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2-LOCAL TRIPLE DERIVATIONS ON VON NEUMANN
ALGEBRAS

KARIMBERGEN KUDAYBERGENOV, TIMUR OIKHBERG,

ANTONIO M. PERALTA AND BERNARD RUSSO

Abstract. We prove that every (not necessarily linear nor con-
tinuous) 2-local triple derivation on a von Neumann algebra

M is a triple derivation, equivalently, the set Dert(M), of all

triple derivations on M , is algebraically 2-reflexive in the set
M(M) =MM of all mappings from M into M .

1. Introduction

Let X and Y be Banach spaces. According to the terminology employed in
the literature (see, for example, [4]), a subset D of the Banach space B(X,Y ),
of all bounded linear operators from X into Y , is called algebraically reflexive
in B(X,Y ) when it satisfies the property:

(1.1) T ∈B(X,Y ) with T (x) ∈D(x),∀x ∈X ⇒ T ∈D.

Algebraic reflexivity of D in the space L(X,Y ), of all linear mappings from
X into Y , a stronger version of the above property not requiring continuity
of T , is defined by:

(1.2) T ∈ L(X,Y ) with T (x) ∈D(x),∀x ∈X ⇒ T ∈D.

In 1990, Kadison proved that (1.1) holds if D is the set Der(M,X) of
all (associative) derivations on a von Neumann algebra M into a dual M -
bimodule X [18]. Johnson extended Kadison’s result by establishing that the
set D =Der(A,X), of all (associative) derivations from a C∗-algebra A into a
Banach A-bimodule X satisfies (1.2) [17].
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1056 K. KUDAYBERGENOV ET AL.

Algebraic reflexivity of the set of local triple derivations on a C∗-algebra
and on a JB∗-triple have been studied in [24], [9], [12] and [14]. More precisely,
Mackey proves in [24] that the set D = Dert(M), of all triple derivations on
a JBW∗-triple M satisfies (1.1). The result has been supplemented in [12],
where Burgos, Fernández-Polo and the third author of this note prove that for
each JB∗-triple E, the set D =Dert(E) of all triple derivations on E satisfies
(1.2).

Hereafter, algebraic reflexivity will refer to the stronger version (1.2) which
does not assume the continuity of T .

In [6], Brešar and Šemrl proved that the set of all (algebra) automor-
phisms of B(H) is algebraically reflexive whenever H is a separable, infinite-
dimensional Hilbert space. Given a Banach space X , a linear mapping
T :X →X satisfying the hypothesis at (1.2) for D =Aut(X), the set of auto-
morphisms on X , is called a local automorphism. Larson and Sourour showed
in [22] that for every infinite dimensional Banach space X , every surjective
local automorphism T on the Banach algebra B(X), of all bounded linear
operators on X , is an automorphism.

Motivated by the results of Šemrl in [31], references witness a growing
interest in a subtle version of algebraic reflexivity called algebraic 2-reflexivity
(cf. [1], [2], [10], [11], [21], [23], [25], [26] and [29]). A subset D of the set
M(X,Y ) = Y X , of all mappings from X into Y , is called algebraically 2-
reflexive when the following property holds: for each mapping T in M(X,Y )
such that for each a, b ∈X , there exists S = Sa,b ∈D (depending on a and b),
with T (a) = Sa,b(a) and T (b) = Sa,b(b), then T lies in D. A mapping T :X →
Y satisfying the property that for each a, b ∈ X , there exists S = Sa,b ∈ D
(depending on a and b), with T (a) = Sa,b(a) and T (b) = Sa,b(b) will be called a
2-local D-mapping. If we assume that every mapping S ∈D is r-homogeneous
(that is, S(ta) = trS(a) for every t ∈ R or C) with 0 < r, then every 2-local
D-mapping T :X → Y is r-homogeneous. Indeed, for each a ∈X , t ∈ C take
Sa,ta ∈D satisfying T (ta) = Sa,ta(ta) = trSa,ta(a) = trT (a).

Šemrl establishes in [31] that for every infinite-dimensional separable
Hilbert space H , the sets Aut(B(H)) and Der(B(H)), of all (algebra) auto-
morphisms and associative derivations on B(H), respectively, are algebraically
2-reflexive in M(B(H)) =M(B(H),B(H)). Ayupov and the first author of
this note proved in [1] that the same statement remains true for general Hilbert
spaces (see [20] for the finite dimensional case). Actually, the set Hom(A), of
all homomorphisms on a general C∗-algebra A, is algebraically 2-reflexive in
the Banach algebra B(A), of all bounded linear operators on A, and the set
∗-Hom(A), of all ∗-homomorphisms on A, is algebraically 2-reflexive in the
space L(A), of all linear operators on A (cf. [27]).

In recent contributions, Burgos, Fernández-Polo and the third author
of this note prove that the set ∗-Hom(M) (respectively, Homt(M)), of all
∗-homomorphisms (respectively, triple homomorphisms) on a von Neumann
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algebra (respectively, on a JBW∗-triple) M , is an algebraically 2-reflexive sub-
set of M(M) (cf. [10], [11], respectively), while Ayupov and the first author of
this note establish that the set Der(M) of all derivations on M is algebraically
2-reflexive in M(M) (see [2]).

In this paper, we consider the set Dert(A) of all triple derivations on a
C∗-algebra A. We recall that every C∗-algebra A can be equipped with a
ternary product of the form

{a, b, c}= 1

2

(
ab∗c+ cb∗a

)
.

When A is equipped with this product it becomes a JB∗-triple in the sense
of [19]. A linear mapping δ :A→A is said to be a triple derivation when it
satisfies the (triple) Leibnitz rule:

δ{a, b, c}=
{
δ(a), b, c

}
+
{
a, δ(b), c

}
+
{
a, b, δ(c)

}
.

It is known that every triple derivation is automatically continuous (cf. [3]).
We refer to [3], [15] and [28] for the basic references on triple derivations.
According to the standard notation, 2-local Dert(A)-mappings from A into A
are called 2-local triple derivations.

The goal of this note is to explore the algebraic 2-reflexivity of Dert(A) in
M(A). Our main result proves that every (not necessarily linear nor contin-
uous) 2-local triple derivation on an arbitrary von Neumann algebra M is a
triple derivation (hence, linear and continuous) (see Theorem 2.14), equiva-
lently, Dert(M) is algebraically 2-reflexive in M(M).

2. 2-local triple derivations on von Neumann algebras

We start by recalling some generalities on triple derivations. Let A be a
C∗-algebra. For each b ∈A, we shall denote by Mb the Jordan multiplication
mapping by the element b, that is Mb(x) = b ◦ x = 1

2 (bx + xb). Following
standard notation, given elements a, b in A, we denote by L(a, b) the operator
on A defined by L(a, b)(x) = {a, b, x}= 1

2 (ab
∗x+ xb∗a). It is known that the

mapping δ(a, b) :A→A, given by

δ(a, b)(x) = L(a, b)(x)−L(b, a)(x),

is a triple derivation on A (cf. [3], [15]). A triple derivation which is a finite
linear combination of derivations of the form δ(a, b) is called an inner triple
derivation.

Let δ :A→A be a triple derivation on a unital C∗-algebra. By [15, Lem-
mas 1 and 2], δ(1)∗ =−δ(1), Mδ(1) = δ( 12δ(1),1) is an inner triple derivation

on A, and the difference D = δ − δ( 12δ(1),1) is a Jordan ∗-derivation on A,
more concretely,

D(x ◦ y) =D(x) ◦ y+ x ◦D(y), and D
(
x∗)=D(x)∗,
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for every x, y ∈ A. By [3, Corollary 2.2], δ (and hence D) is a continuous
operator. A widely known result, due to B. E. Johnson, states that every
bounded Jordan derivation from a C∗-algebra A to a Banach A-bimodule
is an associative derivation (cf. [16]). Therefore, D is an associative ∗-
derivation in the usual sense. When A =M is a von Neumann algebra, we
can guarantee that D is an inner derivation, that is, there exists ã ∈A satis-
fying D(x) = [ã, x] = ãx− xã, for every x ∈A (cf. [30, Theorem 4.1.6]). Fur-
ther, from the condition D(x∗) = D(x)∗, for every x ∈ A, we deduce that
(ã∗+ ã)x= x(ã∗+ ã). Thus, taking a= 1

2 (ã− ã∗), it follows that [a,x] = [ã, x],
for every x ∈M . We have therefore shown that for every triple derivation δ
on a von Neumann algebra M , there exist skew-Hermitian elements a, b ∈M
satisfying

δ(x) = [a,x] + b ◦ x,
for every x ∈M .

Our first lemma is a direct consequence of the above arguments (see [15,
Lemmas 1 and 2]).

Lemma 2.1. Let T : A → A be a (not necessarily linear nor continuous)
2-local triple derivation on a unital C∗-algebra. Then

(a) T (1)∗ =−T (1);
(b) MT (1) = δ( 12T (1),1) is an inner triple derivation on A;

(c) T̂ = T − δ(12T (1),1) is a 2-local triple derivation on A with T̂ (1) = 0.

In what follows, we denote by Asa the Hermitian elements of the C∗-
algebra A.

Lemma 2.2. Let T :A→A be a (not necessarily linear nor continuous) 2-
local triple derivation on a unital C∗-algebra satisfying T (1) = 0. Then T (x) =
T (x)∗ for all x ∈Asa.

Proof. Let x ∈Asa. By assumptions,

T (x)∗ =
{
1, T (x),1

}
=
{
1, δx,1(x),1

}
= δx,1{1, x,1} − 2

{
δx,1(1), x,1

}
= δx,1

(
x∗)− 2

{
T (1), x,1

}
= δx,1(x) = T (x).

The proof is complete. �

Lemma 2.3. Let T :M →M be a (not necessarily linear nor continuous)
2-local triple derivation on a von Neumann algebra satisfying T (1) = 0. Then
for every x, y ∈Msa there exists a skew-Hermitian element ax,y ∈M such that

T (x) = [ax,y, x], and T (y) = [ax,y, y].

Proof. For every x, y ∈Msa we can find skew-Hermitian elements ax,y, bx,y ∈
M such that

T (x) = [ax,y, x] + bx,y ◦ x and T (y) = [ax,y, y] + bx,y ◦ y.
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Taking into account that T (x) = T (x)∗ (see Lemma 2.2), we obtain

[ax,y, x] + bx,y ◦ x = T (x) = T (x)∗ = [ax,y, x]
∗ + (bx,y ◦ x)∗

=
[
x,a∗x,y

]
+ x ◦ b∗x,y = [x,−ax,y]− x ◦ bx,y

= [ax,y, x]− bx,y ◦ x,
that is, bx,y ◦ x = 0, and similarly bx,y ◦ y = 0. Therefore, T (x) = [ax,y, x],
T (y) = [ax,y, y], and the proof is complete. �

We state now an observation which plays a useful role in our study.

Lemma 2.4. Let a and b be skew-Hermitian elements in a C∗-algebra A.
Suppose x ∈ A is self-adjoint with [a,x] + 2b ◦ x = 0.Then [a,x] = 0 and b ◦
x= 0.

Proof. Since 0 = ax− xa+ bx+ xb, by passing to the adjoint, we obtain
ax−xa− (bx+xb) = 0. The conclusion is reached by adding and subtracting
these two equalities. �

Let M be a von Neumann algebra. If x ∈ Msa, we denote by s(x) the

support projection of x, that is, the projection onto (ker(x))⊥ = ran(x). We
say that x has full support if s(x) = 1 (equivalently, ker(x) = {0}).

Lemma 2.5. Let M be a von Neumann algebra. Suppose u ∈M+ has full
support, c ∈M is self-adjoint, and σ(c2u) ∩ (0,∞) = ∅. Then c = 0. Conse-
quently, if u and c are as above, and uc+ cu = 0 (or c2u = −cuc ≤ 0), then
c= 0.

Proof. For the first statement of the lemma, suppose σ(c2u) ∩ (0,∞) = ∅.
Note that

σ
(
c2u

)
∪ {0}= σ(c · cu)∪ {0}= σ(cuc)∪ {0}.

However, cuc is positive, hence σ(cuc)⊂ [0,‖cuc‖], with maxλ∈σ(cuc) = ‖cuc‖.
Thus, cu1/2u1/2c = cuc = 0, which means that cu1/2 = u1/2c = 0 and hence
s(c)≤ 1− s(u1/2) = 1− s(u) = 0, which leads to c= 0.

To prove the second part, we have c2u = −cuc ≤ 0, hence in particular,
σ(c2u)⊂ (−∞,0]. The proof is complete. �

In [2, Lemma 2.2], Ayupov and the first author of this note prove that
for every (not necessarily linear nor continuous) 2-local derivation on a von
Neumann algebra Δ :M →M , and every self-adjoint element z ∈M , there
exists a ∈M satisfying

Δ(x) = [a,x],

for every x ∈W∗(z), where W∗(z) = {z}′′ denotes the Abelian von Neumann
subalgebra of M generated by the element z, and the unit element and {z}′′
denotes the bicommutant of the set {z}. We prove next a ternary version of
this result.
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Lemma 2.6. Let T :M →M be a (not necessarily linear nor continuous) 2-
local triple derivation on a von Neumann algebra. Let z ∈M be a self-adjoint
element and let W∗(z) = {z}′′ be the Abelian von Neumann subalgebra of
M generated by the element z and the unit element. Then there exist skew-
Hermitian elements az, bz ∈M , depending on z, such that

T (x) = [az, x] + bz ◦ x= azx− xaz +
1

2
(bzx+ xbz)

for all x ∈W∗(z). In particular, T is linear on W∗(z).

Proof. We can assume that z �= 0. Note that the Abelian von Neumann
subalgebras generated by 1 and z and by 1 and 1+ z

2‖z‖ coincide. So, replacing

z with 1+ z
2‖z‖ we can assume that z is an invertible positive element.

By definition, there exist skew-Hermitian elements az, bz ∈M (depending
on z) such that

T (z) = [az, z] + bz ◦ z.
Define a mapping T0 :M →M given by T0(x) = T (x)− ([az, x] + bz ◦ x),

x ∈M . Clearly, T0 is a 2-local triple derivation on M . We shall show that
T0 = 0 on W∗(z). Let x ∈W∗(z) be an arbitrary element. By assumptions,
there exist skew-Hermitian elements cz,x, dz,x ∈M such that

T0(z) = [cz,x, z] + dz,x ◦ z, and T0(x) = [cz,x, x] + dz,x ◦ x.
Since 0 = T0(z) = [cz,x, z] + dz,x ◦ z, we get [cz,x, z] + dz,x ◦ z = 0.

Taking into account that z is a Hermitian element and Lemma 2.4 we get
cz,xz = zcz,x and dz,xz =−zdz,x.

Since z has full support, and d2z,xz =−dz,xzdz,x, Lemma 2.5 implies that
dz,x = 0. Further

cz,x ∈ {z}′ = {z}′′′ =W∗(z)′,

that is, cz,x commutes with any element in W∗(z). Therefore T0(x) =
[cz,x, x] + dz,x ◦ x= 0, for all x ∈W∗(z). The proof is complete. �

2.1. Complete additivity of 2-local derivations and 2-local triple
derivations on von Neumann algebras. Let P(M) denote the lattice of
projections in a von Neumann algebra M . Let X be a Banach space. A map-
ping μ : P(M)→X is said to be finitely additive when

(2.1) μ

(
n∑

i=1

pi

)
=

n∑
i=1

μ(pi),

for every family p1, . . . , pn of mutually orthogonal projections in M .
A mapping μ : P(M)→X is said to be bounded when the set{∥∥μ(p)∥∥ : p ∈ P(M)

}
is bounded. The celebrated Bunce–Wright–Mackey–Gleason theorem ([7],
[8]) states that if M has no summand of type I2, then every bounded finitely
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additive mapping μ : P(M)→X extends to a bounded linear operator from
M to X .

According to the terminology employed in [32] and [13], a completely ad-
ditive mapping μ : P(M) → C—that is, (2.1) holds for an arbitrary set I ;
see (2.2) below—is called a charge. The Dorofeev–Sherstnev theorem ([32,
Theorem 29.5] or [13, Theorem 2]) states that any charge on a von Neumann
algebra with no summands of type In (n <∞) is bounded.

We shall use the Dorofeev–Shertsnev theorem in Corollary 2.8 in order to be
able to apply the Bunce-Wright-Mackey-Gleason theorem in Proposition 2.9.
To this end, we need Proposition 2.7, which is implicitly applied in [2, proof
of Lemma 2.3] for 2-local associative derivations. A proof is included here for
completeness reasons.

First, we recall some facts about the strong∗ topology. For each normal
positive functional ϕ in the predual of a von Neumann algebraM , the mapping

x �→ ‖x‖ϕ =

(
ϕ

(
xx∗ + x∗x

2

)) 1
2

(x ∈M)

defines a prehilbertian seminorm on M . The strong∗ topology of M is the
locally convex topology on M defined by all the seminorms ‖ · ‖ϕ, where ϕ
runs over the set of all positive functionals in M∗ (cf. [30, Definition 1.8.7]).
It is known that the strong∗ topology of M is compatible with the duality
(M,M∗), that is a functional ψ :M → C is strong∗ continuous if and only if
it is weak∗ continuous (see [30, Corollary 1.8.10]). if and only if it is weak∗

continuous. We also recall that multiplication in every von Neumann algebra
is jointly strong∗ continuous on bounded sets (see [30, Proposition 1.8.12]).

Suppose X = W is another von Neumann algebra, and let τ denote the
norm, the weak∗ or the strong∗ topology of W . The mapping μ is said to
be τ -completely additive (respectively, countably or sequentially τ -additive)
when

(2.2) μ

(∑
i∈I

pi

)
= τ -

∑
i∈I

μ(pi)

for every family (respectively, sequence) {pi}i∈I of mutually orthogonal pro-
jections in M .

It is known that every family (pi)i∈I of mutually orthogonal projections in
a von Neumann algebra M is summable with respect to the weak∗ topology
of M and p=weak∗-

∑
i∈I pi is a projection in M (cf. [30, Definition 1.13.4]).

Further, for each normal positive functional φ inM∗ and every finite set F ⊂ I ,
we have ∥∥∥∥p−∑

i∈F

pi

∥∥∥∥2
φ

= φ

(
p−

∑
i∈F

pi

)
,

which implies that the family (pi)i∈I is summable with respect to the strong∗

topology of M with the same limit, that is, p= strong∗-
∑

i∈I pi.
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Proposition 2.7. Let T :M →M be a (not necessarily linear nor contin-
uous) 2-local triple derivation on a von Neumann algebra. Then the following
statements hold:

(a) The restriction T |P(M) is sequentially strong∗ additive, and consequently
sequentially weak∗ additive;

(b) T |P(M) is weak∗ completely additive, that is,

(2.3) T

(
weak∗-

∑
i∈I

pi

)
= weak∗-

∑
i∈I

T (pi)

for every family (pi)i∈I of mutually orthogonal projections in M .

Proof. (a) Let (pn)n∈N be a sequence of mutually orthogonal projections
in M . Let us consider the element z =

∑
n∈N

1
npn. By Lemma 2.6, there exist

skew-Hermitian elements az, bz ∈M such that T (x) = [az, x] + bz ◦ x for all
x ∈W∗(z). Since

∑∞
n=1 pn, pm ∈W∗(z), for all m ∈N, and the multiplication

in M is jointly strong∗ continuous, we obtain that

T

( ∞∑
n=1

pn

)
=

[
az,

∞∑
n=1

pn

]
+ bz ◦

( ∞∑
n=1

pn

)

=
∞∑

n=1

[az, pn] +
∞∑

n=1

bz ◦ pn =
∞∑

n=1

T (pn),

that is, T |P(M) is a countably or sequentially strong∗ additive mapping.
(b) Let ϕ be a positive normal functional in M∗, and let ‖ · ‖ϕ denote the

prehilbertian seminorm given by ‖z‖2ϕ = 1
2ϕ(zz

∗ + z∗z) (z ∈M ). Let {pi}i∈I

be an arbitrary family of mutually orthogonal projections in M . For every
n ∈N, define

In =
{
i ∈ I :

∥∥T (pi)∥∥ϕ ≥ 1/n
}
.

We claim, that In is a finite set for every natural n. Otherwise, passing
to a subset if necessary, we can assume that there exists a natural k such
that Ik is infinite and countable. In this case, the series

∑
i∈Ik

T (pi) does not

converge with respect to the semi-norm ‖ · ‖ϕ. On the other hand, since Ik is
a countable set, by (a), we have

T

(∑
i∈Ik

pi

)
= strong∗-

∑
i∈Ik

T (pi),

which is impossible. This proves the claim.
We have shown that the set

I0 =
{
i ∈ I :

∥∥T (pi)∥∥ϕ �= 0
}
=

⋃
n∈N

In

is a countable set, and ‖T (pi)‖ϕ = 0, for every i ∈ I\I0.
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Set p =
∑

i∈I\I0 pi ∈ M . We shall show that ϕ(T (p)) = 0. Let q denote

the support projection of ϕ in M (see [30, 1.14.2]). Having in mind that
‖T (pi)‖2ϕ = 0, for every i ∈ I\I0, we deduce that T (pi)⊥ q for every i ∈ I\I0.

Replacing T with T̂ = T − δ( 12T (1),1) we can assume that T (1) = 0
(cf. Lemma 2.1) and T (x) = T (x)∗, for every x ∈ Msa (cf. Lemma 2.2).
By Lemma 2.3, for every i ∈ I \ I0 there exists a skew-Hermitian element
ai = ap,pi ∈M such that

T (p) = aip− pai and T (pi) = aipi − piai.

Since T (pi) ⊥ q we get (aipi − piai)q = q(aipi − piai) = 0, for all i ∈ I \ I0.
Thus, since paipiq = piaiq,(

T (p)pi
)
q = (aip− pai)piq = aipiq− paipiq

= aipiq− piaiq = (aipi − piai)q = 0,

and similarly

q
(
piT (p)

)
= 0,

for every i ∈ I \ I0. Consequently,

(2.4)
(
T (p)p

)
q = T (p)

( ∑
i∈I\I0

pi

)
q = 0= q

( ∑
i∈I\I0

pi

)
T (p) = q

(
pT (p)

)
.

Therefore,

T (p) = δp,1(p) = δp,1{p, p, p}= 2
{
δp,1(p), p, p

}
+
{
p, δp,1(p), p

}
= 2

{
T (p), p, p

}
+
{
p,T (p), p

}
= pT (p) + T (p)p+ pT (p)∗p

= pT (p) + T (p)p+ pT (p)p,

which implies that

ϕ
(
T (p)

)
= ϕ

(
pT (p) + T (p)p+ pT (p)p

)
= ϕ

(
qpT (p)q

)
+ ϕ

(
qT (p)pq

)
+ϕ

(
qpT (p)pq

)
=
(
by (2.4)

)
= 0.

Finally, by (a) we have

T

(∑
i∈I0

pi

)
= ‖.‖ϕ-

∑
i∈I0

T (pi).

Two more applications of (a) give:

ϕ

(
T

(∑
i∈I

pi

))
= ϕ

(
T

(
p+

∑
i∈I0

pi

))
= ϕ

(
T (p) + T

(∑
i∈I0

pi

))

= ϕ
(
T (p)

)
+ϕ

(
T

(∑
i∈I0

pi

))
=

∑
i∈I0

ϕ
(
T (pi)

)
.
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By the Cauchy–Schwarz inequality, 0≤ |ϕT (pi)|2 ≤ ‖T (pi)‖2ϕ = 0, for every
i ∈ I\I0, and hence

∑
i∈I0

ϕ(T (pi)) =
∑

i∈I ϕ(T (pi)). The arbitrariness of ϕ

shows that T (weak∗-
∑

i∈I pi) = weak∗-
∑

i∈I T (pi). �

Let φ be a normal functional in the predual of a von Neumann alge-
bra M . Our previous Proposition 2.7 assures that for every (not necessar-
ily linear nor continuous) 2-local triple derivation T :M →M the mapping
φ ◦ T |P(M) : P(M)→ C is a completely additive mapping or a charge on M .
Under the additional hypothesis of M being a continuous von Neumann alge-
bra or, more generally, a von Neumann algebra with no Type In (1< n<∞)
direct summands, the Dorofeev–Sherstnev theorem ([32, Theorem 29.5] or
[13, Theorem 2]) imply that φ ◦ T |P(M) is a bounded charge, that is, the set
{|φ ◦T (p)| : p ∈ P(M)} is bounded. The uniform boundedness principle gives:

Corollary 2.8. Let M be a von Neumann algebra with no Type In direct
summands (1 < n <∞) and let T :M →M be a (not necessarily linear nor
continuous) 2-local triple derivation. Then the restriction T |P(M) is a bounded
weak∗ completely additive mapping.

2.2. Additivity of 2-local triple derivations on Hermitian parts of
von Neumann algebras. Suppose now that M is a von Neumann algebra
with no Type In direct summands (1 < n < ∞), and T : M → M is a (not
necessarily linear nor continuous) 2-local triple derivation. By Corollary 2.8
combined with the Bunce-Wright-Mackey-Gleason theorem [7], [8], there ex-
ists a bounded linear operator G :M →M satisfying G(p) = T (p), for every
projection p ∈M .

Let z be a self-adjoint element in M . By Lemma 2.6, there exist skew-
Hermitian elements az, bz ∈M such that T (x) = [az, x] + bz ◦ x, for every x ∈
W∗(z). Since G|W∗(z), T |W∗(z) : W∗(z) → M are bounded linear operators,
which coincide on the set of projections of W∗(z), and since every self-adjoint
element in W∗(z) can be approximated in norm by finite linear combinations
of mutually orthogonal projections in W∗(z), it follows that T (x) =G(x) for
every x ∈W∗(z), and hence

T (a) =G(a), for every a ∈Msa,

in particular, T is additive on Msa.
The above arguments prove the following result.

Proposition 2.9. Let T :M →M be a (not necessarily linear nor continu-
ous) 2-local triple derivation on a von Neumann algebra with no Type In-factor
direct summands (1< n<∞). Then the restriction T |Msa is additive.

Corollary 2.10. Let T : M → M be a (not necessarily linear nor con-
tinuous) 2-local triple derivation on a properly infinite von Neumann algebra.
Then the restriction T |Msa is additive.



2-LOCAL TRIPLE DERIVATIONS 1065

Next, we shall show that the conclusion of the above corollary is also true
for a finite von Neumann algebra.

First, we show that every 2-local triple derivation on a von Neumann alge-
bra “intertwines” central projections.

Lemma 2.11. If T is a (not necessarily linear nor continuous) 2-local triple
derivation on a von Neumann algebra M , and p is a central projection in M ,
then T (Mp)⊂Mp. In particular, T (px) = pT (x) for every x ∈M .

Proof. If x ∈Mp, then x= pxp= {x, p, p}. Since T coincides with a triple
derivation δx,p on the set {x, p},
T (x) = δx,p(x) = δx,p{x, p, p}=

{
δx,p(x), p, p

}
+
{
x, δx,p(p), p

}
+
{
x, p, δx,p(p)

}
lies in Mp.

For the final statement, fix x ∈M , and consider skew-Hermitian elements
ax,xp, bx,xp ∈M satisfying

T (x) = [ax,xp, x] + bx,xp ◦ x, and T (xp) = [ax,xp, xp] + bx,xp ◦ (xp).
The assumption p being central implies that pT (x) = T (px). �

Proposition 2.12. Let T :M →M be a (not necessarily linear nor con-
tinuous) 2-local triple derivation on a finite von Neumann algebra. Then the
restriction T |Msa is additive.

Proof. Since M is finite there exists a faithful normal semi-finite trace τ
on M . We shall consider the following two cases.

Case 1. Suppose τ is a finite trace. Replacing T with T̂ = T − δ( 12T (1),1)
we can assume that T (1) = 0 (cf. Lemma 2.1) and T (x) = T (x)∗, for every
x ∈Msa (cf. Lemma 2.2). By Lemma 2.3, for every x, y ∈Msa there exists
a skew-Hermitian element ax,y ∈ M such that T (x) = [ax,y, x] and T (y) =
[ax,y, y]. Then

T (x)y+ xT (y) = [ax,y, x]y+ x[ax,y, y] = [ax,y, xy],

that is,
[ax,y, xy] = T (x)y+ xT (y).

Further
0 = τ

(
[ax,y, xy]

)
= τ

(
T (x)y+ xT (y)

)
,

that is, τ(T (x)y) = −τ(xT (y)), for every x, y ∈Msa. For arbitrary u, v,w ∈
Msa, set x= u+ v, and y =w. The above identity implies

τ
(
T (u+ v)w

)
= −τ

(
(u+ v)T (w)

)
=

= −τ
(
uT (w)

)
− τ

(
vT (w)

)
= τ

(
T (u)w

)
+ τ

(
T (v)w

)
= τ

((
T (u) + T (v)

)
w
)
,

and so
τ
((
T (u+ v)− T (u)− T (v)

)
w
)
= 0
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for all u, v,w ∈Msa. Take w = T (u+v)−T (u)−T (v). Then τ(ww∗) = 0. Since
the trace τ is faithful it follows that ww∗ = 0, and hence w = 0. Therefore,
T (u+ v) = T (u) + T (v).

Case 2. Suppose now that τ is a semi-finite trace. As in Case 1, we may
assume T (1) = 0. SinceM is finite there exists a family of mutually orthogonal
central projections {zi} in M such that zi has finite trace for all i and

∨
zi = 1

(cf. [30, §2.2 or Corollary 2.4.7]). By Lemma 2.11, for each i, T maps ziM
into itself. From Case 1, T |ziM : ziM → ziM is additive. Furthermore,

ziT (x+ y) = T |ziM (zix+ ziy) = T |ziM (zix) + T |ziM (ziy) = ziT (x) + ziT (y),

for every x, y ∈M and every i. Therefore,

T (x+ y) =

(∑
i

zi

)
T (x+ y) =

∑
i

ziT (x+ y) =
∑
i

(
ziT (x) + ziT (y)

)
=

(∑
i

zi

)
T (x) +

(∑
i

zi

)
T (y) = T (x) + T (y),

for every x, y ∈M . The proof is complete. �

Let T :M →M be a (not necessarily linear nor continuous) 2-local triple
derivation on an arbitrary von Neumann algebra. In this case, there exist
orthogonal central projections z1, z2 ∈M with z1 + z2 = 1 such that:

• z1M is a finite von Neumann algebra;
• z2M is a properly infinite von Neumann algebra,

(cf. [30, §2.2]).
By Lemma 2.11, for each k = 1,2, zkT maps zkM into itself. By Corol-

lary 2.10 and Proposition 2.12 both z1T and z2T are additive on Msa. So
T = z1T + z2T also is additive on Msa.

We have thus proved the following result.

Proposition 2.13. Let T :M →M be a (not necessarily linear nor con-
tinuous) 2-local triple derivation on an arbitrary von Neumann algebra. Then
the restriction T |Msa is additive.

2.3. Main result. We can state now the main result of this paper.

Theorem 2.14. Let M be an arbitrary von Neumann algebra and let T :
M →M be a (not necessarily linear nor continuous) 2-local triple derivation.
Then T is a triple derivation (hence linear and continuous). Equivalently, the
set Dert(M), of all triple derivations on M , is algebraically 2-reflexive in the
set M(M) =MM of all mappings from M into M .

We need the following two lemmata.

Lemma 2.15. Let T :M →M be a (not necessarily linear nor continuous)
2-local triple derivation on a von Neumann algebra with T (1) = 0. Then there
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exists a skew-Hermitian element a ∈ M such that T (x) = [a,x], for all x ∈
Msa.

Proof. Let x ∈Msa. By Lemma 2.3, there exists a skew-Hermitian element
ax,x2 ∈M such that T (x) = [ax,x2 , x], T (x2) = [ax,x2 , x2].

Thus,

T
(
x2

)
=
[
ax,x2 , x2

]
= [ax,x2 , x]x+ x[ax,x2 , x] = T (x)x+ xT (x),

that is,

(2.5) T
(
x2

)
= T (x)x+ xT (x),

for every x ∈Msa.
By Proposition 2.13 and Lemma 2.2, T |Msa :Msa →Msa is a real linear

mapping. Now, we consider the linear extension T̂ of T |Msa to M defined by

T̂ (x1 + ix2) = T (x1) + iT (x2), x1, x2 ∈Msa.

Taking into account the homogeneity of T , Proposition 2.13 and the iden-

tity (2.5) we obtain that T̂ is a Jordan derivation on M . By [5, Theorem 1]
any Jordan derivation on a semi-prime algebra is a derivation. Since M is

von Neumann algebra, T̂ is a derivation on M (see also [33] and [16]). There-

fore, there exists an element a ∈M such that T̂ (x) = [a,x] for all x ∈M . In
particular, T (x) = [a,x] for all x ∈Msa. Since T (Msa)⊆Msa, we can assume
that a∗ =−a, which completes the proof. �

Lemma 2.16. Let T :M →M be a (not necessarily linear nor continuous)
2-local triple derivation on a von Neumann algebra. If T |Msa ≡ 0, then T ≡ 0.

Proof. Let x ∈ M be an arbitrary element and let x = x1 + ix2, where
x1, x2 ∈Msa. Since T is homogeneous, by passing to the element (1+‖x2‖)−1x
if necessary, we can suppose that ‖x2‖< 1. In this case, the element y = 1+x2

is positive and invertible. Take skew-Hermitian elements ax,y, bx,y ∈M such
that

T (x) = [ax,y, x] + bx,y ◦ x, and T (y) = [ax,y, y] + bx,y ◦ y.
Since T (y) = 0, we get [ax,y, y] + bx,y ◦ y = 0. By Lemma 2.4 we obtain that
[ax,y, y] = 0 and ibx,y ◦ y = 0. Taking into account that ibx,y is Hermitian, y is
positive and invertible, Lemma 2.5 implies that bx,y = 0.

We further note that 0 = [ax,y, y] = [ax,y , 1 + x2] = [ax,y, x2], that is,
[ax,y, x2] = 0. Now, T (x) = [ax,y, x] + bx,y ◦ x = [ax,y, x1 + ix2] = [ax,y, x1],
i.e. T (x) = [ax,y, x1]. Therefore,

T (x)∗ = [ax,y, x1]
∗ =

[
x1, a

∗
x,y

]
= [x1,−ax,y] = [ax,y, x1] = T (x).

So T (x)∗ = T (x). Now, replacing x by ix we obtain, from the homogeneity
of T , that T (x)∗ =−T (x). Combining the last two identities, we obtain that
T (x) = 0, which finishes the proof. �
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Proof of Theorem 2.14. Let us define T̂ = T − δ( 12T (1),1). Then T̂ is a 2-

local triple derivation on M with T̂ (1) = 0 (cf. Lemma 2.1) and T̂ (x) = T̂ (x)∗,
for every x ∈Msa (cf. Lemma 2.2). By Lemma 2.15, there exists an element

a ∈ M such that T̂ (x) = [a,x] for all x ∈ Msa. Consider the 2-local triple

derivation T̂ − [a, ·]. Since (T̂ − [a, ·])|Msa ≡ 0, Lemma 2.16 implies that T̂ =
[a, ·], and hence T = [a, ·] + δ(12T (1),1), witnessing the desired statement. �

References

[1] S. Ayupov and K. K. Kudaybergenov, 2-local derivations and automorphisms on

B(H), J. Math. Anal. Appl. 395 (2012), no. 1, 15–18. MR 2943598

[2] S. Ayupov and K. K. Kudaybergenov, 2-local derivations on von Neumann algebras,
Positivity 19 (2015), 445–455. MR 3386119

[3] T. J. Barton and Y. Friedman, Bounded derivations of JB*-triples, Quart. J. Math.

Oxford Ser. (2) 41 (1990), 255–268. MR 1067482

[4] C. Batty and L. Molnar, On topological reflexivity of the groups of *-automorphisms

and surjective isometries of B(H), Arch. Math. (Basel) 67 (1996), 415–421.
MR 1411996
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