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Abstract

The well-known Giudice–Masiero mechanism explains the presence of a μ term of the order of the
gravitino mass, but does not explain why the holomorphic mass term is absent in the superpotential. We dis-
cuss anomaly-free discrete symmetries which are both compatible with SU(5) unification of matter and the
Giudice–Masiero mechanism, i.e. forbid the μ term in the superpotential while allowing the necessary Käh-
ler potential term. We find that these are ZR

M
symmetries with the following properties: (i) M is a multiple of

four; (ii) the Higgs bilinear HuHd transforms trivially; (iii) the superspace coordinate θ has charge M/4 and,
accordingly, the superpotential has charge M/2; (iv) dimension-five proton decay operators are automati-
cally absent. All ZR

M
symmetries are anomaly-free due to a non-trivial transformation of a Green–Schwarz

axion, and, as a consequence, a holomorphic μ term appears at the non-perturbative level. There is a unique
symmetry that is consistent with the Weinberg operator while there is a class of Z

R
M

symmetries which
explain suppressed Dirac neutrino masses.
© 2012 Elsevier B.V. All rights reserved.

1. Motivation

The minimal supersymmetric standard model (MSSM) is a very appealing extension of the
standard model of particle physics. Supersymmetry promises to stabilize the electroweak scale
against radiative corrections. The structure of matter hints at unification, and the attractive picture
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of precision gauge unification [1] enabled by supersymmetry introduces the scale of grand unifi-
cation MGUT = a few×1016 GeV. The MSSM also provides a compelling dark matter candidate.

On the other hand, the MSSM has various problems. Usually the MSSM comes with matter
or R parity [2,3] which eliminates the most troublesome baryon number violating interactions,
and ensures the stability of the aforementioned dark matter particle. Yet, even after imposing
matter parity, there are certain serious shortcomings. One of them is the so-called “μ problem”
which consists in the question why the holomorphic mass term for the Higgs bilinear is of the or-
der of the electroweak scale. In addition, there is the dimension-five proton decay problem [3–5]
(cf. also [6]).

It is hence clear that the MSSM requires additional ingredients beyond matter parity. In this
study we analyze anomaly-free discrete symmetries which forbid the μ term. As we shall demon-
strate, requiring that the symmetries be compatible with the Giudice–Masiero solution [7] to
the μ problem and SU(5) leads to very restricted classes of solutions, depending on whether neu-
trinos are Majorana or Dirac particles. In the first case, the solution is unique and even compatible
with SO(10) while in the second case the smallness of the Dirac neutrino Yukawa coupling can
be related to the suppression of the μ parameter.

2. Naturally suppressed μ term and Dirac neutrino Yukawa couplings from anomaly-free
symmetries

We start by reviewing the explanations of a suppressed μ term through Kähler potential terms
in Section 2.1. Next, we discuss anomaly constraints in Section 2.2. In Section 2.3 we com-
ment on proton decay operators and study settings with SO(10) relations in Section 2.4. Then,
we discuss the appearance of a suppressed holomorphic μ term and Dirac Yukawa couplings in
Sections 2.5 and 2.6, respectively, and give a short recap in Section 2.7.

2.1. Giudice–Masiero mechanism

The famous Giudice–Masiero mechanism [7] provides a solution to the μ problem in the
MSSM. Giudice and Masiero pointed out that in supergravity an effective holomorphic HuHd

bilinear, i.e. an effective μ term, can arise from the (non-holomorphic) Kähler potential term

K ⊃ kHuHd

X†

MP
HuHd + h.c. (2.1)

Here X is the (spurion) field that breaks supersymmetry and kHuHd
and MP denote a coefficient

and the Planck scale, respectively. Inserting the F term vacuum expectation value (VEV) FX

of X leads to an effective superpotential term

Weff ∼ FX

MP
HuHd =: μeffHuHd, (2.2)

with μeff of the order of the gravitino mass m3/2, which sets the size of soft superpartner masses
in gravity mediation.

However, for the Giudice–Masiero mechanism to work, the holomorphic superpotential term
μHuHd needs to be absent in the first place, or better forbidden by a symmetry. As it turns
out, symmetries that can forbid the μ term are rather constrained. It has been shown [8] that,
if one requires the symmetry to be anomaly-free and to commute with SU(5) (in the matter
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sector), it has to be an R symmetry (cf. the similar discussion in [9]). As shown by Chamsed-
dine and Dreiner [10], in the MSSM gauged anomaly-free continuous R symmetries are not
available. On the other hand, there are strong arguments against global symmetries (cf. [11] for
a recent discussion). We are hence led to the conclusion that the symmetry needs to be discrete.
In what follows, we therefore will only consider anomaly-free discrete R symmetries. Specif-
ically, we will look at one particular generator which forbids the μ term. This generator will
generate an Abelian discrete R symmetry of order M , i.e. a Z

R
M symmetry.

One can actually narrow down the potential symmetries even further. Suppose we seek to
generate an effective μ term, Eq. (2.2), from the Kähler potential term. Here we assume that X is
the field that breaks supersymmetry and generates gaugino masses. Then its F component has to
have minus the R charge of the superpotential. One way to see this is by recalling that gaugino
masses get induced by the operator

∫
d2θ XWαWα (with θ and Wα denoting the superspace coor-

dinate and the gauge multiplets, respectively). Since the superpotential R charge qW equals twice
the R charge of θ , qθ , and the lowest components of Wα (i.e. the gauginos) carry R charge qθ ,
the X superfield needs to be inert under the (discrete) R symmetry. Therefore, the Higgs bilinear
HuHd needs to be neutral as well. Altogether we have found that an anomaly-free and SU(5)
compatible symmetry that forbids the μ term in the MSSM has to be discrete, and under this
symmetry,

θ → e2π i
qθ
M θ, (2.3a)

W → e2π i
qW
M W , where qW = 2qθ , (2.3b)

X → X, (2.3c)

HuHd → HuHd. (2.3d)

Here and throughout this study we normalize the discrete charges to be integer, i.e. qθ ∈ Z.
It is immediately clear that such a symmetry allows effective superpotential terms of the form

W ⊃ cΩ

Ω

M2
P

HuHd, (2.4)

where Ω (with R charge qW ) denotes the superpotential of some ‘hidden sector’. As usual, a non-
trivial VEV of Ω is required to cancel the vacuum energy. This VEV will break the R symmetry,
but the breaking is hierarchically small, i.e. of the order of the gravitino mass m3/2 (cf. the discus-
sion in [12]). That means that, apart from the Giudice–Masiero contribution, one would expect
to have a holomorphic (‘Kim–Nilles type’ [13]) contribution to the μ parameter of the right size.

2.2. Anomaly constraints

Up to now we have only used the fact derived in [8] that SU(5)-compatible and anomaly-
free non-R symmetries cannot forbid the μ term. Now we discuss anomaly constraints on Z

R
M

symmetries. These constraints have been re-derived recently in [8]. However, there only the
special case qθ = 1 has been considered, which is too strong a requirement. To see this, consider
a Z

R
8 symmetry, for which there are two different non-trivial possibilities for the superspace

charge, qθ = 1 and qθ = 2. At first glance, one may think that one may rewrite the qθ = 2 case
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as a Z
R
4 × Z2 symmetry. This is not the case since 2 and 8 are not coprime.1 The generalization

of the anomaly coefficients to arbitrary qθ is straightforward and deferred to Appendix A.
After summarizing the relevant anomaly coefficients for the MSSM in Section 2.2.1 we ex-

plain in Section 2.2.2 why ‘anomaly universality’ must be imposed in models in which the SM
gauge group is unified into a simple gauge group. We then proceed by verifying the consistency
with anomaly matching in Section 2.2.3 and show that only R symmetries can forbid the μ term
in Section 2.2.4. Finally, we derive constraints on the order M in Section 2.2.5 and comment on
the (ir)relevance of the universality of the mixed hypercharge anomaly in Section 2.2.6.

2.2.1. Z
R
M anomaly coefficients in the MSSM

In the case of the MSSM the anomaly coefficients AR
3 := ASU(3)C−SU(3)C−Z

R
M

, AR
2 :=

ASU(2)L−SU(2)L−Z
R
M

and AR
1 := AU(1)Y −U(1)Y −Z

R
M

read

AR
3 = 1

2

3∑
g=1

(
3q

g

10 + q
g

5

) − 3qθ , (2.5a)

AR
2 = 1

2

3∑
g=1

(
3q

g

10 + q
g

5

) + 1

2
(qHu + qHd

) − 5qθ , (2.5b)

AR
1 = 1

2

3∑
g=1

(
3q

g

10 + q
g

5

) + 3

5

[
1

2
(qHu + qHd

) − 11qθ

]
. (2.5c)

Here, q
g

10 and q
g

5
denote the SU(5)-universal R charges of the MSSM superfields (Qg,Ug,Eg)

and (Dg,Lg), respectively, and g represents the flavor index. Accordingly, matter fermions and
Higgsinos have charges q − qθ while gauginos have charge qθ .

2.2.2. Anomaly universality and discrete Green–Schwarz mechanism
If the standard model gauge group is to be unified into SU(5) or SO(10), a necessary condition

for anomaly cancellation is the universality (cf. the discussion in Appendix B.3)

AR
3 = AR

2 = AR
1 = ρ mod η. (2.6)

As explained in more detail in Appendix B.3, violation of this universality will, in general, de-
stroy the attractive picture of MSSM gauge coupling unification. Here we introduce

η :=
{

M/2, if M even,

M, if M odd.
(2.7)

ρ is a constant which indicates whether or not a Green–Schwarz (GS) mechanism [14] is at work.
Specifically, ρ is related to the discrete shift of the GS axion (see Eq. (B.9) in Appendix B.2).
ρ = 0 means that the symmetry is anomaly-free in the conventional sense, i.e. without GS mech-
anism.

1 A simple way of seeing this is to recall that all elements of ZR
4 ×Z2 have the property that taking them to the fourth

power yields identity, which is obviously not the case for ZR .
8
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At this point, we would like to comment on certain important properties of the Green–Schwarz
mechanism and its discrete version as there seems to be some confusion in the literature:

1. Although the GS mechanism plays a prominent role in string theory, it does not rely on
strings. In fact, as shown in Appendix B.2, it can entirely be understood in (the path integral
formulation of) quantum field theory.

2. Unlike in the continuous case, for discrete symmetries the transformation of the axion is only
fixed modulo η. It will be interesting to see whether this ambiguity can be fixed somehow,
e.g. in explicit string-derived models.

3. In the continuous case, the axion has to be massless for the shift symmetry to be a sym-
metry of the Lagrangean. That is, the axion potential needs to be flat. By contrast, in the
discrete case the potential is only required to be periodic, i.e. invariant under the discrete
shift, Eq. (B.9). Of course, in both cases the symmetry will be broken (spontaneously) once
the axion a acquires its VEV. In the second case, however, the axion may have a non-trivial
mass which is not related to the non-perturbative effects that appear to break the symmetry.

2.2.3. Anomaly matching
It is instructive to use ’t Hooft anomaly matching [15] (see [16] for discrete anomaly match-

ing) in order to constrain the properties of anomaly-free GUT-compatible ZR
M symmetries. At the

SU(5) level, there is only one anomaly coefficient ASU(5)2−Z
R
M

, which we can split into three
parts,

ASU(5)2−Z
R
M

= Amatter
SU(5)2−Z

R
M

+ Aextra
SU(5)2−Z

R
M

+ 5qθ . (2.8)

The first term contains the contribution of matter and is given by

Amatter
SU(5)2−Z

R
M

= 1

2

3∑
g=1

(
3q

g

10 + q
g

5

) − 6qθ . (2.9)

Here, we used Eq. (A.4a) with Dynkin indices �(5) = 1
3�(10) = 1

2 . The second term in (2.8),
Aextra

SU(5)2−Z
R
M

, denotes the contributions of additional fields, e.g. the SM and SU(5) breaking

Higgs. Finally, the last term in (2.8) represents the gaugino contribution for SU(5). Yet, by con-
sidering the SU(3)C and SU(2)L subgroups of SU(5), one can introduce two anomaly coefficients
A

SU(5)

SU(3)2
C−Z

R
M

= A
SU(5)

SU(2)2
L−Z

R
M

at the GUT level,

A
SU(5)

SU(3)2
C−Z

R
M

= Amatter
SU(3)2

C−Z
R
M

+ Aextra
SU(3)2

C−Z
R
M

+ 3qθ + 1

2
· 2 · 2 · qθ , (2.10a)

A
SU(5)

SU(2)2
L−Z

R
M

= Amatter
SU(2)2

L−Z
R
M

+ Aextra
SU(2)2

L−Z
R
M

+ 2qθ + 1

2
· 2 · 3 · qθ , (2.10b)

where we artificially split the gaugino contributions into those from the adjoint representa-
tions of SU(2)L or SU(3)C, respectively, and in those coming from the extra gauginos in the
(3,2)−5/6 ⊕ (3,2)5/6 representation. Assume now there is some (unspecified) mechanism that



162 M.-C. Chen et al. / Nuclear Physics B 866 (2013) 157–176
breaks the GUT symmetry down to the SM symmetry, and thus removes the extra gauginos,
while leaving Z

R
M unbroken.2 Then, the coefficients

A
SU(5)broken
SU(3)2

C−Z
R
M

= A
SU(5)

SU(3)2
C−Z

R
M

− 2qθ , (2.11a)

A
SU(5)broken
SU(2)2

L−Z
R
M

= A
SU(5)

SU(2)2
L−Z

R
M

− 3qθ (2.11b)

cannot be equal, i.e. the anomaly coefficients cannot be universal, unless there are split multi-
plets contributing to Aextra

SU(N)2−Z
R
M

(where we use Amatter
SU(3)2

C−Z
R
M

= Amatter
SU(2)2

L−Z
R
M

). That is, ’t Hooft

anomaly matching for (discrete) R symmetries implies the presence of split multiplets below the
GUT scale.

2.2.4. Only R symmetries can forbid the μ term
Given that SM matter furnishes complete SU(5) representations and the attractive picture of

MSSM gauge unification, arguably the most plausible candidates for such split multiplets are the
Higgs fields. Requiring that the Higgs fields cancel the mismatch of gaugino contributions to the
anomalies, we obtain

1

2
(qHu + qHd

− 2qθ ) = qθ mod η, (2.12)

implying

qHu + qHd
= 4qθ mod 2η, (2.13a)

= 2qW mod 2η, (2.13b)

�= qW mod M, for qW �= 0 mod M. (2.13c)

Therefore, non-R symmetries with qθ = qW = 0 cannot forbid the μ term. But in case of non-
trivial ZR

M symmetries (i.e. M � 3) the μ term will always be forbidden, as it should be, since
only chiral contributions can ‘repair’ the gaugino mismatch.

A remark is in order to show that ZR
M with qW = 0 mod M is not an R symmetry. In the case

qW = 0 mod M we find two solutions for qθ : either qθ = 0, such that the symmetry is clearly
non-R, or (for M even) qθ = M/2. However, since the transformation θ 	→ −θ and Ψ 	→ −Ψ

for all fermions Ψ is always a symmetry, one can shift the Z
R
M charges by M/2 such that again

qθ = 0. Hence, ZR
M with qW = 0 mod M is equivalent to a non-R symmetry [19].

2.2.5. Constraints on the order M

Using Eqs. (2.13) and assuming a Giudice–Masiero-like mechanism such that qHu + qHd
= 0

mod M from (2.3d), we obtain

2qW = 0 mod M, (2.14)

which implies, given the freedom to choose qW between 0 and M − 1, that the only non-trivial
solution for even M is qW = M/2. For odd M there is no non-trivial solution. Since the su-
perpotential charge is given by qW = 2qθ , the order M has to be divisible by 4. Hence we can
focus on

2 If one is to obtain the exact MSSM spectrum after GUT breaking, this mechanism cannot be spontaneous symmetry
breaking in four dimensions [17]. On the other hand, extra dimensions, especially in the framework of heterotic orbifolds,
naturally can give discrete R symmetries as remnants of higher-dimensional Lorentz symmetry, see e.g. [18].
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M = 4 × integer and qθ = M/4 (2.15)

in the rest of our discussion.

2.2.6. No additional condition from AR
1

Subtracting AR
3 from AR

1 yields

3

5

[
1

2
(qHu + qHd

) − 11qθ

]
+ 3qθ = 0 mod η. (2.16)

Since M is even and qHu + qHd
= 0 mod M by (2.3d), this equation is equivalent to

3kM + 2(15 − 33)qθ = 5�M (2.17)

with some integers k and �. That is,

36qθ = [3k − 5�]M = Z · M. (2.18)

For a given order M , this relation constrains qθ . However, we know already from our discussion
below Eq. (2.14) that M needs to be an integral multiple of 4, such that (2.18) does not lead to
an additional constraint.

2.3. Family-independent symmetries and proton decay

Let us now assume further that the discrete symmetry be Abelian, i.e. of ZR
M type, with family-

independent charges. Assuming the presence of Yukawa couplings, symmetries with the above
properties have automatically the virtue of solving the dimension-five proton decay problem of
the MSSM, as we will see in the following.

The requirement that up- and down-type Yukawa couplings be allowed,

2q10 + qHu = qW mod M, (2.19a)

q10 + q5 + qHd
= qW mod M, (2.19b)

implies

3q10 + q5 + qHu + qHd
= 2qW mod M. (2.20)

Imposing (2.3d) gives

3q10 + q5 = 2qW mod M �= qW mod M, (2.21)

for an R symmetry (i.e. for qW �= 0 mod M), showing that the troublesome dimension-five oper-
ators 10 10 10 5 are automatically forbidden whenever the Yukawa couplings are allowed. In [8]
the same conclusion was obtained from anomaly cancellation. On the other hand, we see that,
due to relation (2.14), the 10 10 10 5 operators all have R charge 0, such that they will appear
at the non-perturbative level (cf. the discussion in Section 2.5 below). However, as the order
parameter for such non-perturbative terms is the vacuum expectation value of the superpoten-
tial (cf. the discussion below Eq. (2.4)) or, in other words, the gravitino mass m3/2, one obtains
coefficients of the order m3/2/M

2
P , which induce proton decay rates far below the experimental

limits.
Recalling further that 2qW = 4qθ = M leads us to the conclusion that

q = −3q10 mod M. (2.22)
5
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This means that the contributions of matter fields to the anomaly coefficients (2.5) vanish,
and that the universal anomaly coefficients are simply given by

AR
i = ρ = qθ mod M/2 (2.23)

for 1 � i � 3.
Next, one can also discuss proton decay originating from the dimension-four operator 10 5 5.

This operator has R charge

q10 + 2q5 = −5q10 mod M. (2.24)

Hence, these operators are also forbidden if −5q10 �= qW mod M , or equivalently 10q10 �= kM

with k odd.

2.4. Imposing SO(10) relations

Let us now comment on the special case that the Z
R
M symmetry commutes with SO(10) for

the matter fields, i.e. q10 = q5 = q16. The requirements that the up-type and down-type quark
Yukawa couplings be allowed imply that qHu = qHd

=: qH (modM). Furthermore, from the
anomaly universality condition (2.13b) we find qH = qW mod η. In the following, we consider
two cases: in case (i) we demand in addition the Weinberg neutrino mass operator, and in case
(ii) a Giudice–Masiero-like mechanism.

(i) If we require the Weinberg neutrino mass operator, i.e. 2q16 + 2qH = qW mod M , we find
M = 4m, m ∈ N and

qθ = m, qW = 2m, qH = 0 and q16 = m. (2.25)

This symmetry automatically allows for the Giudice–Masiero term and the universal anomaly
coefficients AR

i = m �= 0 indicate a discrete GS mechanism. The simplest case m = 1 is the Z
R
4

symmetry discussed in [20,21]. All other cases are just trivial extensions as long as one considers
the MSSM states only. Of course, if additional states are introduced, they can have Z

R
4m charges

in such a way that one cannot reduce it to Z
R
4 . Another version of the uniqueness proof of ZR

4 can
be found in [8]. However, the analysis in [8] assumed that qθ = 1. Here we show that uniqueness
also survives the generalization to general qθ �= 1.

(ii) If we do not require the Weinberg neutrino mass operator but a Giudice–Masiero-like
mechanism, i.e. 2qH = 0 mod M , there are two cases: both cases have M = 4m, m ∈ N, qθ = m

and qW = 2m. In addition, in the first case we get qH = 0 as discussed above in case (i), and in
the second one we find qH = M/2 = 2m and q16 = 2�m with � ∈ Z. However, this choice forbids
the Weinberg neutrino mass operator.

2.5. Non-perturbative holomorphic μ term

If the above discrete R symmetry appears anomalous, i.e. if anomaly freedom is due to a GS
mechanism (see Appendix B for a discussion of its discrete variant), then such holomorphic
contributions will appear as arising at the non-perturbative level [8,21]. To see this, recall that the
superfield S containing the axion a, i.e. S|θ=0 = s + ia, needs to enter the gauge-kinetic function,
or, in other words, L ⊃ ∫

d2θ fSSWαWα (with some coefficient fS ). Non-invariant terms in the
superpotential can be made invariant by multiplying them by e−bS with appropriate b. As s

controls 1/g2 such terms go like e−b′/g2
, i.e. have the form of instanton contributions. This
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then fits nicely into the scheme of dynamical supersymmetry breaking [22] (see also the more
recent discussion on “retrofitting” [23]), where the scale for supersymmetry breaking is set by
a gaugino condensate [24], or a more complicated dynamical term (see e.g. [25] for a review of
simple models).

2.6. Small Dirac neutrino Yukawa couplings

By relating them to supersymmetry breaking one may explain suppressed neutrino Dirac
Yukawa couplings [26–28]. That is, similarly to the μ term, one can get effective Dirac neu-
trino Yukawa couplings from the Kähler potential terms

K ⊃ kLHuν̄

X†

M2
P

LHuν̄ + h.c. (2.26a)

as well as

K ⊃ k
H

†
d Lν̄

1

MP
H

†
d Lν̄ + h.c. (2.26b)

Here, in an obvious notation, ν̄ denotes the right-handed neutrino superfield(s), kLHuν̄ and k
H

†
d Lν̄

are dimensionless coefficients, and we suppress flavor indices. The first term (2.26a) leads to
Dirac neutrino masses when X attains its F -term VEV, 〈FX〉 ∼ m3/2MP, while in the case
of (2.26b) one has to observe that, due to the presence of the ‘non-perturbative’ μ term, also Hd

attains an F term VEV, 〈FHd
〉 ∼ μ〈Hu〉 ∼ m3/2vEW. As qHu + qHd

= 0 mod M , both terms are
allowed if qν̄ +qHu +qL = 0 mod M , which is precisely the condition that an effective holomor-
phic Yν term is allowed. Altogether we find, analogous to what we have discussed around (2.2),
that effective neutrino Yukawa couplings

Yν ∼ m3/2

MP
∼ μ

MP
(2.27)

will arise. For m3/2 in the multi-TeV range this can lead to realistic Dirac neutrino masses. If we
are to connect the suppression of Yν to the smallness of the μ term, it is natural to assume that the
neutrino Yukawa coupling is forbidden by the same R symmetry that also forbids μ. As discussed
above, LHuν̄ has to have R charge 0. Moreover, there will also be holomorphic contributions to
the Yukawa coupling. That is, even if both kLHuν̄ and k

H
†
d Lν̄

vanish, Dirac Yukawa couplings of

the order m3/2/MP will get induced, where, as in our discussion of the μ term, m3/2 represents
the order parameter for R symmetry breaking.

2.7. Discussion

We have surveyed anomaly-free symmetries which forbid the μ term and are consistent with
the Giudice–Masiero mechanism and SU(5). We find that these are discrete R symmetries Z

R
M

with M = 4m, m ∈ N. The R charges of the HuHd are such that one expects a holomorphic
contribution to the μ term of similar size. That is, the Giudice–Masiero mechanism strongly
suggests the presence of additional holomorphic contributions to the effective μ term!

Assuming further that the symmetries allow the up- and down-type Yukawa couplings and
commute with flavor we find that they automatically forbid the troublesome dimension-five
proton decay operators and in many cases those of dimension four. Interestingly, all these symme-
tries require a GS axion for anomaly cancellation. That is, these symmetries appear to be broken
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at the non-perturbative level. In other words, imposing compatibility with the Giudice–Masiero
mechanism leads us to a situation in which a holomorphic μ term appears at the non-perturbative
level, i.e. in a way the Giudice–Masiero term is unnecessary.

3. Classification and models

In this section, we explore anomaly-free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor-universal and Abelian, i.e. a Z
R
M symmetry;

2. commutes with SU(5);
3. forbids the μ term perturbatively;
4. allows the usual Yukawa couplings.

After revisiting in Section 3.1 the scan performed in [8], where Majorana neutrinos were consid-
ered, we turn to the Dirac case in Section 3.2.

3.1. Models with Majorana neutrinos

In [8,21], anomaly-free discrete R symmetries with qθ = 1 were studied which satisfy the
requirements 1–4 and in addition

5. allow the Weinberg neutrino mass operator.

It was found that there are only five phenomenologically attractive symmetries that commute with
SU(5), one of which, a simple Z

R
4 symmetry, commutes also with SO(10). Further, the μ term,

while perturbatively forbidden, appears at the non-perturbative level in four out of the five sym-
metries. This can explain its suppression. There is one symmetry which is anomaly-free without
GS contribution; here anomaly freedom requires the number of generations to be a multiple
of 3 [29] (for a similar connection between the number of generations and anomaly-free non-R
symmetries see [6,30]).

In the classification of [8], Z
R
4 appears to be particularly attractive. Apart from the fact

that it is the unique solution that commutes with SO(10), only Z
R
4 provides a real solution to

the μ problem. In this case, the discrete charges of Hu and Hd add up to 0 mod M = 4 such that
the μ parameter will be of the order of the gravitino mass, i.e. the order parameter of R breaking.
This feature is not shared by the other four ZR

M symmetries, as also can be seen from our analy-
sis in Section 2.4. In particular, it was argued that μ ∼ m3/2 for the case of ZR

4 . To substantiate
these claims, an explicit string model with exact MSSM spectrum and the Z

R
4 symmetry was

constructed in which the relation μ ∼ 〈W 〉 ∼ m3/2 is due to gauge invariance in extra dimen-
sions [31].

Assuming in addition a Giudice–Masiero-like mechanism, one can see that ZR
4 is the unique

solution also for general qθ as follows. From the requirement that the Weinberg operator be
allowed we infer that

2q5 + 2qHu = 2qθ mod M � q5 = qθ − qHu mod M/2. (3.1)

On the other hand, from the down-type Yukawa coupling it follows
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q10 = −q5 − qHd
+ 2qθ mod M

(3.1)= qθ + qHu − qHd
mod M/2. (3.2)

Demanding that the up-type Yukawa coupling be allowed leads to

qHu = 2qθ − 2q10 mod M

(3.2)= −2qHu + 2qHd
mod M = −4qHu mod M, (3.3)

such that 5qHu = 0 mod M . This means that qHu = 0 mod M unless the order is a multiple
of 5. In the latter case we can write the Z

R
M symmetry as Z5 × Z

R
M/5 where the Z5 fac-

tor is a non-R symmetry. Hence we can focus on qHu = 0 mod M , which implies, by (2.3d),
that qHd

= 0 mod M . Then Eqs. (3.1) and (3.2) imply

q10 = q5 = qθ mod M. (3.4)

That is, the symmetry commutes with SO(10) in the matter sector. We already know from our dis-
cussion in Section 2.4 that the only meaningful R symmetry with this property is ZR

4 . Altogether
we have found that imposing the conditions 1–5 and requiring the presence of a Giudice–Masiero
term leads to a unique solution, which one also obtains by demanding SO(10) relations.

We also scanned the discrete Z
R
M symmetries up to order 200 with general qθ without

assuming a Giudice–Masiero-like mechanism. We obtain, apart from the symmetries of Ta-
bles 2.1 and 2.2 of [8], only a few new symmetries. However, as we show in the follow-
ing in an example, these additional symmetries are redundant: consider a Z

R
20 symmetry with

(q10, q5, qHu, qHd
, qθ ) = (1,17,8,52,5). This is equivalent to a Z

R
4 ×Z5 symmetry with charge

assignment ((1,3), (1,1), (0,4), (0,1), (1,0)). The Z5 is nothing but the non-trivial center
of SU(5), i.e. it does not forbid any couplings (see the discussion in [16,32]) and the (non-
trivial) ZR

4 factor is the one just discussed in the last paragraph.

3.2. Models with Dirac neutrinos

By modifying the above conditions, i.e. by demanding that the symmetry

5. forbids the Weinberg neutrino mass operator perturbatively

and

6. is compatible with the Giudice–Masiero mechanism

we obtain further interesting discrete R symmetries. We classify all symmetries up to order
M = 36 in Table 1. Anomaly-free (non-R) ZN symmetries which allow for Dirac neutrino
Yukawa couplings have been discussed in [33]. The symmetries of Table 1 are inequivalent.
One way of verifying this is to check whether or not two given charge assignments are equivalent
by computing their Hilbert superpotential basis [34]. Only if the bases coincide, the assignments
are equivalent. In the case of R symmetries, the Hilbert superpotential basis comprises homoge-
neous and inhomogeneous elements, or monomials. Every possible superpotential term contains
precisely one inhomogeneous monomial and an arbitrary number of homogeneous monomials.
In Appendix C we list the Hilbert superpotential basis for examples with the Z

R symmetries.
12
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Table 1
Classification of anomaly-free discrete R symmetries that forbid neutrino masses perturbatively. We restrict to or-
ders � 36. (a) shows some sample symmetries. The equality between qθ and ρ is due to Eq. (2.23). The charge of
the right-handed neutrino superfield ν̄ is determined by the requirement that qν̄ + qHu + qL = 0 mod M (cf. the dis-
cussion below (2.26)). In (b) we display the residual symmetries that remain after the (‘hidden sector’) superpotential
acquires its VEV.

(a) ZR
M

symmetries.

M q10 q5 qHu qHd
qθ ρ qν̄

4 0 0 2 2 1 1 2
4 2 2 2 2 1 1 0
8 1 5 2 6 2 2 1

12 1 9 4 8 3 3 11
12 2 6 2 10 3 3 4
12 4 0 10 2 3 3 2
16 1 13 6 10 4 4 13
24 1 21 10 14 6 6 17
28 1 25 12 16 7 7 19
28 2 22 10 18 7 7 24
28 4 16 6 22 7 7 6
32 1 29 14 18 8 8 21
36 1 33 16 20 9 9 23
36 2 30 14 22 9 9 28
36 4 24 10 26 9 9 2

(b) Residual symmetries.

M ′ q10 q5 qHu qHd
qν̄

2 0 0 0 0 0
2 0 0 0 0 0
4 1 1 2 2 1
6 1 3 4 2 5
3 1 0 1 2 2
3 2 0 2 1 1
8 1 5 6 2 5

12 1 9 10 2 5
14 1 11 12 2 5
7 1 4 5 2 5
7 2 1 3 4 3

16 1 13 14 2 5
18 1 15 16 2 5
9 1 6 7 2 5
9 2 3 5 4 1

3.2.1. Comments on the Z
R
8 symmetry

One of simplest charge assignments appears to be the one of the Z
R
8 symmetry. Clearly the

usual Yukawa couplings 10 10Hu and 10 5Hd are allowed. Further, the Higgs bilinear HuHd

has R charge 0 mod 8. If we assign the right-handed neutrino ν̄ R charge 1, the Dirac neutrino
Yukawa coupling will also be induced by R breaking. That is, we will have an effective superpo-
tential which is schematically of the form

Weff ∼ m3/2HuHd + m3/2

MP
LHuν̄ + m3/2

M2
P

QQQL. (3.5)

Here we suppress flavor indices. Once the superpotential of the hidden sector acquires a VEV,
the Z

R
8 is spontaneously broken down to a Z4 symmetry under which all matter fields have

charge 1 and the Higgs fields have charge 2 (Table 1(b)). Of course, this symmetry gets broken
down to the usual matter (or ‘R’) parity once the Higgs scalars attain their VEVs.

The Hilbert superpotential basis [34] for this model (setting all quarks to zero) is given by the
inhomogeneous monomials

ν̄4; (LLE)ν̄; (LHdE); (LLE)4; (LLE)2(LHu)
2; (LHu)

4, (3.6)

while the homogeneous monomials are

ν̄8; (LHu)ν̄; (LHu)
8; (LLE)5ν̄; (LLE)4(LHdE);

HuHd ; (LLE)ν̄5; (LHdE)ν̄4; (LLE)2(LHdE)(LHu)
2;

(LLE)8; (LHdE)2; (LLE)(LHdE)ν̄; (LLE)2ν̄2;
(LLE)3(LHu); (LHdE)(LHu)

4; (LLE)(LHu)
3. (3.7)
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Table 2
Z4 extensions of the Z

R
4 symmetries of Table 1.

(a) First ZR
4 .

q10 q5 qHu qHd
qθ ρ qν̄

Z
R
4 0 0 2 2 1 1 2

Z4 1 1 2 2 0 0 1

(b) Second Z
R
4 .

q10 q5 qHu qHd
qθ ρ qν̄

Z
R
4 2 2 2 2 1 1 0

Z4 1 1 2 2 0 0 1

Furthermore, there will be Kähler potential terms

K ⊃ X†
(

kHuHd

MP
HuHd + kLHuν̄

M2
P

LHuν̄ + kQQQL

M3
P

QQQL

)
+ h.c. (3.8)

with X denoting the field that breaks supersymmetry, kHuHd
, kLHuν̄ and kQQQL being coeffi-

cients (and the flavor indices again are suppressed). The kHuHd
term is nothing but the famous

Giudice–Masiero term [7].
An important feature of this setting is that lepton number is violated at the quartic level,

but bilinear lepton number violating terms are absent. That is, this model predicts the absence of
neutrinoless double β decays. On the other hand, lepton number is not a good symmetry, which
might have, for instance, important implications for the early universe.

Let us also note that the coefficients in the above Kähler potential are not necessarily of order
unity. In specific string constructions, these coefficients can in fact be as large as O(10–100) due
to the presence of copious heavy states and/or combinatorial factors (cf. the discussion in [35]),
enabling realistic predictions for neutrino masses in the sub-eV range.

3.2.2. Comments on the Z
R
4 symmetries

Both Z
R
4 symmetries of Table 1 are problematic as they allow some R parity violating cou-

plings. In particular, the first ZR
4 allows for bi-linear R parity violation, i.e. the 5Hu coupling,

while the second Z
R
4 admits the tri-linear R parity violating terms 10 5 5. In addition, both set-

tings allow for a non-perturbative neutrino bilinear ν̄ν̄. That is, these symmetries can give us
a non-perturbative Majorana neutrino mass term, which might be relevant for the construction of
models realizing a TeV-scale see-saw scenario. Given our previous discussion, a straightforward
possibility of rectifying this is to amend the settings by the residual Z4 symmetry from above
(Table 2).

The ZR
4 symmetries originally give us two inequivalent Hilbert superpotential bases, however,

amending the settings by the above-mentioned Z4 symmetry leads to the same basis. Therefore,
both Z

R
4 ×Z4 symmetries give us the inhomogeneous monomials

(LHdE); (LLE)ν̄; (LLE)(LHu)
3; (LLE)3(LHu), (3.9)

whereas the homogeneous ones are given by

ν̄4; HuHd ; (LHu)ν̄; (LHu)
4; (LHdE)(LHu)(LLE)3;

(LHdE)2; (LLE)(LHdE)ν̄; (LLE)2ν̄2;
(LLE)2(LHu)

2; (LHdE)(LHu)
3(LLE); (LLE)4. (3.10)

As before in our Z
R
8 setting, bilinear lepton number violating terms are absent. In both cases

this feature is due to the (anomaly-free non-R) Z4 symmetry, which commutes with SO(10)
for the matter fields and is a consistent symmetry of the MSSM. Unlike the R symmetries, this
symmetry does not forbid the μ term nor the dimension-five proton decay operators.
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4. Summary

The MSSM provides a very attractive scheme for physics beyond the standard model. How-
ever, in order to address its shortcomings, one, arguably, has to impose additional symmetries.
Motivated by the structure of matter and the attractive picture of gauge unification, we have
considered symmetries that commute with SU(5) in the matter sector. From the requirement of
anomaly freedom it follows that only discrete R symmetries can forbid the μ term. We also
pointed out that anomaly matching for R symmetries in SU(5) symmetric models implies the
existence of split multiplets below the GUT scale, with the simplest option being that a pair of
Higgs doublets cancels the anomaly mismatch between the gauginos. Further demanding that a μ

term of the order of the gravitino mass arises from supersymmetry breaking, i.e. either from the
Kähler potential or from the non-trivial superpotential VEV in the ‘hidden sector’, we showed
that the Higgs bilinear HuHd has to carry trivial R charge. We find that discrete R symmetries
with these properties automatically forbid dimension-five proton decay operators once the usual
Yukawa couplings are allowed. Even more, all symmetries appear anomalous such that a holo-
morphic μ term gets induced at the non-perturbative level. That is, demanding compatibility
with the Giudice–Masiero mechanism brings us to the situation in which a μ term of the desired
magnitude appears even without the Giudice–Masiero term in the Kähler potential.

We then discussed neutrino masses in the emerging MSSM models amended by discrete R

symmetries. Restricting ourselves to flavor-universal Abelian, i.e. ZR
M , symmetries we find that,

by demanding that the Weinberg operator LHuLHu be allowed, there exists only one possible
symmetry, namely a Z

R
4 symmetry. Following a different approach, this Z

R
4 has also recently

been shown to be the unique anomaly-free symmetry that commutes with SO(10) [21]. The proof
in [21] assumed that the charge of the superspace coordinate θ can always be set 1, which we find
to be too strong a requirement. However, we find that, if one is to allow for arbitrary θ charges,
this only leads to trivial extensions of ZR

4 , such that the uniqueness of ZR
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one can ex-
plain small Dirac neutrino masses. In particular, we successfully obtain a relation between the
smallness of Dirac neutrino Yukawa couplings and the μ term which is based on anomaly-free
discrete R symmetries with the above properties. Specifically, we find a class of anomaly-free
discrete symmetries in which the appealing relations μ ∼ 〈W 〉/M2

P ∼ m3/2 and Yν ∼ μ/MP nat-
urally emerge.
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Appendix A. Anomaly coefficients for ZZZR
M symmetries with arbitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ . Consider a Z
R
M symmetry,

under which the superpotential transforms as

W → e2π iqW /MW (A.1)

with qW = 2qθ (such that
∫

d2θ W is invariant). Superfields Φ(f ) = φ(f ) + √
2θψ(f ) + θθF (f )

transform as

Φ(f ) → e2π iq(f )/MΦ(f ). (A.2)

Correspondingly, the fermions transform as

ψ(f ) = e2π i(q(f )−qθ )/Mψ(f ). (A.3)

The anomaly coefficients hence read (cf. [8, Appendix B], where the anomaly coefficients for
the special case qθ = 1 are shown)

AG−G−Z
R
M

=
∑
f

�
(
r(f )

) · (q(f ) − qθ

) + qθ�(adjG), (A.4a)

AU(1)−U(1)−Z
R
M

=
∑
f

(
Q(f )

)2
dim

(
r(f )

) · (q(f ) − qθ

)
, (A.4b)

Agrav−grav−Z
R
M

= −21qθ + qθ

∑
G

dim(adjG) +
∑
f

dim
(
r(f )

) · (q(f ) − qθ

)
. (A.4c)

Here q(f ) denote the Z
R
M charges of the superfields, the charges of the corresponding fermions

are shifted by qθ , qψ(f ) = q(f ) − qθ . In Eq. (A.4a), �(r(f )) denotes the Dynkin index of rep-

resentation r(f ) normalized to �(N) = 1
2 for the fundamental representation N of SU(N) and

�(adjG) = c2(G) represents the contribution from the gauginos, i.e. �(adj SU(N)) = N . The first
and second terms on the right-hand side of Eq. (A.4c) represent the contributions from the grav-
itino and gauginos.

Appendix B. Green–Schwarz anomaly cancellation and anomaly universality

In this appendix, we discuss the discrete Green–Schwarz (GS) anomaly cancellation mecha-
nism, following [8]. We start by reviewing the GS mechanism for a continuous U(1) symmetry in
Appendix B.1. In Appendix B.2 we discuss the discrete version while Appendix B.3 is dedicated
to the discussion of anomaly universality.

B.1. Anomaly cancellation for ‘anomalous U(1)’ symmetries

We start by discussing the mixed anomaly coefficients G − G − U(1)anom for a simple gauge
group G. There will be an axion a which couples to the field strength of G via

Laxion ⊃ a

8
FbF̃ b. (B.1)

A possible prefactor can be absorbed in the normalization of a, which we do not specify here.
Consider now the gauge transformation
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ψ(f ) → eiα(x)Q
(f )
anomψ(f ), (B.2)

where ψ(f ) (1 � f � F ) denotes the fermions of the theory and Q
(f )
anom their charges. The crucial

property of the axion a is that it shifts under (B.2) as

a → a + 1

2
δGSα(x). (B.3)

We can now fix the Green–Schwarz coefficient δGS from the requirement of invariance of the
full quantum theory. It follows from (B.3) that, under a U(1)anom transformation with parame-
ter α, the axionic Lagrangean shifts by

�Laxion = − α

16
δGSFbF̃ b. (B.4)

The Green–Schwarz term δGS can now be inferred by demanding that the transformation of the
axion a cancels the anomalous variation of the path integral measure [36,37]. The latter can be
absorbed in a change of the Lagrangean

�Lanomaly = α

32π2
FbF̃ bAG−G−U(1)anom . (B.5)

The coefficient A is the anomaly coefficient, given by

AG−G−U(1)anom =
∑
r(f )

�
(
r(f )

)
Q

(f )
anom, (B.6)

where the sum runs over all irreducible (fermionic) representations r(f ) of G, �(r(f )) denotes
the Dynkin index of r(f ) and Q

(f )
anom is the U(1)anom charge.

The axion shift allows us to cancel the G − G − U(1)anom anomaly by demanding
�Lanomaly + �Laxion = 0. This fixes the Green–Schwarz constant to be

2π2δGS = AG−G−U(1)anom . (B.7)

B.2. Discrete Green–Schwarz mechanism

The Green–Schwarz mechanism also works if we replace U(1)anom by a discrete ZM . In this
case the parameter α is no longer continuous but α = 2πn

M
with some integer n. Of course, there

is no gauge field associated with the ZM . The discussion then goes as in the previous subsection.
The discrete Green–Schwarz constant is now defined in such a way that under the ZM transfor-
mation of fermions

ψ(f ) → e−i 2π
M

q(f )

ψ(f ) (B.8)

the axion shifts according to

a → a + 1

2
�GS, (B.9)

where �GS is fixed only modulo η,

πM�GS ≡ AG−G−ZM
mod η. (B.10)

The anomaly coefficients can be obtained from Eq. (B.6) by replacing the U(1)anom charges
Q

(m)
anom by the ZM charges q(m).
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B.3. Multiple gauge groups and “anomaly universality”

Let us now discuss the case of multiple gauge groups Gi . In heterotic string models very often
the U(1)anom, ZN or ZR

M anomaly coefficients fulfill certain universality relations,

AGi−Gi−H = ρ (B.11)

for all i and in this section H denotes either U(1)anom, ZN or ZR
M . We will refer to (B.11) as

“anomaly universality”. In a recent paper [38] it has been pointed out correctly that this may
not necessarily be the case in general. That is, the anomaly universality (B.11) is not a direct
consequence of GS anomaly cancellation.

In detail, multiple gauge groups Gi in general do allow us to introduce different couplings ci

of the axion a to the various field strengths,

Laxion ⊃
∑

i

ci

a

8
Fb

i F̃ b
i . (B.12)

The requirement that under an H transformation the contribution from the path integral measure
gets cancelled by the discrete shift of the axion then implies that

2π2ciδGS = AGi−Gi−H (B.13)

for all i. That means that the ci coefficients can be chosen in such a way that the transformation
of the path integral measure gets cancelled for each Gi gauge factor separately. In particular,
one finds (in agreement with [38]) that in general the mixed AGi−Gi−H do not need to be uni-
versal.

However, if this was the case in a given model, one would spoil the beautiful picture of MSSM
gauge coupling unification. Let us spell out the argument in some more detail. In supersymmetry,
the Lagrangean (B.12) implies that there are couplings between the superfield S which contains
the axion, S|θ=0 = s + ia, and the supersymmetric field strengths W(i) associated to the gauge
group factors Gi , i.e.

Laxion ⊃
∑

i

∫
d2θ

ci

8
SW(i)

α W(i)α. (B.14)

Once the real part of S acquires a VEV this will give rise to a non-universal change of the
gauge couplings unless the ci coefficients are all equal for the SM gauge group factors Gi =
SU(3)C,SU(2)L and U(1)Y . That is, anomaly universality is also required in order not to spoil
the beautiful picture of MSSM gauge coupling unification.

Furthermore, there might be model-dependent reasons why the AGi−Gi−H can be universal,
for instance if all Gi come from a (for instance grand unified) simple gauge group, as we assume
in the main body of this paper. Then the term

Laxion ⊃ aFb
GUTF̃ b

GUT (B.15)

is obviously gauge invariant. Hence, the anomalies need to be universal at least at the GUT level,
as discussed around Eqs. (2.10).

How could this universality possibly be broken? One may now worry about additional terms
of the form

Laxion ⊃ a

(
ΦGUT

FGUTF̃GUT

)
, (B.16)
M
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where the operator ΦGUT furnishes a non-trivial GUT representation (such as a 24-plet of SU(5))
and the parentheses denote a non-trivial contraction of the group indices.3 However, at the GUT
level, i.e. for a trivial ΦGUT VEV, such a term cannot cancel the transformation of the path
integral measure by a shift transformation of the axion a. In other words, it is not allowed by the
symmetries of the action if we require that a shifts. Hence, these operators cannot break anomaly
universality.

However, there is a second possibility. In higher-dimensional, e.g. in orbifold GUT type, mod-
els there can be localized terms which do not respect the GUT symmetry. That is, in settings
where the GUT symmetry is broken locally in some regions of compact space such as orbifold
fixed points, anomaly non-universality can arise. After integrating over compact space in order to
derive the four-dimensional effective action one can indeed arrive at non-universal couplings ci

of the axion to the three FF̃ terms of the standard model. Still, as discussed before, if one is not
to spoil the beautiful picture of MSSM gauge coupling unification, the AGi−Gi−H coefficients
need to be universal and these localized contributions have to be avoided. One possibility to
avoid them is “non-local GUT breaking” in extra dimensions, which has been argued to yield the
most appealing scenarios of precision gauge unification [40–42]. In such scenarios, the localized
dangerous GUT-breaking operators do not exist and hence the anomalies are universal.4

Let us also comment on another statement in [38]. First, we would like to point out that the
number of axions is not related to anomaly universality. Specifically, in the presence of multiple
axions, which are available in heterotic compactifications [43,44], one would have to define
how they transform under a U(1)anom (or discrete) transformation. Since there is only one such
transformation, this allows us to identify one unique linear combination of axions, called a as
in our discussion above, which shifts while the other ‘would-be axions’ stay inert. Therefore,
the number of axions is not related to the question of anomaly (non-)universality.

Furthermore, the authors of [38] argue that the anomalies cannot be universal both before
and after doublet–triplet splitting. We disagree with this statement. First of all, ‘before doublet–
triplet splitting’, i.e. before GUT breaking, there are more states around which contribute to
the anomalies and anomaly universality follows from gauge invariance under the GUT group,
see Eq. (B.15). Moreover, in the absence of localized GUT breaking terms, if the anomaly coef-
ficients are universal at the GUT level, where the contributions of extra states have to be taken
into account, they should also be so in the MSSM. This is, again, nothing but ’t Hooft anomaly
matching (see Section 2.2.3). In fact, at the GUT level there is just one (unified) gauge group,
such that universality is trivial.

Appendix C. The Hilbert superpotential bases for models with Z
R
12 symmetries

In Section 3.2, we discuss several ZR
M symmetries that forbid neutrino masses perturbatively

and also present the Hilbert superpotential basis for a model with a Z
R
8 symmetry and two

3 The relative coefficients ci of the axion coupling to the three FiF̃i terms of the standard model originating from
ΦGUT can be inferred from [39].

4 In Abelian orbifold models such operators can only stem from localized fluxes, which are Abelian (i.e. U(1)) fluxes.
Hence, the AGi−Gi−H coefficients coincide for all non-Abelian factors Gi from each E8 in such models. This is also in
agreement with [38] where it is found that, in compactifications of the heterotic E8 ×E8 string on blown-up orbifolds with
Abelian fluxes, non-Abelian anomalies of each E8 factor are still universal. Since the relevant assumption in Section 2.2
needed to prove the uniqueness of ZR

4 (see also Section 2.2.6) is that ASU(2)L−SU(2)L−Z
R
M

and ASU(3)C−SU(3)C−Z
R
M

coincide, the uniqueness of ZR is also given in such constructions.
4
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Z
R
4 symmetries amended by an extra Z4 factor. In this appendix we provide further examples

based on the Z
R
12 symmetries. As we have already stated above, every possible superpotential

term M contains only one inhomogeneous monomial and an arbitrary combination of homoge-
neous monomials [34], i.e.

M = M (i)
in

∏
j=1

(
M

(j)

hom

)ηj with ηj ∈ N, (C.1)

where M (i)
in is an inhomogeneous and M

(j)

hom a homogeneous monomial.
In Section 3.2 we list three examples which have a Z

R
12 symmetry. As we will see in the

following, the three sets of monomials differ. Hence, the three Z
R
12 symmetries are inequivalent.

The first symmetry has the charge assignment

( q10 q5 qHu qHd
qθ ρ qν̄ ) = (1 9 4 8 3 3 11 ) (C.2)

which leads to the inhomogeneous monomials

(LHdE); (LHu)
6; ν̄6; (LLE)ν̄;

(LLE)6; (LLE)4(LHu)
2; (LLE)2(LHu)

4, (C.3)

whereas the homogeneous ones are given by

(LLE)12; (LHu)
12; HuHd ; (LHu)ν̄; (LLE)(LHdE)ν̄;

ν̄12; (LHdE)(LHu)
6; (LHdE)2; (LLE)7ν̄;

(LLE)(LHu)
5; (LLE)6(LHdE); (LHdE)ν̄6;

(LLE)2ν̄2; (LHdE)(LLE)4(LHu)
2; (LLE)5(LHu);

(LHdE)(LLE)2(LHu)
4; (LLE)ν̄7; (LLE)3(LHu)

3. (C.4)

The second Z
R
12 symmetry has the charges

( q10 q5 qHu qHd
qθ ρ qν̄ ) = (2 6 2 10 3 3 4 ) (C.5)

which gives us for the inhomogeneous monomials

(LHdE); (LLE)3; (LLE)ν̄; (LLE)(LHu)
2, (C.6)

and for the homogeneous monomials

(LLE)6; (LLE)4ν̄; (LHdE)(LLE)3; HuHd ;
(LHu)ν̄; ν̄3; (LHu)

3; (LHdE)(LHu)
2(LLE);

(LLE)2(LHu); (LHdE)2; (LLE)2ν̄2; (LHdE)(LLE)ν̄. (C.7)

The last ZR
12 symmetry has

( q10 q5 qHu qHd
qθ ρ qν̄ ) = (4 0 10 2 3 3 2 ) (C.8)

as its charge assignment, with these we get the inhomogeneous monomials

ν̄3; (LHdE); (LLE)ν̄; (LHu)
3; (LLE)2(LHu), (C.9)

and the following homogeneous ones
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(LHu)
6; (LHdE)(LHu)

3; HuHd; (LHdE)(LLE)2(LHu);
(LHu)ν̄; (LLE)3; (LLE)(LHu)

2; (LHdE)2;
(LHdE)ν̄3; (LHdE)(LLE)ν̄; (LLE)ν̄4; ν̄6;
(LLE)2ν̄2. (C.10)
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