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Toward understanding the multiple
spatiotemporal dynamics of chlorophyli
fluorescence
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Dynamic reorganization of photosystems | and Il is suggested to occur in chloroplast thylakoid membranes to
maintain the efficiency of photosynthesis under fluctuating light conditions. To directly observe the process in action,
live-cell imaging techniques are necessary. Using live-cell imaging, we have shown that the fine thylakoid structures in
the moss Physcomitrella patens are flexible in time. However, the spatiotemporal resolution of a conventional confocal
microscopy limits more precise visualization of entire thylakoid structures and understanding of the structural
dynamics. Here, we discuss the issues related to observing chlorophyll fluorescence at multiple spatiotemporal scales in

vivo and in vitro.

Light energy excites chlorophylls (Chls) embedded in light-
harvesting complex (LHC) proteins in chloroplast thylakoid
membranes. The excited Chls return to the ground state through
fluorescence emission, energy transfer to neighboring pigments,
charge separation at the reaction center of the two photosystems
(PSI and PSII), and non-photochemical quenching.' To under-
stand what happens inside chloroplasts, the properties and behav-
ior of Chl fluorescence have been studied extensively both 77 vive
and in vitro. However, considering that we monitor Chl fluores-
cence at multiple spatiotemporal scales (such as on the order of
ps vs. min, of nm vs. pm, or of molecular vs. cellular levels), how
is it possible to elucidate what really happens inside a chloroplast?

The peripheral LHC of PSII (LHCII) typically forms a trimer
containing 42 Chls.” LHCII is the most abundant protein in thy-
lakoid membranes of vascular plants and green algae, and single-
particle averaging suggests the formation of a variety of protein
supercomplexes of LHCII with PSIL.> Each PSII monomer con-
tains 35 Chls.” PSI usually forms a protein supercomplex with its
LHC (LHCI), with 173 Chls in the supercomplex.” Results of
fractionation using differential centrifugation indicate lateral het-
erogeneity of PSII and PSI—the former is localized mainly in the
stacked, appressed membrane domain, i.e., grana, and the latter
is predominantly present in the single-layer, stroma-exposed
membrane domain, i.e, stroma lamellae.® Recent cryo-electron
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tomography has revealed the 3-dimensional (3D) structure
of thylakoid membranes, showing a helical configuration with a
distinctive junctions between grana and stroma lamellae.” Thus,
there are a variety of protein complexes and supercomplexes con-
taining different numbers of Chl molecules in the complicated
structures and arrangements of thylakoid membranes inside a
chloroplast.

In our previous study, we visualized thylakoid structures in
live protonema cells of the moss Physcomitrella patens by observ-
ing Chl fluorescence using conventional confocal laser scanning
microscopy in combination with 3D deconvolution.® Figure 1
illustrates the spatiotemporal scale for Chl fluorescence observa-
tion using conventional confocal microscopy. Considering that it
takes 1.61 ps to obtain the information in one pixel (0.14 X
0.14 pm; Fig. 1A), excitation energy transfer among all proteins
in that pixel can easily occur within the time scale of image acqui-
sition.” In addition, the acquisition time for one plane is about
800 ms, which is enough time for charge separation at PSII fol-
lowing electron transfer to influence the redox conditions of the
PQ pool in thylakoid membranes'® (Fig. 1B). To reconstruct
3D live images, the acquisition time needs to be as short as possi-
ble. As an example (Fig. 1C), the acquisition time for one 3D
image is about 4.3 s when recording 5 different planes sequen-
tially. Thus, the reconstructed 3D image contains information
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Figure 1. An example observation condition using conventional confocal laser scanning microscopy
according to our previous study.? (A) Pixel size and time required to measure fluorescence intensity.
(B) Plane size and the time required to measure fluorescence intensity. (C) Z-steps and the total time
required to measure a 3D image. (D) Time required to move back to the initial position to start measur-
ing the next 3D image. (E) An image of chloroplasts in P. patens protonema cell. Because of the unique
characteristics of Chl fluorescence, we need to understand the relationships between events in each
spatiotemporal scale. The schematic drawing of observation conditions is reproduced with
permission.?*

each plame8 (Fig. 2B). The latter analy-
sis is based on the assumption that the
changes in the fluorescence intensity
and the direction of movement are not
random.

Under the microscopy conditions
shown in Fig. 1, 3D images were
acquired sequentially, with about 7-s
intervals between each 3D image. The
3D time-lapse imaging could differenti-
ate objects or structures as mobile or
immobile. In general, the degree of
mobility observed depends upon the
spatiotemporal scale of the particular
method of observation used for the
object or phenomenon of interest.
Under our microscopy conditions, any
objects or structures that showed similar
characteristics in sequential images
could be considered structurally immo-
bile, at least over 7-s intervals. Based on
their shape and size, we characterized
the immobile structures as grana®
(Fig. 3). We found that grana were
structurally stable, but they also showed
variability in shape because of the fluid-

from 5 planes with different time axes on the order of a second
(Fig. 2A). In this case, the change in fluorescence intensity during
acquisition would generate loss and/or gain of observed structures
that might cause artifactual structures in the reconstructed 3D
images. To evaluate such potential effects in the reconstructed
3D image, we performed the following 2 analyses: a) comparison
between the raw images and the reconstructed 3D images; and b)
mathematical correction of the difference in time axis between

ity of biological lipid bilayers. In addition, we observed distinct
thread-like structures that appeared to be interconnected between
the grana, which we propose to be stroma lamellac® (Fig. 3).
Interestingly, the location of (or fluorescence intensity that repre-
sented) stroma lamellae was not stable during the 7-s interval rel-
ative to that of grana. Thus, stroma lamellae could be considered
generally as structurally mobile, at least at the spatiotemporal
scale used in these observations.
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Figure 2. A schematic drawing of the mathematical correction of time axes between different
z-planes. (A) An object emits Chl fluorescence, and images of different z-planes were acquired sequen-
tially from Z1 to Z5. During the observation, the object might move to different position, or the fluo-
rescence intensity might increase/decrease. Such changes would cause a change in fluorescence
intensity during the time required to capture a 3D image. (B) Assuming that the change in fluores-
cence intensity is not random (in this case, a decreasing signal is shown as an example), the observed
fluorescence intensity at each z-plane reflects the intensity of different time axes (closed dots at differ-
ent time points). Based on this assumption, we could mathematically adjust the fluorescence intensity
at each z-plane to the one at the same time axis (open dots at the same time point). By performing
3D deconvolution analysis with the corrected intensity, we could eliminate a possible artifactual
observation of thylakoid structures. Please refer to Supplementary Information of our previous study
for the details of the mathematical correction.®
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To understand what underlies the
apparent mobility of these stroma
lamellae, we need to consider the behav-
ior of proteins or phenomenon that
could occur in the structures at the dif-
ferent spatiotemporal scales. At the
molecular level, the observed changes in
fluorescence intensity in each pixel
could be due to the change in energy
transfer  efficiency. It is generally
accepted that the contribution to Chl
fluorescence of emission from PSI is
very low at room temperature;'’
instead, the rate of charge separation at
PSI might affect the change in observed
Chl fluorescence. At the diffraction-lim-
ited scale (i.e., ~0.2 wm), thylakoid
membrane proteins move with diffusion
coefficients from ~0.9 to ~2.1 um *
s', as we previously measured using
fluorescence  correlation  spectroscopy
(FCS), which resolves single-molecule
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level protein diffusion.'” The rate of
protein diffusion observed with FCS
represents high mobility, but that could
be limited to within a narrow space
because membrane proteins are highly
crowded in thylakoid membranes.'?
However, such high local protein diffu-
sion could easily affect the rate of
energy transfer due to the association

and dissociation of protein supercom-

plexes. In the case of the stroma lamel-

lae, protein interaction between LHCII
and PSI is suggested to occur during
transitions, ¢ which would
change the observed Chl fluorescence.
In addition, it is possible that the illu-

state

Figure 3. Structural modification of thylakoid structures observed using conventional confocal micros-
copy. The time required to observe a 3D image was about 7 s as described in Fig. 1. The subsequent
3D observation at 14 s showed changes in the position and intensity of Chl fluorescence. The area in
black represents grana. The area shown in red or green represents stroma lamellae. The merged image
is also shown to compare the differences arising during the 7 s interval. Scale bar, 2 um. The figure is
reproduced with permission.?

mination during microscopy induced

that
17

non-photochemical quenching
involves  protein  reorganization.
Thus, the observed dynamics of stroma lamellae could be due to
changes in fluorescence lifetime caused by protein interactions at
the molecular level.

At the structural level, thylakoid membrane proteins are not
generally considered to be as highly mobile as observed in fluores-
cence recovery after photobleaching measurements'® because this
technique is not sensitive enough to track the single-molecule
level of protein diffusion, especially when measuring Chl fluores-
cence that generates too much difference in fluorescence intensity
after photobleaching to detect low fluorescence signals during
highly mobile single-molecule diffusion.'”** In addition, because
thylakoid membranes are crowded with membrane proteins, the
rate of protein diffusion observed at the structural level should be
very low. This means that the observed dynamics at the structural
level could represent the structure itself more than the behavior of
proteins. Therefore, the observed dynamics of stroma lamellae
could represent the structural dynamics of stroma lamella itself.
Moreover, because the time resolution under these microscopy
conditions is not high enough to track the membrane dynamics
(which occur on the order of milliseconds),?! we cannot exclude
the possibility that the observed dynamics of stroma lamellae
reflect the fission and fusion of thylakoid membranes as previ-
ously proposed.”

Chl fluorescence has been extensively studied at multiple spa-
tiotemporal scales. Because of its spectroscopic properties and its
abundance within chloroplasts, the behavioral aspects of Chl
fluorescence can appear different at different spatiotemporal
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