2(n+ λ)
, i = 1, . . . , 2n.

In the above expressions, (A)i is the ith column of the matrix A; λ = α2(n+κ)−n
is a scaling parameter; α specifies the spread of the sigma points around the mean;
κ is another scaling parameter; and β is used to account for prior knowledge of
the pdf of x. Some common values for these parameters are α = 1, κ = 2, and
β = 0 [44]. Note that β = 2 is the optimal choice for β when x has a Gaussian
distribution. The UT method relies on propagating these sigma points through
the nonlinear function y = g(x), i.e.,

Yi = g(Xi), i = 0, . . . , 2n,

and approximating the mean and covariance of y based on weighted sample mean
and covariance of Yi

ȳ ≈
2n∑
i=0

W
(m)
i Yi

Σy ≈
2n∑
i=0

W
(c)
i (Yi − ȳ)(Yi − ȳ)>.

Note that the UT method requires 2n + 1 function evaluations, which scale
linearly with respect to the dimension of the uncertainty. Therefore, this method
can be substantially cheaper than Monte Carlo-based uncertainty propagation
methods, which typically require several orders of magnitude more sample points
for accurate computation of ȳ and Σy [44].
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Prediction scheme using UT. The UT method can be adopted to approx-
imate the mean and covariance of the predictions of (4.4) over the planning
horizon N . Define the concatenated vector of augmented states, disturbances,
and measurement noise as

xak =
[
z>k , w

>
k , v

>
k

]>
.

For k = 0, 1, . . . , N − 1, perform the following steps: (i) generate the sigma

points X a
k = [(X z

k )>, (Xw
k )>, (X v

k )>]> using x̂ak =
[
ẑ>k , w̄

>, v̄>
]>

and Σ̂xak
=

diag(Σ̂zk , Σw, Σv) and compute the weights W
(m)
i , W

(c)
i as described above, (ii)

propagate the latter sigma points through the dynamics X z
k+1 = fz(X z

k ,Xw
k ), and

(iii) compute the mean and covariance estimates of the augmented states from

ẑk+1 =
2n∑
i=0

W
(m)
i X z

i,k+1 (4.17a)

Σ̂zk+1
=

2n∑
i=0

W
(c)
i (X z

i,k+1 − ẑk+1)(X z
i,k+1 − ẑk+1)>, (4.17b)

where n = nz +nw +nv. Similarly, the sigma points for the system outputs can be
defined using the measurement function Yk = hz(X z

k ,X v
k ) at each k = 0, . . . , N .

The sigma points are used to approximate the mean and covariance of the outputs
by

ŷk =
2n∑
i=0

W
(m)
i Yi,k (4.18a)

Σ̂ykyl =
2n∑
i=0

W
(c)
i (Yi,k − ŷk)(Yi,l − ŷl)>, ∀k, l = 0, 1, . . . , N. (4.18b)

The covariance matrix of the system outputs over the planning horizon, Σ̂y0:N ,
can then be constructed from these blocks, of which only N(N + 1)/2 elements
should be calculated due to symmetry.

4.3.2 Tractable Criterion for Multiple Hypothesis
Discrimination

Bound on the Bayes risk. There exists no closed-form expression for the
Bayes risk due to the multivariate nature of the integral in (4.3). This poses a key
challenge to direct application of the Bayes risk in Problem 1. In [7], a tractable
upper bound on the Bayes risk, known as the Bhattacharrya bound [14], has been
derived for the case of multiple hypotheses. For a general system observation y
and manipulated input u, the result is summarized as follows.
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Theorem 1 For hypothesis discrimination between a finite number of hypotheses,
the Bayes risk is upper bounded by

P (error) ≤
∑
i

∑
j>i

P (Hi)
1
2P (Hj)

1
2Bij(u), (4.19)

where

Bij(u) =

∫ √
p(y | Hi,u)p(y | Hj,u)dy (4.20)

is the Bhattacharrya coefficient between likelihoods of the ith and jth hypotheses.

Proof 1 The key notion is to express (4.3) in terms of the Bayes risk for each
of the pairs of hypotheses, and then bound the Bayes risk between each pair using
the established Bhattacharrya bound. See [7] for details.

The Bhattacharrya coefficient as optimization criterion. The bound
(4.19) alleviates the need to compute the decision regions Ri in (4.3). However,
calculating the Bhattacharrya coefficient Bij still hinges on (possibly expensive)
high-dimensional numerical integration. In the case of Gaussian system observa-
tions, Bij can be evaluated analytically, circumventing the numerical integration
in (4.20). This motivates the following approximation

p(y0:N | Hi, u0:N−1) ≈ N (ȳ
(i)
0:N , Σ

(i)
y0:N

), ∀Hi ∈ H,

where the mean ȳ
(i)
0:N and covariance Σ

(i)
y0:N can be obtained using the uncertainty

propagation methods described in the previous section. Under this approximation,
the Bhattacharrya coefficient (4.20) simplifies to

Bij(u0:N−1) = e−d(i,j), (4.21)

where

d(i, j) =
1

4
(ȳ

(i)
0:N − ȳ

(j)
0:N)>[Σ(i)

y0:N
+Σ(j)

y0:N
]−1(ȳ

(i)
0:N − ȳ

(j)
0:N) (4.22)

+
1

2
ln

 det

(
Σ

(i)
y0:N

+Σ
(j)
y0:N

2

)
√

det
(
Σ

(i)
y0:N

)
det
(
Σ

(j)
y0:N

)
 .

Using the error bound (4.19) on the Bayes risk P (error), a tractable objective
function for Problem 1 can now be defined as

J(u0:N−1) =

nf∑
i=0

nf∑
j=i+1

P (Hi)
1
2P (Hj)

1
2 e−d(i,j). (4.23)
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4.3.3 Moment-based Chance Constraint Approximation

A key feature of Problem 1 is to enforce the system inputs and states to satisfy
their constraints during the fault diagnosis experiment. Input constraints typically
arise from practical considerations such as hard bounds on the manipulated
variables (i.e., umin ≤ uk ≤ umax) or the maximum allowable system perturbation
for fault diagnosis, which is commonly defined in terms of the “energy” of the
input sequence [18, 39]. On the other hand, state constraints are generally
intended to ensure that the system remains in a “safe” operating region (or in a
region for which the model hypotheses have been validated) as well as to ensure
that certain system performance requirements are met during the fault diagnosis
experiment. In the system (4.4), however, the state constraints can only be
enforced in probability as the chance constraint (4.5) because of the stochastic
system uncertainty.

Without loss of generality, assume that the feasible region X , {x : A>x ≤ b}
is a polytope defined by matrix A ∈ Rnx×nc and vector b ∈ Rnc . Since evaluating
the probability distribution p(xk | H, u0:k−1) can be computationally prohibitive,
we look to derive a moment-based approximation for the chance constraint (4.5)
that is not overly conservative. To this end, p(xk | H, u0:k−1) is approximated to
have a Gaussian distribution, so that it can be represented in terms of its first
two moments. The latter moments can be computed directly from z̄0:N and Σz0:N

by defining xk = Tkz0:N , where Tk is a matrix of all zeros except for Inx in the
position of the kth step states

E[xk | H] = x̄k = Tkz̄0:N

cov(xk | H) = Σxk = TkΣz0:NT
>
k .

For any normally distributed random variable x ∼ N (x̄, Σx) of dimension n,
enforcing x ∈ X with at least probability 1− ε can be expressed exactly in terms
of the integral condition

P (x ∈ X ) =
1√

(2π)n det(Σx)

∫
X
e−

1
2

(ζ−x̄)>Σ−1
x (ζ−x̄)dζ ≥ 1− ε. (4.24)

Since it is challenging to enforce the above constraint directly, the approach taken
in Refs. [36, 42] is adopted to derive a simple and efficient relaxation for (4.24).
First, define the ellipsoid

Er ,
{
x : x>Σ−1

x x ≤ r2
}
,

for any radius r > 0. If it can be ensured that x̄⊕Er ⊂ X , then P (x ∈ X ) > P (x ∈
x̄⊕Er) must hold by the axioms of probability. The expression P (x ∈ x̄⊕Er) can
be stated in terms of the chi-squared distribution

P (x ∈ x̄⊕ Er) = P ((x− x̄)>Σ−1
x (x− x̄) ≤ r2) = Fχ2(r2; n),
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where Fχ2(·; n) is the cdf of the chi-squared distribution with n degrees of freedom.
Therefore, the radius r can be selected such that Fχ2(r2; n) = 1− ε in order to
guarantee that the chance constraint holds. The constraint P (x ∈ X ) can now be
replaced with the stronger constraint x̄⊕ Er ⊂ X for the properly chosen radius.
The constraint x̄ ⊕ Er ⊂ X is in fact equivalent to requiring that the ellipsoid
lies within a collection of half-spaces defined as Hj = {x : a>j x ≤ bj}, where aj is
the jth column of A and bj is the jth element of b. The latter inclusion can be
expressed in terms of simpler constraints using the result of the following lemma.

Lemma 1 Let E = {y ∈ Rn : y>Y −1y ≤ 1}, b ∈ Rn, and Y = Y > > 0. Consider
the problem of maximizing a linear function over an ellipsoidal set

max
y∈E

b>y.

Then, the solution and optimal objective value to this problem are given by y? =
Y b/
√
b>Y b and b>y? =

√
b>Y b, respectively.

Proof 2 The proof of this result follows from solving the KKT conditions derived
using the method of Langrange multipliers. See [30] for a full solution.

By defining y = δxj = x − x̄, Y = r2Σx, and b = aj, the result of Lemma 1

yields the “worst-case” vector such that x̄+ δx?j of length a>j δx
?
j = r(a>j Σxaj)

1
2

is contained in the hyperplane Hj. This directly leads to the assertion that
x̄⊕ Er ⊂ X can be equivalently stated as [42]

a>j x̄+ r
√
a>j Σxaj ≤ bj, j = 1, . . . , nc. (4.25)

This concept is visually illustrated in Figure 4.2. In this work, the expression (4.25)
is readily used to obtain a moment-based surrogate for the chance constraint (4.5)

given the approximation p(xk | Hi, u0:k−1) ≈ N (x̄
(i)
k , Σ

(i)
xk ).

4.3.4 Tractable OED Problem

The above discussed methods are used to obtain a tractable surrogate for Problem
1. For any initial values of the augmented states, the set of feasible input sequences
over the planning horizon N that ensure the fulfillment of the input constraints
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x̄

H1 = {x : a>
1 x  b1}

H2 = {x : a>
2 x  b2} Er

x̄ + �x1

x̄ + �x2

Figure 4.2: Illustration of method for guaranteeing ellipse lies in feasible polytopic region
defined by multiple half-spaces. Adapted from [42].

and the moment-based surrogate for the chance constraint (4.5) is defined by

Π0:N(z, Z) =



u0:N−1 ∈ RNnu

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z̄
(i)
0 = z(i), Σ

(i)
z0 = Z(i),

ẑ
(i)
0:N determined from (4.8) or (4.17a),

Σ̂
(i)
z0:N determined from (4.10) or (4.17b),

ŷ
(i)
0:N determined from (4.14a) or (4.18a),

Σ̂
(i)
y0:N determined from (4.14b) or (4.18b),

x̂
(i)
k+1 = T

(i)
k+1ẑ

(i)
0:N , Σ̂

(i)
xk = T

(i)
k+1Σ̂

(i)
z0:N

(
T

(i)
k+1

)>
,

uk ∈ U , a>j x̂(i)
k+1 + r

(
a>j Σ̂

(i)
xk+1aj

) 1
2 ≤ bj,

∀i = 0, . . . , nf ,
∀j = 1, . . . , nc,
∀k = 0, . . . , N − 1,



.

(4.26)

The proposed tractable OED problem can now be stated as

min
u0:N−1∈Π0:N (z̄0,Σz0 )

J(u0:N−1) =

nf∑
i=0

nf∑
j=i+1

P (Hi)
1
2P (Hj)

1
2 e−d(i,j), (4.27)

where d(i, j) is defined in (4.22), which is a nonlinear function of u0:N−1. Note
that either the linearization method or the UT method can be used in (4.26)
for approximating the mean and covariance of the augmented states. A key
feature of the proposed formulation is its flexibility in terms of the choice of the
uncertainty propagation method and the type of input and state constraints that
can be incorporated in Π0:N . Problem (4.27) is a nonlinear programming (NLP)
problem that can be solved efficiently to local optimality using various nonlinear
optimization methods such as interior point methods [27] and sequential quadratic
programming [33]. The optimal input sequence, denoted by u?0:N−1, will enable
discrimination between the model hypotheses in a probabilistic sense since the
system uncertainty is of stochastic nature.
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In OED for offline model selection, once the measurements y?0, , . . . , y
?
N that

correspond to the system evolution under the optimal input sequence u?0:N−1 have
been collected, the probability of each model hypothesis can be evaluated using
Bayes rule [7]

P (Hi | y?0:N , u
?
0:N−1) =

p(y?0:N | Hi, u
?
0:N−1)P (Hi)∑nf

i=0 p(y
?
0:N | Hi, u?0:N−1)P (Hi)

. (4.28)

The main challenge in (4.28) arises from computing the likelihood function p(y?0:N |
Hi, u

?
0:N−1). The likelihood function can be approximated using sample-based

methods such as particle filtering [19]. Alternatively, approximating the likelihood
function as a Gaussian distribution, which is also done for deriving a bound on
the Bayes risk in (4.19), greatly simplifies the computation of (4.28). In the next
section, an algorithm is presented for online OED, which relies on solving the
problem (4.27) in tandem with Bayes rule (4.28) in real time as the fault diagnosis
experiment is conducted.

4.3.5 OED for online model selection

The unmodeled system uncertainties and disturbances in the problem (4.27)
can hamper effective fault diagnosis when the optimal input sequence u?0:N−1 is
designed completely offline. On the other hand, as the input sequence is applied
to the true (but unknown) system, system measurements can be used to inform
fault diagnosis in real time via updating the estimates of the augmented states
and the probabilities of each model Hi ∈ H. The measurement feedback to the
problem (4.27) is likely to give some degree of robustness to unmodeled system
uncertainties and disturbances when designing the input sequence. The receding-
horizon implementation of the OED problem hinges on recursively updating
the model probabilities online based on Bayes rule (4.28) and, subsequently,
redesigning the input sequence in (4.27) using the most recent system information.

Recursive Calculation of Model Probabilities Online

Given system measurements y0:k and inputs u0:k−1 up until sampling time k ∈ N0,
stacked into a single information vector I k = {y0:k, u0:k−1}, the probability of each
model Hi ∈ H at every k ∈ N0 can be evaluated recursively using Bayes rule

P (Hi | I k) =
p(yk | y0:k−1, u0:k−1, Hi)P (Hi | I k−1)∑nf
i=0 p(yk | y0:k−1, u0:k−1, Hi)P (Hi | I k−1)

, P (Hi | I−1) = P (Hi).

(4.29)

The likelihood function p(yk | y0:k−1, u0:k−1, Hi) in fact represents the so-called
evidence (aka innovation), which can be obtained from state estimation for the
given model Hi. As is well-known from the Bayesian estimation literature [12],



CHAPTER 4. OPTIMAL EXPERIMENT DESIGN FOR ONLINE MODEL
STRUCTURE SELECTION 85

no closed-form solution exists for state estimation of nonlinear systems. A vari-
ety of nonlinear Bayesian estimation techniques such as the extended Kalman
filter (EKF) [24], the unscented Kalman filter (UKF) [44], the ensemble Kalman
filter [21], and the particle filter [19] have been developed that alleviate the
construction of the evidence distribution through recursively computing the mean
and covariance (and possibly higher moments) of the posterior state distribution
p(xk | y0:k, u0:k−1H) and the evidence p(yk | y0:k−1, u0:k−1, H). Note that the
parameter uncertainty in (4.4) poses an additional challenge to evaluating the
evidence in (4.29). This challenge can be addressed by converting the combined
state and parameter estimation problem into a standard state estimation problem
based on the augmented state system in (4.6).

In this work, the evidence is approximated as a multivariate Gaussian dis-
tribution p(yk | y0:k−1, u0:k−1, H) ≈ N (ȳk|k−1, Σyk|k−1

), where yk|k−1 = yk |
y0:k−1, u0:k−1, H is a conditional random variable representing the evidence with
mean ȳk|k−1 and covariance Σyk|k−1

. In principle, any of the aforementioned non-
linear estimation methods can be used to determine the mean and covariance
of the evidence. The EKF and UKF methods are straightforward extensions of
the linearization and UT uncertainty propagation methods described previously.
These filters both rely on a model prediction and a measurement update step.
The prediction step calculates ẑk|k−1, Σ̂zk|k−1

, ŷk|k−1, and Σ̂yk|k−1
using either (4.8),

(4.10), (4.14a), and (4.14b) in the EKF or (4.17a), (4.17b), (4.18a), and (4.18b)
in the UKF. In the update step, the latter model predictions are updated using
the system observations. To this end, the filter gain is defined as

Kk = Σ̂zk|k−1yk|k−1
Σ̂−1
yk|k−1

, (4.30)

where in the EKF the covariance matrices are given by

Σ̂zk|k−1yk|k−1
= Σ̂zk|k−1

C>k|k−1

Σ̂yk|k−1
= Ck|k−1Σ̂zk|k−1

C>k|k−1 +Mk|k−1ΣvMk|k−1,

and in the UKF the covariance matrices are given by

Σ̂zk|k−1yk|k−1
=

2n∑
i=0

W
(c)
i (X z

i,k|k−1 − ẑk|k−1)(Yi,k|k−1 − ŷk|k−1)>

Σ̂yk|k−1
=

2n∑
i=0

W
(c)
i (Yi,k|k−1 − ŷk|k−1)(Yi,k|k−1 − ŷk|k−1)>.

The estimates of the mean and covariance of the posterior distribution of the
augmented states can now be updated as

ẑk|k = ẑk|k−1 +Kk(yk − ŷk|k−1) (4.31a)

Σ̂zk|k = Σ̂zk|k−1
−KkΣ̂yk|k−1

K>k . (4.31b)
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Algorithm 1 Recursive estimation of states, parameters, and model probabilities.

Require: Specify model H and priors P (H) for all H ∈ H.
1: Offline:
2: For all H ∈ H, calculate the initial estimates ẑ0|−1 and Σ̂z0|−1

from p(x0, θ).
3: Online:
4: for k = 0, 1, 2, . . . do
5: Obtain measurements yk from the true system.
6: For each H ∈ H, calculate evidence ŷk|k−1, Σ̂yk|k−1

from the state estimates

ẑk|k−1, Σ̂zk|k−1
using either the linearization or UT method for uncertainty

propagation.
7: For each H ∈ H, update the model probabilities P (H | I k) us-

ing the Bayes rule (4.29) and measurements yk under the approximation
p(yk | y0:k−1, u0:k−1, H) ≈ N (ŷk|k−1, Σ̂yk|k−1

).

8: For each H ∈ H, calculate posterior state estimates ẑk|k, Σ̂zk|k using (4.31).
9: Apply input uk to the true system.

10: For each H ∈ H, calculate predictions ẑk+1|k, Σ̂zk+1|k from ẑk|k, Σ̂zk|k and
uk using either the linearization or UT method.

11: end for

Note that the prediction and update steps in the estimator must be repeated at
every time instant k. This procedure yields the estimates of ȳk|k−1 and Σyk|k−1

,
which are required for approximating the evidence in (4.29). The recursive
estimation procedure is summarized in Algorithm 1.

Online Design of Input Sequence

In online OED, the surrogate problem (4.27) should be solved recursively based
on available system information I k at every measurement sampling time k =
0, . . . , N − 1. This amounts to minimizing P (error | I k) subject to system
constraints. Hence, for online OED, the priors P (Hi) and the initial conditions
z̄0, Σz0 in (4.27) must be replaced with P (Hi | I k) and ẑk|k, Σ̂zk|k , respectively,
which are readily available from the recursive evaluation of Bayes rule (4.29). At
each sampling time during the planning horizon k = 0, . . . , N − 1, online OED
involves solving

u?k:N−1(ẑk|k, Σ̂zk|k) , argmin
uk:N−1∈Πk:N (ẑk|k,Σ̂zk|k )

J(uk:N−1 | I k), (4.32)

where J(uk:N−1 | I k) is defined as in (4.23) except that all values are conditioned
on the current system information I k. The receding-horizon implementation of the
online OED problem (4.32) then follows the same recursive estimation procedure
detailed in Algorithm 1 with the input uk in Step 9 being the first element of the
optimal input sequence u?k:N−1(ẑk|k, Σ̂zk|k). Note that the input at each sampling
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time is a function of the mean and covariance of the posterior distribution of the
augmented states for each model.

4.3.6 Simulation Case Study

System Description

The performance of the proposed OED framework for fault diagnosis is demon-
strated on a biochemical reaction occurring in a continuous well-stirred bioreactor.
Assuming constant volume, the continuous-time process dynamics are described
by [1, 20]

dX = (−DX + µX) dt+ σXdwX(t) (4.33a)

dS =

(
D(Sf − S)− 1

YX/S
µX

)
dt+ σSdwS(t) (4.33b)

dP = (−DP + (αµ+ β)X) dt+ σPdwP (t), (4.33c)

where X, S, and P are, respectively, the concentration of biomass, substrate, and
product in the bioreactor; D is the dilution rate (equal to the inlet feed divided
by the reactor volume); Sf is the concentration of substrate in the inlet feed; YX/S
is the yield of biomass per substrate consumed; α and β are the yield parameters
for the production of P ; and wX(t), wS(t), and wP (t) are independent, zero-mean
unit-variance Weiner processes scaled by standard deviations σX , σS, and σP ,
respectively. The quantity µ represents the (substrate-dependent) growth rate of
biomass, given by

µ =
µmaxS

KM + S
, (4.34)

where µmax denotes the maximum growth rate; and KM is an affinity constant.
The dilution rate D is the only manipulated input of the process. The nominal
parameter values and operating conditions are listed in Table 4.1.

Normal Operation and Fault Scenarios

Normal operation is described by (4.33) with parameters and operating conditions
(aka initial conditions) listed in Table 4.1. The nominal model is the same as
that used for normal operation, however, the parameter µmax is treated as an
uncertainty since it cannot be perfectly estimated from data. The prior distribution
µmax ∼ N (µ̄max, Σµmax) is assumed to be normal with mean µ̄max = 0.6 hr−1 and
variance Σµmax = 0.05 hr−1. Note that the mean of µmax is different from that of
its true value.

Under continuous operation of the bioreactor, faults must be swiftly identified
in order to prevent product loss, which can lead to negative economic consequences.
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Table 4.1: Nominal parameters and operating conditions of the continuous bioreactor [1, 20].

Variable Nominal Value Units
YX/S 0.4 g/g
α 2.2 g/g
β 0.2 hr−1

µmax 0.48 hr−1

KM 1.2 g/L
Sf 20 g/L
σX 0.25 g/L
σS 0.25 g/L
σP 0.25 g/L
X 7.038 g/L
S 2.404 g/L
P 24.87 g/L

To demonstrate the efficacy of the proposed OED framework, two different types
of fault scenarios relative to normal operation are considered. First, a change in
the model structure is considered in which inhibition of the biochemical reaction
takes place due to the presence of excess substrate (commonly referred to as
substrate inhibition). In this fault scenario, the specific growth rate µ is described
by

µ =
µmaxS

KM + S
(

1 + S
KI

) , (4.35)

instead of (4.34), where KI is the rate constant that specifies the strength of
inhibition. The parameters for the substrate inhibition fault model are the same
as those used for the nominal model with KI = 1 g/L. The second fault scenario
is an operation fault in which the substrate concentration in the inlet feed drops
by 20%, i.e., Sf ← 0.8Sf , resulting in Sf = 16 g/L.

Three model hypotheses based on the model structure (4.33) are used to
represent normal operation and the two fault scenarios. The continuous-time
models are discretized to obtain discrete-time models of the form (4.4) with states
x = [X, S, P ]> and input u = D. Measurements of S and P are taken every 0.2
hr. Both measurements are corrupted with zero-mean Gaussian white noise with
standard deviations of 0.03 g/L and 0.2 g/L, respectively. The initial states are
also not known exactly and represented by the prior x0 ∼ N (x̄0, Σx0) with mean
x̄0 = [6.5, 2.75, 26]> g/L and covariance Σx0 = diag(0.5, 0.5, 0.5) g2/L2.
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Figure 4.3: Comparison of the expected value of the process dynamics for the three models.
The solid, dotted, and dashed lines correspond to the models of normal operation, substrate
inhibition, and substrate offset in the feed, respectively.

Performance Evaluation of Offline OED

A comparison of the expected value of the states for normal operation and
fault scenarios is shown in Figure 4.3 under a nominal input sequence (adapted
from [20]). It is evident that the dynamics of the three operation scenarios are
very similar. As such, fault diagnosis is expected to be more challenging due to
the fact that there is uncertainty in the maximum growth rate as well as process
and measurement noise.

Figure 4.4 shows ten Monte Carlo runs of the evolution of the probability of
each model P (Hi | I k) under the nominal input sequence when normal operation
model, substrate inhibition model, and substrate offset model are active. The
active model is misidentified in all three cases shown in Figure 4.4a-c since the
substrate inhibition model appears to be consistently active in the first hour of
process operation. In fact, the nominal model is not properly identified throughout
the entire process run in Figure 4.4a.

To better discriminate between the three model hypotheses that correspond to
the different operation scenarios, we look to determine the optimal dilution rate
trajectory, denoted by D?, that minimizes a bound on the Bayes risk P (error) by
solving the OED problem (4.27). The optimization problem is solved using the
Matlab solver fmincon. Figure 4.5 depicts ten Monte Carlo runs of the evolution
of the model probabilities P (Hi | I k), with D? applied to the process over a span
of two hours, when the normal operation model, substrate inhibition model, and
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Figure 4.4: Ten Monte Carlo runs of the evolution of probability of each model being active
using nominal input sequence under (top) normal operation, (middle) substrate inhibition, and
(bottom) substrate concentration offset in the feed.
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substrate offset model are active. In all three cases, the active model is correctly
identified reasonably fast. Note that subsequent measurements further improve
upon the confidence in the true model since the probability of the active model
gradually increases. This directly contrasts the poor discriminating power of the
nominal input sequence, which illustrates the usefulness of input design for fault
diagnosis.

Comparison between Online OED and Offline OED

The above results revealed the efficacy of offline OED, where the optimal input
sequence was designed only once, offline. As such, when a deviation from normal
operation is detected, for example using process monitoring methods [25, 46], the
optimal dilution rate D? sequence should be designed and subsequently applied to
the process in order to diagnose the current mode of operation using the process
observations collected during the fault diagnosis experiment. When the tractable
OED problem (4.27) can be solved within the measurement sampling intervals,
it will often be advantageous to redesign the input sequence based on the most
recent system observations. Due to regular adaptation of the model probabilities
and state/parameter estimates (see (4.32)), online fault diagnosis partly accounts
for unmodeled system uncertainties and disturbances, which can be detrimental
to the efficacy of input sequences designed offline.

To demonstrate the effectiveness of the proposed online OED method (Algo-
rithm 1 combined with the optimization (4.32)), its performance is compared to
that of the offline OED problem (4.27). A shrinking-horizon implementation is
utilized for online OED in which the final time of the planning horizon is fixed at
all iterations of the Algorithm 1. Figure 4.6 compares the optimal dilution rate
sequence computed online through repeated solution of (4.32) to that obtained
from solving the offline OED problem under the same uncertainty realizations
when the second fault scenario is active. The corresponding model probability
evolutions are shown in Figure 4.7. Figure 4.6 suggests that the online optimized
dilution rate sequence exhibits significant fluctuations between the upper and
lower bounds of the manipulated input, whereas the offline computed input se-
quence exhibits a smoother behavior. The online and offline input sequences are
significantly different due to the fact that the model probabilities are changing
during the fault diagnosis experiment, which are accounted for when the input
sequence is redesigned at each sampling time in online OED. For example, the
substrate inhibition model can be ruled out after the first few sampling times as
its probability goes to zero (see Figure 4.7). This allows the online OED method
to direct its efforts at discriminating between the normal operation and substrate
feed offset models, in contrast to considering all three models as in offline OED.
Figure 4.7 suggests that the correct model is identified faster in online OED, while
leading to higher probability of the true model than the case of offline OED. In
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Figure 4.5: Ten Monte Carlo runs of the evolution of probability of each model being active
using optimal input sequence D? under (top) normal operation, (middle) substrate inhibition,
and (bottom) substrate concentration offset in the feed.
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addition, the pulse-like dilution rate sequence computed online is likely to be less
intrusive to the process since less substrate is fed to the bioreactor (see Figure
4.6).
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Figure 4.6: Comparison of the optimal input sequences for online OED (blue) and offline
OED (orange) computed under the same uncertainty realizations when the second fault scenario
is active.
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Figure 4.7: Evolution of the probabilities for the normal operation (black), substrate inhibition
(red), and substrate concentration offset in the feed (blue) models under the optimal input
sequences of online OED (solid line) and offline OED (dashed line) shown in Figure 4.6.
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Online OED in Practice

We now demonstrate how the proposed online OED method can be applied in
practice. Consider three distinct operational stages of a system: (i) normal
system operation during which a performance loss can be detected using standard
performance monitoring and fault detection methods, (ii) online OED to diagnose
the current system operation mode, and (iii) performance recovery of system to
desired conditions. For the bioreactor case study at hand, the there operational
stages are illustrated in Figure 4.8, which shows the product concentration, normal
and fault model probabilities evaluated online, and the dilution rate sequence
(i.e., manipulated input). The first three hours of operation correspond to normal
operation wherein the dilution rate is fixed and the product concentration remains
relatively constant. Towards the end of the third hour of operation, the product
concentration starts to decrease (Figure 4.8a), which indicates that a process
change/fault has occurred. Note that the probability of the normal operation
model decreases during this period, but changes relatively slowly (Figure 4.8c).
The proposed online OED method is then executed during the next two hours of
operation (from 3-5 hours). During this period, the dilution rate is manipulated
by OED to generate informative measurements that can aid identifying the model
that corresponds to the correct mode of operation with high confidence (Figure
4.8d). The latter model can then be used to recover the operation. In this case
study, the dilution rate is set to a value that is known to yield a steady-state
product concentration at the setpoint of 27 g/L. In general, advanced control
strategies, such as model predictive control, can be used in this stage to enable
high-performance system operation.

Twenty Monte Carlo runs were performed to evaluate the performance of
online OED under various uncertainty realizations (not shown here). In all of the
Monte Carlo runs, the correct model was identified in only few sampling times,
suggesting the robustness of the online OED method to system uncertainties. In
addition, the product concentration eventually returned to the desired setpoint in
all runs. To evaluate the effectiveness of the proposed moment-based surrogate for
chance constraint approximation, a chance constraint on the product concentration
was included in the OED problem. Even though up to 15% violation of the state
constraint P > 23 g/L was allowed in the chance constraint, a maximum of
10% constraint violation was observed in the Monte Carlo runs, suggesting a
non-conservative chance constraint approximation. It should be noted that in
this work the online OED problem was solved in Matlab using fmincon. The
CPU time for solving the optimization problem was approximately 5 min on a
machine with 8 GB of RAM (the measurement sampling time in this case study
was 12 min). For systems with faster sampling times, the optimization in the
OED problem could be substantially sped up by using state-of-the-art solvers such
as IPOPT [43] combined with automatic differentiation tools such as CasADi [2]



CHAPTER 4. OPTIMAL EXPERIMENT DESIGN FOR ONLINE MODEL
STRUCTURE SELECTION 95

that provide exact gradients to the optimizer.
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Figure 4.8: One run of online OED during system operation. Different segments of time
correspond to different operational stages: 0-3 hours is normal operation (fault occurs at start
of second hour), 3-5 hours is the fault diagnosis period during which online OED is performed,
and 5-8 hours is the performance recovery stage. The plots show (a) the product concentration
(dotted black line is the setpoint and solid red line is the constraint), (b) the active model in
different stages of operation, (c) the online model probabilities (black line is nominal operation,
red line is substrate inhibition fault, and blue line is substrate feed offset fault), and (d) the
dilution rate sequence.

4.4 Method 2: OED for online model selection

using the k-nearest neighbors distance

This section presents a computationally tractable, sample-based OED formulation,
based on non-intrusive generalized polynomial chaos (gPC) and UT. The proposed
sample-based uncertainty propagation method, which draws from the benefits
of gPC and UT for handling model uncertainty and disturbances, respectively,
is particularly suitable for optimization, since it can approximate the statistics
of system variables with a fairly small number of samples that are chosen sys-
tematically. The optimization criterion is defined in terms of a sample-based
measure of k-nearest neighbors distance between probabilistic predictions of model
hypotheses for the normal and faulty system operation. Lastly, the OED method
is demonstrated on a bioreactor case study.

4.4.1 Uncertainty Propagation

We present an efficient uncertainty propagation method that considers both model
uncertainty and stochastic disturbances in (4.4). For ease of notation, we will
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rename the (possibly) joint probability distribution of x0 and θ, p(x0, θ), as ξ.The
key notion of the proposed method is to decouple the propagation of probabilistic
uncertainty in the model parameters and initial conditions from the propagation
of stochastic disturbances using conditional probability rules, so that different
methods that are best-suited for handling each uncertainty source can be adopted.
To this end, UT [44] is used for propagation of stochastic disturbances conditioned
on a realization of model uncertainty ξ, which is then integrated over different
realizations of model uncertainty using non-intrusive gPC [45]. This results in a
sample-based method for joint propagation of stochastic disturbances and model
uncertainty, as described below.

Unscented transform for propagation of stochastic disturbances
conditioned on model uncertainty

The UT method can effectively deal with nonlinearities, as it does not require
linearization of the nonlinear system equations and thus computation of Jacobian.
As stated for in Section 4.3, the UT method consists in the propagation of a
relatively small number of deterministically-chosen samples (known as sigma
points), centered around the mean of states, through the system dynamics. In this
method, the UT method is used for the propagation of stochastic disturbances
w(t) in (4.4) given a realization of the model uncertainty ξ.

Denote the sigma points conditioned on a given realization of model uncertainty
by S(t; ξ). Let m(t; ξ) and V (t; ξ) be the mean and covariance of the states
conditioned on a realization of the standard random variables ξ. A set of 2n+ 1
sigma points {Si(t; ξ)}2n

i=0 is defined as

S0(t; ξ) = m(t; ξ),

Si(t; ξ) = m(t; ξ) +
(√

(n+ λ)V (t; ξ)
)
i
, i = 1, . . . , n,

Si(t; ξ) = m(t; ξ)−
(√

(n+ λ)V (t; ξ)
)
i
, i = n+ 1, . . . , 2n,

where n = nx+nw; (V )i is the ith column of matrix V ; and λ is a scaling parameter.
The sigma points {Si(t; ξ)}2n

i=0 are propagated through the nonlinear system
dynamics (4.4) to obtain the propagated points {Pi(t; ξ)}2n

i=0 that characterize the
distribution of the states, conditioned on ξ, in terms of the mean and covariance

mP(t; ξ) ≈
2n∑
i=0

Wm
i Pi(t; ξ),

VP(t; ξ) ≈
2n∑
i=0

W c
i

(
Pi(t; ξ)−mP(t; ξ)

)(
Pi(t; ξ)−mP(t; ξ)

)
.
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The mean weights {Wm
i }2n

i=0 and covariance weights {W c
i }2n

i=0 are defined as

Wm
0 =

λ

n+ λ
,

W c
0 =

λ

n+ λ
+ (1− α2 + β),

Wm
i = W c

i =
1

2(n+ λ)
, i = 1, . . . , 2n,

where α determines the spread of sigma points around the mean and β accounts
for prior knowledge of the state distribution [44].

The computational complexity of the UT method scales linearly with the
dimension of the stochastic disturbances nw, as UT relies on 2n + 1 function
evaluations; that is, one function evaluation per sigma point. This can result
in considerable computational speed-up in comparison with Monte Carlo-based
sampling methods [9].

Non-intrusive polynomial chaos for propagation of model uncertainty
of sigma points

Disturbance propagation based on UT yields the (propagated) sigma points
{Pi(t; ξ)}2n

i=0 that are conditioned on model uncertainty. We now employ gPC
to integrate the sigma points over the probabilistic model uncertainty ξ. gPC
consists in approximating a stochastic variable, the sigma points Pi, with the
truncated expansion

Pi(t; ξ) ≈
L∑
k=0

P̃i,k(t)Φk(ξ), (4.36)

where P̃i,k denotes the expansion coefficients of sigma point Pi, which evolve as a
function of system dynamics; and Φk denotes multivariate polynomial basis func-
tions constructed from the univariate polynomial basis functions of the individual
random variables ξj

Φk(ξ) =
m∏
j=1

φ
(j)

α
(i)
j

(ξj), α
(i)
j ∈ {0, 1, . . .}, ∀j = {1, . . . ,m},

with α
(i)
j being the jth element of a multi-index whose value corresponds to the

order of the basis of the jth random variable in the ith multivariate polynomial
basis. The univariate polynomials φ belong to the Askey-Wiener scheme of
polynomials, so that each univariate polynomial has an optimal convergence
rate with respect to ξj [45]. The truncation order in the gPC expansion (4.36)

is defined by L + 1 =
(nξ+m)

m!nξ!
, where m denotes the prespecified degree of the
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multivariate polynomial basis and nξ denotes the dimension of ξ. An important
property of the polynomial basis functions in the Askey-Wiener scheme, key to
the computational efficiency of gPC, is their orthogonality with respect to the
multivariate distribution of ξ. Note that the polynomials Φk(ξ) are constructed
only once, merely based on the known distribution of ξ.

Evaluation of the gPC expansions for each of the 2n+ 1 sigma points requires
computation of the coefficients P̃i,k in (4.36), which can be done using intrusive
or non-intrusive methods [23]. In this work, we adopt the non-intrusive method,
which hinges on evaluating the system model at given samples of model uncertainty
{ξ(i)}nsj=1. This enables estimating the gPC coefficients as a weighted sum of the

samples {P(j)
i (t, ξ(j))}nsj=1P̃i,0(t)

...

P̃i,L(t)

 =

Π0,1, . . . ,Π0,ns
...

. . .
...

ΠL,1, . . . ,ΠL,ns


 P

(1)
i (t; ξ(1))

...

P(ns)
i (t; ξ(ns))

 , (4.37)

where the weights Πk,j describe the effect of the sigma point samples {P(j)
i }nsj=1

on the expansion coefficients P̃i,k for k = 0, ..., L. Note that the sigma point
samples are simply determined by evaluating the sigma points {Pi(t; ξ)}2n

i=0 for
the uncertainty realizations {ξ(j)}nsj=1. The non-intrusive method can be used
irrespective of the form and complexity of the nonlinear model equations.

In this method, the weight matrix in (4.37) is defined in terms of least-squares
estimation of the expansion coefficients

Π = (Λ>Λ)−1Λ>,

with Λ given by (see [37])

Λ =


Φ0(ξ(1)) Φ1(ξ(1)) · · · ΦL(ξ(1))
Φ0(ξ(2)) Φ1(ξ(2)) · · · ΦL(ξ(2))

...
... · · · ...

Φ0(ξ(ns)) Φ1(ξ(ns)) · · · ΦL(ξ(ns))

 .
The model uncertainty sample set {ξ(j)}nsj=1 can be selected as the roots of the
polynomial basis of one degree higher (m+ 1), so that the number of uncertainty

samples is ns =
(nξ+m+1)!

nξ!(m+1)!
. Due to the optimal choice of the polynomials in (4.36)

with respect to the multivariate distribution of ξ, non-intrusive gPC requires a
relatively small number of samples to propagate the model uncertainty ξ.

Joint propagation of model uncertainty and disturbances

Joint propagation of the probabilistic model uncertainty and stochastic distur-
bances entails expressing each one of the 2n+ 1 sigma points {Pi(t; ξ)}2n

i=0 as the
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gPC expansion (4.36). Evaluating the coefficients P̃i,k(t) using the non-intrusive
method in (4.37) requires computing the conditional sigma points {Pi(t; ξ)}2n

i=0 at
ns samples of the model uncertainty, i.e., {ξ(j)}nsj=1. Thus, the proposed sample-
based uncertainty propagation method uses a total of ntot = (2n + 1) × ns
samples for the joint propagation of probabilistic model uncertainty and stochastic
disturbances, yielding the total sigma points {Ps(t)}ntot

s=1 = {Pi(t; {ξ(j)}nsj=1)}2n
i=0.

4.4.2 Tractable OED Problem

We now present a tractable criterion for OED that readily uses the total sigma
points {Ps(t)}ntot

s=1, alleviating the need to either construct the distribution of the
model outputs, or evaluate their statistical moments. To enable probabilistic
model discrimination, the optimization criterion is defined as a measure of the
distance between the sigma points belonging to the competing model hypotheses
in the model hypothesis set H. The distance measure used here is inspired by the
k-nearest neighbors (KNN) algorithm [14], which computes the distance between
the sigma points of a model Hi to the k closest sigma points of other models in
H. Maximization of the kNN distance between the sigma points of the model
hypotheses in H will lead to separation of the output distributions, thus enhancing
fault diagnosability.

Let {P(l)
i (t)}ntot

i=1 and {P(o)
j (t)}ntot

j=1 denote the total sigma points corresponding
to the model hypotheses Hl and Ho, respectively. The L2 distance between each
sigma point of Hl to every sigma point of Ho is computed, and the indices of the
k closest sigma points of Ho to each sigma point of model Hl are stored. After
iterating over all points of model Hl, a total of ts = kntot pairs of sigma points
are obtained. Let {(p1, q1), ..., (pts , qts)} denote the stacked indices of the k closest
sigma points of model Mo to each sigma point of model Hl. The kNN measure of
probabilistic discrimination between the two models is defined as

d(l,o)(t) =

(pts ,qts )∑
(p=p1,q=q1)

(
‖P(l)

p (t)− P(o)
q (t)‖2

)
,

which quantifies the distance between ts pairs of sigma points predicted by models
Hl and Ho. For the multiple model hypotheses in the model setH, the optimization
criterion can now be defined as

J =

nf∑
l=0

nf∑
o=0,l 6=o

wl,od
(l,o)(t), (4.38)

where the weights wl,o are user-specified. For example, wm,n = ( 1
nf

) when uniform

weights are used for discrimination between all models. The optimization criterion
(4.38) allows for handling multiple model hypotheses and tuning the importance
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of probabilistic discrimination between different model-hypothesis pairs. The
tractable surrogate problem for Problem 1 can now be formulated as follows.

Problem 3 (Tractable OED). For the fault diagnosis horizon t ∈ [0, T ]
and the (possibly uncertain) initial states x, the active fault diagnosis for the
stochastic nonlinear system described by (4.4) with model hypotheses H involves
solving the nonlinear optimization problem

max
u(t)

J

subject to the propagation of the total sigma points {P(l)
i (t)}ntot

i=1 for all model
hypotheses l = 0, 1, . . . , nf in H, the input constraints u(t) ∈ U , and an approxi-
mation of the chance constraint P(x(t) ≤ X ) ≥ α.

Remark 2. The tractable Problem 3 can be solved online using system
measurements obtained at every sampling point to account for the effects of
unmodeled system uncertainties. This requires recursive estimation of the initial
states as well as the model probabilities for all model hypotheses in H at every
sampling point via Bayesian estimation [35].

4.4.3 Simulation Case Study

The proposed OED method is demonstrated on the same continuous bioreactor
employed in 4.3.6.

The performance of the OED method is benchmarked against a deterministic
OED method that merely minimizes the L2-norm between the mean of the model
outputs. Figure 4.9 shows the distributions of the product concentration at time
2 h predicted by the three process models under the input profiles designed by
the proposed OED and the deterministic OED methods. The distributions are
constructed based on 500 Monte Carlo runs using the designed input profiles. As
can be seen, the proposed OED method enables discriminating between the three
model hypotheses more effectively. This is because the OED method can reduce
the variance of the outputs, which can in turn reduce the overlap between the
outputs of the competing models in the presence of process uncertainties. On the
other hand, even though deterministic OED can increase the absolute distance
between the means of the output distributions, it cannot effectively reduce the
overlap between the distributions to enhance fault diagnosability. The optimal
input profiles designed by both OED methods are shown in Figure 4.10. The input
designed by the proposed method maintains near maximal dilution rate until
approximately 0.5 h, after which it gradually decreases until reaching zero dilution
rate at the end of the diagnosis horizon. The input designed via deterministic
OED, on the other hand, maintains maximum dilution rate until it is abruptly
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Figure 4.9: Predicted distributions of product concentration at time 2 h obtained using the
input designed by (a) the proposed OED method and (b) the deterministic OED method (based
on 500 Monte Carlo runs).
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Figure 4.10: Input profiles designed by (a) the proposed OED method and (b) the deterministic
OED method.

decreased to near zero values at around time 1 h. Figure 4.10 suggests that
deterministic OED results in more process stimulation, while the fault diagnosis
is less effective due to the overlap of the output distributions.

Inspired by industrial practice, the proposed OED method is implemented
in an online setting in which Problem 3 is solved repeatedly every 6 min when
the product concentration is measured (see [35] for the online OED algorithm).



CHAPTER 4. OPTIMAL EXPERIMENT DESIGN FOR ONLINE MODEL
STRUCTURE SELECTION 102

0 1 2 3 4 5 6 7 8

20

25

30

P
 (

g
/l
)

Operation under AFD and input adjustment

Operation at the nominal input

Setpoint

0 1 2 3 4 5 6 7 8

1

2

3

M
o
d
e
l 

a
c
ti
v
e

Normal operation

Substrate offset

0 1 2 3 4 5 6 7 8
0

0.5

1

M
o
d
e
l 

p
ro

b
a
b
ili

ty

Normal operation

Substrate inhibition

Substrate offset

0 1 2 3 4 5 6 7 8

Time (h)

0

0.5

1

D
 (

h
-1

)

d

c

b

a

Figure 4.11: Online active fault diagnosis. Different segments of time correspond to different
operation stages: 0 to 2 h is normal operation, 2 to 4 h is the fault detection period during
which the product concentration starts to deviate from its setpoint; 4 to 6 h is the period during
which online OED is performed, and 6 to 8 h is the process recovery stage to return to the
desired steady-state operation. The plots show (a) the product concentration in the OED run
with subsequent adjustment of the dilution rate (solid line) and the product concentration
under the nominal dilution rate (dashed line), (b) the active process model over time, (c) the
probabilities of each model estimated via Bayesian recursion (see [35]), and (d) the dilution rate.

The results of online OED are shown in Figure 4.11. The process is initially at
steady state. At time 2 h, a fault in the concentration of substrate in the inlet
feed becomes active. The fault results in deviation of the product concentration
from its desired setpoint (P = 27 g/l). At time 4 h, online OED is initiated for
a period of approximately 2 h. As can be seen, the probability of detecting the
active model increases dramatically during this period until reaching a probability
of approximately 1. When the correct scenario of process operation is diagnosed
at time 6 h, the process input is adjusted based on the diagnosed operational
scenario, which is different from the nominal process input (Figure 4.11d). The
adjusted process input enables recovering the product concentration to its desired
setpoint (Figure 4.11a). If the fault remained undiagnosed and the nominal
process input continued to be applied, the concentration of product (dashed line
in Figure 4.11a) would continue to deviate from the desired setpoint. The results
of this case study clearly demonstrate the significance of online OED for effective
process operation in the event of faults.

4.5 Conclusions

Two tractable OED methods for online model selection in the context of active
fault diagnosis that can handle probabilistic model uncertainty and stochastic
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disturbances are presented. The proposed methods aim to design input trajectories
that can optimally discriminate between uncertain models of normal and faulty
operation in a probabilistic sense, while ensuring safe and least intrusive system
operation during the fault diagnosis experiment via enforcing input constraints
and state chance constraints. In the first method, tractable approximations
for evaluation of chance constraints and the Bayes risk for multiple hypotheses
discrimination are introduced to enable online solution of the active fault diag-
nosis problem. For the second method, a sample-based uncertainty propagation
method is proposed for joint propagation of time-invariant model uncertainty and
time-varying disturbances using non-intrusive generalized polynomial chaos and
unscented transformation. The efficacy of the proposed methods for offline and
online active fault diagnosis is demonstrated on a continuous bioreactor. The
simulation results indicate that the designed input trajectories achieve correct
fault diagnosis in all the considered cases despite the presence of stochastic system
uncertainty. The online implementation of the active fault diagnosis method,
which relies on repeated design of the input trajectories based on system observa-
tions, shows superior performance compared to that of the offline implementation.
The simulation results also demonstrate that the proposed active fault diagnosis
method can be seamlessly integrated into practical settings.
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Chapter 5

Bayesian optimal experiment
design for parameter estimation

Optimal design of experiments is crucial for maximizing information content
of experimental data, which can be used for the accurate estimation of model
parameters. Classical optimal experiment design approaches are computationally
tractable, but they can be inefficient for systems that present nonlinearities and
non-gaussian uncertainty and/or heterogeneity. Bayesian optimal experiment
design maximizes an expected utility objective, which fully accounts for prior
and posterior uncertainty in the model parameters from an information-theoretic
standpoint. However, due to the complicated form of the expected utility, it must
be estimated using sample-based methods and is expensive to solve using the full
dynamic model. In this chapter, we introduce a novel Bayesian optimal experiment
design approach for nonlinear models that uses so-called arbitrary polynomial chaos,
which readily applies to any type of prior distribution. Numerical simulations
indicate that the proposed polynomial chaos-based surrogate can significantly lower
the computational cost of the Bayesian optimal experiment design. As such, the
methodology presented in this chapter appears to have the potential to pave the
way for real-time or sequential dynamic experiment design in a fully Bayesian
setting.∗

5.1 Introduction

The selection of optimal conditions (or designs) for conducting experiments is
crucial for improving the information content of observations, especially when
experiments are expensive and/or time-consuming to perform. Optimal experiment
design (OED) uses a mathematical relationship between the design variables,
parameters, and observables of a system to systematically select experimental

∗The content of this chapter was published in [41]
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conditions that maximize some design metric that is relevant to, for example,
parameter inference or model discrimination [8].

Experiment design has been extensively studied in the classical (or frequentist)
framework, in both theory and practice [3]. Classical OED design criteria for
parameter inference are generally defined in terms of some scalar metric of the
Fisher information matrix (FIM) such as the alphabetic optimality criteria A-,
D-, and E-optimality [12]. Alternatively, OED can adopt a Bayesian perspective,
where the design criteria are expressed in terms of an expected utility quantity
that accounts for both prior and posterior uncertainty in the model parameters
from a decision-theoretic point of view [6]. In the case of linear models subject
to Gaussian uncertainties, the Bayesian alphabetic optimality criteria reduce to
mathematical forms that are equivalent to their classical FIM counterparts [12].
For example, Bayesian D-optimality corresponds to a utility function equal to
the Shannon information of the parameter estimates.

For nonlinear models, however, analytic expressions do not exist for Bayesian
design criteria. Thus, extensions of Bayesian OED to nonlinear models are
commonly based on linearization of the model and Gaussian approximations of
the posterior distribution in order to derive tractable design criteria in terms of
the FIM [9, 32]. Many OED approximations involve prior expectations of the
FIM, which can be interpreted as robust (or stochastic) versions of classical OED
and have also been referred to as pseudo-Bayesian OED in the literature [13, 46].
Note that this is in contrast to classical (or “locally optimal”) OED approaches
that maximize some function of the FIM evaluated around a current “best guess”
for the unknown model parameters, which directly leads to deterministic dynamic
optimization problems [4]. In both cases, the resulting design criteria can be
interpreted as approximations of an underlying expected utility in the Bayesian
setting. None of these approximations, however, are suitable when the prior
distribution is broad (i.e., has large variance) or deviates from normality (i.e., is
non-Gaussian), and are known to lead to increasingly suboptimal designs.

This chapter investigates a Bayesian approach to OED for constrained non-
linear systems with continuous (or high-dimensional) design spaces, with the
goal of designing experiments that are optimal for parameter inference. Bayesian
methods provide the most general framework for experiment design and infer-
ence in nonlinear systems with noisy, incomplete, and indirect data [29]. As
discussed in [25], the expected utility framework can accommodate a wide variety
of information-theoretic criteria. Most often, the expected utility function is
explicitly defined in terms of the posterior parameter distribution. One of the
most common choices for the expected utility is the mutual information between
parameters and observations (equivalent to the expected information gain from
the prior to the posterior), which can be expressed in terms of the Kullback-
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Leibler (KL) divergence from the posterior to the prior [34]. As such, the main
downside of Bayesian OED is its high computational cost relative to classical
approaches, which is a direct consequence of numerical evaluation of the expected
utility. In general, the expected utility must be approximated using Monte Carlo
(MC) integration over the joint observation and parameter space, which can be a
high-dimensional space. Thus, early work on Bayesian OED focused on evaluating
the expected utility over each element of a small, finite number of designs (on
the order of ten) to avoid the challenge of optimizing the expected utility over
continuous design spaces [48].

Due to the sample-based evaluation of the expected utility, Bayesian OED
is naturally formulated as a stochastic optimization problem. In [14], a Markov
chain Monte Carlo (MCMC) sampler of the joint design, parameter, and data
space is developed such that the marginal distribution of all sampled designs is
proportional to the expected utility. Here, the design that leads to the joint mode
of the marginal distribution is optimal. Since finding the joint mode is increas-
ingly difficult as the number of design variables increases, a simulated-annealing
optimization method was used to achieve faster convergence [36]. However, this
approach does not appear to be easily applicable for design dimensions larger
than four [49]. Alternative optimization methods, including those based on the
Nelder-Mead [37] and simultaneous perturbation stochastic approximation [54],
have also been used for Bayesian OED in [25]. The main drawback of these
methods is they require many iterations to converge, even for small problems,
suggesting they could become excessively expensive for larger design spaces com-
monly encountered in dynamic OED problems. This is primarily due to the fact
that stochastic optimization methods ignore gradient information. Alternatively,
so-called “gradient-based” optimization techniques use gradient evaluations to
improve the rate of convergence to a local optimum, thus requiring fewer iterations
and potentially less computational cost. When applied to problems with stochastic
objectives, gradient-based optimization methods can be broadly categorized as
stochastic approximation (SA) [33] or sample average approximation (SAA) [51].
Hybrids of these two approaches are also possible. The main practical difference
between SA and SAA is that the i.i.d. samples are updated at each iteration in the
former while they are treated as fixed in the latter. In either case, when the model
used for OED is computationally intensive, evaluating the expected utility and/or
its gradients can be computationally prohibitive. To address this challenge, [26]
proposed the use of a surrogate model for fast estimation of the expected utility,
where polynomial approximations (in particular, polynomial chaos expansions
(PCEs) [61]) of the model outputs are constructed to capture their dependence
on the uncertain parameters and design variables. The main downside of this
approach is that the size of the surrogate grows exponentially with respect to the
number of design variables, making it impractical for dynamic systems.
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This chapter extends the Bayesian OED approach of [26] in several directions.
First, we introduce a PCE-based surrogate model that is particularly advantageous
for dynamic systems. The proposed approach is based on developing local PCEs
for the outputs around each design visited during optimization such that the
exponential growth in the size of the PCEs with respect to the number of design
variables is avoided. Second, we leverage the theory of orthogonal polynomials to
construct the PCEs with respect to arbitrary probability measures of uncertain
parameters (e.g., priors can be correlated or multi-modal). Thus, the proposed
approach is not restricted to particular prior types and also ensures the PCEs
are most accurate in high probability regions of the parameter space. Third, the
proposed Bayesian OED approach can handle nonlinear probabilistic path and
terminal constraints, which can be enforced to ensure safety and/or quality of the
experiment. We show how probabilistic constraints can be readily incorporated
into the OED problem using the PCE-based surrogate model. A key feature of the
proposed Bayesian OED approach is that it can be implemented using state-of-
the-art dynamic optimization methods (e.g., multiple shooting or collocation on
finite elements [7]), so that the underlying structure of the optimization problem
can be exploited for computational efficiency as in classical OED. The Bayesian
OED approach is demonstrated on a benchmark dynamic predator-prey problem.
To the best of our knowledge, this is the first study on Bayesian OED for nonlinear
dynamic systems in the presence of a fairly general class of constraints.

5.2 Formulation of optimal Bayesian

experimental design

We are interested in choosing the best experiments from a continuous design
space, for the purpose of estimating model parameters from noisy and indirect
measurements. In other words, we are interested in experiments that are “optimal”
for parameter inference performed in the Bayesian setting, without the need for
limiting assumptions such as linear models or strong observability.

Let (Ω,F, P ) be a probability space, where Ω is the sample space (or abstract
set of outcomes), F is a σ-algebra of the subsets of Ω, and P : F → [0, 1] is a
probability measure. Let the vector of real-valued random variables θ : Ω → Θ ⊆
Rnθ denote the uncertain model parameters of interest, i.e., these are parameters
that we desire to estimate from experimental data. A probability measure µθ is
induced by the random variables θ, such that µθ(A) = P (θ−1(A)) for all A ∈ Rnθ

(often referred to as the induced or pushforward measure). We can then define
pθ(θ) = dµθ/dθ as the probability density of θ with respect to the Lebesgue
measure. This density is guaranteed to exist as long as the random variables
are continuous, which we will assume throughout this work. For simplicity of
notation, we shall use p(·) to represent all density functions, and which specific
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distribution it corresponds to is reflected by its arguments, e.g., p(θ) denotes pθ(θ).
When needed for clarity, we will explicitly include a subscript that denotes the
associated random variable.

In a similar fashion, we treat the observations from the experiment y ∈ Y (also
referred to as “observations”, “noisy measurements”, or “data”) as a real-valued
random vector with an appropriate probability density, and d ∈ D as the design
(also referred to as “control” or “input”) variables. Since we are particularly
interested in the dynamic evolution of the experiment, we focus on systems
modeled by a collection of nonlinear ordinary differential equations (ODE) for
ease of presentation

ẋ(t) = f(t, x(t), d(t), θ), ∀t ∈ [0, tf ] (5.1)

where x : [0, tf ]→ Rnx are the state variables with time derivatives ẋ and initial
conditions x(0) = x0 and d : [0, tf ] → Rninput are the design variables. As such,
the state evolution x(t; d, θ) is implicitly a function of the input trajectory and the
model parameters. We assume that the dynamic evolution of (5.1) is constrained
so that it must satisfy hard input constraints d(t) ∈ D ⊂ Rnd and probabilistic
(or chance) state constraints of the form

P (x(t; d, θ) ∈ X) ≥ 1− β, ∀t ∈ [0, tf ], (5.2)

where β ∈ [0, 1] is the allowed probability of constraint violation. The constraints
(5.2) can be interpreted as a generalization of nominal (β = 0.5) or worst-case
(β = 0) enforcement of state constraints, and can be used to ensure safety or
quality throughout the experiment. Terminal state constraints can be handled in
a similar fashion to the path constraints (5.2) so we neglect them here to limit
the notational complexity. We also assume that measurements can be taken
throughout the experiment at discrete times t1, . . . , tT and can be modeled as

yi = g(ti, x(ti; d, θ)) + εi, i = 1, . . . , T, (5.3)

where yi ∈ Rnyi and εi denote the measurement and the noise in the measurement
at time ti, respectively. The set of observations is then given by y = (y1, . . . , yT )
while the corresponding noise vector is given by ε = (ε1, . . . , εT ). Note that we
have not made any assumptions on the noise model so that it can have any
distribution.

It is important to note that the observation space Y ⊆ Rny , ny = ny1 +· · ·+nyT
is represented by a finite number of dimensions. The design space D, on the other
hand, is represented by the set of all continuous-time trajectories that satisfy
d(t) ∈ D, which is an infinite-dimensional space. Because of this fact, the design
space must be discretized in order to approximate D ⊆ Rnd numerically on a
computer with finite nd. Some common approximations include piecewise constant
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and piecewise linear though, in theory, any finite-dimensional parametrization can
be utilized. Letting NT denote the number of parameters used to approximate
the continuous-time trajectories, the total number of design variables becomes
nd = ninputNT , which can be quite large in practice.

If an experiment is performed under a given design d and a realization of the
data y is then measured, the change in the state of knowledge/information about
the parameters is given by Bayes’ rule:

p(θ|y, d) =
p(y|θ, d)p(θ|d)

p(y|d)
, (5.4)

where p(θ|d) is the prior density, p(y|θ, d) is the likelihood function, p(θ|y, d) is
the posterior density of interest, and p(y|d) =

∫
Θ
p(y|θ, d)p(θ|d)dθ is the evidence,

which represents a normalizing constant that is a function of the design and data.
In most practical applications, the prior knowledge on θ does not vary with the
choice of design, leading to the simplification p(θ|d) = p(θ), i.e., knowing the
design of the current experiment without knowing its observations does not affect
our belief about the parameters. The likelihood function is assumed to be given,
and describes the discrepancy between the observations and a forward model
prediction in a probabilistic way. Note that the likelihood function has a one-to-one
relationship with the noise model. The forward model G : Θ ×D → Y , generally
denoted as G(θ, d), in this case is implicitly defined by (5.1) and (5.3). Using
this notation, we have y = G(θ, d) + ε with a corresponding likelihood function
p(y|θ, d) = pε(y −G(θ, d)). While the majority of classical OED approaches are
developed around the assumption that ε ∼ N (0, Σε), i.e., a Gaussian likelihood,
fully Bayesian approaches are not restricted by this choice and can handle any
choice of pε including noise distributions that depend on the design and parameter
values.

We take a decision-theoretic approach to define the expected utility (or expected
reward) to quantify the value of experiments. As suggested originally in [34], the
expected utility can take on the following general form:

U(d) =

∫
Y

∫
Θ

u(d, y, θ)p(θ, y|d)dθdy =

∫
Y

∫
Θ

u(d, y, θ)p(θ|y, d)p(y|d)dθdy, (5.5)

where u(d, y, θ) denotes the utility function. The utility function should be chosen
to reflect the usefulness of an experiment at conditions d, given a particular
value of the parameters θ and outcome y. Since the precise values of θ and y
are unknown when the experiment is performed, the objective is defined as the
expectation of u(d, y, θ) over the joint distribution of θ and y. It is important
that the utility function incorporates the experimental aims and is specific to
the application of interest [25]. For example, designs that result in efficient
estimation of the model parameters may not be useful for the prediction of future
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outcomes. A key advantage of Bayesian OED, however, is that a wide variety
of experimental goals can be accommodated through the proper choice of utility
function including parameter estimation, model discrimination, and the prediction
of future observations [48].

Although utility functions are quite flexible and can be tailored to specific
goals, in order to derive useful and illustrative results, we focus on utility functions
that lead to valid measures of information gain on the estimated parameters from
the experimental data. In particular, we use the relative entropy, also known as
the Kullback-Leibler (KL) divergence, from the posterior to the prior [34]:

u(d, y, θ) = DKL(pθ|y,d(·)||pθ(·)) =

∫
Θ

ln

[
p(θ|y, d)

p(θ)

]
p(θ|y, d)dθ = u(d, y). (5.6)

The intuition behind this expression is that a large KL divergence from the
posterior to the prior implies that the data y decreases the entropy in θ by a large
amount and, hence, those data are more informative for parameter estimation.
Note that this choice of utility function integrates over the parameter space and is
therefore not a function of the parameters θ. As a result, substituting (5.6) into
(5.5) produces the following expression [25]:

U(d) =

∫
Y

∫
Θ

ln

[
p(θ|y, d)

p(θ)

]
p(θ|y, d)dθp(y|d)dy. (5.7)

Thus, U(d) = Ey|d
{
DKL(pθ|y,d(·)||pθ(·))

}
represents the expected information gain

on the parameters θ where the expectation is taken over the prior predictive
distribution p(y|d). Note that U(d) is also equivalent to the mutual information
between the parameters θ and data y conditioned on d. As discussed in [26], the
KL divergence has several desirable properties that warrants its use as a general-
purpose utility function for parameter inference, which we briefly summarize here:
(i) it satisfies minimal requirements to be a valid measure of information on a
set of experiments, such as “always at least informative” ordering; (ii) it gives
an indication of information gain in the sense of Shannon information; (iii) it
applies to general nonlinear models G(θ, d) and is consistent with linear optimal
design theory based on the FIM; and (iv) it has been shown to perform well for a
wide range of tasks, as it provides general guidance for learning in an uncertain
environment.

Finally, the optimal design is defined as the design that maximizes the expected
utility U(d) subject to constraints:

d? = argmax
d∈D

U(d), s.t. P (x(t; d, θ) ∈ X) ≥ 1− β. (5.8)

There are a number of challenges that must be overcome when solving (5.8).
The biggest difficulty is related to the probabilistic operators that define the
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expected utility (5.7) and the state chance constraints (5.2), which cannot be
evaluated in closed-form even when the model is a simple polynomial function
of θ. These challenges are addressed in the next section using different types of
approximations.

5.3 Stochastic dynamic optimization with

chance constraints

In this section, we formulate the proposed approximated form of the Bayesian OED
problem (5.8). Although many different approaches are available for approximating
the integrals in (5.2) and (5.7), we focus on two particular choices that lead to a
smooth optimization problem, which can be readily solved with state-of-the-art
methods for dynamic optimization. The procedure for approximately solving (5.8)
is then summarized at the end of this section.

5.3.1 Sample-based estimator for the expected utility

The expected utility in (5.7) does not have a closed-form solution, except when
the forward model is a linear function of θ. Instead, this expression must be
numerically approximated. By applying Bayes’ rule to the quantities inside and
outside of the logarithm, and then approximating the integrals using MC, we
obtain the following nested MC estimator for the expected utility [49]

U(d) ≈ ÛN,M(d, θs, ys) =
1

N

N∑
i=1

ln

[
py|θ,d(y

(i)|θ(i), d)
1
M

∑M
j=1 py|θ,d(y

(i)|θ̃(i,j), d)

]
, (5.9)

where θs = {θ(i)}Ni=1 ∪ {θ̃(i,j)}N,Mi,j=1 are i.i.d. samples from the prior p(θ) and

ys = {y(i)}Ni=1 are independent samples from the likelihood p(y|θ(i), d). The inner
sum is needed to approximate the evidence evaluated at y(i), i.e., p(y(i)|d), which
typically does not have an analytic form. The variance of this estimator is
proportional to A(d)/N +B(d)/NM and its bias (to leading order) is C(d)/M ,
where A, B, and C are constant terms that depend only on the distributions at
hand [49]. Hence, the size of N controls variance while the size of M controls
the bias. Note that the estimator ÛN,M is asymptotically unbiased, but is biased
for finite M . Although alternative numerical integration schemes can replace
MC in (5.9), MC is likely the method of choice since its convergence properties
are independent of dimension [10] and ny + nθ will often by large in practice.
Additionally, MC can be directly applied to any form of prior or likelihood
function.
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5.3.2 Moment-based approximation of chance
constraints

In general, the state constraints x(t; d, θ) ∈ X in (5.2) can be described by a set
of nonlinear inequality constraints of the form

X = {x ∈ Rnx : h(x) ≤ 0}, (5.10)

where h : Rnx → Rnc . Letting c(x) = max1≤j≤nc hj(x) where hj is the jth element
of h, a MC estimator can also be developed for the state chance constraints [40]

P (h(x(t; d, θ)) ≤ 0) = E{1[0,∞)(c(x(t; d, θ)))} ≈ 1

N

N∑
i=1

1[0,∞)(c(x(t; d, θ(i)))),

(5.11)

where 1[0,∞) denotes the indicator function. It is important to note that since
the indicator function and the max operator are non-smooth functions, they
must be implemented with binary variables. Therefore, under this approximation,
(5.8) must be recast as a mixed-integer nonlinear program (MINLP) with a
potentially large number of binary variables, i.e., the optimization can be difficult
and expensive to solve. In addition, the feasible region of the problem depends
on the particular set of samples used in the approximation and can change in a
non-smooth way whenever new samples are drawn.

A simpler alternative is to develop a moment-based approximation of the chance
constraint. The most common example is the mean-variance representation [38]

E{Hj(t, θ, d)}+ r(t)
√

Var{Hj(t, θ, d)} ≤ 0, j = 1, . . . , nc, ∀t ∈ [0, tf ], (5.12)

where r(t) ∈ [0,∞) is a backoff parameter that can vary over time and Hj(t, θ, d) =
hj(x(t; θ, d)) is the random variable associated with the jth constraint function.
The parametrized constraints (5.12) will be smooth functions of time and the
design variables whenever the original system equations are smooth in direct
contrast to (5.11). Although these constraints can be straightforwardly derived
whenever H(θ, d) is Gaussian [43], this is not a necessary condition for (5.12) to
guarantee satisfaction of the original chance constraints (5.2), as discussed next.

Whenever H(t, θ, d) is normally distributed, r(t) = r is constant and its
smallest possible value can be determined exactly from a quantile of the chi-
squared distribution. Finding a suitable r(t) becomes more challenging in the
case of general distributions, and this is even further complicated by the fact
that the shape of the distribution of H(t, θ, d) can change over time and with
the design variable. One promising method for overcoming these challenges
in the nonlinear setting is to use an iterative simulation-based procedure that
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requires P (x(t; d?(r), θ) ∈ X) to be estimated under the optimal design d?(r)
found by solving the Bayesian OED problem (5.8) subject to (5.12) in place of
(5.2). If the probability of violation is greater (or less) than β, then r should
be increased (or decreased). A lower bound of r = 0 (corresponding to nominal
constraints) can be used, while an upper bound for r can be determined from
the “distributionally robust” Cantelli-Chebyshev inequality [5] that ensures the
original chance constraints hold for every possible distribution that shares the
same mean and covariance as H(t, θ, d). Note that the violation probability must
still be estimated using, for example, MC, but this only needs to be done at the
optimal design, as opposed to all of the designs visited during the optimization.
Readers are referred to [45] for a similar methodology that has been applied in
the context of nonlinear model predictive control. Note that alternative methods
have been developed to approximate chance constraints using smoothing functions
(e.g., [20]), which can be used in place of (5.12) in this work.

5.3.3 Sample average approximation for chance
constrained Bayesian OED

The Bayesian OED problem with moment-based chance constraint approximation
can be solved using either gradient-based or non-gradient-based methods. Al-
though gradient-based methods require additional information, they are generally
more efficient than their non-gradient-based counterparts. This is especially true
in dynamic systems of the form (5.1) that are known to have certain structures
that can be efficiently exploited. An important consideration, however, is that
U can only be approximated by MC-based estimators such as ÛN,M , meaning
that optimization methods for stochastic objective functions are needed. The
Robbins-Monro (RM) stochastic approximation is one such gradient-based stochas-
tic optimization method. RM is based on an iterative update that resembles
steepest descent, except for the fact that it uses an unbiased estimator of the
gradient, i.e., the samples used to estimate U(d) may be different than those used
to estimate ∇dU(d). The choice of the step size sequence is often viewed as a
key weakness of RM, as the performance of the algorithm can be very sensitive
to the step size [33]. Sample average approximation (SAA), on the other hand,
reduces the stochastic optimization problem to a deterministic one by fixing the
noise throughout the entire optimization [51]. The main advantage of SAA over
RM is that deterministic optimization methods can be directly applied, including
state-of-the-art solvers that efficiently handle nonlinear objectives and constraints.
For this reason, we focus on SAA exclusively in this work. It is worth noting,
however, that the proposed approach is not restricted to SAA and could be solved
using RM in a similar manner to that shown in [26], with the main difference
being that the nonlinear constraints must be handled using either projection or
barrier methods [11].
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SAA requires all the “noise” samples θs and ys to be fixed. However, the
samples ys are design-dependent, as they are distributed according to the likelihood
function that in turn depends on the given design d. This issue can be addressed
in practice by transforming y to be in terms of only design-independent random
variables. One example of this transformation for a Gaussian likelihood function
is as follows

y = G(θ, d) + ε = G(θ, d) + C(θ, d)z, (5.13)

where C is a diagonal matrix with the non-zero entries representing the standard
deviation of the noise that can generally depend on the parameters and design,
and z is a vector of i.i.d. standard normal random variables. For example, the
choice of elements Ci,j = 0.1|Gi(θ, d)|δij corresponds to “10% Gaussian noise on
the ith component of the model” where δij is the Kronecker delta. Other forms
of the likelihood can be easily accommodated by replacing the right-hand size of
(5.13) by a generic function of θ, d, and some design-independent random vector
z.

Let Dr denotes the set of design variables that satisfy d(t) ∈ D and the mean-
variance constraints (5.12) for a given backoff radius parameter r. We can then
state the proposed SAA approximation to the Bayesian OED problem (5.8) as

d̂s = argmax
d∈Dr

ÛN,M(d, θs, zs), (5.14)

where d̂s and ÛN,M(d̂s, θs, zs) are, respectively, the optimal design and objective
values under a particular set of realizations of the random variables θ and z. A
deterministic optimization algorithm can then be used to find d̂s as an approx-
imation to d?. Estimates of U(d̂s) can be improved by applying the estimator
ÛN ′,M ′(d̂s, θs′ , zs′) under a larger number of realizations N ′ > N and M ′ > M
in order to attain a lower variance. Furthermore, multiple optimization runs
B > 0 can be performed (often referred to as a bootstrap) to obtain a sampling
distribution for the optimal design values and the optimal objective values, i.e.,
d̂bs and ÛN,M(d̂bs, θ

b
s, z

b
s) for b = 1, . . . , B. The sets θbs and zbs are independently

chosen for each optimization run, but remained fixed within each run. It has been
shown that the optimal design and objective estimates converge in distribution to
their respective true values under certain assumptions [31, 51]. Lastly, stochastic
bounds on the true optimal value can be constructed by estimating the optimality
gap from the set of B replicate runs. Using the optimality gap estimator and/or its
variance estimated from the MC standard error formula, one can decide whether
more runs are required or which of the B optimal designs are most trustworthy.

The approximated Bayesian OED problem is still a challenging problem to
solve due to the dynamic forward model. In fact, NM +N separate ODEs of the
form (5.1) must be integrated in order to evaluate (5.9) at a single design point.
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There are a number of ways to handle the infinite-dimensional nature of these
ODE constraints (due to the continuous time variable t), including variational,
sequential, and simultaneous approaches [7]. Simultaneous methods discretize
both the state and design/control profiles in time using, for example, collocation
of finite elements, and have the advantage of only solving the ODEs once at
the optimal point, i.e., can avoid intermediate solutions that may not exist or
require excessive computational effort. Even with this efficient implementation,
the huge number of constraints needed to account for the NM +N forward model
evaluations can make (5.14) impractical to solve. In addition, we do not have a
closed-form expression for the mean and covariance of H(t, θ, d), which is needed
to evaluate the constraint function. Therefore, in the next section, we develop
surrogate models for G and H that can greatly reduce the computational cost at
each iteration of the optimization while still ensuring that the solutions found are
accurate approximations to (5.14).

5.4 Arbitrary polynomial chaos expansions as

surrogates

The main challenge in applying the aforementioned stochastic optimization al-
gorithms to the constrained Bayesian OED problem is the complexity of the
forward model and its gradients. In fact, only a single evaluation of ÛN,M (d, θs, zs)
requires O(NM) separate solutions of the forward model while an even larger
number of equations must be solved to calculate ∇dÛN,M (d, θs, zs) as the gradient
is defined in terms of the sensitivities ∇dG(θ, d). Here, we address this challenge
by replacing G with a simple surrogate model based on polynomial expansions
(PCEs). This cheaper “surrogate” must be accurate over the entire support of the
prior Θ and the entire design space D. Not only does the surrogate model allow
the nested MC estimator in (5.9) to be evaluated in a computationally tractable
manner, but its polynomial form greatly simplifies the structure and complexity
of the gradient of the expected utility.

These gains come at the cost of introducing a new source of error due to the
polynomial approximation of the forward model; however, this error can often
be kept low in practice. In fact, the error can always be decreased by increasing
the order of the expansion for reasonably smooth functions, as discussed in this
section. It is worth noting that we focus on PCE-based surrogates as they have
been demonstrated to be effective in the context of Bayesian OED, yielding high
accuracy and multiple order-of-magnitude speedups over direct evaluation of the
forward model [25, 26]. The proposed surrogate in this work has some important
differences to that used in [25, 26], including that our method readily applies to
arbitrary prior distributions and the size of the surrogate does not scale with the
number of design variables. We first present our proposed surrogate and then
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describe these differences in more detail at the end of this section.

5.4.1 PCE formulation

With slight abuse of notation, we describe the proposed PCE approximation in
the context of a generic scalar function G. Whenever this function is multivariate,
the procedure is simply applied to each component of G. As such, the developed
procedure can be separately applied to each component of the forward model
G(θ, d) and constraint function H(θ, d) in the Bayesian OED problem.

The truncated PCE approximation (in terms of the uncertain parameters only)
is then defined in the following manner

GL(θ, d) =
L∑
i=1

ai(d)Ψi(θ), (5.15)

where L is the total number of terms retained in the expansion; ai(d) are the
expansion coefficients that depend on the design variables; and Ψ1, . . . , ΨL are
polynomial basis functions. We again highlight the fact that θ has an associated
probability density p(θ) on which we have made no restrictions. We can define an
inner product 〈·, ·〉θ operator with respect to p(θ) as

〈f, g〉θ = E{f(θ)g(θ)} =

∫
Θ

f(θ)g(θ)p(θ)dθ, (5.16)

for any functions f and g. We can also define a corresponding norm ‖f‖θ =

〈f, f〉1/2θ using the definition of the inner product. Now, let L2
θ = {f : ‖f‖θ <∞}

denote the Hilbert space of square integrable functions with respect to density
p(θ). Thus, G ∈ L2

θ is a necessary condition for (5.15) to converge as L→∞ and
is equivalent to the random variable G(θ, d) having finite variance.

The basis functions can be any complete basis of L2
θ; however, the computa-

tion of the expansion coefficients can be simplified by choosing the basis to be
orthogonal with respect to p(θ). Thus, let Ψ1, Ψ2, . . . be a polynomial orthonormal
basis (ONB) of L2

θ, i.e., each element Ψi is a polynomial and for all i, j ≥ 1 we
have

〈Ψi, Ψj〉θ = δij, (5.17)

where δij is the Kronecker delta. In practice, the ONB is constructed to have
the following properties: (i) the first polynomial is a constant Ψ1(θ) = 1 meaning
E{Ψi(θ)} = δ1i is a convenient expression for the expectation of polynomials and
(ii) each polynomial Ψi contains exactly one monomial θα that is not contained
in the previous set of polynomials Ψ1, . . . , Ψi−1. Most often the polynomials are
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ordered by degree. Therefore, when approximating G as in (5.15), we first select
the number of terms L and define the ansatz space P as the span of the first L
polynomials

P = {Ψ1, . . . , ΨL}. (5.18)

Note that the size of the expansion L can be chosen to include polynomials of
any order, but L is most often chosen according to a “total order” truncation
in which all polynomials with degree less than or equal to no are retained. This
results in the total number of terms in (5.15) being equal to

L =

(
nθ + no
no

)
=

(nθ + no)!

nθ!no!
, (5.19)

which grows exponentially with respect to the number of uncertainties and the
maximum order of polynomials in the expansion.

A variety of methods exist for numerically constructing the polynomial ONB.
As mentioned earlier, the approach in [61] (that is applied in the context of Bayesian
OED in [25, 26]) assumes separable p(θ) = p(θ1) · · · p(θnθ), i.e., statistically
independent elements of θ = (θ1, . . . , θnθ), so that the construction of the ONB can
be done for each dimension separately. These polynomials have been analytically
derived for certain scalar probability densities coming from the Askey scheme,
and can be derived numerically for generic distributions using algorithms based
on three-term recurrence relations for univariate orthogonal polynomials [19].
Whenever θ is composed of statistically dependent elements, a more sophisticated
numerical procedure is required to construct the ONB. One example is the Gram-
Schmidt process, which is capable of orthonormalizing any starting basis of P,
such as the set of monic polynomials (see, e.g., [42] for details). An alternative
method is based on a modified Cholesky decomposition of the Gram moment
matrix [44], which has shown to be reasonably stable on a variety of examples
in [18]. In any case, it is sufficient to know the statistical moments of θ up to a
certain order to construct the polynomial ONB. This is an advantage of expanding
in θ directly (as opposed to transforming θ into a set of independent random
variables), as we are only required to know moments of θ as opposed to an exact
expression for p(θ) [39].

Note that there do exist density functions for which L2
θ does not admit an

ONB of polynomials, i.e., the space of polynomials is not dense in L2
θ. Interested

readers are referred to [17] for more details on this aspect and a list of sufficient
conditions to verify the denseness of polynomials. However, since knowing θ is
continuous with finite support is sufficient for the space of polynomials to be
dense in L2

θ [17, Theorem 3.4], this will rarely be an issue in practice.
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5.4.2 Convergence, optimality, and error analysis

Since G ∈ L2
θ by assumption, we are able to expand it with respect to the ONB

of polynomials {Ψ1, Ψ2, . . .}

G(θ, d) =
∞∑
i=1

ai(d)Ψi(θ), (5.20)

where the equality sign in (5.20) should be interpreted in the mean-square sense
[17], such that

lim
L→∞

E{(G(θ, d)−GL(θ, d))2} = lim
L→∞

‖G−GL‖2
L2
θ

= 0. (5.21)

In other words, the PCE (5.15) exhibits mean-square convergence. Standard prob-
ability theory states that mean-square convergence implies convergence in prob-
ability and also convergence in distribution, i.e., FG(θ,d)(x) = limL→∞ FGL(θ,d)(x)
for all x ∈ R where FX denotes the cumulative distribution function (CDF) of
any random variable X. The rate of convergence depends on the regularity of G
with respect to θ and, when G is a smooth function of θ, the convergence rate
can be quite large. This means that high accuracy can be achieved in practice
with a relatively low order expansion.

According to the Hilbert projection theorem, the best ‖ · ‖θ approximation of
G in the polynomial space P is the orthogonal projection of G onto P [53]. This
statement can be given mathematically in terms of the optimality condition

GL = argmin
P∈P

‖G− P‖2
θ, (5.22)

such that no other choice of coefficients a1, . . . , aL will result in a smaller weighted
L2
θ norm. Since the weight function in (5.22) is the density p(θ), the optimal

expansion GL must more closely match G in regions of Θ where the parameter
has high probability in order to ensure this norm is small.

Whenever GL is numerically calculated, we only find approximations to the
expansion coefficients and thus obtain the following approximated polynomial

G̃L(θ, d) =
L∑
i=1

ãi(d)Ψi(θ). (5.23)

As such, the difference between G and G̃L can be split into two terms: a truncation
error and an aliasing error [59]

G− G̃L = G−GL︸ ︷︷ ︸
truncation error

+ GL − G̃L︸ ︷︷ ︸
aliasing error

=
∞∑

i=L+1

aiΨi +
L∑
i=1

(ai − ãi)Ψi. (5.24)
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According to the orthogonality property of the ONB (5.17), these two sources of
error are orthogonal such that their squared L2

θ norm is additive

E{(G(θ, d)−GL(θ, d))2} = ‖G−GL‖2
L2
θ

=
∞∑

i=L+1

a2
i +

L∑
i=1

(ai − ãi)2. (5.25)

Since the ansatz space P is fixed, the truncation error is constant for a fixed
forward model. This is directly controlled by the choice of L, i.e., larger L leads
to lower truncation error and solely depends on the nonlinearity of G. Thus,
different methods for approximating these expansion coefficients can easily be
compared by the aliasing error that they introduce.

Another important property of PCE is that the moments of the random
variable G(θ, d) can be easily computed from only the expansion coefficients

E{G(θ, d)} = a1(d) ≈ ã1(d), (5.26)

Var{G(θ, d)} =
∞∑
i=2

ai(d)2 ≈
L∑
i=2

ãi(d)2. (5.27)

These equations can be straightforwardly substituted into the mean-variance
chance constraint approximation (5.12) so that it can be expressed simply in
terms of the PCE coefficients for H(t, θ, d).

5.4.3 Estimation of PCE coefficients

There are two main approaches for approximating the expansion coefficients:
intrusive and non-intrusive [30]. The intrusive approach derives a new system of
equations for the coefficients that is larger than the original deterministic system
[22]. The difficulty of the intrusive approach strongly depends on the character of
the original equations and is often prohibitive (or even impossible to derive) for
nonlinear systems [16]. Non-intrusive methods, on the other hand, compute the
expansion coefficients from only a finite number of parameter realizations [60].
The main advantage of these approaches is that a deterministic solver for G(θ, d)
can be reused and treated as a black box. Non-intrusive methods also offer
flexibility in choosing any function of the state trajectory as the model output,
which may depend more smoothly on θ even when the state itself has less regular
dependence. In other words, we can avoid representing x(t; d, θ) with a PCE and
instead directly apply the method to G(θ, d).

Here, we use a non-intrusive approach for estimating the PCE coefficients.
The derivation of the method starts from the fact that, by taking the inner
product of the expansion (5.20) with one of the basis functions Ψi and applying
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the orthogonality property of the ONB, we obtain an analytic expression for the
coefficients

ai(d) = 〈G,Ψi〉L2
θ

=

∫
Θ

G(θ, d)Ψi(θ)p(θ)dθ, i = 1, . . . , L. (5.28)

Then, a set of n sample points θ(1), . . . , θ(n) ∈ Θ is chosen and the integrals
in (5.28) are approximated using a finite number of forward model evaluations
according to some chosen quadrature (or integration) rule [59]

ãi(d) =
n∑
j=1

wjG(θ(j), d)Ψi(θ
(j)), (5.29)

where w1, . . . , wn are corresponding weight values in the quadrature rule. The
resulting approach is termed pseudo-spectral projection as it defines a mapping
between the forward model G and polynomial G̃L that is a discretized projection
operator.† If a convergent integration rule is employed such that limQ→∞ ãi = ai,
then limQ→∞ G̃L(θ, d) = GL(θ, d) for all θ ∈ Θ and convergence of G̃L to the true
forward model G follows naturally.

The key step in any non-intrusive PCE method is the selection of integration
points and weights to be used to approximate the coefficients. The number of
points n should be as small as possible to achieve a desired level of accuracy in the
PCE approximation (5.23). A wide variety of integration (or sampling) rules for
multidimensional spaces have been proposed and applied in the context of PCE.
Broadly speaking these methods can be categorized as follows: (i) grid-based, (ii)
randomized, (iii) monomial cubature rules, or (iv) optimization-based.

Grid-based methods such as tensor and sparse grids [21] are the most commonly
used integration rules since they can be easily derived from univariate Gaussian
quadrature rules, which are optimal in one dimension [55]. However, tensor-grid
quadrature suffers from the curse of dimensionality due to the exponential growth
of the number of points with dimension of the parameter space. Sparse grids are
directly constructed from tensor grids and are built to accurately capture functional
features in each separate parameter dimension while investing fewer points in the
cross terms between parameters. Although sparse grids have fewer points than
the full tensor grid, they have increasingly large error with increasing dimension
and are known to produce negative weight values. Another key limitation of
tensor and sparse grids is that they require the uncertain parameters to be
statistically independent. If the parameters are dependent, then a transformation
must be applied, which may place integration points in low probability regions of

†Regression methods are an alternative class of non-intrusive PCE in which the discrete
quadrature rule is directly applied to the optimality condition in (5.22), and these can straight-
forwardly be used in place of pseduo-spectral methods in this work [52].
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Θ that contribute only a very small amount to the PCE projection. Randomized
integration rules, on the other hand, select points by randomly sampling from the
parameter distribution p(θ) via MC methods [23]. MC is often the method of
choice for approximation of high-dimensional integrals, but are known to require
a large number of points to achieve low error due to their relatively slow rates of
convergence.

Monomial cubature rules are nongrid-based methods that can be more ef-
fective than sparse grids when integrating functions that are well represented
by total-degree polynomials [58]. These can be thought of as efficient multi-
variate extensions of Gaussian quadrature. Their main downside, however, is
that effective cubature rules have only been constructed for a very specific set of
probability distributions, integration domains, and polynomial degree of exactness.
Optimization-based integration rules are based on the same idea as monomial
cubature rules, with the main difference being that the quadrature rule is not
selected manually. Instead, the integration points and weights are determined
numerically through the use of some optimization procedure. In this way, efficient
quadrature rules can be constructed for any distribution p(θ) and any desired
polynomial degree. Also, constraints on the position of the points and value of
the weights can readily be incorporated.

The main cost of non-intrusive PCE arises from the forward model simulations
at fixed nodes n, and these simulations must be repeated for every d visited
when numerically solving the Bayesian OED problem (5.8). Thus, we adopt
the optimization-based methodology here so that n can be minimized without
compromising accuracy of the integration rule. There are two main types of
optimization-based methods available: moment matching and optimized stochastic
collocation (OSC). The moment-matching rule corresponds to a non-negative
measure on Θ that minimizes a sensitivity function subject to the constraints
that the measure matches moments of p(θ) up to a certain finite order [50].
This corresponds to an infinite-dimensional linear program (LP) that must be
heuristically solved in practice. One approach, presented in [44], is based on
three steps: (i) solve a finite-dimensional LP wherein moments are matched
based on a fine grid of Θ, (ii) locate the “clusters” of sample points obtained
from the LP solution, and (iii) refine this solution by locally solving a nonlinear
least-squares problem with initial guess corresponding to the clustered integration
rule. However, the derived moment matching rule can be sensitive to the choice
of the initial grid and the clustering step. The OSC method, on the other hand,
derives the optimal points and weights through the formal minimization of an
integration operator error norm [52]. Here, we adopt the OSC method since it
limits the number of heuristic choices by the user and has been shown to effectively
handle uncertainty dimensions up to around ten.
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5.4.4 The optimized stochastic collocation method

The OSC method is summarized in this subsection. OSC is formulated as a
polynomial optimization problem with an objective function that is adapted to be
able to efficiently and accurately approximate the PCE coefficients. First, define
the exact integral operator for a generic function f ∈ L2

θ as

I : L2
θ → R : f 7→

∫
Θ

f(θ)p(θ)dθ, (5.30)

while, for a given list of points θ = (θ(1), . . . , θ(n)) and weights w = (w1, . . . , wn),
the discrete quadrature operator is defined as

Q(θ,w) : L2
θ → R : f 7→

n∑
j=1

wjf(θ(j)). (5.31)

The operators I and Q(θ,w) must be bounded in order to define an operator
norm to measure the distance between them. Thus, we restrict I and Q(θ,w) to a
finite-dimensional test space T ⊆ L2

θ. Let L(T ,R) denote the space of all bounded
linear operators from T to R. For any operator A ∈ L(T ,R), the induced operator
norm on the space L(T ,R) is defined as:

‖A‖L(T ,R) = sup
f∈T

‖Af‖R
‖f‖θ

. (5.32)

The OSC method can then be summarized using this induced norm as follows:

1. Choose a finite-dimensional test space T and number of integration points n.

2. Find the optimal integration points and weights by solving

(θosc, wosc) = argmin
θ∈Θn

w∈[0,∞)n

‖I −Q(θ,w)‖2
L(T ,R). (5.33)

Note that there are some basic relationships between T and n. Mainly, the number
of integration points is bounded by dim(P) = L ≤ n ≤ t = dim(T ) since n < L
points cannot even distinguish the L different ansatz functions and t points are
always capable of reducing the operator error norm to zero [52].

A good choice for the test space T can be derived from the integrals that we
want to approximate in (5.29). Whenever G ∈ P , then we would like G̃L = G, i.e.,
there is no truncation or aliasing error for polynomial models within the ansatz
space P (5.18). This means that the integral of all products of two elements in P
have to be exact, which corresponds to the test space

T = span{ΨiΨj, 1 ≤ i, j ≤ L}. (5.34)
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Based on this choice of T , it is then desired to choose n large enough so that the
operator norm is reduced to zero. A simple procedure can be derived from the
degrees of freedom (DOF) in the optimization problem (5.33). The number of
DOF in the optimization is n(nθ + 1). In order to reduce the objective function
in (5.33) to zero, t equations must be satisfied. Therefore, if we choose T and n
such that

t = n(nθ + 1), (5.35)

then we may have enough integration points to be able to satisfy all t conditions.
Since t is fixed according to (5.34), we should initially select n = t/(nθ + 1), which
is much lower than the upper bound of t. However, it is important to note that
this is a heuristic choice and cases exist that n has to be larger or can be chosen
smaller. Thus, a practical approach is to first choose n according to the DOF
condition (5.35) and then numerically perform the optimization (5.33). If the
minimum objective value is not small enough, then n can be increased by one and
the optimization repeated until the objective has been reduced to a sufficiently
low value. Note that alternative choices of T and n are discussed in [52].

Remark 2 Whenever L is chosen using the “total order” truncation method with
maximum order no, then the choice of test space in (5.34) effectively doubles the

PCE order such that the dimensionality of the test space is t = (nθ+2no)!
nθ!2no!

.

We can now derive an expression for the operator norm in (5.33) explicitly in
terms of the integration points θ and weights w. Since the elements of T in (5.34)
are polynomials, they can be represented as coordinate vectors with respect to the
ONB Ψ1, . . . , Ψt, i.e., any function f ∈ T can be written as f =

∑t
i=1 ciΨi. Based

on this representation, the numerator of the induced norm can be written as

‖Af‖R =
∥∥A (∑t

i=1 ciΨi
)∥∥

2
=
∥∥∑t

i=1 ciAΨi
∥∥

2
≤ ‖c‖2‖AΨ‖2, (5.36)

where c = (c1, . . . , ct) and AΨ = (AΨ1, . . . , AΨt) denotes the vector representation
of any operator A with respect to the ONB Ψ . The inequality above directly
follows from the well-known Cauchy-Schwartz inequality. Similarly, we can apply
this representation to the squared denominator of the induced norm to derive

‖f‖2
θ =

∫
Θ

(
t∑
i=1

ciΨi(θ)

)2

p(θ)dθ =
t∑
i=1

t∑
j=1

cicj〈Ψi, Ψj〉θ =
t∑
i=1

c2
i = ‖c‖2

2. (5.37)

Since the supremum is achieved when the inequality exactly holds, we can combine
these two expressions to derive a finite-dimensional representation of the operator
norm as the 2-norm of its vector representation, i.e., ‖A‖L(T ,R) = ‖AΨ‖2.
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We recall (5.17) to find that IΨi = δ1i, meaning that the vector representation
of I can be written as

IΨ = e1 = (1, 0, . . . , 0). (5.38)

For Q(θ,w), from (5.31), we find that

Q(θ,w)Ψi =
n∑
j=1

wjΨi(θ
(j)), (5.39)

which can be easily converted into its vector representation that is an explicit
function of the integration points and weights:

Q(θ,w)Ψ = Ψ (θ)w, (5.40)

where Ψ (θ) is a t× n matrix:

Ψ (θ) =

Ψ1(θ(1)) · · · Ψ1(θ(n))
...

. . .
...

Ψt(θ
(1)) · · · Ψt(θ

(n))

 . (5.41)

We can then calculate the squared operator norm of I −Q(θ,w) as

‖I −Q(θ,w)‖2
L(T ,R) = ‖e1 − Ψ (θ)w‖2

2, (5.42)

which is a sum of squares of polynomial functions. This is a smooth function with
structure that can be easily exploited by gradient-based optimization algorithms.
An important practical issue in the OSC method (5.33) is finding the global
minimum. Since the lowest attainable value of the objective is known to be
zero, we are guaranteed to have found a global optimum as long as this bound is
reached.

5.4.5 Global versus local PCE with respect to the design
space

PCE is simply an orthogonal polynomial approximation to random functions and
thus can be applied to G in various ways. For example, in [25] a single (or global)
PCE is constructed for G(θ, d) over the entire product of the parameter and design
spaces. In this way, a random vector ξ ∈ Rns , ns = nθ + nd is defined to have
one dimension associated to each component of θ and one to each component
of d. The density p(ξ) is required to be separable and is assumed to map to
the joint space (θ, d) = T (ξ) based on some (possibly) nonlinear diffeomorphism
T : Rns → Θ ×D that preserves the probability density functions of ξ and (θ, d).
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The global PCE can then be defined similarly to (5.15), except now in terms of
this new random vector ξ

G(θ(ξ), d(ξ)) ≈
L∑
i=1

biΦi(ξ), (5.43)

where b1, . . . , bL are the global expansion coefficients and Φ1, . . . , ΦL are polyno-
mials that are orthogonal with respect to p(ξ).

The main advantage of this approach is that the coefficients are constant
and therefore only need to be computed once before solving the Bayesian OED
problem; however, there are two important limitations. First, the number of terms
in (5.43) increases exponentially with ns = nθ + nd and the truncated order no.
The effect of this growth is twofold: time-varying trajectories d(t) must be heavily
discretized in order to keep nd small, and accuracy must be sacrificed when G is
highly nonlinear in either θ or d to keep no small. Second, we must select some
probability distribution for the design variables. This distribution represents the
weight function that governs what regions of D that the PCE should be most
accurate. Therefore, the probability distribution should be proportional to how
often values of d are visited during the optimization algorithm. Since this quantity
is too complex to extract in practice, a heuristic strategy must be applied instead.
For example, in [25], a uniform weight function over the bounded design space is
chosen. As a result, the surrogate can be inaccurate near the unknown optimal
design.

The proposed PCE-based surrogate (5.15) avoids both of these issues by devel-
oping a local surrogate around each design encountered during the optimization.
Therefore, the size of the surrogate is completely independent of nd, and we do
not need to artificially define a distribution over the design space. Although the
coefficients must be updated at every iteration in the proposed approach, the OSC
rule used to define the quadrature operator in (5.29) ensures that this process only
requires a minimal number of forward model simulations. This means that we can
significantly reduce the number of full model evaluations in (5.14) from O(NM)
to merely n. These features suggest that the proposed approach is especially
advantageous in dynamic systems, which can very easily result in OED problems
with nd on the order of tens to hundreds of independent variables.

The final important difference between (5.15) and (5.43) is related to the
essence of the so-called germ ξ. The generalized polynomial chaos (gPC) method
requires the stochastic parameters to be statistically independent in order to
simplify the basis construction. As long as T is a density-preserving transfor-
mation, then ξ can be chosen as any set of independent random variables. The
Rosenblatt transformation is the most common example as it applies to any
collection of continuous random variables [47]. However, a known problem with
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the Rosenblatt transformation is that, even for simple problems, T can quickly
become discontinuous and highly nonlinear. In fact, it has been shown that
transformations between some standard scalar random variables exhibit Gibbs
phenomena and thus deteriorate the convergence rate of the expansion [59]. Even
when this transformation is reasonably well-behaved, it can be complicated to
determine and expensive to evaluate. Therefore, it is preferred to expand in
terms of θ when possible. This implementation of PCE has been referred to as
arbitrary polynomial chaos (aPC) since there are no restrictions on p(θ), and can
be interpreted as a generalization of gPC. We explicitly represent (5.15) using
aPC because this helps keep no small, which directly results in lower values for n
due to smaller-sized test spaces (5.34).

5.5 Numerical results

5.5.1 The dynamic forward model

The well-known Lotka-Volterra (LV) system has been used to model the nonlinear
and oscillatory dynamics of interacting predator and prey populations, and is a
commonly used benchmark problem in the dynamic OED literature, e.g., [56].
The time-evolution of LV system is governed by the ODEs

ẋ1(t) = x1(t)− (1 + 0.25θ1)x2(t)x1(t)− 0.4x1(t)d(t) (5.44a)

ẋ2(t) = −x1(t) + (1 + 0.25θ2)x1(t)x1(t)− 0.2x2(t)d(t), (5.44b)

where t ∈ [0, tf ] is the time variable with tf = 12, x1(t) is the normalized prey
population, x2(t) is the normalized predator population, and θ1 and θ2 are the
unknown parameters for which we have limited information. The design profile
d(t) can be manipulated throughout the experiment, and is constrained to the
domain d(t) ∈ [0, 1] for all t ∈ [0, tf ]. We also assume a noisy measurement of the
predator population can be made at the final time, i.e., y = x2(tf ) + ε. The noise
is modeled as a zero-mean Gaussian random variable with standard deviation
σ = 0.1|x2(tf )|, i.e., the noise variance is state-dependent and equals 10% of the
signal. For this study, we select a statistically-dependent prior in terms of two
coupled beta distributions

θ1 ∼ B(2, 2), θ2|θ1 ∼ B(θ1 + 3,−θ1 + 2). (5.45)

A contour plot of this joint distribution on the support (θ1, θ2) ∈ [−1, 1]2 is shown
in Figure 5.1. This prior was chosen as an example of one that is able to capture
potential relationships between parameters.

The OED formulation (5.8) seeks the design d?(t) such that, when the experi-
ment is performed, on average the predator signal yields the greatest information
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gain from prior to posterior, i.e., the information gain is averaged over all possible
prior parameters and over all possible resulting measured predator populations.
State chance constraints are added to the problem after the initial comparisons.

Note that all NLP optimization problems discussed in this case study are
numerically solved using CasADi [2] that automatically passes the required deriva-
tives (based on a symbolic implementation of the equations) to the interior point
solver IPOPT [57]. In addition, all computations were performed on a MacBook
Pro with 8 GB of RAM and a 2.6 GHz Intel i5 processor.

5.5.2 Local and global PCE implementations

Evaluating the forward model requires solving the ODE in (5.44) at fixed real-
izations of θ and extracting the predator population at the final time. These
equations are integrated with CVODE [15] set to a tolerance of 10−8, which is an
error-controlled solver for stiff and non-stiff initial value problems. As discussed
in Section 5.4, the full forward model can be replaced with a PCE-based surrogate
to improve computational efficiency of the MC estimator for the expected utility.
In this example, we compare two surrogate modeling approaches: (i) the proposed
method that we will refer to as “local” or “design-dependent” PCE for short and
(ii) the “global” PCE method proposed in [25, 26].

The local PCE method expands in terms of θ directly, meaning the polynomials
must be constructed to be orthogonal to (5.45). This was done by applying the
modified Cholesky decomposition to the Gram moment matrix, composed of
moments of a finite number of moments of θ. The coefficients of the expansion
are estimated using a quadrature rule chosen as the solution to the OSC problem
(5.33) with a test space T composed of all polynomials up to degree 8, which

corresponds to t = dim(T ) = (8+2)!
8!2!

= 45. Based on the DOF condition in (5.35),
n was initially set equal to 15; however, this did not produce satisfactory objective
values near zero and so was increased by one. For n = 16 points, we were able to
consistently find solutions to (5.33) that result in a norm of zero (global optimum)
starting from an initial condition with equal weights and nodes sampled randomly
from p(θ). This indicates the OSC rule can integrate 45 polynomials exactly using
only 16 points. One such example of a converged OSC rule is shown in Figure
5.1. This rule matches intuition as points with larger weights are concentrated in
regions of the density function with higher values. Note that the OSC problem
took about 2 seconds on average to solve and more than 90% of the runs converged
to the global optimum.

Global PCE, on the other hand, expands with respect to the joint parameter
and design space, meaning the design space must be discretized before it can be
applied. To this end, the design profile is discretized into NT piecewise constant
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Figure 5.1: Randomly sampled initial condition provided to OSC optimization (5.33) (left)
and derived optimal OSC quadrature rule with n = 16 nodes that can exactly integrate t = 45
polynomials (right). The nodes are shown with a white ‘x’, and the size of each node is
proportional to its weight. The colors represent contours of the joint parameter distribution in
(5.45).

intervals [0, tf ] = [t0, t1) ∪ · · · ∪ [tNT−1, tNT ) such that d(t) = di for all t ∈ [ti, ti+1)
and i = 1, . . . , NT . For comparison purposes, we fix the number of intervals at
NT = 2. We thus have two additional variables (d1, d2) to include in the PCE,
which we assume are independent and uniformly distributed in order to build the
surrogate (5.43). We again note that this is heuristic choice, as we do not know
the distribution of designs that will be visited during the optimization procedure.
The parameter and design variables must then be mapped to a 4-dimensional
germ ξ = T (θ1, θ2, d1, d2) that has statistically independent elements. In this
case, we choose ξ1 ∼ β(2, 2), ξ2 ∼ β(2, 2), ξ3 ∼ U(−1, 1), ξ4 ∼ U(−1, 1), and T
according to the Rosenblatt transformation. The coefficients of the global PCE
were determined with a tensor product of Gaussian quadrature rules of order 10
that resulted in a total of 104 forward model evaluations.

Both the local and global PCE method are implemented using total-order
polynomial truncation. In order to select this truncation order, we calculated the
L2
θ mean-squared error (MSE) for various truncation orders, which is plotted in

Figure 5.2. We clearly observe that the error decreases as order increases for both
methods; however, the local expansion exhibits a faster rate of convergence and
has errors more than an order-of-magnitude lower than the global approach. This
is not surprising as local PCE does not expand in the design space so that it can
directly capture nonlinear effects with respect to d. For global PCE, we selected
order 9 as this resulted in reasonably small MSE while retaining less than one
thousand terms in the expansion, i.e., L = 715. Based on this choice, we selected
order 4 for local PCE, which corresponds to L = 15, as this is the smallest order
with lower MSE than global PCE of order 9.
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Figure 5.2: The mean-square error (MSE), i.e., L2
θ norm versus truncation order of the local

and global PCE surrogates for the forward model in the LV system.

5.5.3 Stochastic dynamic optimization implementation
and results

We now discuss the implementation of the proposed SAA optimization (5.14) and
analyze the results for varying number of samples. We first focus on the local
PCE method and then compare performance to the global PCE method.

Regardless of the choice of sample sizes N and M , the local PCE method
must impose n separate ODE constraints corresponding to the nodes of the OSC
rule. A direct transcription approach was used to discretize the state profile
in time using collocation of finite elements. We chose 20 elements and used a
third-order collocation scheme within each element. Note that the design profile
is only discretized into 2 elements in order for the local method to be more fairly
compared with the global approach. As such, the dynamic optimization problem
has been converted to a large-scale NLP that again can readily be solved using
CasADi and IPOPT. We chose to use the limited-memory BFGS estimate of
the Hessian, as opposed to exact evaluation of the Hessian, since this provided
computational savings in this problem (i.e., cost per iteration decreased more
than number of iterations increased).

Under SAA, each choice of sample sets θs and zs yields a different deterministic
objective. Example realizations of this objective surface are shown in Figures 5.3–
5.5. For each realization, a local optimum is found efficiently in only a relatively
few (usually less than 15) iterations. Note that for low N , the objective realizations
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Table 5.1: Histograms of the optimal design variables d̂s from 1000 independent bootstrap
runs of SAA over a matrix of N and M sample sizes. For each histogram, the bottom-right axis
represents d(t) = d1 for t ∈ [0, tf/2), the bottom-left axis represents d(t) = d2 for t ∈ [tf/2, tf ),
and the vertical axis represents frequency.

N
M

2 11 101 1001

1

11
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Table 5.2: High-quality estimates of the expected utility (or information gain in this case)
at the optimal designs resulting from 1000 independent runs of SAA. For each histogram, the
horizontal axis represents values of Û1001,1001 and the vertical axis represents frequency.
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can be extremely different including the location of the optimum points as well as
the estimated maximum value of the expected utility. In general, however, the
objectives have less variability as N is increased. Looking at N = 101 in Figure
5.5, we consistently see two designs that (locally) maximize the objective and one
design that minimizes the objective. To better understand the performance of the
proposed method, we conducted 1000 independent bootstrap runs, over a matrix
of N and M values. Each optimization is initialized with a uniformly distributed
random design to assess the performance of the method on average. Histograms
of the optimal design variables resulting from each set of 1000 optimization runs
are shown in Table 5.1. We can immediately recognize that more designs cluster
around the three local optima as N and M are increased. The distribution of
final designs is not enough to understand the robustness of the optimization
results. For example, if U is flat near the optimum, then the suboptimal designs
need not be close to the true optimal design to be considered good designs in
practice. A “high-quality” estimate of the objective Û1001,1001 is computed for
each of the 1000 designs in Table 5.1 to evaluate robustness, and the resulting
histograms are shown in Table 5.2. We can again see that performance improves
as N and M increase. It is interesting to note that all histograms in Table 5.2 are
bimodal. The higher mode reflects a mixture of the two maxima while the lower
mode corresponds to the minimum design. Although the variance in these modes
decrease with increasing N and M , both modes are always present. Around 70%
of runs converge to the high expected utility mode while 30% of the runs converge
to the low mode. Note that similar features are observed when using global PCE
as the surrogate model.

5.5.4 Comparison between local and global PCE
surrogates

To compare the local and global PCE surrogates, we develop a single integrated
measure of the quality of the solutions from the SAA optimization. As suggested
in [26], we use the following MSE expression as this metric

MSE =
1

B

B∑
b=1

(
Û1001,1001(d̂b, θbs′ , z

b
s′)− U ref

)2

(5.46)

where d̂b, b = 1, . . . , B are the final designs from the optimization algorithm for
B = 1000 bootstraps (using either local or global PCE) and U ref is the true
maximum expected information gain. Since the true maximum is not available
in this case study, we take U ref to be the maximum value of the objective over
all runs. An important issue in the evaluation of the MSE is that it will be
significantly biased by the designs that lead to the local minimum. To avoid this
bias, we initialized all optimizations at [1, 1] in the design space that consistently
produced designs that globally maximize the objective. Figure 5.6 describes the
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Figure 5.3: Realizations of the objective surface using SAA and the corresponding iterations
of IPOPT, with N = 1 and four separate M values. The blue � is the starting point and the
red × is the final converged point.

solution quality in relation to computational effort by plotting the MSE against
average computational time per run for both the local and global PCE methods.
Each symbol represents a particular value of N , i.e., ×,© and � represent N = 1,
N = 11, and N = 101, respectively, and the four different M values are shown
through average run times.

There are a number of interesting observations within Figure 5.6. Both
methods generally result in lower MSE as N and M increase. We also observe
that N has a much larger effect than M for this particular example. However,
in the N = 101 case for the global method, we see that MSE is nearly constant
as M increases. This is likely due to the fact that the global PCE has a larger
L2
θ error than the local method and thus hits its lowest achievable error around

this value for N . As expected, the global PCE method has solution times that
are directly proportional to the total number of samples used to evaluate the
expected utility since the cost of the model (5.43) is the same per sample. The
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Figure 5.4: Realizations of the objective surface using SAA and the corresponding iterations
of IPOPT, with N = 11 and four separate M values. The blue � is the starting point and the
red × is the final converged point.

local PCE method, on the other hand, requires a minimum of approximately 1
second to find a solution, regardless of N and M . This is due to the fact that
the local method has a fixed cost corresponding to the n = 16 discretized ODE
constraints. These nonlinear constraints are the dominant cost in the optimization
when N = 1,M = 2 all the way to N = 101, M = 101. In other words, we see no
increase in the approximately 1 second solution time when there are NM +N = 3
versus NM+N = 10, 302 total evaluations of the polynomial (5.15) needed at each
iteration. This highlights the importance of the minimal OSC rule as 16 forward
model evaluations are more expensive than over 10, 000 surrogate evaluations,
meaning we can expect the solution time to massively increase if the full model is
evaluated at each sample instead of the surrogate (if even possible to store all of
the constraints in memory). We do see that the cost of the polynomial evaluations
overtake the ODE cost for the largest considered case of N = 101, M = 1001.
The local PCE method, however, is increasingly cheaper to evaluate than the
global method as the number of samples increases. This is a direct consequence
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Figure 5.5: Realizations of the objective surface using SAA and the corresponding iterations
of IPOPT, with N = 101 and four separate M values. The blue � is the starting point and the
red × is the final converged point.

of the local expansion having a factor of 50 less terms in the expansion than the
global method. In fact, the local method is 7.5 times cheaper than the global
method in the largest case considered, while also producing solutions with two
order-of-magnitudes lower MSE.

5.5.5 Scaling with respect to number of design variables

The previous analysis focused on the case ofNT = 2 discretized design variables. To
understand the effect that NT has on the optimization when using the proposed
local PCE method, the average computational time to solve (5.14) (over ten
independent runs with N = 101 and M = 101) is plotted against the number of
design variables NT in Figure 5.7. We can clearly see that the cost scales sublinearly
with respect NT , which is mainly due to the fact that the state discretization
level is fixed at 20 elements in all cases as well as sparsity being exploited in the
gradient computation. It is important to note that, as NT increases, the size of the
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by (5.46), versus the average run time for SAA under both the local and global PCE surrogate
models and various choices of inner and outer sample sizes N and M .

surrogate model remains fixed and cost only increases due to the larger number
of decision variables. This is in sharp contrast to the global PCE model, which
grows exponentially in size as NT increases. For example, the global expansion
has more than two million terms for 20 design variables, 2 parameters, and a
truncation order of 9. As such, we were unable to apply the global method for
NT = 20, while the local method only took approximately 65 seconds to find a
solution.

High-quality expected utility estimates for each discretation level are also
shown in Figure 5.7. As expected, the optimal objective value increases as the
number of design variables increases due to the fact that the design profile has
more freedom (i.e., is less constrained). We see a large increase (more than 50%)
in the optimal objective for NT = 5 whereas fairly minor increases for larger
NT . This suggests that five intervals provide enough freedom in this problem to
find a solution that nearly maximizes the original dynamic problem (5.8), and
these solutions can be found in around 25 seconds whereas the original problem is
unsolvable.

5.5.6 Chance constraint approximation and tuning

An important consideration in this work is chance constraints of the form (5.2).
Here, we consider box state constraints (x1(t), x2(t)) ∈ [0, 3]× [0, 1.5] and β = 0.1,
meaning 10% of the state profiles are allowed to violate the box constraints.



CHAPTER 5. BAYESIAN OPTIMAL EXPERIMENT DESIGN FOR
PARAMETER ESTIMATION 140

0 5 10 15 20

number of design variables

0

10

20

30

40

50

60

70

ti
m

e
 t
o
 s

o
lv

e
 o

p
ti
m

iz
a
ti
o
n
 (

s
e
c
o
n
d
s
)

U=1.153

U=1.198

U=1.681

U=1.722

U=1.754

Figure 5.7: Average run time of SAA with the local PCE surrogate versus the number of
discretized design variables. The maximum expected utility achieved for each discretization
level is also shown.

However, it appears that the only active state constraint for the Bayesian OED
problem at hand is x2(t) ≤ 1.5, such that P (x(t; d, θ) ∈ X) = P (x2(t; d, θ) ≤ 1.5).
For tractability purposes, we enforce the smooth moment-based approximation
(5.12) instead of the original chance constraint. The required mean and variance
terms can be expressed as a function of the design variables using the coefficients
of the local PCE surrogate as shown in (5.26) and (5.27).

As discussed in Section 5.3, we cannot directly select a good value for the
backoff radius parameter r as the distribution of x2 is unknown at the optimal
design. Therefore, we explore a simple simulation-based procedure to determine
what value of r results in the largest possible objective. All that is required is to
solve the OED problem with E{x2(t; d, θ)}+ r

√
Var{x2(t; d, θ)} ≤ 1.5 added for

a given r. Once the optimal design for this problem has been found, denoted by
d?(r), MC simulations are performed on the forward model to empirically estimate
P (x2(t; d?(r), θ)). Note that the surrogate model can be used to further speed up
the estimation of this violation probability, as established in [45]. If the violation is
greater than β, then r should be increased and, if on the other hand, the observed
violation is less than β, then r should be decreased. This procedure is repeated
until satisfactory convergence is achieved. The basic methodology is presented
in Figure 5.8, which plots the estimated violation probability under 1000 MC
runs versus the backoff parameter r, with other parameters set to N = M = 101
and NT = 5. We see that r has a nonlinear effect on P (x2(t; d?(r), θ) ≤ 1.5). We
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also see that the constraint violation equals the desired level of 10% when the
radius is r = 1.5. Due to the simple structure of the constraints combined with
the cheap surrogate model, these average solution times are virtually identical
with or without (5.12) included.

We emphasize the fact that the violation probability only had to be estimated
at the optimal design, as opposed to being calculated at every iteration of the
optimization and expressed with binary variables. High-quality estimates of
the expected utility are also shown for each backoff radius in Figure 5.8 and,
as expected, it decreases with increasing radius due to the reduced feasible
region. The expected utility shows almost a linear decrease with increasing β
for this problem, but in general this effect can be highly nonlinear. This type of
Pareto analysis is useful to perform to probe the tradeoff between performance
and “robustness” to parameter uncertainty. It is worth noting that this type
of Pareto curve can be easily traced over β ∈ [0, 1] by finding the r that yields
P (x2(t; d?(r), θ) ≤ 1.5) = 1− β.
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Figure 5.8: The estimated state constraint violation probability under the optimal design
profile versus the backoff radius. The maximum expected utility for each backoff radius is also
shown.

5.6 Conclusions

This chapter studies the stochastic optimization problem arising from a general
nonlinear formulation for Bayesian optimal experiment design (OED), with a
particular focus on dynamic systems subject to state chance constraints. The
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main objective function of interest is the expected information gain in the model
parameters due to an experiment, which can be written in terms of the KL
divergence from the posterior to the distribution. Since this expected information
gain cannot be evaluated exactly, we must resort to a finite-sample Monte Carlo
(MC) approximation to the objective function using the well-known sample average
approximation (SAA) method. Although a similar SAA approximation can be
applied to the chance constraints, these constraints require integer variables (non-
smooth) and produces a feasible region that changes for every set of realizations
used. Therefore, we propose a smooth moment-based approximation to the
chance constraints that has a tunable backoff parameter, which can be determined
through a limited number of simulations to ensure the original constraints are
satisfied. Methods for computing the objective must also deal with the fact that
the estimator of the expected information gain is not a simple MC sum, but
involves a nested sum of MC estimates. It is therefore expensive to evaluate
the objective and/or its gradients, as each sample in the estimator requires the
dynamic forward model to be integrated over time. As suggested in previous
work [25, 26], we look to circumvent these challenges by approximating the forward
model with polynomial chaos expansions (PCEs) and subsequently computing
the expected information gain with PCEs instead.

The main contribution of this chapter is to develop a new PCE-based surrogate
model that is design-dependent, i.e., coefficients are updated locally at each design.
In this way, the exponential growth with respect to the number of design variables
that occurs in the global PCE method of [25, 26] can be avoided. Another key
feature of the proposed local PCE method is that the expansions are defined
in terms of polynomials that are orthogonal with respect to arbitrary priors,
meaning they most accurately approximate the forward model in high probability
regions of the parameter space. Since the expansion coefficients are defined as
weighted multidimensional integrals, the cost of estimating these coefficients is
directly proportional to the number of nodes in a chosen discrete quadrature
rule. Therefore, we apply an optimization-based procedure to numerically derive
a rule that ensures high accuracy integration with a minimal number of nodes.
We compare the performance of the proposed local PCE method to the global
method of [25, 26] on the problem of estimating parameters from noisy data
in a dynamically evolving predator-prey system. Numerical experiments are
performed over a matrix of inner- and outer-loop sample sizes to examine their
impact on bias and variance of the objective function. Unsurprisingly, we see that
the solution quality improves as the sample sizes increase, but observe that the
outer sample size has a larger effect than inner sample size. We also note that
multiple local solutions exist, though the global solution is found approximately
70% of the time. When comparing the local and global PCE methods for only
two design variables, we observe that the proposed local method can provide
a significant speedup and lower error, especially as the sample size increases.



CHAPTER 5. BAYESIAN OPTIMAL EXPERIMENT DESIGN FOR
PARAMETER ESTIMATION 143

Another important observation is that the average solution time with the local
PCE surrogate scales sublinearly with respect to the design profile discretization
level. This is a result of the coefficients being updated at each design, which
ensures the size of the expansion is independent of the design profile. This is in
sharp contrast to the global PCE model, which grows exponentially in size as the
discretization level increases. We also show that the moment-based constraints
can be tuned to guarantee satisfaction of the original chance constraints, and how
the surrogate model ensures these added computations are negligible compared to
the main cost of estimating the expected information gain.

The developed approach is based on a nested MC estimator for the expected
information gain. Some known issues with this estimator are that it requires a large
number of samples due to the double-loop sample-average structure and the inner
loop can suffer from arithmetic underflow for small sample sizes, diffuse priors, or
concentrated posteriors. Future work should focus on developing methods that
can avoid these issues. One such example is to replace samples from the prior
with those drawn from an importance sampling distribution. A good candidate
importance sampler can be derived from the Laplace approximation (LA) [35],
which expands the posterior distribution in terms of a second-order Taylor series
around the maximum a posteriori (MAP) estimate. Although this reduces the
inner-loop sample size, it come at the cost of constructing the LA, so it is not
obvious this will reduce the overall computational burden. Note that LA has
also been used to directly approximate certain expected utilities in large-scale
OED problems [1]. It would also be interesting to explore methods, such as
parallelized solvers [28] or distributed optimization algorithms [27], that are
capable of exploiting the structure of the NLPs derived from stochastic dynamic
optimization problems in order to achieve further reductions in the solution time.

Lastly, this chapter focuses on batch (or open-loop) OED, where the experiment
is fully designed before any data are actually collected. An important area of future
research is sequential (or closed-loop) OED, where data from previous experiments
can be used to guide the design of future experiments. The closed-loop OED
problem can be rigorously formulated using dynamic programming [24, Chapter
3], but significant computational challenges must be overcome for this to be
practically solvable, especially since the state must be represented in terms of
the posterior distribution of the parameters. The proposed PCE-based surrogate
model could potentially be used to address some of these challenges and, thus,
help pave the way for OED to be solved in real-time in a fully Bayesian setting.
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Chapter 6

Conclusions and future work

As computing power and biological data become more available, future modeling and
optimal experiment design approaches can be expected to capture more complexity
of biological systems. We expect the field to move toward Bayesian estimation and
experiment design approaches with no restrictive assumptions. We also expect the
field to adapt and integrate model predictions in the real-time design and control
of experiments, so that outcomes of an experiment can be modulated as it takes
place. In this chapter, we summarize the main contributions and findings of this
thesis. We also elaborate on our thoughts on future work and trends in the field of
uncertainty quantification and optimal experiment design for biological systems.

6.1 Conclusions

In this thesis, we demonstrated the importance of probabilistic modeling and
experiment design methods that can quantify and reduce uncertainty and/or het-
erogeneity in biological systems. We showed how the iterative process of building
complex models can benefit from the development of uncertainty quantification
(UQ) and optimal experiment design (OED) tools that can maximize the informa-
tion content of experimental data in a computationally efficient manner. Despite
the increasing use of UQ and OED methods in complex engineering systems, their
use in biological systems is lagging. In this thesis, we have introduced approaches
that can circumvent the challenges of implementation of UQ and OED for large
nonlinear biological systems with probabilistic behavior arising from uncertainty
and/or heterogeneity. We expect the contributions of this thesis to create new
opportunities for seamless implementation of UQ and OED for systematic and
hypothesis-based modeling in biological systems.

A key aspect in the process of building models is learning about the system
from experimental data, that is, the inverse UQ problem for parameter estimation
and hypothesis testing. Estimating model parameters from experimental data
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can be very computationally intensive, particularly for large biological models.
Chapter 2 introduces a novel surrogate modeling method that significantly cuts
down the cost of simulation of computationally expensive biological models, such
as dynamic Flux Balance Analysis (DFBA), whilst remaining faithful to the true
system behavior. We demonstrated that surrogate models can radically decrease
the computational cost of parameter estimation approaches. In particular, the
presented surrogate modeling method can be used to perform Bayesian estimation
of genome-scale model parameters using, for example, sequential Monte Carlo
and Markov Chain Monte Carlo methods.

The ability to discriminate between predictions of competing model structures
is key for determining the model structure that most correctly describes the
underlying physical properties of a biological system. In Chapter 3, we introduce
an OED method, based on polynomial chaos theory, that is able to discern
between two competing model structures by maximizing the separation between
the full probably distributions of competing model outcomes. Conversely, Chapter
4 introduces two additional methods for OED for model structure selection.
These methods are amenable to real-time implementation (i.e., during operation
or experimental execution). This is achieved by enforcing separation between
the statistics or properties of the outcome distribution (i.e., mean, variance),
as opposed to the full description of the full probability distribution. By not
capturing the full distribution, the computational cost is significantly reduced
so that the approach can be applied in real-time. Finally, Chapter 4 introduces
a Bayesian method that allows for online estimation of the probability of each
competing model being true based on system observations. By tracking how well
each model describes newly obtained system observations, the method can be
used to perform online model separation.

The model selection methods presented in Chapters 3 and 4 offer a trade-off
between modeling accuracy and computational speed, which provides flexibility
of choice to accommodate a variety of scenarios and needs. There is value in
building the entire range of outcomes of a given model in order to be as accurate as
possible, if the experiment can be designed in a fully offline manner. Oftentimes,
however, it is convenient to identify the system status quickly, for instance, in
industrial operation. In an analogous way, the employed methods will be subject
to the types and frequency of system observations that are available. Overall, the
choice of a specific framework will depend on the characteristics of the system at
hand and the designed experiment. The availability of methods tailored to each
experimental scenario is imperative for the wide adoption of OED methods in
practical settings.

In Chapter 5, we introduce a novel Bayesian OED method for parameter
estimation. This method intends to maximize the information content of ex-
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perimental data for parameter estimation purposes. Bayesian approaches make
no assumptions about the system and model parameter priors, but can be very
computationally intensive, often intractable for nonlinear complex systems. Upon
application of a few restrictive assumptions and approximations, Bayesian OED
approaches can be reduced to classical OED approaches, which maximize a scalar
metric of the Fisher Information Matrix. Implementation of classical OED for
biological systems can be challenging due to the fact that their dynamics can be
highly nonlinear and their probabilistic behavior can deviate from normality. To
address this, Chapter 5 introduces a novel Bayesian OED approach for nonlinear
systems subject to experimental constraints. The Bayesian approach defines a
utility function that maximizes the change of the posterior distribution versus
the prior knowledge of the parameters. In our method, we proposed an arbitrary
polynomial chaos approach to model the utility function, which was defined locally
with respect to the design space. We expect this approach to be a new paradigm
in the field of OED for parameter estimation.

6.2 Future work

The complexity inherent to the dynamics of biological systems has generally hin-
dered the implementation of UQ and OED tools. Such complexity is compounded
by probabilistic non-linear behavior, non-observability, and large system sizes with
thousands of constituents. In this thesis, we have offered multiple methods that
circumvent some of these issues to enable novel implementations of UQ and OED
to biological systems. However, many challenges remain to be overcome until
computationally efficient solutions that capture sufficient complexity in biological
systems are widely available.

In this thesis, we presented a method for Bayesian learning of genome-scale
models of biological systems. We believe that an important area of future research
will be the development of efficient procedures to perform OED in genome-scale
DFBA models. Designing biological experiments using DFBA models that account
for uncertainty and/or heterogeneity in a classical or Bayesian sense can lead to
significant learning from the system. Key computational challenges include i)
the presence of discontinuities and singularities, and ii) scalability of UQ/OED
methods with respect to number of sources of probabilistic behavior in the system.

Throughout this thesis, we have outlined key distinctions between classical and
OED approaches. It is important to acknowledge that classical OED approaches
can be successful when the system is observable and the system’s probabilistic
behavior is nearly gaussian. This is preferable from an implementation stand-
point because classical OED approaches are straightforward and computationally
efficient as compared to Bayesian approaches. However, biological systems ex-
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hibit characteristics that suggest classical approaches can be suboptimal, such as
departure from normality in probabilistic behavior, weakly or poorly observable
problems, large parameter sets that are possibly correlated, and large system
dimensionality due to numerous system constituents. As a result, we believe that
the field of biological system modeling will continue to benefit from progress in
Bayesian OED, which will allow designing experiments whilst accounting for all
prior system information.

Important future work on Bayesian OED will revolve around the generalization
of the method for model discrimination, as well as handling of more complex
systems (e.g., mixed integer systems). The presented Bayesian approach, which is
the first-of-its-kind for nonlinear systems, heavily relies on the choice of surrogate
model for the computation of expected utility. More work remains to be done
in the surrogate modeling front, as it poses significant challenges when dealing
with large numbers of parameters and constituents. In addition, we believe that
it would be beneficial to explore methods like distributed numerical solution and
optimization algorithms, which will allow to parallelize sampling of the system to
reduce the overall computational cost of the method.

A potentially transformative application of the proposed Bayesian OED method
is its implementation in a closed-loop setting. The proposed Bayesian approach was
conceived to be applied as an open-loop (or batch) OED, where the experiment
can be fully designed before the collection of any data. A promising area of
research is the development of closed-loop (or sequential) OED, where previous
experimental data can be used to guide future experiments. However, significant
computational challenges are to be overcome for this to be solvable in a practical
and systematic manner.

Throughout this thesis, we have presented extensive validation of our methods
with respect to historical data and state-of-the-art approaches. We believe that the
next step is the integration of these computational contributions within established
experimental workflows, so that experimental decisions or designs can be directly
influenced by the presented modeling, UQ, and OED methods. To attain this, the
employed methods should be made sufficiently flexible and adaptable so that they
can be seamlessly implemented into experimentalists protocols. A step towards
that goal would be the development of ready-to-use software packages.

There are remaining questions to be resolved if the presented frameworks are
to be executed in fully experimental settings. Despite this, the last few years have
seen immense progress when it comes to implementation of modeling, UQ, and
OED frameworks in biological systems. We strongly believe that more research
will lead to seamless integration of computational and experimental workflows to
guarantee high-quality models and optimal experiment designs.
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