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ABSTRACT OF THE DISSERTATION 

 

A Multiscale, Unconditionally Stable Multiphysics Time-Domain (MUST) Solver Unifying 

Electrodynamics, Elastodynamics and Spin Dynamics 

 

by 

 

Zhi Yao 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles, 2017 

Professor Yuanxun Wang, Chair 

 

The goal of this dissertation is to propose, elaborate, and validate a modeling, simulation 

and design tool for magnetic RF devices that encompasses the fields of electrodynamics, 

micromagnetics and other possible physics such as elastodynamics. Comparing to conventional 

approach based on magnetostatic approximations, our solution with full dynamics can provide a 

correct prediction to the electromagnetic power flow which determine the impedance match and 

radiation efficiency of a thin film magnetic filter or antenna.  

First, we introduce both one-dimensional (1-D) and three-dimensional (3-D) modeling 

frameworks, with the former serving as the proof of the concept and the latter as a 

comprehensive modeling tool. The 1-D algorithm is based on an unknown reduction strategy to 

overcome the multiscale problem. The 3-D modeling is based on modified alternating-direction-

implicit finite-difference time-domain methods (ADI FDTD) with unconditional stability. It has 
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the capability of modeling the anisotropic and dispersive properties of magnetic material. The 

proposed algorithms solve Maxwell’s equations and Landau-Lifshitz-Gilbert (LLG) equation 

jointly and simultaneously, with verified accuracy and efficiency.  

Second, we propose a novel antenna radiation mechanism, bulk-acoustic-wave (BAW) 

mediated multiferroic antenna. Such multiferroic antennas compose of piezoelectric material and 

magnetostrictive material, in which time-varying magnetic flux can be induced from the dynamic 

mechanical strain of acoustic waves. The BAW mediated multiferroic antenna can be used to 

create electromagnetic radiation and to alleviate the platform effect associated with low-profile 

conformal antennas. Its potential for efficient radiation of electromagnetic waves is evaluated by 

analytically deriving the lower bound of its radiation quality factor (Q factor). Moreover, the 

performance of the antenna is predicted by both the 1-D and 3-D modeling tools that we have 

developed. The study concludes that efficient antennas may be realized at GHz frequencies with 

thin film multiferroic material that has dimensions on the order of 10-5 wavelength. 

Finally, we summarize the research results and discuss future potential research 

opportunities and challenges in this field. There are still many unresolved questions in this new 

research field. Nevertheless, the multiphysics time-domain solver that we proposed has shown 

the potential of an unprecedented ability to accurately model and design next-generation 

magnetic RF systems and components.  
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Chapter 1 

1 Introduction 

1.1 Introduction to Multiphysics Modeling 

Dynamic multiphysics is the general trend in the field of modern modeling. In most 

traditional modeling problems, one dynamic physics dominate. For example, in transformers, the 

dynamic electric circuit is modulated by the static magnetic hysteresis. In injection molds, 

thermotics is the key physics to consider. However, novel devices usually consist of multiphysics 

that equally contribute to the performance. For example, the voltage-controlled magnetic 

anisotropy (VCMA) memory involves spin dynamics, mechanics, and thermal dynamics [1]. In 

nanoscale motor, spin dynamics, magnetostriction, and mechanics are all dominant physics that 

determine the device performance [2]. Popular multiphysics simulators, such as Comsol 

Multiphysics and ANSYS Multiphysics, solve the coupled partial differential equations (PDEs) 

of electromagnetics (EM), mechanics, fluid flow, and chemical applications, however, may result 

in oversampling for problems of multiscale physics. This dissertation is focused on three 

multiscale physics that are frequently involved in novel RF devices:  EM, elastodynamics, and 

micromagnetics.  

1.1.1 EM and Micromagnetics 

Ferrites and ferromagnets have been widely studied for RF devices, such as inductors, 

circulators, isolators [3-6], antennas [3, 7], frequency selective limiters (FSL) [8, 9] and signal-

to-noise enhancers (SNE) [10]. Besides bulk magnetic materials, high-quality thin-film magnetic 

materials can now be reliably fabricated with nanofabrication technology. It is well known that 
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thin-film magnetic materials in micrometer or sub-micrometer scale thickness possess unique 

properties such as high in-plane permeability and high ferromagnetic resonance (FMR) 

frequency due to the out-of-the-plane demagnetization effects [5, 6]. These unique properties of 

thin films may lead to a variety of new applications in microwave communication systems, 

wearable devices and implantable devices for diagnosis. Understanding the role of 

micromagnetic effects of the material is significant for advanced design and fabrication of RF 

magnetic devices, because such devices often take advantage of the strong coupling between the 

dynamic magnetization and the EM field. On the other hand, the lack of effective modeling tools 

tackling the interactions between oscillating magnetization and EM waves has hindered the state 

of the art in design of RF magnetic devices due to the insufficient understanding of the 

underlying physics in a quantitative manner.  

In micromagnetic theory represented by Landau-Lifshitz-Gilbert (LLG) equation, the 

property of magnetic material is designated by the magnetic moment of orbital and spin of 

electrons. The Larmor precession of the spin creates a resonant frequency in the material 

property, defined by FMR. The state-of-the-art micromagnetic simulators, such as FastMag [11], 

PC Micromagnetic Simulator (Simulmag) [12] and Object Oriented MicroMagnetic Framework 

(OOMMF) [13], solve LLG equation dynamically with coupling to the magnetostatic solution. 

These tools, however, do not predict the interaction between the magnetization and EM waves. 

Full-wave EM simulators, such as HFSS and CST, solve Maxwell’s equations with defined 

material dispersion and anisotropy, i.e. applying Polder’s permeability tensor as the constitutive 

relation. In fact, progressive works on interacting EM and micromagnetics have been published 

in, but not limited to, [14-20]. The existence of weak solutions in the three-dimensional (3-D) 

Maxwell-LLG system has been studied first in [14]. Concerning the numerical analysis of this 
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system, closely related works include [16-20]. In [16, 19, 20], Maxwell's equations are taken 

under the magnetostatic limit. In [17], a weak formulation is adapted to the continuous Maxwell-

LLG problem. In [18], the nonuniform field distributions are obtained by an iterative method. 

The FDTD solution of dynamic Maxwell’s equations and LLG equation was obtained in [15], 

showing the two-dimensional (2-D) analysis of ferrite-loaded waveguides at frequencies below 

FMR frequency.  

We propose for the first time an efficient and accurate 3-D modeling tool for multiphysics 

problems that encompasses the fields of electrodynamics and micromagnetics. The proposed 

modeling is based on a modified finite-difference-time-domain (FDTD) [21, 22] method that 

jointly solves Maxwell’s equations and LLG equation. The advantage of utilizing FDTD method 

is that the intrinsic nonlinearity of magnetic material favors time-domain representation. 

However, conventional FDTD algorithm is subject to Courant–Friedrichs–Lewy (CFL) 

condition, which limits the time-step size to 𝛥𝑡 ≤ 𝛥/(√3𝑐), with 𝛥 being the spatial mesh size. 

Models described by LLG equation often require very fine grained discretization, which may 

result in tiny time-step sizes in the modeling, and consequently, impractical computational 

complexity. Therefore, unconditionally stable FDTD algorithms are necessary in order for the 

time step to surpass the CFL condition. Both implicit [23-28] and explicit [29] unconditionally 

stable FDTD algorithms for EM wave computation were developed previously, with satisfactory 

reliability and accuracy. In this work, we adopted alternating-direction-implicit (ADI) FDTD 

formulation [23, 24] due to the easy implementation and controllable accuracy. 
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(a) 

  

(b) 

Figure 1.1-1. Types of coupling in materials and multiferroic materials. a. Relationship between 

multiferroic and magnetoelectric materials. b. Schematic illustrating different types of coupling 

present in materials. Much attention has been given to materials where electric and magnetic 

order is coupled. These materials are known as magnetoelectric materials [30]. 
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1.1.2 Multiferroics  

Schmid coins the term “multiferroic” in 1994 [31]; since then, thousands of papers have 

been published investigating the attractive properties of this type of material. Multiferroic 

materials are materials that exhibit at least two, and sometimes all three, types of ferroic ordering 

in the same phase. The ferroic orderings are ferroelectric, ferromagnetic and ferroelastic and 

relate to the type of applied field required for the material to exhibit a spontaneously polarized 

state. Fig. 2.1.1 shows these types of ferroic ordering, where an applied electric, magnetic or 

stress field induces a spontaneous electric polarization, magnetization or strain, respectively [30]. 

However, in multiferroics additional levels of ordering can result from the coupling between the 

different types of ferroic ordering. For instance, in a magnetoelectric multiferroic, an applied 

magnetic field can be used to control the polarization, or an applied electric field could be used 

to control the magnetization. 

1.2 Introduction to BAW Mediated Multiferroic Antennas 

Traditional antennas such as dipoles and loops generate propagating electromagnetic waves 

from conductive currents exposed in free space. Such antennas, however, radiate poorly when 

placed at a short distance above a conducting plane. This is because an image current flowing in 

the opposite direction is generated by the platform and it cancels the radiation of the original 

antenna. The platform effect is also described by the excessive storage of reactive energy 

between the radiating element and the platform, which elevates the radiation Q factor and makes 

the antenna difficult to match [32, 33]. 

Using magneto-dielectric material to reduce the high radiation Q factor associated with the 

platform effect has been extensively studied in [34-40], where optimization of the bandwidth and 
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efficiency performance of specific antenna structures, such as microstrip patch antennas, have 

been discussed. The usages of both natural magnetic material [37, 38, 41] and artificial magnetic 

material [39] to alleviate the platform effect have been considered. Recently, the emergence of 

multiferroic material that couples electric field, magnetic field and mechanical field has received 

great attention [42-47]. In particular, the composite of piezoelectric and magnetostrictive 

material, with the mechanical strain as the medium between the coupling of electric field and 

magnetic field can exhibit giant multiferroic coupling needed for practical applications [46]. It 

has been proposed to utilize such composite multiferroic materials to miniaturize the RF antenna 

dimensions as they exhibit high permittivity and high permeability simultaneously [48]. Another 

application of composite multiferroic material is to create frequency reconfigurable antennas by 

altering the magnetic property of the material with electric field [41]. 

1.2.1 Overview 

We propose a new class of antennas called strain mediated multiferroic antennas [49]. 

Instead of using conductive currents, dynamic electric flux (displacement current) or magnetic 

flux is utilized as the radiation source of multiferroic antennas. To achieve this purpose, dynamic 

strain is induced in a thin piezoelectric or piezomagnetic plate to generate a dynamic flux density, 

which then forms the aperture field on the surface of the plate resulting in outgoing 

electromagnetic waves. For example, electromagnetic radiation may be created through vibrating 

a piezoelectric plate mechanically as envisioned and formulated in [50-53]. Strain-mediated 

antennas offer several potential advantages compared to conductive current based antennas. First, 

the Ohmic loss associated with the current conduction is absent, which promises superior 

radiation efficiency. Second, the platform effects may be overcome if strain mediated magnetic 
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flux is used as the radiation source flowing above the conducting platform. This is because the 

image effect by the conducting platform enhances rather than cancels the radiation effects of the 

magnetic flux. Third, strain mediated antennas can be designed with minimum or no conductor 

elements over a conducting ground plane, which helps to achieve low observability and 

robustness against strong interferences. On the other hand, one must realize that generating and 

coupling a dynamic strain at RF frequency into a device is not a trivial task. The distribution of 

strain is often not uniform as dynamic mechanical vibrations may generate acoustic waves that 

can propagate, scatter and radiate in or out of the structure. These effects cannot be ignored once 

the structure dimension is comparable to the acoustic wavelength, which is on the order of 

several micrometers. Therefore, generation and propagation of acoustic waves must always be 

included in the consideration.  

A strain mediated antenna structure is proposed as a vehicle to study how the platform 

effects can be overcome by decreasing the radiation Q factor with the multiferroic coupling. The 

proposed antenna structure consists of a sandwich of two layers of piezoelectric material and one 

layer of magnetostrictive material and it relies on bulk acoustic wave (BAW) resonances to 

transfer the dynamic strain across different layers. Analyses show that, the radiation quality 

factor can be significantly lowered with high permeability and a high magnetomechanical 

coupling figure of merit in the magnetostrictive material, which could lead to low profile 

antennas with high radiation efficiency. Then we develop a multi-physics and multi-scale 

modeling tool to emulate the dynamic, two-way interactions between electromagnetic waves and 

acoustic waves. The model must be based on the fundamental laws of electrodynamics, 

Maxwell’s equations and elastodynamics, Newton’s equations. A one-dimensional finite-

difference time-domain (1D FDTD) technique [21, 54-57] is developed for the purpose of 
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proving the concept, where Newton’s law and Maxwell’s equations are solved jointly in time 

domain. The dynamic response of the stress profile is simulated and from which the radiation Q 

factor is derived. The radiation Q is then compared to the analytical results. The BAW mediated 

antenna performance is also predicted by the full 3-D multiscale and unconditionally stable 

modeling tool that we propose in Chapter 2. Lastly, we identify the material property required 

for practical implementation of multiferroic antennas through the modeling. It is concluded that a 

multiferroic antenna can be built with a thickness of only a few micrometers above a conducting 

plane provided the relative permeability of the magnetic material can reach to a few thousands 

and the magnetomechanical coupling figure of merit is greater than 85%. 

1.2.2 Multiferroic Constitutive Relations  

 

Figure 1.2-1. Composite multiferroic structure formed by lamination of one layer of 

piezoelectric film and one layer of magnetostrictive layer. 

A typical configuration of multiferroic composite is through a laminate of piezoelectric and 

magnetostrictive layer, shown in Figure 1.2-1. The lamination interface between the layers is 

assumed to be perfect so that the mechanical strain is continuous across the interface. The 

multiferroic constitutive relationship is then described by the following equations [58]. 
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𝑺𝑬
𝑫 = 𝒔𝑬 𝒅𝑬

𝒅𝑬 𝝐𝑻
𝑻𝑬
𝑬      (1.2-1) 

𝑺𝑯
𝑫 = 𝒔𝑯 𝒅𝑯

𝒅𝑯 𝝁𝑻
𝑻𝑯
𝑯      (1.2-2) 

where 𝑻𝑬,𝑯 and 𝑺𝑬,𝑯 stand for the stress and strain field tensors in the piezoelectric layer and 

magnetostrictive layer respectively. 𝑬 and 𝑯 are the electric and magnetic field intensity vectors, 

𝑫 and 𝑩 are the electric and magnetic flux density vectors. In the piezoelectric strain equation 

(1.2-1), 𝝐𝑻 is the stress-free permittivity. The coefficient 𝒔𝑬 is the compliance constant, and it is a 

fourth rank tensor. The coefficient 𝒅𝑬 is the strain constant or piezoelectric coefficient, and it is a 

third rank tensor. Subscripts 𝑇 and 𝐸 have been added to 𝝐 and 𝒔 to show that these coefficients 

describe dielectric and elastic properties measured under conditions of constant stress and 

constant electric field, respectively [58]. In the magnetostrictive strain equation (1.2-2), 𝝁𝑻 is the 

stress-free permeability, the fourth-rank tensor 𝒔𝑯 is the compliance constant, and the third-rank 

tensor 𝒅𝑯 is the strain constant or piezomagnetic coefficient. Similarly, the subscripts 𝑇 and 𝐻 

added to 𝝁 and 𝒔 show that these coefficients describe magnetic and elastic properties measured 

under conditions of constant stress and constant magnetic field, respectively. For simplicity, 

assuming all the field variables are uni-directional in the horizontal plane and the strain and 

stress are uniform within each layer. The boundary conditions enforced by the interface in the 

stationary state are 𝑺𝑬 = 𝑺𝑯, 𝑻𝑬 = −𝑻𝑯 . One can then merge Eq. (1.2-1) and Eq. (1.2-2), by 

eliminating the mechanical field variables, which yields 

𝑫
𝑩 =

𝝐𝑻 −
𝒅𝑬
C

𝒔𝑬D𝒔𝑯

𝒅𝑬∙𝒅𝑯
𝒔𝑬D𝒔𝑯

𝒅𝑬∙𝒅𝑯
𝒔𝑬D𝒔𝑯

𝝁𝑻 −
𝒅𝑯
C

𝒔𝑬D𝒔𝑯

𝑬
𝑯               (1.2-3) 
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This is in the form of the constitutive relations of the famous bianisotropic magnetoelectric 

material [57], where the electromagnetic flux densities and fields are cross coupled. In a dynamic 

strain mediated system, however, the bianisotropic relations described by Eq. (1.2-3) do not hold 

in general as the strain and stress are often functions of time and space. Consequently, the 

discussions on the dynamic property of multiferroic material must be carried out concerning the 

dynamic, bilateral interactions between electrodynamics and dynamic mechanics. The equations 

Eq. (1.2-1) and Eq. (1.2-2) can be rewritten in the following alternative form: 

𝑇 = − FG
HI
𝐷 + 𝑐L𝑆,			𝐸 =

O
HI
𝐷 − FG

HI
𝑆             (1.2-4)  

𝑇 = − FP
QI
𝐵 + 𝑐S𝑆,			𝐻 = O

QI
𝐵 − FP

QI
𝑆             (1.2-5) 

where 𝑒L and 𝑒S are the stress constants of the piezoelectric and magnetostrictive material for 

constant strain, which are related to the parameters in Eq. (1.2-1) and Eq. (1.2-2) by 𝑒L =

𝑑V/𝑠V = 𝑑V ∙ 𝑐V  and 𝑒S = 𝑑X/𝑠X = 𝑑X ∙ 𝑐X . The coefficients 𝑐V  and 𝑐X  are the Young’s 

modulus of the material measured under constant electric field and magnetic field, which are 

inversions of the mechanical compliances measured under the same condition, e.g. 𝑐V = 1/𝑠V 

and 𝑐X = 1/𝑠X . The coefficients 𝑐L  and 𝑐S  in Eq. (1.2-4) and Eq. (1.2-5) are mechanical 

compliances measured under constant electric and magnetic flux densities. 𝜖Z and 𝜇Z are constant 

strain permittivity and permeability and they are related to the constant electromagnetic field and 

stress parameters through the following, 

𝑐L =
\]

O^_]
C

𝑐S =
\`

O^_`
C

, 𝜖Z = 𝜖a(1 − 𝑘V%)
𝜇Z = 𝜇a(1 − 𝑘X% )

             (1.2-6) 

where 𝑘V% and 𝑘V% are respectively electromechanical and magnetomechanical coupling figures of 

merits, given by 
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𝑘V% =
c]
C

d]He
, 𝑘X% =

c`
C

d`Qe
              (1.2-7)  

The definition of energy in a multiferroic system can appear varied depending on which field 

quantities are viewed as the independent variables in the equation. As a consequence, an energy 

formulation can be obtained in terms of either stress or strain for the mechanical variables or in 

terms of flux density or field density for the electromagnetic terms. In this discussion, we write 

the mechanical energy in terms of stress and the electromagnetic energy in terms of the flux 

density. Using magnetostrictive layer as an example, a variation of Eq. (1.2-2) can be written as, 

𝑆 = 𝑠S𝑇 +
c`
Qe
𝐵, 𝐻 = −c`

Qe
𝑇 + O

Qe
𝐵             (1.2-8) 

The total stored energy 𝑊aghij in the magnetic phase of the system according to this definition is 

given by: 

𝑊aghij =
1
2 𝑆 ∙ 𝑇 𝑑𝑣 +

1
2 𝐵 ∙ 𝐻 𝑑𝑣 

= O
%

𝑠S ∙ 𝑇 % 𝑑𝑣 + O
%

S C

Qe
𝑑𝑣          (1.2-9) 

where 𝑠S = 1/𝑐S = 1 − 𝑘X% 𝑠X  is the mechanical compliance defined for constant magnetic 

flux density. Note that the total energy input to the system is now stored as a summation of the 

mechanical energy in the form of mechanical stress and the magnetic energy in the form of 

magnetic flux density 𝑊S =
O
%

S C

Qe
𝑑𝑣. The weak magnetic field condition holds when |𝐻| ≪

|𝐵|/𝜇a as it will be seen in the following proposed antenna system. In this case, the energy in the 

system established by or released to the magnetic field in the outside world can be a small 

fraction of what is in the system stored in the form of magnetic flux density, e.g. 
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O
%

𝐵 ∙ 𝐻 𝑑𝑣 ≪ 𝑊S =
O
%

S C

Qe
𝑑𝑣               (1.2-10) 

This leads to the observation that the input of the energy to the system is primarily mechanical 

while the stored energy is in the forms of both mechanical stress and magnetic flux density as 

part of the mechanical energy is transferred to the magnetic energy, which is 

𝑊aghij ≈
O
%

𝑆 ∙ 𝑇 𝑑𝑣 = O
%

𝑠S ∙ 𝑇 % 𝑑𝑣 + O
%

S C

Qe
𝑑𝑣    (1.2-11) 

On the other hand, it is obvious under the weak magnetic field assumption that 𝐻 ≈ 0, 𝐵 ≈ 𝑑X𝑇 

from the second equation in Eq. (1.2-8). Substituting this relationship into Eq. (1.2-9) results,  

𝑊aghij =
O
%

𝑠S ∙ 𝑇 % 𝑑𝑣 + O
%

c`
C

Qe
𝑇 % 𝑑𝑣 = O

%
𝑠X ∙ 𝑇 % 𝑑𝑣   (1.2-12) 

Multiplying Eq. (1.2-12) with 1 − 𝑘X% , then subtracting it from Eq. (1.2-9) yields, 
 

𝑊aghij =
O
_`
C
O
%

S C

Qe
𝑑𝑣 = O

_`
C 𝑊S            (1.2-13) 

The magnetomechanical coupling figure of merit 𝑘X
%  defined by Eq. (1.2-7) thus has a very 

clear physical meaning as the maximum ratio of the mechanical energy input that is transferred 

to magnetic energy and stored in the form of magnetic flux density. It thus carries a fundamental 

limit of 𝑘X% ≤ 1  to obey the energy conservation. Similar discussions can be carried out to 

describe the stored energy in a piezoelectric system and the mechanical to electric energy 

transfer relation. 
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1.2.3 Strain-mediated Radiation 

 

Figure 1.2-2. Strain mediated radiation in the magnetostrictive layer. The coordinate system is 

chosen such that the magnetic flux is in the y direction. The thickness of the substrate satisfies 

the condition 𝝁𝒓𝒌𝟎𝒉 = 𝟏. 

The essence of the proposed strain mediated antenna is to create dynamic magnetic flux 

that is parallel to a conducting plane so that electromagnetic wave radiation can be formed away 

from the conducting plane. The dynamic magnetic flux replaces the typical conductive current to 

be the source of radiation in this case. As the platform effect of the conventional current based 

antennas is associated with the excessive energy stored on the platform manifested as elevated 

radiation Q factors, the performance bound of the proposed antenna must also be examined in 

regard to its radiation Q factor. To derive such a performance bound, a thin layer of 

magnetostrictive material on a perfect electrically conducting (PEC) ground plane excited under 

a vertical dynamic strain is assumed and depicted in Figure 1.2-2. The structure is assumed to be 

homogeneous and extending to infinity in the horizontal directions. In Figure 1.2-2, it is assumed 

that the dynamic strain is coupled through the ground plane and transferred uniformly onto the 

magnetostrictive layer. The dynamic strain excites a uniform dynamic magnetic flux within the 
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layer of magnetic material. According to Faraday’s law, this dynamic magnetic flux generates a 

dynamic electric field that is linearly varying along the thickness dimension until it reaches 

above the surface of the magnetostrictive layer where an aperture electric field is formed. 

Denoting the aperture electric field by 𝐸u and the average radiated power of the electromagnetic 

wave is thus calculated to be, 

𝑃wic =
O
%xy

𝐸u %
Z 𝑑𝑠             (1.2-14) 

Using Faraday’s law  𝐵 = 𝐸u /(𝜔ℎ) = 𝐸u /(𝑐𝑘uℎ) where 𝑐 is the speed of light and 𝑘u is the 

free space wave number, the stored energy in the form of magnetic flux density in the 

magnetostrictive layer is thus derived to be: 

𝑊S =
O
%

S C

Qeu|}|~ 𝑑𝑣 ≈ ~
% �~ CQe

𝐸u %
Z 𝑑𝑠           (1.2-15) 

The total stored energy includes an additional component in the form of mechanical stress as 

evidenced by Eq. (1.2-9). Joining the free space radiation boundary condition 𝐻 = 𝐸u/𝜂u =

𝐸u/𝑐𝜇u, and Faraday’s law, it is not difficult to show that the weak magnetic field condition 

𝐻 ≪ 𝐵 /𝜇a holds when 𝜇w𝑘uℎ ≪ 1. The total stored energy can thus be well represented by 

Eq. (1.2-13). The radiation quality factor is thus derived as Eq. (1.2-13) is substituted in, 

𝑄�g��c = 𝜔�e����
����

= 𝜔�P/_`
C

����
= O

_`
C

O
Q�_y~

= d`
c`
C
Qy
_y~

           (1.2-16) 

Equation (1.2-16) actually represents the lower bound of the radiation Q factor for the 

proposed strain mediated antenna when the stored energy on the magnetostrictive layer is the 

primary form of the stored energy. The stored energy considered for the above derivation 
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includes neither that in the near field above the antenna structure, nor that stored in the feeding 

structure underneath the ground plane. A complete antenna may involve stored energy in other 

parts and consequentially a higher radiation quality factor may emerge. On the other hand, it is 

evident in Eq. (1.2-16) that the lower bound of the radiation Q factor decreases with higher 

permeability and higher mechanical-to-magnetic coupling factor 𝑘X%  of the magnetostrictive 

material. The concept of utilizing high permeability magnetic material to lower the radiation 

quality factor is consistent with the approaches attempted in [34-36]. The strain mediated 

multiferroic approach can have further benefit by exploiting other features such as absence of 

Ohmic loss associated with the current conduction and ease of impedance matching in the 

vertical direction through acoustic wave resonances. 

1.2.4 BAW Mediated Multiferroic Antennas 

The structure of BAW resonator is exploited here to create dynamic strain and to couple it 

to the radiating element. BAW resonators based on either Bragg reflectors or Film Bulk Acoustic 

Resonance (FBAR) architectures have been extensively used by the RF filter society to create 

high performance, low loss RF filters with small form factors [59]. Here, the vertical stress and 

strain profile of BAW at resonance is leveraged to couple the dynamic strain from the 

piezoelectric phase to the magnetostrictive phase, while in the other two horizontal dimensions 

the ability of scaling the radiating elements is retained to satisfy certain impedance and gain 

requirements in practical antenna applications.  
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(a) 

 

(b) 

Figure 1.2-3.  BAW resonance based antenna. a. Structure and physical coupling mechanism 

[60]. b. Cross section of the antenna. Electric current excitation is applied to the electrodes on 

both sides of the bottom piezoelectric layer, and it triggers the BAW resonance through converse 

piezoelectric effect. 
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Shown in Figure 1.2-3 is the proposed multiferroic antenna operating in the proximity of 1 

GHz, which consists of a three-layer strain mediated BAW structure. An air cavity such as those 

in FBAR is placed underneath the layered structure to overcome the mechanical clamping effect 

of the substrate. The three layers include a 1-µm-thick magnetostrictive layer sandwiched by two 

1-µm-thick piezoelectric layers. The bottom piezoelectric layer serves as the excitation layer, 

which accepts a current injection and excites the acoustic wave into the layered structure. BAW 

resonance is thus formed along the vertical direction when the total vertical dimension is 

approximately a half-acoustic-wavelength. For example, a total of 3-µm-thick layered structure 

allows BAW resonance at approximately 1 GHz to be established. 

At the fundamental resonant mode, the half-period sinusoidal stress profile is plotted in 

Figure 1.2-3, which is maximized in the middle portion where the magnetostrictive layer is. This 

allows the maximum strain to be imposed on the magnetostrictive layer for the purpose of 

generating a strong dynamic magnetic flux. To analyze the radiation quality factor of this 

structure, the energy stored in the complete sandwiched structure must be considered which 

includes energy stored in both the magnetostrictive and piezoelectric phase. Due to the open 

circuit excitation to the piezoelectric layer (𝐷 = 0) after the initial current pulse drive and the 

weak magnetic field condition from the magnetostrictive layer ( 𝐻 ≪ S
Qe  

or 𝐻 ≈ 0 ), the 

exchange of electric energy and magnetic energy with the outside world is negligible compared 

to the stored energy. The stored energy can thus be represented by the total mechanical energy 

stored in the form of constant electric flux density stress in piezoelectric material and constant 

magnetic field stress in magnetostrictive material as shown in Eq. (1.2-12). 
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𝑊aghij =
O
%

𝑠L 𝑇 %
^~|}|u	&	~|}|%~ 𝑑𝑣 + O

%
𝑠X 𝑇 %

u|}|~                      

= 2𝑊�V +𝑊��               (1.2-17) 

where 𝑊�V  and 𝑊��  are the stored mechanical energy in each of the piezoelectric layer and 

magnetic layer. If the mechanical compliance of the piezoelectric layer is approximately the 

same of that in the magnetostrictive layer, the stored energy in these two phases are 

proportionally related by the vertical stress profile in the structure at the resonance. Given the 

stress field distribution of 𝑇 = 𝑇usin	(2𝜋𝑧/𝜆i\)  and the resonance condition 𝜆i\ = 2𝑑 = 6ℎ 

where 𝜆i\  is the wavelength of the acoustic wave, the total stored mechanical energy in the 

magnetic layer is thus, 

𝑊aghij =
O
%

𝑠X 𝑇 %
^~|}|%~ 𝑑𝑣      

=
1
2 𝑠X𝑇u

% ∙ 𝐴 ∙ sin%
2𝜋
𝜆i\

𝑧 𝑑𝑧
c

u
 

=
1
2 𝑠X𝑇u

% ∙ 𝐴 ∙
𝜆i\
2𝜋 sin% 𝑥 𝑑𝑥

�

u
 

= �
%
𝑊a�               (1.2-18) 

where 𝐴 is the surface area of the BAW structure and 𝑊a�  is the stored energy calculated based 

on an uniform strain distribution just as the one obtained from Eq. (1.2-12),  

𝑊a� =
O
%
𝑠X𝑇u% ∙ 𝐴 ∙ ℎ            (1.2-19) 

In addition to the elastic energy stored in the form of mechanical stress, the energy in an acoustic 

resonator should include an equal amount of kinetic energy. The radiation quality factor of the 

BAW structure is thus derived,  
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 𝑄i = 𝜔 %�e
����

= 𝜔 ��e�
����

= 3𝑄�g��c           (1.2-20) 

and 𝑄�g��c is the lower bound of the radiation 𝑄 given by Eq. (1.2-16). 

1.3 Motivation 

The state of the art in modeling RF magnetic components is significantly lagging those 

consisting of only electric material, with most of commercial software being limited to modeling 

simple material behavior with defined material dispersion and anisotropy, i.e. applying 

permittivity and permeability tensor as the constitutive relation, which is not representative of 

material response in actual hardware. In addition, the modeling approaches currently being used 

often rely on very coarse scale in relation to the wavelength of the operating frequency due to 

intrinsic stability requirements present in their programs. Yet applications of thin or thick 

magnetic film components are thriving thanks to the maturing of nanofabrication technologies 

such as sputtering or deposition techniques. High quality films are readily available with 

thickness dimensions in the order of 1/1000th to 1/10000th of the wavelength, ranging from a few 

𝜇m to a few tens of 𝜇m that could be beneficial to developing advanced antennas and filters even 

at the low GHz frequencies. While the materials are available, the dramatic scale difference 

cannot be adequately addressed with commercial software due to the overwhelming 

computational complexity in both space and time gridding. Modeling challenges are exacerbated 

by the fact that available numerical software programs lack coupled electrodynamic, 

micromagnetic, and elastodynamic solvers/solutions. 

We aim to attack this grand challenge through development of a multi-physics, multi-scale 

time-domain solver that can model the five orders of magnitudes scale difference from 
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micrometers to centimeters, including the physics from electromagnetic waves, acoustic waves 

to micromagnetics into one unified framework. The ultimate goal of this work is to provide a 

comprehensive and precise modeling solution for dynamic magnetics. Furthermore, we focus on 

providing a computation platform that is numerically affordable in comparison to existing 

commercial software. 

1.4 Dissertation Outline 

         In this dissertation, we will present two closely related projects on the development, 

validation and application of the MUST algorithm. In Chapter 2, we will first present the details 

of the proposed algorithm in both 1-D and 3-D framework, including both the overall 

mathematical formulation and the special treatment of material boundaries. In particular, in the 

3-D framework, magnetization at the interface between different materials is handled with full 

consideration of demagnetization. Then we use two numerical examples to demonstrate both the 

accuracy and efficiency of the proposed method. Furthermore, the ability of magnetic thin films 

on eliminating the radiation platform effect is explored with physical insight. In Chapter 3, we 

propose an antenna structure consists of a sandwich of two layers of piezoelectric material and 

one layer of magnetostrictive material and it relies on BAW resonances to transfer the dynamic 

strain across different layers. Analyses show that, the radiation quality factor can be significantly 

lowered with high permeability and a high magnetomechanical coupling figure of merit in the 

magnetostrictive material, which could lead to low profile antennas with high radiation 

efficiency. We also implemented the multi-physics and multi-scale modeling tool that was 

developed in Chapter 2 to emulate the dynamic, two-way interactions between electromagnetic 

waves and acoustic waves. It is concluded that a multiferroic antenna can be built with a 
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thickness of only a few micrometers above a conducting plane provided the relative permeability 

of the magnetic material can reach to a few thousands and the magnetomechanical coupling 

figure of merit is greater than 85%. Finally, a brief discussion and conclusion will be given in 

Chapter 4, followed by an outlook of future research work.  
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Chapter 2 

2 Multiscale, Unconditionally Stable Multiphysics Time-Domain 

(MUST) Algorithm 

In the multiphysics problem involved in ferromagnetic RF devices, dynamic Maxwell’s 

equations (2.0-1) and the LLG equation (2.0-2) must be considered, shown respectively as the 

following: 

  ∇×𝑯 = 𝜖 �𝑬
�h
+ 𝑱 + 𝜎𝑬, ∇×𝑬 = −�𝑩

�h
,     (2.0-1) 

  �𝑴
�h
= 𝜇u𝛾 𝑴×𝑯 − ¢

|𝑴|
𝑴× �𝑴

�h
,     (2.0-2) 

where the gyromagnetic ratio is 𝛾 = −1.759×10OO𝐶/𝑘𝑔, and the magnetic damping constant is 

𝛼 = 𝜇u𝛾𝛥𝐻/4𝜋𝑓h , with 𝛥𝐻  being the FMR linewidth and 𝑓h  the frequency at which the 

linewidth is measured. Due to strong coupling of magnetization to the EM field, a useful 

modeling tool should solve Eq. (2.0-1) and Eq. (2.0-2) in a simultaneous manner, instead of 

considering them as two separate systems. Therefore, iterating through all the physics in each 

time step is necessary. Furthermore, the thicknesses of magnetic thin films are mostly on the 

micrometer level, which is 105 times smaller than the EM wavelength at GHz frequencies. Also, 

some possible additional physics require a drastically smaller spatial scale than the EM 

wavelength. For example, the exchange coupling between spins functions within nanometer 

distances. Both these two factors lead to tremendous computational load. Finally, under strong 

magnetization, the field boundary conditions are no longer automatically incorporated by 

conventional Yee’s spatial meshing, because of the demagnetization effect intrinsically presented 
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by the magnetic field intensity and magnetic flux. To summarize, there are three major 

challenges to model interactive micromagnetics and EM waves, which are: 

1) Coupling between Maxwell’s equations and the LLG equation in each time step, 

2) Scale disparity of the multiphysics, 

3) Demagnetization.  

In the 1-D scheme, the challenges are overcome by spatial extrapolation. In the 3-D scheme, the 

first two challenges are overcome by ADI-FDTD with spin dynamics modification, and the third 

one by rigorous magnetic material meshing and boundary conditions.  

2.1 One-dimensional Multiscale FDTD with Unknown Reduction 

A one-dimensional (1-D) FDTD algorithm is developed to model current radiations off the 

thin-film ferrite coated ground plane, which takes care of the dual-way interactions between the 

magnetization and electromagnetic field. The equation of motion of electron spin, also known as 

the Landau-Lifshitz-Gilbert (LLG) equation is coupled with Maxwell’s equations to model the 

dispersive nature of the magnetization and the loss mechanism due to hysteresis. Both the 

ferromagnetic resonances (FMR) and radiation of electromagnetic wave caused by the dynamic 

magnetic field are simulated. 

2.1.1 1-D Unknown Reduction Through Spatial Extrapolation 

Figure 2.1-1 shows the thin-film ferrite antenna structure. The thickness of the film is 𝑑 =

1	𝜇𝑚. The dimension of the film is assumed to be infinitely large in the horizontal plane so that 

the 1-D approximation is valid. A static magnetic field bias 𝑯u and a dynamic current excitation 

are applied in the y direction, so that dynamic magnetic field is generated in the x direction and 
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the z direction. In Figure 2.1-1, the term 𝑀Z  is the saturation magnetization, 𝒎  is the AC 

magnetization caused by 𝒉. This dynamic magnetization modeling will solve the Maxwell’s 

equations and LLG equations simultaneously as both the magnetic moment and electromagnetic 

coupling phenomena exist physically and inseparably in the ferrite. With the small signal 

approximation, Eq. (2.0-1) is expanded in the following scalar form [15]: 

 O
Qy

��¯
�h
− �~¯

�h
= 𝛾 𝐻u𝑏± − 𝜇u 𝑀Z + 𝐻u ℎ± + 𝛼 O

Qy

��²
�h
− �~²

�h
,    (2.1-1) 

 O
Qy

��²
�h
− �~²

�h
= 𝛾 −𝐻u𝑏} + 𝜇u 𝑀Z + 𝐻u ℎ} − 𝛼 O

Qy

��¯
�h
− �~¯

�h
,    (2.1-2) 

  𝑏³ = 𝜇uℎ³.   (2.1-3) 

Enforcing 1-D approximation to Eq. (2.0-2) reduces the Maxwell’s equations to 

  ��²
�h
= �F´

�}
, 𝑒} = 0, 𝑏} = 0   (2.1-4) 

which further simplifies Eq. (2.1-1) and Eq. (2.1-2) into 

 −�~¯
�h
= 𝛾 𝐻u𝑏± − 𝜇u 𝑀Z + 𝐻u ℎ± + 𝛼 O

Qy

��²
�h
− �~²

�h
,    (2.1-5) 

  O
Qy

��²
�h
− �~²

�h
= 𝛾 𝜇u 𝑀Z + 𝐻u ℎ} − 𝛼 �~¯

�h
.     (2.1-6) 

In time domain numerical modeling, the stability condition between the spatial grid and the 

time step is max 𝛥𝑥, 𝛥𝑦, 𝛥𝑧 ≥ 𝑐𝛥𝑡/√3 to stabilize the iteration process. If the antenna works at 

1 GHz, the ratio of the wavelength and the structure dimension is 𝜆/ℎ = 3×10º , thus even 

though the whole structure occupies only one spatial grid, the duration of one time step has to be 

no larger than 𝛥𝑡»i± = 6×10^Oº𝑠. If a time window of 10^¼𝑠 should be simulated, the number 

of time steps is almost one million, which is enormous data. To avoid this stability problem, the 

following polynomial spatial expansion of electromagnetic field is used: 
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  𝑒³ = 𝑒³O𝑧,  ℎ± = ℎ±u, 𝑏± = 𝑏±u   (2.1-7) 

where ey1, hx0 and bx0 are unknowns to be solved. With the spatial expansion, the stability issue is 

cleverly avoided, and the simulation will be much less time and storage consuming. Therefore, 

the radiation boundary condition 

  V´
X² }½c

= 𝜂u    (2.1-8) 

yields 

  𝑒³O = − xy
c
ℎ±u + 𝐽³    (2.1-9) 

where Jy is the surface current excitation. Substituting Eq. (2.1-4) and Eq. (2.1-9) into Eq. (2.1-5) 

and Eq. (2.1-6) gives 

  ��²y
�h

= − xy
c
ℎ±u + 𝐽³     (2.1-10) 

 −�~¯
�h
= 𝛾𝐻¿𝑏±u − 𝛾𝜇u 𝑀Z + 𝐻u ℎ±u −

¢xy
cQy

ℎ±u + 𝐽³ − 𝛼 �~²y
�h

    (2.1-11) 

 − xy
cQy

ℎ±u + 𝐽³ − �~²y
�h

= 𝛾𝜇u 𝑀Z + 𝐻u ℎ} + 𝛼
�~¯
�h

    (2.1-12) 

The time difference equations are obtained by discretizing Eq. (2.1-10)–Eq. (2.1-12), as follows: 

 𝑘O ∙ ℎ±u� = 𝑘% ∙ ℎ±u�^O − 𝛼 + O
¢

xy
Qyc

À´ÁDÀ´ÁÂÃ

%
− Ä

¢
𝑀Z + 𝐻u 𝜇uℎ}

�^ÃC + 𝛾𝐻u𝑏±u
�^ÃC   (2.1-13) 

  𝑏±u
�^ÃC = − xyÅh

c
ℎ±u� + 𝐽³� + 𝑏±u

�^ÃC     (2.1-14) 

 𝑘� ∙ ℎ}
�DÃC = 𝑘Æ ∙ ℎ}

�^ÃC − 𝛾𝐻u
�²y
ÁÇÃCD�²y

ÁÂÃC

%
− 𝛾𝜇u 𝑀Z + 𝐻u ℎ±u�     (2.1-15) 

where  
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  𝑘O,% =
xy
%Qyc

+ O
Åh

𝛼 + O
¢
± ÄQy �IDXy

%
    (2.1-16) 

  𝑘�,Æ =
¢CDO
Å

± ¢ÄQy �IDXy
%

    (2.1-17) 

A surface electric current density in the form of Gaussian pulse 𝐽³ = exp − 𝑡 − 𝑡u %/2𝜏  is 

applied to the thin film, as the excitation to the recursive FDTD time-marching algorithm. The 

leap-frog time stepping scheme can be implemented by solving the aperture dynamic component 

hx0, coupled back to update the magnetic flux density and then to update the other magnetic field 

component hz. The ferrite material is chosen to be yttrium iron garnet (YIG), with 4𝜋𝑀Z =

1750	𝐺𝑎𝑢𝑠𝑠, 𝛥𝐻 = 5	𝑂𝑒, 𝜖w = 13. 

 

Figure 2.1-1. Infinite magnetic thin film backed by PEC ground plane, on which a uniform 

electric current sheet 𝑱𝒚 is placed.  
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2.1.2 Simulation Results 

The relative permeability curves shown in Figure 2.1-2 are obtained by the ratio of the 

frequency domain fields, which are computed using the fast Fourier transform of the time 

domain field. The analytical results are computed based on [6]: 

 𝜔u = 𝜇u𝛾𝐻u + 𝑗𝛼𝜔, 𝜒 = �Ó �ÓD�y
�y �ÓD�y ^�C

    (2.1-18) 

where 𝜇u𝛾𝐻u  is the precession frequency, and 𝜔» = 𝜇u𝛾𝑀Z . The FMR is shifted to higher 

frequencies as the DC magnetic bias increases. A very good agreement between the simulated 

results and the analytical results can be observed in Figure 2.1-2. The normalized radiated power 

into free space (shown by Figure 2.1-3) increases as the thickness of the film increases or the line 

width of the material decreases. It should be noted that the radiated power is maximum at FMR, 

where the magnetic loss tangent reaches its peak and the relative permeability is nearly zero. 

This phenomenon was not predicted prior to this research. It can be explained that near FMR 

region, the ferrite becomes a good magnetic conductor so that dynamic electromagnetic fields 

could hardly stand inside the material, which results in high power released into the free space. 

This conclusion opens up a new antenna design strategy to make the antenna work at FMR to 

enhance the radiation. 
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Figure 2.1-2. Relative permeability with different DC magnetic bias, 𝜟𝑯 = 𝟓𝟎	𝑶𝒆. a. Real part 

𝝁′. b. Imaginary part 𝝁′′. 
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(b) 

Figure 2.1-3. Normalized radiated power of the thin film ferrite. a. 𝜟𝑯 = 𝟏	𝑶𝒆, b. 𝜟𝑯 = 𝟓	𝑶𝒆. 
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2.2 Three-dimensional Unconditionally Stable Multiphysics FDTD 

We propose for the first time an efficient and accurate modeling, simulation and design tool 

for multiphysics problems that encompasses the fields of electrodynamics and micromagnetics. 

The proposed modeling is based on a modified alternating-direction-implicit FDTD (ADI-FDTD) 

method. We will introduce the details of the algorithm, including both the mathematical 

formulation and boundary conditions. Magnetization at the interface between different materials 

is handled with full consideration of demagnetization. Numerical examples have demonstrated 

both the accuracy and efficiency of the proposed method. First, an E-plane ferrite resonance 

isolator is simulated and compared to the commercial capability. The agreement of the simulated 

performance proves the accuracy of this work. Second, as a further validation of the proposed 

modeling, the simulated permeability of an infinite YIG thin film matches theoretical prediction. 

We will also show a demonstration of potential application of the proposed modeling tool. The 

effect of magnetic thin film to eliminate the platform effect is explored with insight. The 

radiation performance of magnetic thin film loaded current source is shown under various 

magnetic DC bias, and is three orders of magnitude higher than that without magnetic thin film. 

 

Figure 2.2-1. Electron angular momentum about its own central axis (called spin) leads to a 

magnetic moment 𝑴  precessing around the applied magnetic field 𝑯𝒃𝒊𝒂𝒔 . The spin of 

magnetization results in the intrinsic coupling between different magnetic field components 

orthogonal to the bias [60].  
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2.2.1 Introduction to ADI FDTD 

Zheng, Chen and Zhang (ZCZ) reported an ADI time-stepping algorithm for FDTD that 

has theoretical unconditional stability for the general 3-D case steps [22, 24], with detailed 

theoretical stability analysis. While the ZCZ ADI technique uses the same Yee space lattice, the 

six field vector components are collocated rather than staggered in time. Figure 2.2-2 

interoperates the procedure of updating the E field in both the conventional FDTD and ADI 

FDTD. In conventional FDTD, the field is directly advanced from one time step to the next one, 

without the knowledge of the field value at a half time step. However, the ADI scheme iterates 

the field variable forward in time for half a time step and then backward for another half a time 

step to derive implicit relations among the field variables in the new time step as a function of 

that in the prior time steps.  

Original ADI FDTD expands Eq. (2.0-1) into Eq. (2.1-1), with E and H fields collocated 

temporally. In Eq. (2.1-1), 𝑴¿ are the tridiagonal matrices, and 𝐹¿� are the functions of E and H 

fields at time-step (𝑛) and 𝐹¿
�DO/%	 at (𝑛 + 1/2) [22-24].  

  
𝑴O 0 0
0 𝑴% 0
0 0 𝑴�

𝐸±
�DÃC

𝐸³
�DÃC

𝐸}
�DÃC

=
𝐹O�
𝐹%�
𝐹��

,      

  
𝑴Æ 0 0
0 𝑴º 0
0 0 𝑴Þ

𝐸±�DO

𝐸³�DO

𝐸}�DO
=

𝐹Æ
�DÃC

𝐹º
�DÃC

𝐹Þ
�DÃC

,     (2.2-1) 
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Figure 2.2-2. Stencil figure for the alternating direction implicit method in finite difference 

equations. Left: conventional FDTD scheme. Right: ADI FDTD scheme. 

2.2.2 Formulation of ADI-FDTD with Spin Dynamics 

Without loss of generality, we apply a magnetic DC bias field 𝐻¿  in the in-plane 𝑦 

direction, to saturate the magnetic material so that it presents magneto-dynamic properties, and 

the magnitude of magnetization is the saturation value 𝑀Z . We apply the small signal 

approximation (𝐻³ = 0), as the typical case in RF devices. Differentiating Eq. (2.0-2) in a 

similar manner leads to 

𝐴u𝐻±
�DÃC = 𝐴O𝐵±

�DÃC + 𝐴%𝐵}
�DÃC + 𝐴�𝐵±� + 𝐴Æ𝐵}� + 𝐴º𝐻±� + 𝐴Þ𝐻}�,  (2.2-2) 

𝐴u𝐻}
�DÃC = 𝐴O𝐵}

�DÃC − 𝐴%𝐵±
�DÃC + 𝐴�𝐵}� − 𝐴Æ𝐵±� + 𝐴º𝐻}� − 𝐴Þ𝐻±�,   (2.2-3) 

with 𝐴u =
ÄQy �IDXß

%
Æ ¢CDO

ÄQy �IDXß Åh
+ 𝛼

%
+ 1 , 
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 𝐴O,� =
ÄXß
%
+ ± % ¢CDO

QyÅh
+ ¢ÄXß

%
Æ ¢CDO

ÄQy �IDXß Åh
+ 𝛼 ,  𝐴% = − % ¢CDO �I

QyÅh �IDXß
 ,  

𝐴Æ =
% ¢CDO �ID%Xß
QyÅh �IDXß

,  𝐴º = − ÄQy �IDXß ¢CDO
%

+ à ¢CDO C

ÄQy Åh C �IDXß
,  𝐴Þ = − Æ ¢CDO

Åh
. 

In nonmagnetic material, Eq. (2.2-2) and Eq. (2.2-3) reduce to 𝐻± = 𝐵±/𝜇u  and 𝐻} = 𝐵}/𝜇u . 

Similarly, 𝐻±  and 𝐻}  are advanced from time-step (𝑛 + 1/2) to (𝑛 + 1) as in Eq. (2.2-4) and 

Eq. (2.2-5).  

𝐴u𝐻±�DO = 𝐴O𝐵±�DO + 𝐴%𝐵}�DO + 𝐴�𝐵±
�DÃC + 𝐴Æ𝐵}

�DÃC + 𝐴º𝐻±
�DÃC + 𝐴Þ𝐻}

�DÃC,   (2.2-4) 

𝐴u𝐻}�DO = 𝐴O𝐵}�DO − 𝐴%𝐵±�DO + 𝐴�𝐵}
�DÃC − 𝐴Æ𝐵±

�DÃC + 𝐴º𝐻}
�DÃC − 𝐴Þ𝐻±

�DÃC,  (2.2-5) 

Substituting Eq. (2.2-2) and Eq. (2.2-3) into the differentiated form of Eq. (2.0-1) results in a 

modified matrix representation of Eq. (2.2-1): 

  
𝑴O
á 𝑵Oá 0

𝑵%
á 𝑴%

á 0
0 0 𝑴�

𝐸±
�DÃC

𝐸³
�DÃC

𝐸}
�DÃC

=
𝐹Oá

�

𝐹%á
�

𝐹�á
�

,      

  
𝑴Æ 0 0
0 𝑴º

á 𝑵º
á

0 𝑵Þ
á 𝑴Þ

á

𝐸±�DO

𝐸³�DO

𝐸}�DO
=

𝐹Æá
�DÃC

𝐹ºá
�DÃC

𝐹Þá
�DÃC

,    (2.2-6) 

where 𝑴¿
á are the modified tridiagonal matrices, with all the 1/𝜇 terms replaced by 𝐴O/𝐴u , and 

𝑵¿
á  are non-tridiagonal matrices dependent on 𝐴%/𝐴u . The terms 𝐹¿á

�  are the functions of 

known E and H fields at time-step (𝑛) and 𝐹¿á
�DO/%	 at (𝑛 + 1/2). The major difference between 

𝐹¿á and 𝐹¿ comes from the intrinsic coupling between 𝐻± and 𝐻}, as indicated in Figure 2.2-1. For 

example, 𝐹O� is a function of 𝐸±�, 𝐸³�, 𝐻³� and 𝐻}�, while with the LLG equation, 𝐻} is coupled 
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with 𝐻±; thus, besides the aforementioned four fields, 𝐹Oá
� is also a function of 𝐸}�, 𝐻±�, 𝐵±� and 

𝐵}�. For clear illustration, the linear forms of Eq. (2.2-6) are shown in Section 2.5. Appendix. 

To avoid complicated matrix inversion, let us move the unknowns 𝑵¿
á𝐸 to the right-hand side of 

Eq. (2.2-6), such that the matrices associated with the desired unknown terms are maintained to 

be tri-diagonal. Such manipulation leads to: 

  
𝑴O
á 0 0
0 𝑴%

á 0
0 0 𝑴�

𝐸±
�DÃC

𝐸³
�DÃC

𝐸}
�DÃC

=
𝐹Oá

� − 𝑵Oá 𝐸³
�DÃC

𝐹%á
� − 𝑵%

á 𝐸±
�DÃC

𝐹�á
�

,      

  
𝑴Æ 0 0
0 𝑴º

á 0
0 0 𝑴Þ

á

𝐸±�DO

𝐸³�DO

𝐸}�DO
=

𝐹Æá
�DÃC

𝐹ºá
�DÃC − 𝑵º

á 𝐸}�DO

𝐹Þá
�DÃC − 𝑵Þ

á 𝐸³�DO
,    (2.2-7) 

The unknowns on the left-hand side of Eq. (2.2-7) can be solved by only inversion of the tri-

diagonal matrices. However, due to the existence of additional unknown terms on the right-hand 

side, the solution must be amended. In every time-marching step, we update the desired 

unknowns on the left-hand side by iterating the prior solution of the right-hand side unknowns. 

For example, in the 𝑚 + 1 h~ iteration, 𝐸³
�DÃC  is recalculated using 𝐸±

�DÃC  obtained in the 𝑚h~ 

iteration, until the convergence criterion is reached. In this work, the convergence criterion is set 

to be: 𝛥𝐸 = VÓÇÃ^VÓ C

VÓ C < 10^Þ. The accuracy of such an iteration process is limited by the 

ratio of 𝑁�á/𝑀�′, which is proportional to 𝛥𝑡× 𝐴%/𝐴O . Therefore, to guarantee the accuracy of 

the modeling, the time-step size 𝛥𝑡 and the value of saturation magnetization 4𝜋𝑀Z should be 

limited. In typical magnetic materials, 4𝜋𝑀Z is below 105 Gauss. Such a value leads to a time-



35 
 

step size below 104 times larger than CFL limit in an RF device composed of micrometer-thick 

thin films working at GHz range. 

 

2.2.3 Demagnetization and Rigorous Magnetic Material Meshing  

Figure 2.2-3a shows the classical Yee’s spatial meshing. In conventional FDTD with a 

scalar permeability representation, for example, 𝑩 = 𝜇𝑯 , the normal 𝑩  continuity is 

incorporated automatically without being determined explicitly as FDTD cell is divergence-free. 

However, in a practical magnetic material setting, the magnetic constitutive relation defined by 

LLG equation becomes a tensor relation, i.e., 𝑩 = 𝜇𝑯 . The normal 𝑩  components on the 

boundary need to be known to determine all the H components. Therefore, one can only 

correctly model the demagnetization at the material surface by including the discontinuity of the 

normal 𝑯  components and tangential B components over the boundary. This problem is 

nonnegligible in magnetic material simulations due to the anisotropy and high value of material 

permeability. Furthermore, large time-step sizes utilized in unconditionally stable algorithm 

exacerbate this problem, represented by numerical instability. Therefore, conventional FDTD 

meshing needs to be modified to include the complete set of boundary conditions.   

In this work, we solve this problem by rigorous material meshing and field-splitting at the 

interface, with the former ensuring continuous tangential field intensities and the latter ensuring 

discontinuous normal field intensities. This is shown in Figure 2.2-3b and Figure 2.2-3c. We 

follow Yee’s spatial allocation of 𝑬 and 𝑯 fields, with 𝑩 overlaying 𝑯, and the electric property 

interface and magnetic property interface staggered by half of the spatial cell. Therefore, only 

tangential fields lie on the interfaces, enforcing tangential field intensity continuity. 
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Figure 2.2-3. a. Spatial allocation of fields and split fields across magnetic material interfaces 

(shaded areas), b. split fields at y- and z- interfaces, with 𝑯𝒛𝒖𝒑,  𝑯𝒛𝒍𝒐𝒘, 𝑩𝒙𝟏𝒖𝒑, 𝑩𝒙𝟏𝒍𝒐𝒘, 𝑩𝒙𝟐𝒖𝒑 and 

𝑩𝒙𝟐𝒖𝒑  defined on the 𝑯𝒙  nodes, c. split fields at y- and x- interfaces, with 𝑯𝒙𝒇𝒓𝒐𝒏𝒕 ,  𝑯𝒙𝒃𝒂𝒄𝒌 , 

𝑩𝒛𝟏𝒇𝒓𝒐𝒏𝒕, 𝑩𝒛𝟏𝒃𝒂𝒄𝒌, 𝑩𝒛𝟐𝒇𝒓𝒐𝒏𝒕 and 𝑩𝒛𝟐𝒃𝒂𝒄𝒌 defined on the 𝑯𝒛 nodes. The positions of these fields are 

drawn apart for better visibility. 

Furthermore, since the tangential 𝑯 components are coupled to the normal 𝑯 components 

by magnetic spin, the calculation of the continuous tangential components requires knowledge of 

adjacent normal components that might be discontinuous across the interfaces. To handle this 

issue, the normal 𝑯  field is split into two separate components, lying on each side of the 
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interfaces. These two separate 𝑯 components are unequal across the material interfaces, with an 

average value of the actual field, e.g., (𝐻}ñò + 𝐻}��ó)/2 = 𝐻}. The same technique is applied to 

the tangential 𝑩 components which are also discontinuous across the boundaries. However, 𝑩 is 

split into four different components, because 𝑩 is discontinuous across both z- and y- interfaces. 

The split fields are calculated individually in the corresponding region using Eq. (2.2-2) and Eq. 

(2.2-3). For example: 

𝐴O𝐵±Ãñò
�DÃC = 𝐴u𝐻±

�DÃC − 𝐴%𝐵}�ôõ
�DÃC − 𝐴�𝐵±Ãñò

� − 𝐴Æ𝐵}�ôõ
� − 𝐴º𝐻±� − 𝐴Þ𝐻}ñò

� ,  (2.2-8) 

𝐴O𝐵}Ãö��Á�
�DÃC = 𝐴u𝐻}

�DÃC + 𝐴%𝐵±�ôõ
�DÃC − 𝐴�𝐵}Ãö��Á�

� + 𝐴Æ𝐵±�ôõ
� − 𝐴º𝐻}� + 𝐴Þ𝐻±ö��Á�

� , (2.2-9) 

where 𝐵}i÷F  and 𝐵±i÷F  are spatial interpolation values, calculated by Eq. (2.2-10) and Eq. 

(2.2-11): 

𝐵}i÷F 𝑖, 𝑗 +
1
2 , 𝑘 +

1
2 = 𝐵} 𝑖 +

1
2 , 𝑗 +

1
2 , 𝑘 + 𝐵} 𝑖 +

1
2 , 𝑗 +

1
2 , 𝑘 + 1  

+𝐵} 𝑖 − O
%
, 𝑗 + O

%
, 𝑘 + 𝐵} 𝑖 − O

%
, 𝑗 + O

%
, 𝑘 + 1 ,  (2.2-10) 

𝐵±i÷F 𝑖 +
1
2 , 𝑗 +

1
2 , 𝑘 = 𝐵± 𝑖, 𝑗 +

1
2 , 𝑘 +

1
2 + 𝐵± 𝑖, 𝑗 +

1
2 , 𝑘 −

1
2  

+𝐵± 𝑖 + 1, 𝑗 + O
%
, 𝑘 + O

%
+ 𝐵± 𝑖 + 1, 𝑗 + O

%
, 𝑘 − O

%
,  (2.2-11) 

To summarize, the flow of the proposed multiphysics modeling is as follows: 

1) Update 𝑬�DO/%	 using Eq. (2.2-7). 

2) Update 𝑩�DO/% using differentiated Faraday’s law in Eq. (2.0-1). 

3) Update 𝑯�DO/% using Eq. (2.2-2) and Eq. (2.2-3). 
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4) Update split fields 𝐻}ñò ,  𝐻}��ó , 𝐵±Oñò , 𝐵±O��ó , 𝐵±%ñò  𝐵±%ñò , 𝐻±ö��Á� ,  𝐻±ù�úû , 

𝐵}Oö��Á�, 𝐵}Où�úû, 𝐵}%ö��Á� and 𝐵}%ù�úû  at time-step (𝑛 + 1/2) at the interfaces using 

Eq. (2.2-8) and Eq. (2.2-9). 

5) Repeat Step 1) to Step 4) to advance all the fields to time-step (𝑛 + 1). 

Without linear spatial interpolation [15], the proposed method is precise and stable even with a 

large time-step on the order of 104 CFL.  

2.2.1 Numerical Validation I: E-plane Ferrite Resonance Isolator  

Ferrite isolators constructed in rectangular waveguides have become one of the most 

successful of the nonreciprocal devices because of their versatility [5, 6]. Figure 2.2-4 shows a 

typical full-height E-plane ferrite isolator structure, with a thin ferrite slab mounted along the E-

plane direction which extends along the waveguide longitudinal direction. A DC magnetic bias 

field is applied along the in-plane direction of the ferrite slab, which saturates the ferrite and sets 

up a preferential direction of magnetic dipole moments interacting with electromagnetic waves 

[3]. The circularly polarized field propagating in the magnetized ferrite strongly interacts with 

magnetic dipole moments in the same direction as the precession, but weakly interacts in the 

opposite direction of precession. Therefore, the attenuation constants and propagation constants 

of the field near ferromagnetic resonance are very different in the two propagation directions [5]. 

As a result, the ferrite isolator could also work as a field displacement phase shifter.  
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Figure 2.2-4. X-band waveguide with a thin ferrite slab mounted in the E-plane. a = 22.86 mm, 

b = 11.43 mm, h = 300 mm, c=0.125a, 𝒕 = 𝟎. 𝟓	𝒎𝒎 , 𝝐𝒓 = 𝟏𝟑 , 𝟒𝝅𝑴𝑺 = 𝟏𝟕𝟎𝟎	𝑮 , 𝑯𝟎 =

𝟐𝟖𝟒𝟎	𝑶𝒆 , 𝚫𝑯 = 𝟐𝟎𝟎	𝑶𝒆 , 𝚫𝒙 = 𝟎. 𝟎𝟐	𝒎𝒎 , 𝚫𝒚 = 𝟑. 𝟑𝟖𝟕	𝒎𝒎 , 𝚫𝒛 = 𝟎. 𝟐	𝒎𝒎 . The electric 

current line source is located at 0.4h. 

An X-band ferrite resonance isolator is shown in Figure 2.2-4, with waveguide dimensions 

of 22.86𝑚𝑚×11.43𝑚𝑚×300𝑚𝑚. In the center of the cross section at 𝑧 = 0.4ℎ, a full-height 

current line source is applied at 10 GHz so that only the TE10 mode exists. The E-plane ferrite 

slab is mounted at 𝑐 = 0.125𝑎 , with a thickness of 𝑡 = 0.5	𝑚𝑚 . The slab is YIG, with a 

dielectric constant being 𝜖w = 13, the saturation magnetization being 4𝜋𝑀Z = 1700	𝐺, and the 

FMR linewidth being Δ𝐻 = 200	𝑂𝑒 [6]. A magnetic DC bias, 𝐻u = 2840	𝑂𝑒, is applied in +y 

direction, leading to an FMR frequency of 𝑓w = 𝜔w/2𝜋 = 10.05𝐺𝐻𝑧, where 𝜔w is calculated by 

Kittel’s equation (2.2-12): 

  𝜔w = 𝜔uy(𝜔» + 𝜔uy)      (𝑦 bias).   (2.2-12) 

where 𝜔uy = 𝜇u𝛾𝐻u and 𝜔» = 𝜇u𝛾𝑀Z in SI units.  
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In this case, the spatial resolution is 0.02×3.387×0.2	𝑚𝑚	(Δ𝑥×Δ𝑦×Δ𝑧). The time-step is 

50 times the CFL (Δ𝑡&'( = 3.8591×10^OÆ𝑠), to keep the sampling frequency below the Nyquist 

rate. The excitation is a modified Gaussian pulse 𝐽Z³ = 𝑒^ h^�a C/%aC cos 𝜔u𝑡 , with 𝑇 = 2/

𝑓u	and 𝑓u = 10	𝐺𝐻𝑧. 

The simulated 𝐸³  field at 10 GHz shown in Figure 2.2-5 validates the theoretical 

prediction. As can be seen, 𝐸³ attenuates rapidly in –z direction and slowly in the +z direction. 

With the magnetic DC bias 𝐻u applied in the +y direction, the EM wave propagating in the –z 

direction is polarized in the same rotation of the magnetic spin, and thus presents large 

attenuation near ferromagnetic resonance. Ideally, the EM wave propagating in +z direction does 

not interact with the magnetic spin. However, due to demagnetization, the EM field is not 

perfectly circularly polarized and is slightly disturbed by the ferrite, presenting a low attenuation 

constant. 

 

Figure 2.2-5. 𝑬𝒚 field distribution at 10 GHz along z direction at the center of cross section, 

𝒙 = 𝒂/𝟐 and 𝒚 = 𝒃/𝟐. 
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Figure 2.2-6. a. Attenuation constants and b. phase constants of forward and reverse 

propagation direction for the resonance isolator specified by Figure 2.2-4. 

 

Attenuation constants and phase constants are derived from the simulated frequency-

domain 𝐸³ field by extracting the damping speed of the field magnitude and the variation speed 

of the phase, with the signal processing code ESPRIT [61, 62], as shown in Figure 2.2-6. The 

agreement between the commercial software and the proposed method validates the accuracy of 
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this work, while the fully coupled algorithm provides readiness for expansion of physics, such as 

eddy current loss, crystalline anisotropy, and exchange coupling between spins. Furthermore, the 

proposed fully coupled modeling has the capability of simulating and designing very electrically 

small devices and devices with very large form factor. 

 

 

Figure 2.2-7. Infinite YIG thin film backed by PEC ground plane, on which a uniform electric 

current sheet 𝑱𝒚 is placed. The film has a thickness of 𝟐	𝝁𝒎 and it is magnetized by 𝑯𝟎 in the y 

direction, which is parallel to the electric current. The four sides of the structure are enclosed by 

periodic boundaries, leading to an effectively infinite in-plane dimension. The simulation space 

is 𝟓×𝟓×𝟔𝟎	𝝁𝒎 with 𝟏×𝟏×𝟎. 𝟒	𝝁𝒎 spatial resolution. The top surface of the simulation space 

is covered by an absorbing boundary condition. 

 

2.2.2 Numerical Validation II: Magnetic Thin Film Permeability 

A continuous current sheet at a distance 2 µm away from a perfect electrical conductor 

(PEC) with thin-film YIG filled-in between them is simulated, shown by Figure 2.2-7. The 

simulation space is 5×5×60	𝜇𝑚 with 1×1×0.4	𝜇𝑚 spatial resolution. The outer boundary along 
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the 𝑥 and 𝑦 axes is a periodic boundary, so that the film is equivalently infinite in-plane. The top 

surface of the simulation space is covered by an absorbing boundary condition. The simulation 

space is filled with vacuum. The time-step is 5000 times the CFL (Δ𝑡&'( = 7.6980×10^OÞ𝑠). 

The surface current excitation is a modified Gaussian pulse 𝐽Z³ = 𝑒^ h^�a C/%aC cos 𝜔𝑡 , with 

𝑇 = 3/𝑓u	and 𝑓u = 2𝐺𝐻𝑧 . The properties of YIG are applied to the magnetic thin film, i.e. 

4𝜋𝑀Z = 1700	𝐺𝑎𝑢𝑠𝑠, 𝜖w = 13, 𝜎 = 0. The thin film is magnetized by an in-plane magnetic DC 

bias (𝐻u = 105	𝑂𝑒𝑟𝑠𝑡𝑒𝑑) parallel to the electric current excitation, so that the FMR frequency is 

near 1.2 GHz, according to Kittel’s equation (2.2-12). Note that in this case the FMR linewidth is 

𝛥𝐻 = 30	𝑂𝑒𝑟𝑠𝑡𝑒𝑑, which is a conservative value for YIG, because single crystalline YIG has 

FMR linewidth as low as 1	𝑂𝑒𝑟𝑠𝑡𝑒𝑑 . The total time-marching duration is 3020 seconds for 

50000 time steps, which is impossible to be achieved by conventional FDTD with the same 

multiphysics setup. Figure 2.2-8 indicates accurate FMR prediction by the modeling, and the 

theoretical curve in Figure 2.2-8 is plotted based on Eq. (2.2-13): 

  𝜇 =
𝜇 0 −𝑗𝜅
0 𝜇u 0
−𝑗𝜅 0 𝜇

      (𝑦 bias).   (2.2-13) 

where 𝜇 = 𝜇u 1 + 𝜔» 𝜔» + 𝜔u / 𝜔u 𝜔» + 𝜔u − 𝜔% , 𝜅	 = 𝜇u𝜔𝜔»/ 𝜔u 𝜔» + 𝜔u − 𝜔% , 

and 𝜔u = 𝜇u𝛾𝐻u + 𝑗𝛼𝜔. Figure 2.2-9 clearly shows the distribution of the 𝐵± and 𝐸³ fields at 

FMR, with 𝐵± decreasing away from the bottom PEC, and 𝐸³ increasing. 



44 
 

 

Figure 2.2-8. Dispersive permeability of thin-film YIG, simulated with the structure shown in 

Figure 2.2-7. 

 

(a)      (b) 

Figure 2.2-9. Simulated a. electric field 𝑬𝒚  and b. magnetic flux density 𝑩𝒙  distribution in 

infinite YIG thin film at FMR frequency. The PEC ground plane is located at z=0. 
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2.3 Platform Effect Elimination 

2.3.1 Radiation Q Factor with Platform Effect 

As introduced in Chapter 1, conventional current based antennas suffer the platform effect 

when placed at a short distance above a conducting plane. The radiation becomes inefficient 

because the image current flows in the opposite direction and cancels the original current source. 

The excessive reactive energy stored between the radiating element and the conducting plane 

raises the radiation quality factor (radiation Q factor), and makes the antenna difficult to match 

[33]. In [7], a strain-mediated multiferroic antenna structure is proposed, which consists of a 

sandwich of two layers of piezoelectric material and one layer of thin-film magnetostrictive 

material. The lower bound of radiation Q factor decreases with higher permeability. The concept 

of utilizing high permeability magnetic material to lower the radiation quality factor is consistent 

with the approaches attempted in [34-36]. 

Consider an infinite, uniform current sheet that radiates into free space. The current source 

is grounded by an infinite perfect electrically conducting (PEC) plane (Figure 2.3-1). The 

thickness of the substrate is electrically small so that 𝑘ℎ ≪ 1. The wave directly radiated into the 

free space and the one reflected by the PEC plane interfere with each other. Therefore, the 

electromagnetic waves in different regions are: 

Energy storage field: 
𝐸± = 𝐸u sin 𝑘𝑧

𝐻³ = 𝐸u/𝑗𝜂u cos 𝑘𝑧
 𝑧 < ℎ 

 

Radiated field: 
𝐸± = 𝐸u sin 𝑘ℎ exp −𝑗𝑘u𝑧

𝐻³ = 𝐸u/𝜂u sin 𝑘ℎ exp −𝑗𝑘u𝑧
 𝑧 > ℎ  

(2.3-1) 



46 
 

where 𝐸u is the aperture electric field amplitude at the interface between the free space and the 

substrate. The radiated power into the free space is  

 𝑃wic =
O
%xy

𝐸 %
Z 𝑑𝑠 ≈ O

%xy
𝐸u% 𝑘ℎ %𝑆   (2.3-2) 

In Eq. (2.3-2), an approximation of linear electric field distribution along z direction is used. 

Similarly, an approximation of uniform magnetic field distribution along z direction leads to 

 𝑊X =
O
%

𝜇 𝐻 %
}|~ 𝑑𝑣 ≈ O

%
𝜇 𝐻 %ℎ𝑆 = O

%
𝜖𝐸u%ℎ𝑆   (2.3-3) 

Since  𝑊V ≪ 𝑊X , the electric energy stored in the structure is negligible, thus 𝑊hghij ≈ 𝑊X , 

which results in: 

 𝑄wic ≈ 𝜔 �`
����

= O
Q�_y~

= /y
%�~

O
Q�

   (2.3-4) 

Hence, for an antenna working at 2 GHz, 𝑄wic is on the order of 10Æ when the thickness of the 

substrate is 2	𝜇𝑚 if the material is non-magnetic. Since traditional antennas are mostly made of 

conductors and rely on conductive current to radiate, platform effect is an inevitable shortcoming 

of traditional low-profile antennas. On the other hand, magnetic substrate with high relative 

permeability offers the capability of significantly lowering 𝑄wic  and improving the radiation 

performance of low profile antennas. 
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Figure 2.3-1. Radiation from electric current source. The coordinate system is chosen such that 

the surface current is in the y direction. The thickness of the substrate satisfies the condition 

𝒌𝒉 ≪ 𝟏. 

In order to visualize the effect of platform effect on the radiation performance of the 

structure in Figure 2.1-1, define the radiation efficiency with the platform, 𝜉1jih2gw» , which 

indicates the percentage of power that can be released into the free space with the influence of 

platform effect: 

 𝜉1jih2gw» = ����
�ö�õõ

   (2.3-5) 

where 𝑃wic is the radiated power with the PEC ground, and 𝑃2wFF is the radiated power without 

the PEC ground.  

 𝑃wic =
O
%
𝜂u 𝐻 %

Z 𝑑𝑠   (2.3-6) 

 𝑃2wFF =
O
%
𝜂u

ÀI
%

%

Z 𝑑𝑠   (2.3-7) 

with H the observed magnetic field at a distance above the surface current with the PEC ground. 

The value of 𝜉1jih2gw»  also gives the information of the impedance mismatch between the 

structure with platform effect and free space. 
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Before moving on to the fully coupled scheme, we developed a conventional 3-D ADI 

FDTD code with only Maxwell’s equation, to prove the concept. Figure 2.1-1 illustrates the 

FDTD model with continuous thin film. The size of the simulation space is 10×20×40 µm in the 

order of x, y and z direction. The upper boundary is absorbing boundary, the boundaries 

perpendicular to y axis are PEC boundary, and the boundaries perpendicular to x axis are perfect 

magnetic conductor (PMC). The thin film is grounded by PEC plane. A uniform electric current 

excitation is placed at the interface between the thin film and air. The field components are 

defined such that all the electric field components are along the edge of the spatial cell, and all 

the magnetic field components are normal to the cell surface. The material properties are defined 

such that all the tangential field components are continuous at material interfaces, e.g. Hx is 

continuous at interfaces parallel to x-y plane and x-z plane. The spatial resolution is Δ𝑥=1𝜇𝑚, 

Δ𝑦=0.1𝜇𝑚, Δ𝑧=0.1𝜇𝑚, and the time step is set as Δ𝑡=120Δ𝑡CFL. The surface current excitation 

frequency is 2 GHz, and it is in the form of modified Gaussian pulse, with a bandwidth of ±500 

MHz. 
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Figure 2.3-2. Radiation efficiencies of electric current sheet with platform effect, observed at 

z=38 µm. The thickness of the continuous substrate is 1.5 µm. All materials are lossless. 

 

Figure 2.3-3. Equivalent circuit model of Figure 2.3-1. Hsubstrate is the magnetic field inside the 

substrate, and H is the magnetic field observed in free space above the structure.  
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Comparing the values of 𝜉1jih2gw» near 2 GHz in the three cases of Figure 2.3-5, one can 

clearly observe the advantage of magnetic substrate, because 𝜉1jih2gw» in this case is 109 of that 

without any substrate, and 106 of that with highly dielectric substrate. The dielectric substrate 

could help improve the radiation because it changes the phase of the reflected wave. 

It is evident that magnetic materials with high relative permeability could help overcome 

the platform effect. However, unfortunately, most of the materials that have such high 

permeability are ferromagnetic materials, which are highly conductive and suffer significant 

eddy current loss. For example, the relative permeability of FeGaB near ferromagnetic resonance 

could reach 1000, but the conductivity is 5×105 S/m. The high radiation Q factor caused by 

platform effect also affects the radiation efficiency which becomes more sensitive to ohmic loss 

and dielectric loss. The radiation efficiency is given by 

 𝜉1jih2gw» = 3�ß44
3���D3�ß44

≈ 3�ß44
3���

, when 𝑄c¿dd ≪ 𝑄wic   (2.3-8) 

where 𝑄c¿dd  is the dissipation Q factor. As 𝑄wic  increases, the radiation efficiency becomes 

lower and the influence of 𝑄c¿dd becomes more dominant.  
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Figure 2.3-4. Radiation efficiencies with continuous thin film, observed at z=38 µm. The 

substrate material is FeGaB, with µr=800, σ=5×105 S/m. The thickness of the continuous 

substrate is 1.5 µm. 

 

(a)                                  (b) 

Figure 2.3-5. Structures designed to suppress eddy current loss. a. Strip structure. b. 2-layer 

strip structure. 
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The structure in Figure 2.3-1 could be modeled by the equivalent circuit in Figure 2.3-3, 

and the analytic radiation efficiency could be calculated. Figure 2.3-4 shows that the simulated 

radiation efficiency and the analytic one agree with each other, but both are poor (only around 

1.5%). In order to design a low-profile antenna with both high 𝜉1jih2gw»  and high 𝜉wic , one 

needs to manipulate the shape of the magnetic thin film, so that the eddy current loss is 

suppressed. By briefly analyzing Faraday’s law in the integral form 𝐸 ∙ 𝑑𝑙& = − 𝜕/𝜕𝑡 𝐵 ∙Z

𝑑𝑆, one can quickly concludes that the eddy current loss can be well suppressed by cutting the 

continuous thin film into thin strips or by laminating it into multiple layers, as shown in Figure 

2.3-5. It should be noted that the width of the strips should be comparable to the thickness, 

otherwise the eddy current loop could not be broken into small loops and the conductive loss will 

not be reduced. Additionally, the longitudinal direction of the strips should be along the magnetic 

flux. Figure 2.3-6 shows the magnitude of Ey component on y-z plane. Since the material is 

highly conductive, most of the electromagnetic field is concentrated within the air gap between 

adjacent strips. The improvement of radiation efficiency is shown by Figure 2.3-7. The strip 

structure could increase the radiation efficiency by 4.8 times compared to continuous film, and 

the 2-layer strip structure shows an improvement of 7 times. Therefore, one can conclude that in 

order to design low-profile antennas with good impedance matching feature and good radiation 

efficiency performance, the designer could use magnetic thin-film materials in lamination form. 
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Figure 2.3-6. Magnitude of the electric field y component, observed at x=5 µm. The structure is 

the 2-layer strip shown in Figure 2.3-5b. 

 

Figure 2.3-7. Radiation efficiencies of the two structures shown by Figure 2.3-5, observed at 

z=38 µm. The substrate material is FeGaB, with µr=800, σ=5×105 S/m. 
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2.3.2 Platform Effect Elimination with 3-D MUST Algorithm  

In this section, the effect of high permeability in platform elimination is preliminarily 

explored in the full 3D geometry, using the proposed multiphysics solver. Figure 2.3-8 shows a 

400×400	𝜇𝑚  electric current sheet close to PEC loaded with 2 µm-thick YIG film. The 

simulation space is 480×480×60	𝜇𝑚 with 20×20×0.4	𝜇𝑚 spatial resolution. The radiator is 

placed in the middle of 𝑥 − 𝑦  plane. The time-step is 5000 times of the CFL (Δ𝑡&'( =

7.6980×10^OÞ𝑠). An FMR linewidth of 𝛥𝐻 = 30	𝑂𝑒𝑟𝑠𝑡𝑒𝑑 is used. As mentioned in Section 

2.2.2, such a linewidth could be easily achieved with modern nanofabrication techniques. In 

order to distinguish the magnetic property from other possible effects, the relative permittivity is 

artificially set to be 𝜖w = 1. The rest of the setup is the same to the case in Section 2.2.2. 

 

Figure 2.3-8. Planar current source on top of PEC ground plane, loaded with YIG thin film. The 

entire simulation space has dimensions as follows: 𝒙 = 𝟒𝟖𝟎	𝝁𝒎, 𝒚 = 𝟒𝟖𝟎	𝝁𝒎, 𝒛 = 𝟔𝟎	𝝁𝒎 , 

with 𝜟𝒙 = 𝟐𝟎	𝝁𝒎,𝜟𝒚 = 𝟐𝟎	𝝁𝒎,𝜟𝒛 = 𝟎. 𝟒	𝝁𝒎. The YIG thin film is in the center of x-y plane, 

with a dimension of 𝟒𝟎𝟎×𝟒𝟎𝟎×𝟐	𝝁𝒎, i.e. a 𝟒𝟎	𝝁𝒎 gap is placed between the film and the 

outer boundary. The top surface of the simulation space is covered by an absorbing boundary 

condition. 
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Figure 2.3-9. Simulated a. electric field 𝑬𝒚  and b. magnetic flux density 𝑩𝒙  distribution in 

finite YIG thin film at FMR frequency. The PEC ground plane is located at z=0. 

 

Different from Figure 2.2-9, Figure 2.3-9 shows the edge effect due to the finite size of the 

magnetic film. The significant portion of the 𝐸³ and 𝐵± fields close to the air gap indicates the 

existence of a potentially strong radiation. This is consistent with the prediction made in [7]. The 

far-field radiation pattern of an YIG thin film loaded electric current-excited radiator is 

calculated by a near-to-far field transform based on the surface equivalence theorem [63]. The 

transformation is conducted on an array of the structure shown in Figure 2.3-8, with 19.2×

19.2	𝑐𝑚 total in-plane dimension, and 2	𝜇𝑚 thickness, as shown in Figure 2.3-10. As shown in 

Figure 2.3-11, the radiation pattern is similar to that of an electric dipole, as expected. Among 

different bias fields, the radiation patterns are similar with only minor asymmetry change of the 

cross-pol. Such a structure presents relatively high cross-pol due to the anisotropic property of 

the magnetic thin film. Figure 2.3-12 shows the surface resistance of the radiator as a function of 

both frequency and magnetic DC bias. The surface impedance is calculated by 
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 𝑅d�w2i\F =
%����
8× À´

C   (2.3-9) 

where A is the total area of the array. Such surface resistance reveals the influence of the PEC 

ground to the radiation performance, i.e. the platform effect. With no magnetic material, 

𝑅d�w2i\Fis less than 2×10^�𝛺. With magnetic thin film, the permeability is large at FMR, which 

boosts the surface resistance by three orders of magnitude. Figure 2.3-13 shows the radiation 

efficiency as a function of both frequency and magnetic DC bias. As mentioned in Section 2.3.1, 

the radiation efficiency is defined as the ratio of the radiated power from the structure under 

consideration, to the electric current radiation in free space, as shown by Eq. (2.3-5). It also 

reveals the influence of the PEC ground to the radiation performance. With no magnetic 

material, the radiation efficiency is less than 2×10^¼ . Utilizing ferrite material to enhance 

antenna performance is consistent with the approaches attempted in [64]. 

 

Figure 2.3-10.  Planar array of YIG-loaded electric current radiator. The unit cell of Figure 2.3-8 

is repeated by 400 times in both x and y directions, leading to a total dimension of 𝟏𝟗. 𝟐×

𝟏𝟗. 𝟐	𝒄𝒎. The effective area of YIG thin film is 𝟏𝟔×𝟏𝟔	𝒄𝒎𝟐. Both the magnetic DC bias 𝑯𝒊 

and the electric current source 𝑱𝒚 are in the y direction. 
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Figure 2.3-11.  Far-field pattern from the planar current source on top of PEC ground plane, 

loaded with YIG thin film. 𝑯𝟎 = 𝟏𝟎𝟓	𝑶𝒆𝒓𝒔𝒕𝒆𝒅. 
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Figure 2.3-12.  Surface resistance of ferrite-loaded current source shown in Figure 2.3-10. 
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Figure 2.3-13.  Radiation efficiency of ferrite-loaded current source shown in Figure 2.3-10. 
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2.4 Summary  

A multiphysics simulation algorithm is proposed for the first time, to accurately model the 

dynamic interaction between micromagnetics and electrodynamics. The proposed method can 

model the fine detail of RF devices consisting magnetic thin films, and predict the unique 

properties of magnetic materials quickly and accurately. With easy expansion to include 

additional physics, the proposed algorithm has the potential of solving and designing nonlinear, 

nonuniform, and/or anisotropic devices. 

 

2.5 Appendix: 3-D ADI FDTD Time Marching Equations with LLG  

The equations for 𝐸± fields calculation in the first sub-iteration are shown in (2A-1), with 

𝑃F²O = (Δ𝑡%)/ 4𝜖w𝜖u Δ𝑦 % , 𝑃F²% = (Δ𝑡%)/(4𝜖w𝜖uΔ𝑦Δ𝑧) , 𝑃F²� = Δ𝑡/(2𝜖w𝜖uΔ𝑧) , 𝑃F²Æ =

Δ𝑡/(2𝜖w𝜖uΔ𝑦), 𝑃F²º = (Δ𝑡%)/(4𝜖w𝜖uΔ𝑥Δ𝑦), 𝑅� = 𝐴�/𝐴u at the corresponding mesh. 
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O
%,_

� + 𝑅Þ𝐻±ö��Á�|¿DO%,;D
O
%,_

� − 𝑅Þ𝐻±ù�úû|¿DO%,;^
O
%,_

� − 𝑅Þ𝐻±ö��Á�|¿DO%,;^
O
%,_

�  

+
1
4
𝑃F²Æ

𝑅� + 𝑅O 𝐵}Ãù�úû|¿DO%,;D
O
%,_

� + 𝑅� + 𝑅O 𝐵}Ãö��Á�|¿DO%,;D
O
%,_

�

+ 𝑅� + 𝑅O 𝐵}Cù�úû|¿DO%,;D
O
%,_

� + 𝑅� + 𝑅O 𝐵}Cö��Á�|¿DO%,;D
O
%,_

�  
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−
1
4
𝑃F²Æ

𝑅� + 𝑅O 𝐵}Ãù�úû|¿DO%,;^
O
%,_

� + 𝑅� + 𝑅O 𝐵}Ãö��Á�|¿DO%,;^
O
%,_

�

+ 𝑅� + 𝑅O 𝐵}Cù�úû|¿DO%,;^
O
%,_

� + 𝑅� + 𝑅O 𝐵}Cö��Á�|¿DO%,;^
O
%,_

�  

−𝑃F²Æ 𝑅% + 𝑅Æ 𝐵±�ôõ|¿DO%,;D
O
%,_

� − 𝑅% + 𝑅Æ 𝐵±�ôõ|¿DO%,;^
O
%,_

�  

−𝑃F²º𝑅O 𝐸³|¿DO,;DO%,_
� − 𝐸³|¿,;DO%,_

� − 𝐸³|¿DO,;^O%,_
� + 𝐸³|¿,;^O%,_

�  

+
1
4
𝑃F²O𝑅%

𝐸}|¿,;DO,_DO%
� − 𝐸}|¿,;,_DO%

� + 𝐸}|¿,;DO,_^O%
� − 𝐸}|¿,;,_^O%

�

+𝐸}|¿DO,;DO,_DO%
� − 𝐸}|¿DO,;,_DO%

� + 𝐸}|¿DO,;DO,_^O%
� − 𝐸}|¿DO,;,_^O%

�  

− O
Æ
𝑃F²O𝑅%

𝐸}|¿,;,_DÃC
� − 𝐸}|¿,;^O,_DÃC

� + 𝐸}|¿,;,_^ÃC
� − 𝐸}|¿,;^O,_^ÃC

�

+𝐸}|¿DO,;,_DÃC
� − 𝐸}|¿DO,;^O,_DÃC

� + 𝐸}|¿DO,;,_^ÃC
� − 𝐸}|¿DO,;^O,_^ÃC

�     (2A-1) 

Similarly, the time-marching equations for 𝐸³ and 𝐸} fields in the first sub-iteration are shown in 

(2A-2) and (2A-3), respectively.   

1 +
𝜎𝛥𝑡
4𝜖w𝜖u

+ 2𝑃F´O𝑅O 𝐸³|
¿,;DO%,_

�DO% − 𝑃F´O𝑅O𝐸³|¿,;DO%,_^O
�DO% − 𝑃F´O𝑅O	𝐸³|¿,;DO%,_DO

�DO%  

−
1
4
𝑃F´%𝑅%

𝐸±|
¿DO%,;DO,_

�DO% –𝐸±|
¿DO%,;,_

�DO% + 𝐸±|
¿DO%,;DO,_DO

�DO% –𝐸±|
¿DO%,;,_DO

�DO%

+𝐸±|
¿^O%,;DO,_

�DO% –𝐸±|
¿^O%,;,_

�DO% + 𝐸±|
¿^O%,;DO,_DO

�DO% –𝐸±|
¿^O%,;,_DO

�DO%
 

+
1
4
𝑃F´%𝑅%

𝐸±|
¿DO%,;DO,_

�DO% –𝐸±|
¿DO%,;,_

�DO% + 𝐸±|
¿DO%,;DO,_^O

�DO% –𝐸±|
¿DO%,;,_^O

�DO%

+𝐸±|
¿^O%,;DO,_

�DO% –𝐸±|
¿^O%,;,_

�DO% + 𝐸±|
¿^O%,;DO,_^O

�DO% –𝐸±|
¿^O%,;,_^O

�DO%
 

= 1 −
𝜎𝛥𝑡
4𝜖w𝜖u

𝐸³|¿,;DO%,_
� − 𝑃F´� 𝐻}|¿DO%,;D

O
%,_

� − 𝐻}|¿^O%,;D
O
%,_

� + 𝑃F´Æ 𝑅º𝐻±|¿,;DO%,_D
O
%

� − 𝑅º𝐻±|¿,;DO%,_^
O
%

�  

+
1
2
𝑃F´Æ 𝑅Þ𝐻}��ó|¿,;DO%,_D

O
%

� + 𝑅Þ𝐻}ñò|¿,;DO%,_D
O
%

� − 𝑅Þ𝐻}��ó|¿,;DO%,_^
O
%

� − 𝑅Þ𝐻}ñò|¿,;DO%,_^
O
%

�  

+
1
4
𝑃F´Æ

𝑅� + 𝑅O 𝐵±Ã��ó|¿,;DO%,_D
O
%

� + 𝑅� + 𝑅O 𝐵±Ãñò|¿,;DO%,_D
O
%

�

+ 𝑅� + 𝑅O 𝐵±C��ó|¿,;DO%,_D
O
%

� + 𝑅� + 𝑅O 𝐵±Cñò|¿,;DO%,_D
O
%

�  
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−
1
4
𝑃F´Æ

𝑅� + 𝑅O 𝐵±Ã��ó|¿,;DO%,_^
O
%

� + 𝑅� + 𝑅O 𝐵±Ãñò|¿,;DO%,_^
O
%

�

+ 𝑅� + 𝑅O 𝐵±C��ó|¿,;DO%,_^
O
%

� + 𝑅� + 𝑅O 𝐵±Cñò|¿,;DO%,_^
O
%

�  

+𝑃F´Æ 𝑅% + 𝑅Æ 𝐵}�ôõ|¿,;DO%,_D
O
%

� − 𝑅% + 𝑅Æ 𝐵}�ôõ|¿,;DO%,_^
O
%

�  

−𝑃F´%𝑅O 𝐸}|¿,;DO,_DO%
� − 𝐸}|¿,;,_DO%

� − 𝐸}|¿,;DO,_^O%
� + 𝐸}|¿,;,_^O%

�  

−
1
4
𝑃F´º𝑅% 𝐸³|¿DO,;DO%,_

� + 𝐸³|¿DO,;DO%,_DO
� − 𝐸³|¿^O,;DO%,_

� − 𝐸³|¿^O,;DO%,_DO
�  

+ O
Æ
𝑃F´º𝑅% 𝐸³|¿DO,;DÃC,_

� + 𝐸³|¿DO,;DÃC,_^O
� − 𝐸³|¿^O,;DÃC,_

� − 𝐸³|¿^O,;DÃC,_^O
�     (2A-2) 

with 𝑃F´O = (Δ𝑡%)/ 4𝜖w𝜖u Δz % , 𝑃F´% = (Δ𝑡%)/(4𝜖w𝜖uΔ𝑦Δ𝑧) , 𝑃F´� = Δ𝑡/(2𝜖w𝜖uΔ𝑥) , 𝑃F´Æ =

Δ𝑡/(2𝜖w𝜖uΔ𝑧), 𝑃F´º = (Δ𝑡%)/(4𝜖w𝜖uΔ𝑧Δ𝑥), 𝑅� = 𝐴�/𝐴u at the corresponding mesh. 

1 +
𝜎𝛥𝑡
4𝜖w𝜖u

+
𝛥𝑡 %

2𝜖w𝜖u𝜇u 𝛥𝑥 % 𝐸}|
¿,;,_DO%

�DO% −
𝛥𝑡 %

4𝜖w𝜖u𝜇u 𝛥𝑥 % 𝐸}|¿^O,;,_DO%

�DO% −
𝛥𝑡 %

4𝜖w𝜖u𝜇u 𝛥𝑥 % 𝐸}|¿DO,;,_DO%

�DO%  

= 1 −
𝜎𝛥𝑡
4𝜖w𝜖u

𝐸}|¿,;,_DO%
� +

𝛥𝑡
2𝜖w𝜖u𝛥𝑥

𝐻³|¿DO%,;,_D
O
%

� − 𝐻³|¿^O%,;,_D
O
%

� −
𝛥𝑡

2𝜖w𝜖u𝛥𝑦
𝐻±|¿,;DO%,_D

O
%

� − 𝐻³|¿,;^O%,_D
O
%

�  

+ Åh C

ÆH�HyQyÅ±Å}
𝐸±|¿^ÃC,;,_DO

� − 𝐸±|¿^ÃC,;,_
� − 𝐸±|¿DÃC,;,_DO

� + 𝐸±|¿DÃC,;,_
�      (2A-3) 

The calculation of the electric fields in the second sub-iteration is derived in a similar manner, 

shown in (2A-4)–(2A-6).   

1 +
𝜎𝛥𝑡
4𝜖w𝜖u

+
𝛥𝑡 %

2𝜖w𝜖u𝜇u 𝛥𝑧 % 𝐸±|¿DO%,;,_
�DO −

𝛥𝑡 %

4𝜖w𝜖u𝜇u 𝛥𝑧 % 𝐸±|¿DO%,;,_^O
�DO −

𝛥𝑡 %

4𝜖w𝜖u𝜇u 𝛥𝑧 % 𝐸±|¿DO%,;,_DO
�DO  

= 1 −
𝜎𝛥𝑡
4𝜖w𝜖u

𝐸±|
¿DO%,;,_

�DO% +
𝛥𝑡

2𝜖w𝜖u𝛥𝑦
𝐻}|

¿DO%,;D
O
%,_

�DO% − 𝐻}|
¿DO%,;^

O
%,_

�DO% −
𝛥𝑡

2𝜖w𝜖u𝛥𝑧
𝐻³|

¿DO%,;,_D
O
%

�DO% − 𝐻³|
¿DO%,;,_^

O
%

�DO%  

+ Åh C

ÆH�HyQyÅ±Å}
𝐸}|¿DO,;,_^ÃC

�DÃC − 𝐸}|¿,;,_^ÃC

�DÃC − 𝐸}|¿DO,;,_DÃC

�DÃC + 𝐸}|¿,;,_DÃC

�DÃC      (2A-4) 



63 
 

1 +
𝜎𝛥𝑡
4𝜖w𝜖u

+ 2𝑄F´O𝑅O 𝐸³|¿,;DO%,_
�DO − 𝑄F´O𝑅O𝐸³|¿^O,;DO%,_

�DO − 𝑄F´O𝑅O	𝐸³|¿DO,;DO%,_
�DO  

+
1
4
𝑄F´%𝑅%

𝐸}|¿,;DO,_DO%
�DO –𝐸}|¿,;,_DO%

�DO + 𝐸}|¿,;DO,_^O%
�DO − 𝐸}|¿,;,_^O%

�DO

+𝐸}|¿DO,;DO,_DO%
�DO –𝐸}|¿DO,;,_DO%

�DO + 𝐸}|¿DO,;DO,_^O%
�DO − 𝐸}|¿DO,;,_^O%

�DO  

−
1
4
𝑄F´%𝑅%

𝐸}|¿,;DO,_DO%
�DO –𝐸}|¿,;,_DO%

�DO + 𝐸}|¿,;DO,_^O%
�DO − 𝐸}|¿,;,_^O%

�DO

+𝐸}|¿^O,;DO,_DO%
�DO –𝐸}|¿^O,;,_DO%

�DO + 𝐸}|¿^O,;DO,_^O%
�DO − 𝐸}|¿^O,;,_^O%

�DO  

= 1 −
𝜎𝛥𝑡
4𝜖w𝜖u

𝐸³|
¿,;DO%,_

�DO% + 𝑄F´� 𝐻±|
¿,;DO%,_D

O
%

�DO% − 𝐻±|
¿,;DO%,_^

O
%

�DO% − 𝑄F´Æ 𝑅º𝐻}|
¿DO%,;D

O
%,_

�DO% − 𝑅º𝐻}|
¿^O%,;D

O
%,_

�DO%  

+
1
2
𝑄F´Æ 𝑅Þ𝐻±ù�úû|¿DO%,;D

O
%,_

�DO% + 𝑅Þ𝐻±ö��Á�|¿DO%,;D
O
%,_

�DO% − 𝑅Þ𝐻±ù�úû|¿^O%,;D
O
%,_

�DO% − 𝑅Þ𝐻±ö��Á�|¿^O%,;D
O
%,_

�DO%  

−
1
4
𝑄F´Æ

𝑅� + 𝑅O 𝐵}Ãù�úû|¿DO%,;D
O
%,_

�DO% + 𝑅� + 𝑅O 𝐵}Ãö��Á�|¿DO%,;D
O
%,_

�DO%

+ 𝑅� + 𝑅O 𝐵}Cù�úû|¿DO%,;D
O
%,_

�DO% + 𝑅� + 𝑅O 𝐵}Cö��Á�|¿DO%,;D
O
%,_

�DO%
 

+
1
4
𝑄F´Æ

𝑅� + 𝑅O 𝐵}Ãù�úû|¿^O%,;D
O
%,_

�DO% + 𝑅� + 𝑅O 𝐵}Ãö��Á�|¿^O%,;D
O
%,_

�DO%

+ 𝑅� + 𝑅O 𝐵}Cù�úû|¿^O%,;D
O
%,_

�DO% + 𝑅� + 𝑅O 𝐵}Cö��Á�|¿^O%,;D
O
%,_

�DO%
 

+𝑄F´Æ 𝑅% + 𝑅Æ 𝐵±�ôõ|¿DO%,;D
O
%,_

�DO% − 𝑅% + 𝑅Æ 𝐵±�ôõ|¿^O%,;D
O
%,_

�DO%  

−𝑄F´%𝑅O 𝐸±|
¿DO%,;DO,_

�DO% − 𝐸±|
¿DO%,;,_

�DO% − 𝐸±|
¿^O%,;DO,_

�DO% + 𝐸±|
¿^O%,;,_

�DO%  

+
1
4
𝑄F´º𝑅% 𝐸³|

¿,;DO%,_DO

�DO% − 𝐸³|
¿,;DO%,_^O

�DO% + 𝐸³|
¿DO,;DO%,_DO

�DO% − 𝐸³|
¿DO,;DO%,_^O

�DO%  

− O
Æ
𝑄F´º𝑅% 𝐸³|¿,;DÃC,_DO

�DÃC − 𝐸³|¿,;DÃC,_^O
�DÃC + 𝐸³|¿^O,;DÃC,_DO

�DÃC − 𝐸³|¿^O,;DÃC,_^O
�DÃC     (2A-5) 

where 𝑄F´O = (Δ𝑡%)/ 4𝜖w𝜖u 𝛥𝑥 % , 𝑄F´% = (Δ𝑡%)/(4𝜖w𝜖uΔ𝑦Δ𝑥) , 𝑄F´� = Δ𝑡/(2𝜖w𝜖uΔ𝑧) , 

𝑄F´Æ = Δ𝑡/(2𝜖w𝜖uΔ𝑥), 𝑄F´º = (Δ𝑡%)/(4𝜖w𝜖uΔ𝑥Δ𝑧), 𝑅� = 𝐴�/𝐴u at the corresponding mesh. 
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1 +
𝜎𝛥𝑡
4𝜖w𝜖u

+ 2𝑄F¯O𝑅O 𝐸}|¿,;,_DO%
�DO − 𝑄F¯O𝑅O𝐸}|¿,;^O,_DO%

�DO − 𝑄F¯O𝑅O	𝐸}|¿,;DO,_DO%
�DO  

−
1
4
𝑄F¯%𝑅% 𝐸³|¿DO,;DO%,_

�DO + 𝐸³|¿DO,;DO%,_DO
�DO − 𝐸³|¿^O,;DO%,_

�DO − 𝐸³|¿^O,;DO%,_DO
�DO  

+
1
4
𝑄F¯%𝑅% 𝐸³|¿DO,;^O%,_

�DO + 𝐸³|¿DO,;^O%,_DO
�DO − 𝐸³|¿^O,;^O%,_

�DO − 𝐸³|¿^O,;^O%,_DO
�DO  

= 1 −
𝜎𝛥𝑡
4𝜖w𝜖u

𝐸}|
¿,;,_DO%

�DO% + 𝑄F¯� 𝐻³|
¿DO%,;,_D

O
%

�DO% − 𝐻³|
¿^O%,;,_D

O
%

�DO% − 𝑄F¯Æ 𝑅º𝐻±|
¿,;DO%,_D

O
%

�DO% − 𝑅º𝐻±|
¿,;^O%,_D

O
%

�DO%  

−
1
2
𝑄F¯Æ 𝑅Þ𝐻}��ó|¿,;DO%,_D

O
%

�DO% + 𝑅Þ𝐻}ñò|¿,;DO%,_D
O
%

�DO% − 𝑅Þ𝐻}��ó|¿,;^O%,_D
O
%

�DO% − 𝑅Þ𝐻}ñò|¿,;^O%,_D
O
%

�DO%  

−
1
4
𝑄F¯Æ

𝑅� + 𝑅O 𝐵±Ã��ó|¿,;DO%,_D
O
%

�DO% + 𝑅� + 𝑅O 𝐵±Ãñò|¿,;DO%,_D
O
%

�DO%

+ 𝑅� + 𝑅O 𝐵±C��ó|¿,;DO%,_D
O
%

�DO% + 𝑅� + 𝑅O 𝐵±Cñò|¿,;DO%,_D
O
%

�DO%
 

+
1
4
𝑄F¯Æ

𝑅� + 𝑅O 𝐵±Ã��ó|¿,;^O%,_D
O
%

�DO% + 𝑅� + 𝑅O 𝐵±Ãñò|¿,;^O%,_D
O
%

�DO%

+ 𝑅� + 𝑅O 𝐵±C��ó|¿,;^O%,_D
O
%

�DO% + 𝑅� + 𝑅O 𝐵±Cñò|¿,;^O%,_D
O
%

�DO%
 

−𝑄F¯Æ 𝑅% + 𝑅Æ 𝐵}�ôõ|¿,;DO%,_D
O
%

�DO% − 𝑅% + 𝑅Æ 𝐵}�ôõ|¿,;^O%,_D
O
%

�DO%  

−𝑄F¯º𝑅O 𝐸³|
¿,;DO%,_DO

�DO% − 𝐸³|
¿,;DO%,_

�DO% − 𝐸³|
¿,;^O%,_DO

�DO% + 𝐸³|
¿,;^O%,_

�DO%  

−
1
4
𝑄F¯O𝑅%

𝐸±|
¿DO%,;DO,_

�DO% − 𝐸±|
¿DO%,;,_

�DO% + 𝐸±|
¿DO%,;DO,_DO

�DO% − 𝐸±|
¿DO%,;,_DO

�DO%

+𝐸±|
¿^O%,;DO,_

�DO% − 𝐸±|
¿^O%,;,_

�DO% + 𝐸±|
¿^O%,;DO,_DO

�DO% − 𝐸±|
¿^O%,;,_DO

�DO%
 

+ O
Æ
𝑄F¯O𝑅%

𝐸±|¿DÃC,;,_
�DÃC − 𝐸±|¿DÃC,;^O,_

�DÃC + 𝐸±|¿DÃC,;,_DO
�DÃC − 𝐸±|¿DÃC,;^O,_DO

�DÃC

+𝐸±|¿^ÃC,;,_
�DÃC − 𝐸±|¿^ÃC,;^O,_

�DÃC + 𝐸±|¿^ÃC,;,_DO
�DÃC − 𝐸±|¿^ÃC,;^O,_DO

�DÃC
    (2A-6) 

where 𝑄F¯O = (Δ𝑡%)/ 4𝜖w𝜖u Δ𝑦 % , 𝑄F¯% = (Δ𝑡%)/(4𝜖w𝜖uΔ𝑦Δ𝑥), 𝑄F¯� = Δ𝑡/(2𝜖w𝜖uΔ𝑥), 𝑄F¯Æ =

Δ𝑡/(2𝜖w𝜖uΔ𝑦), 𝑄F¯º = (Δ𝑡%)/(4𝜖w𝜖uΔ𝑦Δ𝑧), 𝑅� = 𝐴�/𝐴u at the corresponding mesh.  
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Chapter 3 

3 BAW Mediated Multiferroic Antennas 

In a dynamic multiferroic system, the behavior of acoustic waves and electromagnetic 

waves are respectively governed by Newton’s laws and Maxwell’s equations as follows 

 ∇ ∙ 𝑻 = 𝜌 𝜕𝒗𝜕𝑡 ,  ∇@𝒗 =
𝜕𝑺
𝜕𝑡    (3.0-1) 

 ∇×𝑬 = − 𝜕𝑩
𝜕𝑡 ,  ∇×𝑯 = 𝜎𝑬 + 𝜕𝑫

𝜕𝑡    (3.0-2) 

where in Eq. (3.0-1), 𝒗 is the particle velocity vector, 𝝆 is the mass density of the material and 𝝈 

is the conductivity. The behavior of the BAW mediated multiferroic antenna can thus be 

predicted with an FDTD algorithm that jointly solves these two sets of equations. 

3.1 Architecture and Performance Bound 

Due to the thin profile of the structure, both the magnetostrictive and piezoelectric layers 

are assumed to extend to infinity in the film plane with uniform strain and stress field 

distributions. The FDTD modeling in this section is thus 1-D. The purpose of this model is not to 

design a practical antenna structure but to understand the fundamental physics and coupling 

between the electromagnetics and dynamic mechanics. Therefore, Newton’s law (3.0-1) and 

Maxwell’s equations (3.0-2) are reduced to their 1-D forms respectively: 

 
�a
�h
= 𝜌

�÷
�h

,  
�÷
�}
=
�Z
�h

     

 
�V
�}

= −
�S
�h

,  
�X
�}

= 𝜎𝐸 +
�L
�h

   (3.1-1) 
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3.1.1 1-D FDTD Formulation with Constant Permeability 

The bilateral interactions between the acoustic waves and electromagnetic waves are thus 

modeled by substituting the strain mediated constitutive relations Eq. (1.2-4) and Eq. (1.2-5) into 

Eq. (3.1-1). The combination of Eq. (1.2-4) and Eq. (3.1-1) leads to 1-D differential equations in 

the piezoelectric layer: 

 
�V
�h

= −
𝑒𝐷
𝜖𝑆

�÷
�}
+

1

𝜖𝑆

�L
�h

   (3.1-2) 

 
�a
�h
= 𝑐𝐷

�÷
�}
−

𝑒𝐷
𝜖𝑆

�L
�h

   (3.1-3) 

where the electric flux density D serves as the excitation. Similarly, the combination of Eq. 

(1.2-5) and Eq. (3.1-1) leads to 1-D differential equations in the magnetostrictive layer: 

 
�X
�h

= −
𝑒𝐵
𝜇𝑆

�÷
�}
+

1

𝜇𝑆

�S
�h

   (3.1-4) 

 
�a
�h
= 𝑐𝐵

�÷
�}
−

𝑒𝐵
𝜖𝑆

�S
�h

   (3.1-5) 

In order to solve the equations in Eq. (3.1-1) simultaneously, the FDTD method must 

perform time marching for both the electromagnetic field variables and the mechanical field 

variables on the same time scale. However, as the wavelength of an acoustic wave is 

approximately five orders of magnitude smaller than that of an electromagnetic wave at the same 

frequency, the drastic difference between the spatial scales of these two types of waves gives rise 

to a numerical issue. In order to retain the spatial resolution for acoustic waves, the spatial grids 

need to be divided based on the smaller wavelength of the two waves, which is typically no more 

than one tenth of the acoustic wavelength.  In order to satisfy the stability condition, the time 

steps must be defined according to the shorter traveling time of the two waves when they cross 
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each spatial grid, which is 

 𝛥𝑡 = min	(Å}�ú
\
, Å}�ú
÷�ú

)   (3.1-6) 

Note that 𝑐/𝑣i\ ≈ 10º , it is thus concluded that 𝛥𝑡 must be much smaller than the RF 

cycle, which would lead to severe oversampling in time-domain and extremely poor 

computational efficiency. To avoid the oversampling issue, different spatial scales are applied to 

these two different waves. For electromagnetic waves, due to its large wavelength, one may use a 

much sparser grid than that of the acoustic waves to describe its spatial behavior and then 

interpolate the electromagnetic field inside the large grid with polynomial basis functions to 

match the field variables of the acoustic waves. This leads to the reduction in the number of 

unknowns for electromagnetic field variables and avoids the stability problem or oversampling 

problem. Specific to the 1-D FDTD algorithm implemented for thin film structures, a single grid 

is needed to represent the electromagnetic field unknowns in the magnetic material and the 

following polynomial spatial expansion of electromagnetic field is used to derive the field on the 

acoustic wave grid: 

 𝐵± = 𝐵±u, 𝐻± = 𝐻±u, 𝐸³ = 𝐸³O𝑧   (3.1-7) 

where 𝐵±u, 𝐻±u, 𝐸³O are unknowns to be solved by 1-D FDTD. If more dramatic electromagnetic 

field variation is expected, higher order terms could be added to Eq. (3.1-7) for better accuracy. 

With Eq. (3.1-7), Faraday’s law in Eq. (3.1-1) reduces to 

 
�S²
�h

= �V´
�}

= 𝐸𝑦1   (3.1-8) 

The radiation boundary condition takes the form, 
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V´
X² }½~

= −𝜂0	   (3.1-9) 

which yields, 

 
�X²
�h

= − O
xy

�V´
�h }½~

= − ~
xy

�V´Ã
�h

	   (3.1-10) 

Submitting Eq. (3.1-8) to Eq. (3.1-4) gives, 

 𝐸³O = 𝜇Z 	
𝜕𝐻𝑥
𝜕𝑡 + 𝑒S

𝜕𝑣
𝜕𝑧	   (3.1-11) 

With Eq. (3.1-10) submitted into Eq. (3.1-11) to eliminate 
�X²
�h

 and Eq. (3.1-8) substituted to Eq. 

(3.1-5) to eliminate 
�S²
�h

, one obtains the following two differential equations, 

 QI~
xy
	�V´Ã
�h

+ 𝐸³O = 𝑒S
𝜕𝑣
𝜕𝑧	   (3.1-12) 

 �a
�h
= 𝑐S

𝜕𝑣
𝜕𝑧 −

FP
QI
𝐸³O	   (3.1-13) 

These two equations are solved jointly with the following Newton’s equation,  

 �a
�}
= 𝜌 𝜕𝑣𝜕𝑡	   (3.1-14) 

Note that Eq. (3.1-14) applies to the whole structure including both the piezoelectric and the 

magnetostrictive layers. The equations (3.1-12) and (3.1-13) are replaced by the following 

equations in the piezoelectric layer:  

 �L
�h
= 𝜖Z

𝜕𝐸𝑧
𝜕𝑡 + 𝑒L

𝜕𝑣
𝜕𝑧	   (3.1-15) 

 �a
�h
= 𝑐L

𝜕𝑣
𝜕𝑧 −

FG
HI

𝜕𝐷
𝜕𝑡 	   (3.1-16) 

The leap-frog time stepping scheme in FDTD can now be implemented to discretize equations  
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(3.1-12) to (3.1-16) in spatial and temporal domain, which leads to 

𝐸³O
�DO/% =

C4D
EyF�

^u.º
C4D
EyF�

Du.º
𝐸³O
�^O/% + 𝑚𝑒𝑎𝑛 FP

u.ºD CID
EyF�

÷ßÇÃ/C
Á ^÷ßÂÃ/C

Á

Å}
	   (3.1-17) 

𝑇¿
�DO/% = 𝑇¿

�^O/% + 𝑐S
÷ßÇÃ/C
Á ^÷ßÂÃ/C

Á

Å}
𝛥𝑡 − FP

QI
	
V´Ã
ÁÇÃ/CDV´Ã

ÁÂÃ/C

%
𝛥𝑡   (3.1-18) 

for the magnetostrictive layer and 

𝑇¿
�DO/% = 𝑇¿

�^O/% + 𝑐L
÷ßÇÃ/C
Á ^÷ßÂÃ/C

Á

Å}
𝛥𝑡 − FG

HI
	 𝐷¿

�DO/% + 𝐷¿
�^O/%    (3.1-19) 

𝐸}ß
�DO/% = 𝐸}ß

�^O/% + 𝑐L
÷ßÇÃ/C
Á ^÷ßÂÃ/C

Á

Å}
𝛥𝑡 − O

HI
	 𝐷¿

�DO/% + 𝐷¿
�^O/%    (3.1-20) 

for the piezoelectric layers, and 

 𝑣¿DO/%�DO = 𝑣¿DO.%� + Åh
GÅ}

	 𝑇¿
�DO/% + 𝑇¿^O

�DO/%    (3.1-21) 

for both phases. 

In the magnetostrictive layer, Eq. (3.1-17) describes the time-marching of the aperture 

electric field as a function of the particle velocity. Both the electric field and the particle velocity 

are used to update the stress in Eq. (3.1-18) and then the particle velocity is updated from stress 

in Eq. (3.1-21). An electrical flux density in the form of modified Gaussian pulse 𝐷 𝑡 =

exp	 − 𝑡 − 𝑡u %/2𝑇% cos	(2𝜋𝑓𝑡)  is applied through the vertical direction of the bottom 

piezoelectric layer, as the excitation of the resonance. In the piezoelectric layer, the vertical 

electric flux density is used with the particle velocity to update the stress in Eq. (3.1-19), the 

vertical electric field is then updated with the electric flux density excitation and the particle 

velocity in Eq. (3.1-20), and ultimately the particle velocity is updated with the stress in Eq. 

(3.1-21).  
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3.1.2 1-D Performance Bound 

For simplification of discussions, the BAW structure to be simulated is assumed to contain 

only dispersionless and lossless material. The mechanical property of the material is matched to 

those of typical ferrite and piezoelectric material. For example, the magnetostrictive material is 

assumed to have a similar mechanical property to that of yttrium iron garnet (YIG) and the 

piezoelectric material is assumed with a similar mechanical property to that of zinc oxide (ZnO). 

The following are the material properties assumed for the simulation: 𝜖a = 12.64𝜖u , 𝜇a =

2000𝜇u , 𝑐L = 2.3032×10OO	[𝑁/𝑚%] , 𝑐X = 2.11×10OO	[𝑁/𝑚%] , 	𝑑X = 1.04×10^J	[𝑚/𝐴] , 

𝑑L = 11.67×10^O%	[𝐶/𝑁] , 𝑒L = 1.32	[𝐶/𝑚%] , 𝜌V = 5.68×10�	[𝑘𝑔/𝑚�] , 𝜌X = 5.17×

10�	[𝑘𝑔/𝑚�] . It should be noted that the dynamic permeability and the piezomagnetic 

coefficients of the magnetostrictive material are artificially adjusted to study the effects of those 

parameters critical to the antenna performance. The aforementioned material properties lead to a 

magnetomechanical coupling figure of merit 𝑘X% = 0.9080 . The central frequency of the 

excitation is 𝑓 = 1.0	𝐺𝐻𝑧 with a bandwidth of +/-300MHz. With the electromagnetic unknown 

reduction strategy, the time step and spatial grid can now be defined based on the properties of 

BAW, 

 𝛥𝑧 = /�ô
Ouà

≈ 50	𝑛𝑚, 𝛥𝑡 = Å}
÷�ú

O
OÞ
≈ 50	𝑝𝑠   (3.1-22) 

Figure 3.1-1 shows the dynamic stress waveform at the center of the magnetostrictive layer 

of the structure shown in Figure 1.2-3 obtained by the proposed FDTD simulation. The 

amplitude of the standing stress field decays due to the electromagnetic radiation. It implies that 

the radiation of electromagnetic waves acts as a damping load to the acoustic wave resonances. 
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Figure 3.1-2 plots the vertical stress profile in the 3-layer BAW structure as a function of time, 

for the first three resonant modes. It is observed that electromagnetic radiation occurs when the 

mechanical strain is maximized in the middle layer, as shown in Figure 3.1-2a and Figure 3.1-2c. 

However, when there is a null of the strain profile in the middle layer, no radiation is observed, 

which is shown in Figure 3.1-2b. This further validates the concept that the electromagnetic 

radiation is created only through the dynamic magnetic flux generated by the strain excitation. 

 

 

Figure 3.1-1. Dynamic stress field in the middle line of the proposed BAW mediated 

multiferroic antenna structure shown in Figure 1.2-3. 
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Figure 3.1-2. Stress profiles throughout the BAW structure as a function of time for different 

resonant modes. a. 𝒇 = 𝟏. 𝟎𝟑	𝑮𝑯𝒛, b. 𝒇 = 𝟐. 𝟐𝟖	𝑮𝑯𝒛, c. 𝒇 = 𝟑. 𝟏𝟕	𝑮𝑯𝒛. 
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Figure 3.1-3. a. Simulated radiation Q factor compared to the theory for different permeability, 

𝒌𝑯 = 𝟎.𝟖𝟓 . b. Simulated radiation Q factor compared to the theory for different 

magnetomechanical coupling figure of merits, 𝝁𝒓 = 𝟐𝟎𝟎𝟎. Parameters in Figure 1.2-3 apply. 
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Figure 3.1-4. Input impedance and radiation resistance for a reference area of 1 mm2. 

 

Radiation quality factors are derived from the simulated stress waveform by extracting the 

damping speed of the resonance incurred by the electromagnetic radiation with the signal 

processing code ESPRIT. Based on the aforementioned material property setting, the theoretical 

lower bound of radiation Q factor is 25.5 according to Eq. (3.1-14), which corresponds to the 

analytical radiation Q of 76.4 for the BAW mediated antenna. The simulated radiation Q factor 

of the antenna with FDTD code is 77.9, which is very close to the analytical result. In general, 

the simulated radiation Q factor matches well with the analytical radiation Q factor for different 

permeability settings and magnetomechanical coupling figure of merits as shown in Figure 3.1-3. 

The agreement between the numerical solutions and the analytic solutions validates both the 

operating principle of the proposed antenna structure and the FDTD algorithm developed for 

solving such a multi-physics problem. Furthermore, it shows that a relative permeability of 2000 

and a magnetomechanical coupling figure of merit greater than 85% in the magnetostrictive 
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material could lead to efficient radiation (with radiation Q factor of below 100) at 1.03 GHz even 

with a 1-µm-thick layer of magnetostrictive material. 

The antenna input impedance and radiation resistance as functions of frequency are 

calculated with different methods with both results plotted in Figure 3.1-4 for comparison. The 

antenna input impedance is calculated by taking the ratio of the input voltage to the excitation 

displacement current. The input voltage is obtained by performing the line integral of vertical 

electric field through the bottom piezoelectric layer, and the excitation displacement current is 

computed by 𝐼 = 𝐴(𝜕𝐷/𝜕𝑡). The radiation resistance is calculated using the ratio between the 

radiated power obtained with Eq. (3.1-12) and the square of the excitation displacement current. 

In Figure 3.1-4, the input resistance agrees well with the radiation resistance even though they 

are obtained with different approaches. The agreement has further validated the FDTD 

simulation method. The radiation resistance is 1.9 Ohms per square millimeter near BAW 

resonance. 

 

3.2 1-D BAW Mediated Multiferroic Antennas Near Ferromagnetic Resonance 

The one dimensional finite difference time domain (1D FDTD) algorithm in the previous 

section [7] explores the effect of BAW on the electromagnetic resonance, by modeling the 

bidirectional coupling of these two phenomena in a multiferroic antenna that is composed of 

alternating layers of piezoelectric and magnetostrictive materials. It is evident that the 

electromagnetic energy released from the device is generated by the odd mode BAW resonances. 

Little electromagnetic radiation is observed from even mode BAW resonances because the 

mechanic energy is null in the middle magnetostrctive layer. To explore the effect of magnetic 
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dispersion, or FMR, on the antenna performance, a current-driven thin-film ferrite antenna was 

simulated in [65], with the similar FDTD technique.  However, in order to accurately predict the 

performance of the multiferroic antenna, both FMR effect and eddy current loss should be 

included, besides electromagnetic coupling, BAW, piezoelectricity and magnetostriction. There 

are respectable amount of work targeted at the electromagnetic performance of the magnetic 

material, with or without [15, 18, 70-72] magnetostriction. Micromagnetic modeling has been a 

popular method to explore the dynamic magnetization, domain patterns, or hysteresis [18, 68, 69, 

71]. In the case of eddy current loss, the magnetic field 𝐻 is modified with an additional term 

𝐻Fcc³ [70, 72]. Since most of the aforementioned work focus on the magnetization, simplified or 

quasi-static Maxwell’s equations are considered [ 67, 69]. 

 

3.2.1 Energy-Coupling Figure of Merit 

In order to fully investigate the multiferroic antenna performance, the complete form of 

Maxwell’s equation, together with LLG equation, Newton’s law, and the constitutive coupling 

relations, should be solved simultaneously. To realize this goal, we apply the prototype 1D 

FDTD modeling to the three-layer strain-mediated multiferroic antenna structure. Therefore, it 

takes into account the coupling between electromagnetics, acoustics, and magnetic dispersion. 

The radiation efficiency of the antenna and the mechanical-magnetic figure of merit of the 

magnetostrictive material, are obtained from the simulation and plotted as functions of frequency 

and magnetic DC bias, respectively. 

The structure of BAW mediated multiferroic antenna is shown in Figure 1.2-3. It consists 

of one thin magnetostrictive layer sandwiched by two thin piezoelectric layers, which are 
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isolated from the silicon wafer by an air cavity. The electric current or voltage applied to the 

electrodes of the bottom layer creates mechanic strain field through converse piezoelectric effect. 

The strain field is coupled into the middle magnetostrictive layer and hence the whole 

sandwiched structure, which forms the bulk acoustic resonance. As long as the acoustic standing 

wave amplitude is maximized in the middle layer, the strain field could be transferred into 

dynamic magnetic flux though piezomagnetic effect. This magnetic flux leads to aperture 

magnetic field which indicates the generation of electromagnetic radiation. Instead of conductive 

current, the radiating source of BAW antennas is the time-varying magnetic flux induced by the 

dynamic mechanic strain. As a result, the absence of image current leads to suppressed amount 

of reactive energy storage and improved radiation performance at GHz, even when the antenna is 

extremely low-profile. 

The stress field enforced on the magnetostrictive material induces an equivalent 

magnetization, denoted as 𝑀(𝑑S𝑇), where 𝑑S is the strain constant of the magnetostrictive layer, 

and it is a third rank tensor, in the unit of (meter·Ampere)/Newton.  The subscript B indicates 

that the value of 𝑑Sis measured under the condition of constant magnetic flux density, instead of 

constant magnetic field, which is the case for 𝑑X. The value of 𝑑S could be calculated from 𝑑X 

by 

 𝑑S = 𝑑X/𝜇a   (3.2-1) 

In Eq. (3.2-1), 𝜇a = 1 + 𝜒 𝜇u  is used to denote the stress independent permeability of the 

magnetostrictive material, where 𝜒 is the susceptibility. In materials with magnetic dispersion, 

since	𝑑S is a constant and 𝜇a is frequency dependent, the value of 𝑑X will be dispersive.  

Therefore, the total magnetization could be decomposed into two components, the first one 
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is induced purely by the magnetic field and is independent of the stress field, denoted as 

𝑀�i±MFjj, and the second one is 𝑀(𝑑S𝑇), which is stress-dependent. In equation form,  

 𝑀hghij = 𝑀hghij + 𝑀(𝑑S𝑇)   (3.2-2) 

In the case of zero magnetic field, 𝑀¿ = 𝑑S¿;_𝑇;_. According to Eq. (3.2-2), the total magnetic 

flux density could be expanded as in 𝐵hghij = 𝜇u[𝐻�i±MFjj + 𝑀hghij], which is further expanded 

as in 

𝐵hghij = 𝜇u 𝐻�i±MFjj + 𝑀�i±MFjj + 𝑀 𝑑S𝑇  

= 𝜇u 𝐻�i±MFjj + 𝑀�i±MFjj + 𝜇u𝑀 𝑑S𝑇  

= 𝜇u 1 + 𝜒 𝐻�i±MFjj + 𝜇u𝜒𝑑S:𝑻  (3.2-3) 

which results in the expression of the magnetic field, 

𝐻�i±MFjj =
S�����
Qy ODO

− O
ODO

𝑑S:𝑻 =
S�����
Qe

− O
ODO

𝑑S:𝑻  (3.2-4) 

According to Eq. (3.2-3) and Eq. (3.2-4), the physical meaning of 𝜒  becomes explicit. The 

susceptibility 	𝜒  is the ratio of the magnetization to the corresponding magnetic field, e.g. 

𝑀�i±MFjj to 𝐻�i±MFjj, and 𝑀(𝑑S𝑇) to 𝑑S:𝑻. The value of 𝜒 is not changed by the stress field. 

Based on all the known conditions, we have constitutive coupling equations, also called the 

magnetostrictive strain equations: 

𝑀hghij =
O
Qy
𝐵hghij − 𝐻�i±MFjj  (3.2-5) 

𝑺 = 𝑠S:𝑻 + 𝑑S ∙ 𝜇u𝑀hghij   (3.2-6) 

The compliance coefficient 𝑠S is obtained from the Young’s modulus, and it is a fourth rank 

tensor. 
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𝑠S = 𝑠X 1 − c`
C

Qed`
  (3.2-7) 

where 𝑠X = 1/𝑐X, and 𝑐X is the Young’s modulus. 

The energy conservation relation that is derived in [7] introduces the magnetomechanical 

coupling figure of merit 𝑘X% , which is an important parameter to predict the maximum percentage 

of mechanical energy that can be transferred into magnetic energy. However, 𝑘X%  is defined based 

on the static properties of the material. In dynamic cases, a corresponsive dynamic coupling 

coefficient needs to be defined, so that we can explore the frequency-dependent performance of 

the multiferroic antenna. According to Eq. (3.2-5), we can rewrite 𝑀hghij  in terms of 𝐵hghij  ,  

𝐻�i±MFjj  and 𝑑S:𝑻. For simplicity, this process is completed in 1-D form. Substituting Eq. 

(3.2-4) into Eq. (3.2-5) gives 

𝑀hghij =
S
Qy
− S

Qe
+ O

ODO
𝑑S𝑇 =

O
ODO

O
Qy
𝐵 + O

ODO
𝑑S𝑇   (3.2-8) 

The same conclusion indicated by Eq. (3.2-8) can be verified by an alternative way: 

𝑀hghij = 𝜒 𝐻�i±MFjj + 𝑑S𝑇 = 𝜒
𝐵
𝜇a
−

𝜒
1 + 𝜒𝑑S𝑇 + 𝑑S𝑇  

= O
ODO

O
Qy
𝐵 + O

ODO
𝑑S𝑇   (3.2-9) 

where we can define an equivalent total magnetic field 𝐻hghij = 𝐻�i±MFjj + 𝑑S𝑇 . This total 

magnetic field is an equivalent force that drives the magnetization in the material to change. Both 

Eq. (3.2-8) and Eq. (3.2-9) simplifies Eq. (3.2-6) into the 1D form, 

𝑆 = 𝑠S𝑇 + 𝑑S ∙ 𝜇u
𝜒

1 + 𝜒
1
𝜇u
𝐵 +

𝜒
1 + 𝜒𝑑S𝑇  

= 𝑠S𝑇 + 𝑑S
O

ODO
𝐵 + 𝑑S%𝜇u

O
ODO

𝑇  (3.2-10) 

Therefore, the total mechanical energy stored in the antenna structure is 
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𝑊»F\~i�¿\ij = 𝑆 ∙ 𝑇P 𝑑𝑉        

= 𝑠S 𝑇 %
P 𝑑𝑉 + 𝑑S%𝜇u

O
ODO

𝑇 %
P 𝑑𝑉 + 𝑑S

O
ODO

𝐵 ∙ 𝑇P 𝑑𝑉 (3.2-11) 

and the total magnetic energy is 

𝑊»iR�Fh¿\ = 𝐵 ∙ 𝐻P 𝑑𝑉        

= S C

Qy ODOP 𝑑𝑉 − 𝑑S
O

ODO
𝐵 ∙ 𝑇P 𝑑𝑉    (3.2-12) 

The additional term 𝑑S%𝜇u
O

ODO
𝑇 %

P 𝑑𝑉 in Eq. (3.2-11) is due to the stress-independent nature 

of 𝜒. Therefore, the total stored energy stored in the antenna system is calculated as 

𝑊hghij = 𝑊»iR�Fh¿\ +𝑊»F\~i�¿\ij        

= S C

Qy ODOP 𝑑𝑉 + 𝑠S 𝑇 %
P 𝑑𝑉 + 𝑑S%𝜇u

O
ODO

𝑇 %
P 𝑑𝑉  (3.2-13) 

With the assumption of relatively low radiation performance,	𝐻�i±MFjj ≈ 0. According to Eq. 

(3.2-4), we have  

𝑇 ≈ S
Qe
∙ ODO
OcP

= S
OQycP

   (3.2-14) 

which reduces Eq. (3.2-13) to  

𝑊hghij =
𝐵 %

𝜇u 1 + 𝜒
+ 𝑠S

𝐵 %

𝜒%𝜇u%𝑑S%
+ 𝑑S%𝜇u

𝜒
1 + 𝜒

𝐵 %

𝜒%𝜇u%𝑑S%P

𝑑𝑉 

= O ODO QycP
CDdP

OCQycP
C

S C

Qy ODOP 𝑑𝑉   (3.2-15) 

As mentioned earlier, the magnetomechanical figure of merit is the maximum ratio of the 

mechanical energy input that can be transferred to magnetic energy and stored in the form of 
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magnetic flux density. In equation form, this definition is interpreted by 

𝑊hghij =
O
_P
C 𝑊»iR�Fh¿\   (3.2-16) 

Combing Eq. (3.2-15) and Eq. (3.2-16), we can get the expression of 𝑘S% : 

𝑘S% =
OCQycP

C

O ODO QycP
CDdP

   (3.2-17) 

Since in Eq. (3.2-17), the only frequency dependent parameter is	𝜒, the relation between 𝑘S%  and 

𝜒 could be explored and plotted. The upper bound of 𝑘S%  is that 𝑘S% ≤ 1. 

3.2.2 1-D FDTD Formulation 

The original vector form of the Maxwell and LLG dynamic system is composed of the 

following equations as in Eq. (3.2-18)-Eq. (3.2-22). Equation (3.2-21) is the equation of motion, 

and Eq. (3.2-22) is the strain-displacement relation. The constitutive coupling equations (3.2-5) 

and (3.2-6) are repeated here for completeness. 

�𝑴�����
�h

= 𝜇u𝛾 𝑴hghij×𝑯hghij − ¢
������

𝑴hghij×
�𝑴�����

�h
   (3.2-18) 

�𝑬
�h
= O

H�Hy
𝛥×𝑯�i±MFjj −

O
H�Hy

𝜎𝑬   (3.2-19) 

�𝑩�����
�h

= −𝛥×𝑬   (3.2-20) 

∇ ∙ 𝑻 = 𝜌 �𝒗
�h

   (3.2-21) 

∇@ ∙ 𝒗 =
�𝑺
�h

   (3.2-22) 

𝑴hghij =
O
Qy
𝑩hghij − 𝑯�i±MFjj    (3.2-5) 

𝑺 = 𝑠S:𝑻 + 𝑑S ∙ 𝜇u𝑀hghij    (3.2-6) 
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In Eq. (3.2-18), both gyromagnetic ratio 𝛾 and the damping factor 𝛼  are negative. 𝛾 =

−1.759×10^OO𝐶/𝑘𝑔 [6]. The damping factor 𝛼 is calculated by the line width 𝛥𝐻 fixed at X-

band (9.6GHz) [5]. In 1D case, Eq. (3.2-21) and Eq. (3.2-22) reduce to 

�a
�}
= 𝜌 �÷

�h
  (3.2-23) 

�÷
�}
= �Z

�h
  (3.2-24) 

Apply the magnetic DC bias in the y direction, to minimize the demagnetization. Under small 

signal approximation, the LLG equation Eq. (3.2-18) can be written in terms of 𝐵 and 𝐻 in scalar 

form [15]: 

O
Qy

��¯
�h
− �~¯

�h
= 𝛾 𝐻¿𝑏± − 𝜇u 𝑀Z + 𝐻¿ ℎ± + 𝑑S𝑇 + 𝛼 O

Qy

��²
�h
− �~²

�h
  (3.2-25) 

O
Qy

��²
�h
− �~²

�h
= 𝛾 −𝐻¿𝑏} + 𝜇u 𝑀Z + 𝐻¿ ℎ} − 𝛼 O

Qy

��¯
�h
− �~¯

�h
   (3.2-26) 

𝑏³ = 𝜇uℎ³   (3.2-27) 

where 𝑀Z is the saturation magnetization, 𝐻¿ is the applied internal DC magnetic bias. Since for 

the thin film, the in-plane demagnetizing factor is zero, 𝐻¿  equals the external DC bias. The 

lowercase letters in the equations represents dynamic fields, while the uppercase letters represent 

static fields. It should be noticed that Eq. (3.2-25)–Eq. (3.2-27) are derived on the premise that 

the term 𝑑S𝑇 is dominant in x direction, i.e. the magnetic field direction of the EM radiation. 

Using the same spatial unknown reduction method, assume 𝑒³ = 𝑒³O𝑧 and ℎ± = ℎ±u + ℎ±%𝑧%. 

The plane wave radiation boundary condition 𝑒³/ℎ± }½~
= −𝜂u gives 

ℎ±u = − c
xy
𝑒³O − ℎ±%𝑑%   (3.2-28) 
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where 𝜂u is the intrinsic impedance of free space. The 1D simplification of Maxwell’s equations 

(3.2-19) and (3.2-20) leads to 

��²
�h
= �F´

�}
= 𝑒³O, 𝑒} = 0, 𝑏} = 0   (3.2-29) 

Equation (3.2-29) simplifies Eq. (3.2-25) and Eq. (3.2-26) into 

−�~¯
�h
= 𝛾𝐻¿𝑏± − 𝛾𝜇u 𝑀Z + 𝐻¿ ℎ± + 𝑑S𝑇 + ¢

Qy
𝑒³O − 𝛼

�~²
�h

   (3.2-30) 

O
Qy
𝑒³O −

�~²
�h
= 𝛾𝜇u 𝑀Z + 𝐻¿ ℎ} + 𝛼

�~¯
�h

   (3.2-31) 

Take the time derivative of Eq. (3.2-6) and utilize Eq. (3.2-29), we get 

�Z
�h
= 𝜇u𝑑S

��
�h
+ 𝑠S

�a
�h

    

= 𝑠S
�a
�h
+ 𝑑S

�a
�h
− 𝜇u𝑑S

�X
�h

     

= 𝑠S
�a
�h
+ 𝑑S𝑒³O − 𝜇u𝑑S

�~²
�h

     

= �÷
�}

    (3.2-32) 

In summary, the scalar differential equations that will be used in the FDTD coding are as 

follows: 
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ℎ±u = − H�HycC

%
	�F´Ã
�h

− ScC

%
+ c

xy
𝑒³O   (3.2-33) 

ℎ±% =
H�Hy
%
	�F´Ã
�h

+ S
%
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−�~¯
�h
= 𝛾𝐻¿𝑏± − 𝛾𝜇u 𝑀Z + 𝐻¿ ℎ± + 𝑑S𝑇 + ¢

Qy
𝑒³O − 𝛼
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   (3.2-35) 
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𝑒³O −
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�~¯
�h

   (3.2-36) 

��²
�h
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�a
�}
= 𝜌 �÷

�h
   (3.2-38) 

�÷
�}
= 𝑠S

�a
�h
+ 𝑑S𝑒³O − 𝜇u𝑑S

�~²
�h

   (3.2-39) 

The differential equations in the piezoelectric layers are the same to those in [7]. An electrical 

flux density in the form of a modulated Gaussian pulse 𝐷 𝑡 = exp − 𝑡 − 𝑡u %/2𝑇% cos 2𝜋𝑓𝑡  

is applied through the vertical direction of the bottom piezoelectric layer to excite the resonance. 

3.2.3 Modeling Results and Analysis  

Typical material properties of yttrium iron garnet (YIG) and ZnO [73, 74] are applied in 

the FDTD code: 𝜖a = 12.64𝜖u , 𝑐L = 2.3032×10OO	[𝑁/𝑚%], 𝑐X = 2.11×10OO	[𝑁/𝑚%] , 𝑑L =

11.67×10^O%	[𝐶/𝑁], 𝑒L = 1.32	[𝐶/𝑚%], 𝜌V = 5.68×10�	[𝑘𝑔/𝑚�], 𝜌X = 5.17×10�	[𝑘𝑔/𝑚�], 

4𝜋𝑀Z = 1750	[𝐺𝑎𝑢𝑠𝑠]. Additionally, the initial values of 𝑑X  and 𝜇w  are assumed as follows: 

𝑑X L& = 0.05	[𝑝𝑝𝑚/𝑂𝑒] , and 𝜇w L& = 1 +𝑀Z/𝐻¿ ≈ 30 . The damping factor 𝛼  of YIG is 

calculated from the FMR linewidth 𝛥𝐻 = 20	𝑂𝑒. 

The radiation efficiencies of an aperture area of 1 mm2 as a function of frequency, as well 

as the mechanical-magnetic figure of merit 𝑘S% , are shown in Figure 3.2-1. The radiation 
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efficiency is calculated using 𝜉wic = 𝑅wic/𝑅¿� , where 𝑅wic = 2𝑃wic/𝐼%, 𝑍¿� = 𝐸}
u
^~ 𝑑𝑧 /𝐼, 

and 𝐼 = 𝜕𝐷 𝜕𝑡 ∙ 𝐴. The value of 𝑘S%  drops to almost zero at FMR, however, it reaches to the 

peak value in the vicinity of FMR, due to the large value of 𝜇′ and 𝜇áá. By tuning the applied DC 

magnetic bias in the y direction, we are able to couple FMR and BAW resonance together and 

get enhanced radiation efficiency over a wide bandwidth. However, due to the null of 𝑘S% , there is 

always a dip on the curve of the radiation efficiency. Nevertheless, the two resonances could be 

manipulated to be as close to each other as possible, in order to get as high radiation as possible. 

As can be seen from Figure 3.2-2, the eddy current loss in the middle magnetostrictive layer 

could dramatically reduce the antenna radiation performance. Therefore, the desired material for 

antenna radiation is that with high value of permeability near FMR, and with low electric 

conductivity.  
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Figure 3.2-1. Radiation efficiency for an aperture area of 1 mm2 (red curve), and mechanical-

magnetic figure of merit 𝒌𝑩𝟐  (blue curve) with magnetic DC biases. a. Hi=80 Oe, b. Hi=85 Oe, c. 

Hi=90 Oe, d. Hi=120 Oe. The conductivity of the magnetostrictive material is zero. 

 

Figure 3.2-2. Radiation efficiency for an aperture area of 1 mm2 (red curve), and mechanical-

magnetic figure of merit 𝒌𝑩𝟐  (blue curve) with magnetic DC bias Hi=80 Oe. The conductivity of 

the magnetostrictive material is 𝝈 = 𝟏𝟎𝟔 S/m. 
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3.3 3-D MUST Modeling 

The 1-D framework presented in the last section is under the assumption of infinite planar 

dimension, with the edge effect ignored. To fully visualize the antenna performance, we adopt 

the multiphysics modeling algorithm to the BAW antennas. As shown in Figure 3.3-1, with our 

3D modeling tool, we now have the complete capability to capture all the physics in the BAW 

antenna. Therefore, the BAW antenna radiation performance can be fully explored and optimized. 

The procedure of time-marching can be repeated on the basis of Section 2.2, and will not be 

expatiated. The time-stepping equations are advanced from Section 2.5 with the addition of 

mechanical stress field. The material properties uitilized in the BAW antenna design are 

specified in Table 3-1. 

 

Table 3-1. Material properties utilized in the BAW antenna design. 
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Figure 3.3-1. Multiphysics interaction in BAW antenna in 3-D framework. 

The stress field shown by Figure 3.3-2 clearly reveals that the electromagnetic radiation 

comes from the BAW resonance, and Figure 3.3-3 demonstrates the effect of FMR on the 

magneto-mechanical coupling. The radiation efficiency is enhanced when the FMR frequency is 

chosen to overlap with that of the BAW resonance. Figure 3.3-4 shows the radiation patterns, 

which are similar among different bias fields, with only minor asymmetry change of the cross-

pol. The relatively high cross-pol is due to the anisotropic property of the magnetic material. 

As shown by Figure 3.3-5, multiferroic antennas achieve efficiency-bandwidth products 

approaching to that defined by Chu’s limit [75], which validates the effectiveness of the 

electrically small multiferroic structure in supporting radiation out of it. Benchmark against the 

Chu’s limit has shown the potential of using such multiferroic antennas, especially in the 

integrated circuit application with the modern nano-fabrication technology. 
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(a) 

 

(b) 

Figure 3.3-2. Stress field in the BAW antenna. a.  Magnetostrictive coupling turned off. b. 

Magnetostrictive coupling turned on, 𝐇𝟎 = 𝟖𝟎	𝐎𝐞. The magneto-elastic material is assumed to 

have a similar mechanical property to that of YIG and the piezoelectric material with a similar 

mechanical property to that of zinc oxide (ZnO). It should be noted that the materials are 

artificially adjusted to study the effects of those parameters critical to the antenna performance. 
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Figure 3.3-3. Radiation efficiency under various in-plane magnetic DC bias. 

 

Figure 3.3-4. Far-field pattern of total radiated field, 𝐇𝟎 = 𝟖𝟎	𝐎𝐞. 
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Figure 3.3-5. Benchmark of BAW antenna versus Chu’s limit. 
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Chapter 4 

4 Summary 

4.1 Conclusion 

In this dissertation, we successfully proposed a multiphysics modeling technique based on 

ADI FDTD is proposed for the first time, to accurately model the dynamic interaction between 

micromagnetics and electrodynamics. The proposed method can model the fine detail of RF 

magnetic devices such as those containing magnetic thin films, and predict the dispersive and 

anisotropic properties of magnetic materials with high computational efficiency. With further 

expansion to include nonlinearity, magnetocrystalline anisotropy, exchange coupling and spin 

transfer torque, the proposed algorithm can be potentially used to design nonlinear RF magnetic 

and spintronic devices.  

Moreover, we have demonstrated by simulation that multiferroic antennas based on the 

dynamic interactions of electromagnetic and acoustic waves open up a new territory in 

conformal antenna design. BAW resonator structures are proposed to form effective dynamic 

strain coupling to a thin magnetostrictive layer, which may generate the dynamic magnetic flux 

needed for electromagnetic wave radiation. Both 1-D multi-scale FDTD code and the 3-D 

modeling tool are developed to model the proposed antenna structure. Numerical results agree 

well with the analytical results, which validates to both theoretical and numerical analyses. The 

analyses conclude that at the vicinity of FMR in the magnetic layer and with a reasonable 

magnetomechanical coupling figure of merit, the proposed BAW based multiferroic antenna can 

achieve a low radiation Q that may eventually lead to high efficiency radiation required for a 

practical antenna deployment.  
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4.2 Outlook 

         Magnetic materials by nature are nonlinear, dispersive, non-reciprocal and anisotropic in 

microwave regime even within the framework of classical micromagnetics described by the LLG 

theory. The non-reciprocal and anisotropic property of the magnetic material are the underlying 

mechanisms of magnetic circulators or polarizers, while the nonlinear and dispersive property of 

the magnetic materials can be utilized to create frequency selective limiters (FSL) or signal to 

noise enhancers (SNE) that can operate in a RF front-end to maintain its high sensitivity in a 

hostile environment. 

Currently, the state of the art in modeling RF magnetic components is significantly lagging 

those consisting of only electric material. Most commercial software being limited to modeling 

simple, linear material behavior which is not representative of material response in actual 

hardware. The 3-D MUST algorithm we propose in this dissertation has brought a big step 

forward toward the realization of such a comprehensive simulation tool, yet has not included the 

nonlinear effect. Furthermore, applications of thin or thick magnetic film components are 

thriving thanks to the maturing of nanofabrication technologies such as sputtering or deposition 

techniques. High quality films are readily available with thickness dimensions in the order of 

1/1000th to 1/10000th of the wavelength, ranging from a few 𝜇m to a few tens of 𝜇m that could be 

beneficial to developing advanced antennas and filters even at the low GHz frequencies. While 

the materials are available, the dramatic scale difference cannot be adequately addressed with 

commercial software due to the overwhelming computational complexity in both space and time 

gridding. 
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The instrinsic nonlinear and dispersive effects are critically important such as the excitation 

of spin waves through exchange of the magnetic domains with wavelengths in the order of 10 nm. 

These are important mechanisms contributing to line width broadening and frequency dependent 

dissipation observed in FSL and SNE. While important, modeling of such effects in a 

comprehensive way requires spatial resolutions down to a couple of nanometers, creating a 

modeling problem spanning six orders of magnitude in overall spatial scale, with governing 

physics being nonlinear quantum theory, including coupling and scattering of multiple magnons. 

Rigorous modeling of such physics over a practical device dimension is impossible even with the 

fastest supercomputer in the world. Existing micromagnetic simulators such as OOMMF can 

only model 3-D structures with dimensions up to only a few tens of nanometers in each direction. 

Adding nonlinearity to the formulation of spin waves could further exacerbate the computational 

complexity in such a software and resulting in more unrealistic computation time.  

The ultimate goal of our study is to attack this grand challenge through development of a 

multi-physics, multi-scale time-domain solver that can model the seven orders of magnitudes 

scale difference from nanometers to centimeters, including the physics from electromagnetic 

waves, acoustic waves to the nonlinear generation of dipole-exchange spin waves into one 

unified framework. Eventually, we would like to provide a comprehensive and precise modeling 

solution for nonlinear magnetics, which is numerically affordable in comparison to existing 

commercial software.   
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