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ABSTRACT OF THE DISSERTATION

Inverse Problems in Mathematical Imaging with Applications in Multiplicative Noise

Removal, Remotely Sensed Atmospheric Wind Velocity Estimation, and Turbulent Fluid

Simulation

by

Joel Ryan Barnett

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Andrea Bertozzi, Co-Chair

Professor Luminita Aura Vese, Co-Chair

This thesis considers three inverse problems originating in mathematical imaging, remote

sensing and simulation. First, it addresses a challenging image processing task: recovering

images corrupted by multiplicative noise. Motivated by the success of multiscale hierarchical

decomposition methods (MHDM) in image processing, a variety of both classical and new

multiplicative noise removing models are adapted to the MHDM form. On the basis of pre-

vious work, tight and refined extensions of the multiplicative MHDM process are proposed.

Existence and uniqueness of solutions for the proposed models is discussed, in addition to

convergence properties. Moreover, the work introduces a discrepancy principle stopping cri-

terion which prevents recovering excess noise in the multiscale reconstruction. The validity of

all the proposed models is qualitatively and quantitatively evaluated through comprehensive

numerical experiments and comparisons across several images degraded by multiplicative
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noise. By construction, these multiplicative multiscale hierarchical decomposition methods

have the added benefit of recovering many scales of an image, which can provide features of

interest beyond image denoising.

Second, this work considers an applied mathematical imaging problem in remote sens-

ing. Accurate estimation of atmospheric wind velocity plays an important role in weather

forecasting, flight safety assessment and cyclone tracking. Atmospheric data captured by

infrared and microwave satellite instruments provide global coverage for weather analysis.

Extracting wind velocity fields from such data has traditionally been done through fea-

ture tracking, correlation/matching or optical flow means from computer vision. However,

these recover either sparse velocity estimates, oversmooth details or are designed for quasi-

rigid body motions which over-penalize vorticity and divergence within the often turbulent

weather systems. This thesis proposes a texture based optical flow procedure tailored for

water vapor data. The method implements an L1 data term and total variation regularizer

and employs a structure-texture image decomposition to identify key features which improve

recoveries and help preserve the salient vorticity and divergence structures.

Based on the success of texture-features at improving the flow estimation, this procedure

is extended to a multi-fidelity scheme which incorporates additional image features into

the optical flow scheme. Both flow estimation methods are tested on simulated over-ocean

mesoscale convective systems and convective and extratropical cyclone datasets, each of

which have accompanying ground truth wind velocities allowing quantitative comparisons of

each method’s performance against existing optical flow methods.

Third, the thesis considers a data-driven reduced-order modeling problem. It is well

known that full-resolution simulations of turbulence is computationally expensive (and often

intractable), motivating the development of reduced-order models for practical engineering

and science applications. However, developing accurate reduced models for turbulent flow
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is impeded by the loss of unresolved scales which critically influence the full state. The

Mori-Zwanzig formalism is a mathematically exact strategy for performing reduced-order

modeling in which reduced-order variables (observables) are evolved by memory kernels and

an orthogonal dynamics term. Recently, frameworks for extracting Mori-Zwanzig kernels

from simulated data have shown promise for reduced turbulence models. However, these

same works highlight the importance of choosing an appropriate reduced-order observables

set, and how this choice can substantially affect the model’s overall success. This the-

sis proposes a joint-learning process to discover an improved set of observables in tandem

with extracting the Mori-Zwanzig memory kernels. The process is tested on simulated two-

dimensional turbulence data, and results show that the discovered set of observables enhances

the Mori-Zwanzig based turbulence model’s capabilities at predicting turbulent structures

and statistics within the resolved space, both in short and long trajectories.
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CHAPTER 1

Introduction

This thesis addresses three separate problems within the mathematical imaging, remote

sensing, and fluid simulation fields. First, we discuss an image denoising problem for a

particular form of noise present in radar and medical imaging. Then, we discuss a remote

sensing task pertinent to atmospheric sciences. Lastly, we address a reduced order modeling

problem for simulation. Each involves solving an inverse problem (often ill-posed), and each

has a clear application within the science community.

In Chapter 2, we address a classical imaging task: denoising a corrupted signal. While

there is an abundance of research for handling additive noise, much less work has been done

to remove multiplicative noise. Multiplicative or impulse noise is a common interference

found, for example, within radar (especially Synthetic Aperture Radar (SAR)) imaging and

ultrasound imaging systems. It is formed by the signal experiencing a corruption proportional

to itself, often the result of constructive or destructive interference from the diffuse reflection

of wavefronts off of the sensed terrain. The result is a speckle pattern degrading the image

which is challenging to remove.

We initially discuss the existing approaches for multiplicative denoising, and identify

several baseline models to use for comparison. Inspired by multiscale techniques for addi-

tive noise, we introduce a general multiscale hierarchical decomposition method (MHDM)

suitable for multiplicative interference. The goal of the MHDM approach is to not only pro-

vide a multiplicative denoising model, but also to develop a technique which can be flexibly
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adapted to a variety of existing or yet-to-come models for such types of corruption. An

MHDM approach has several benefits. By construction, the process requires little to no pa-

rameter tuning as is commonly needed for variational image denoising methods. Moreover,

because the image is recovered in successively refined scales, one can set a desired level of

detail to retain, or extract only scales of interest, and thus the method can be extended to

applications beyond image denoising. Now, without appropriate stopping conditions, multi-

scale approaches can recover excess noise. We address this by providing a suitable stopping

criterion based on the image noise level. We discuss the general behavior of the reconstructed

scales along with their convergence properties for general fidelity and regularization func-

tionals, and additionally consider the well-posedness of several specific models. Tight and

refined extensions of the standard multiscale approach allow for stronger convergence prop-

erties, and can recover slightly more textured features within an image. Detailed approaches

to numerically solving the induced minimization problems are discussed and we conduct

extensive numerical experiments for comparison.

In Chapter 3, we consider an applied imaging problem: estimating the wind velocity

of a region using remote sensing data. This problem is relevant for atmospheric modeling

and weather prediction. Computing accurate wind estimates with physical instruments is

expensive and infeasible if one needs detailed spatial coverage at a variety of altitudes and

over large regions. A natural approach to this problem would leverage remote sensing data

which can provide high-fidelity coverage over a wide swaths of the globe. Our approach

makes use of data recording the water vapor levels within the atmosphere at a specified

pressure level (altitude). This vapor concentration is a quantity which can be determined by

microwave and infrared enabled remote sensing satellites. The data itself comes from direct

numerical simulations from a comprehensive weather forecasting model, which provides not

only the water vapor data needed, but also accompanying wind velocity information so that
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we have a basis for comparison.

We discuss the optical flow problem of determining the displacement map between two

consecutive images which record a dynamic scene. The displacement map, known as the

flow, can be seen as the velocity field transporting one image into the next. Classically, this

flow field has been determined through correlation or block-matching means, which produce

spatially sparse flow estimates. As opposed to these local methods, dense estimates can be

found through global optical flow methods found in computer vision literature. We pro-

pose modifying the traditional optical flow constraint equation used within these dense flow

methods, and including additional data-features which aid flow extraction. These features

are similar to choosing a hierarchical level in the multiscale decomposition method discussed

in Chapter 2. We design two techniques to perform improved wind velocity estimations

by incorporating these features. The first, texture-flow, defines a multi-step process which

initially tracks the movement of the textured portion of the dataset independently from the

full data. The flow can then be refined by considering the full dataset. Second, we propose a

multi-fidelity flow process which incorporates many features into the optical flow constraint

equation simultaneously. Finally, a feasible numerical approach to handle the more compli-

cated fidelity terms is developed, and its construction is agile enabling it to easily be modified

to accept additional features as needed.

In Chapter 4, we consider a reduced order modeling problem for dynamical systems. In

particular, we consider turbulent fluid simulation where we want to evolve forward a reduced-

order representation of the system’s state. Reduced order models are often necessary for fluid

simulations because fully resolving all the scales present in turbulent flow is infeasible for

even mildly large domains.

Our approach to forming a reduced order model is inspired by the recent works of [LTL21,

TLA21,LTP23] which leverage theory from the Mori-Zwanzig formalism to develop a data-
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driven process for turbulence modeling. The Mori-Zwanzig formalism is a mathematically

exact description of reduced order dynamics, but it depends on a choice of observables

(reduced order functions of the full state) which are to be evolved. The authors in [TLA21]

found empirically that this choice can dramatically influence the quality of a model’s success,

yet there is no systematic way of choosing these features optimally.

This is the motivation for a data-driven observable discovery method. Selecting the

observable set is an inverse problem, whose corresponding forward problem is the forward

simulation of the system using the discovered observables. We discuss the popular Koop-

man approach to reduced order modeling before providing an overview of the Mori-Zwanzig

formalism, deriving its generalized Langevin dynamics equation and Markov and memory

kernel relationships. Importantly, we establish the generalized fluctuation-dissipation rela-

tion which relates memory kernels to the dynamics orthogonal to the resolved space. We

also discuss a discrete Mori-Zwanzig formulation which can be adapted for data-driven ap-

proaches to learn the Markov and memory kernels. Given a numerical approach to Mori-

Zwanzig memory based forward simulation, we consider the inverse problem of determining

observables which will improve the accuracy of the forward problem.

We propose a convolutional neural network to learn the observable function, which the

forward process will evolve, and jointly train the network and the memory kernels via an

alternating minimization scheme. We test the process on two-dimensional, fully resolved

direct numerical simulations of turublent flow, and compare the output to coarse-grain com-

putational fluid dynamics simulations as well as Mori-Zwanzig based approaches using a

predefined observable set.
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CHAPTER 2

Multiscale Hierarchical Decomposition Methods for

Images Corrupted by Multiplicative Noise
1

2.1 Introduction to Image Denoising

Signal corruption is typically unavoidable during data collection. Blur can be introduced

during image formation by lens misalignment or jitter, while noise is accumulated from

random affects on the sensor, during image transmission, storage or compression. Born from

this reality are a myriad of image processing techniques aimed at cleaning such corrupted

signals.

The challenge of eliminating noise from an image (or signal) is characterized by a fre-

quently encountered reality in mathematical disciplines: being easy to state but difficult to

solve. Indeed, the problem of image denoising (with possible blur) can be simply formulated.

Given a noisy signal f δ,

f δ = Tz + n, (2.1)

recover an approximation of the clean image z : Ω → R, where n ∼ NΩ represents some

added noise on the domain Ω, and T : L2(Ω) → L2(Ω) is a bounded linear operator which

applies blur. Here, Ω (typically ⊆ R
2) determines the domain of the image, and δ is a

parameter related to the noise level, which we will address in subsequent sections.

1This chapter is adapted from [BLR23], which is under review.
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Figure 2.1: Tikhonov and Total Variation regularized denoising examples. From left to right:

z, the clean image; f δ, the noise degraded image; the Tikhonov recovery approximating z

via (2.2); the recovery to (2.5) with total-variation regularization. The noise is Gaussian of

mean 0 and standard deviation 0.1.

Recovering z from f δ in (2.1) has been the subject of much research. The problem (2.1)

is well posed if existence, uniqueness, and continuous dependence of the solution on the data

holds (i.e., if T is injective, T−1 exists and is continuous). If these fail to hold, then inference

of z is an ill-posed inverse problem. To solve (2.1), early methods involve filtering or least

squares [Hun73], but suffer from over-smoothing or Gibbs phenomena and cannot recover

sharp edges well. To overcome ill-posedness, regularity conditions on u can be added. For

example, quadratic Tikhonov regularization attempts to determine z by finding a u near f δ

(in a least squares sense), with added spatial regularization |∇u|2

u = arg min
u

λ‖f δ − Tu‖2 + ‖∇u‖2. (2.2)

However, an image, u, recovered via (2.2) has smeared out edges, as show in Figure 2.1.

This undesirable effect occurs because u is enforced to be continuous, and thus no brightness

jumps—i.e. edges and texture—within an image are allowed.
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2.1.1 Total Variation Image Denoising

The seminal paper [ROF92] by Rudin, Osher and Fatemi (ROF) approaches (2.1) by looking

to recover an approximation, u, of z which lives in a sufficiently regular function space to

remove noise, but still allows adequate variation for u to be a reasonable natural image. The

proposed space is BV (Ω), the set of functions of bounded variation.

By BV (Ω), we mean functions for which TV (u) <∞, where the total variation, TV (·),

is defined as follows.

Definition 2.1.1. The total variation of an image is defined by duality. For a function

u ∈ L1
loc(Ω), the total variation is given by

TV (u) := sup
φ

{
−
∫

Ω

u div(φ)dx : φ ∈ C∞c (Ω;RN), |φ(x)| ≤ 1 ∀x ∈ Ω

}
(2.3)

BV (Ω) is endowed with the norm ‖u‖BV (Ω) = ‖u‖L1(Ω) + TV (u).

Remark 2.1.2. For a smooth function u ∈ C1(Ω) (or one where ∇u ∈ L1(Ω)),

−
∫

Ω

u div(φ)dx =

∫
Ω

φ · ∇u,

and the supremum over all ‖φ‖L∞(Ω) ≤ 1 is TV (u) =
∫

Ω
|∇u|.

We will abuse notation slightly and use
∫

Ω
|∇u| for TV (u) formally, with ∇u indicating

both the gradient (when it is defined) and the distribution associated with TV as needed.

Importantly, functions in BV (Ω) can be discontinuous. For example, on [0, 1] ⊂ R the
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step function u(x) = 0 for x ∈ [0, 1), u(x) = 1 for x ∈ [1/2, 1] has total variation

TV (u) = sup
φ
−
∫ 1

0

u(x)φxdx

= sup
φ
−

(∫ 1/2

0

0 · φxdx+

∫ 1

1/2

1 · φxdx

)

= sup
φ
−φ
∣∣1
1/2

= sup
φ

(φ(1/2)− φ(1)) = 1.

The last equality holds recalling φ is compactly supported (i.e. φ(1) = 0) and |φ(x)| ≤ 1

on [0, 1]. Hence u ∈ BV ([0, 1]). This property of allowing discontinuous functions makes

BV (Ω) an ideal candidate space for images which may contain edges and features where

jumps in intensity are desirable.

Armed with a suitable function space, the ROF method enforces a recovered image, u, to

be in BV (Ω) by introducing a regularizing functional J(·) = TV (·). Referring to (2.1), the

goal is to find the smoothest (or most regular) function u which fits the data f δ ≈ Tu + n

appropriately (i.e., u may require jumps to fit well). Smoothness is dictated by the regularity

condition J(·), and smoothest implies minimizing J(u) subject to some fitting constraint. If

some statistics for the noise are known, one can be more precise by what fitting the data

means. Since f δ − T (z) = n,
∫

Ω
(f δ − Tz)2 = V[n]|Ω| (assuming E[n] = 0). For now, we

assume |Ω| = 1, and rewrite the objective as

min
u
J(u) subject to

∫
(Tu− f δ)2 = σ2, (2.4)

where σ is the standard deviation of n. By introducing a Lagrange multiplier, λ, the con-

strained problem can be rewritten as solving ∇u,λL(u, λ) = 0 where

L(u, λ) = λ

∫ [
(Tu− f δ)2 − σ2

]
+ J(u).
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Naturally, by ∂u we mean first variation and ∂uL(u, λ) = 0 is a criticality condition for the

unconstrained optimization

min
u
λ

∫
(Tu− f δ)2 + J(u), (2.5)

which is the form frequently encountered in imaging texts. Solving (2.5) with J(·) = TV ( · ),

one can clearly see the greater edge detail retained by the ROF method when compared with

the Tikhonov recoveries (2.2) in Figure 2.2.

Forgetting the Lagrange multiplier approach momentarily, the format (2.5) can equiva-

lently be seen as finding a balance between fitting the data closely—appropriately,
∫

(Tu−

f δ)2 is often referred to as the data fidelity term—while still remaining smooth enough, and

the balance is controlled by the weighting λ. The choice of the weight can force recoveries

u to match the data very closely (large λ) at the cost of retaining more noise, or obtain

very cartoonish representations of f (small λ) which have high regularity. Many approaches

to solve (2.5) exist, and a useful compilation of Euler-Lagrange, augmented Lagrangian,

primal-dual, gradient descent, splitting and graph-cut approaches are given in [CCN09].

The observation that BV is a suitable function space for image recovery combined with

variational methods spawned a plethora of research [RO94b, AV94, Ves01, Mey01, VL16] for

total-variation based methods for image denoising and deblurring tasks. In [CMM00], a

higher order penalty is proposed to combat the stair-case effect that can crop up with the

piece-wise constant solutions (2.5) produces. This modified penalty balances a total variation

term to preserve large edges, and an adaptive penalty (∆u/
√
|∇u|2 + ε for example) which

acts heavily in regions of small gradients (i.e. where smooth gradations should exist), but is

reduced near large gradients (i.e. where true edges should be).

Additional works extended the ROF approach to image decomposition techniques [CL97,

Mey01,LV05] and segmentation approaches [CV99,CV00,CV01,VC02,LV08] extending the

popular Mumford-Shah Segmentation [MS85,MS89].
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2.1.2 Multiscale Methods for Image Restoration

In 2004, Tadmor, Nezar and Vese introduced a multiscale image restoration method [TNV04]

aimed at decomposing an image into features of several scales. The authors extended decom-

position methods which typically broke an image, z, into pieces z = u+ v, where u captured

the essential features of z while v contained fine scale components of z (and potentially noise

if we have a corrupted signal f δ instead of z). The extension iterated on the prior process,

recovering a representation of z by a sum of parts uj, each which represented finer and finer

scaled features of z. This decomposition strategy was leveraged for image denoising.

Starting with a signal, f δ = Tz + n, perturbed by additive noise, let λ0 be a positive

number and u0 be a solution of the ROF problem (2.5) with λ = λ0. Then, define the

sequence of functions {uk} ⊆ BV (Ω) recursively, where each function satisfies

uk ∈ arg min
u
{λk‖Tu− vk−1‖2 + TV (u)}, (2.6)

with λk = 2kλ0 and vk−1 = f δ −
∑k−1

j=0 Tuj, and thus f δ = Tu0 + Tu1 + · · ·+ Tuk−1 + vk−1.

Equivalently, procedure (2.2.1) can be expressed as

min
u
{λk‖T (u+ xk−1)− f δ‖2 + TV (u)},

for k ≥ 0, where xk−1 =
k−1∑
j=0

uj and x−1 = 0 (see also [MNR19]). Overall, (2.2.1) can be

thought of as fitting the residual vk−1 at each step.

The process compiles multiscale portions uj, which form a hierarchical assembly of scales

of the image f δ. Taking many segments (i.e., xk =
∑k

j=0 uj with k large) retains much of

the detail of f δ, but potentially contains noise. Retaining fewer scales (i.e., only small or

moderate k) holds the main features of f δ, but may miss finer features.

Convergence rates of (Txk) to Tz have been analyzed in [MNR19,LRV21,TNV04,TNV08],

while improved versions of this multiscale process have been introduced and studied in
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[MNR19,LRV21,TH16], including a stopping criteria for choosing k in [LRV21].

As an introduction to image denoising, we have briefly covered variational approaches

to decluttering a signal in the presence of noise. Additionally, we introduced the multiscale

hierachical decomposition process (2.2.1) and described how the process can be extended

to denoising images. However, all the prior works are concerned with additive noise. The

problem we wish to address is one of multiplicative noise, which we now turn to.

2.2 The Multiplicative Noise Problem

While the literature on denoising and deblurring images affected by additive noise is quite

rich, the study of images corrupted by multiplicative noise still requires attention. This

type of noise is inherent in radar, synthetic-aperture radar (SAR) and ultrasound images,

cf. [Goo76,Bur78]. Our aim is to contribute to the topic not only by removing such noise from

images, but also by proposing multiscale decomposition strategies for those images, similar

to the contributions of [TNV04, TNV08, MNR19, LRV21] in case of additive corruption.

More precisely, this work expands multiscale methods to the multiplicative-noise domain.

While we apply such techniques to foundational methods from [RO94a, AA08, SO08], the

resulting procedures could translate to other approaches aimed at multiplicative corruption.

The importance of providing decompositions of medical images that separate the coarse and

fine scales has been clearly highlighted in the case of image registration when significant

levels of noise are involved [PLS06] (see also [MNR19, DLV23]). The reader is referred also

to [BBF97, RB96] that address astronomical imaging and the need of recovering objects of

very different sizes.

In a multiplicative noise problem, a clean image z : Ω ⊆ R
2 → R is degraded by

multiplicative noise η : Ω → R of mean 1 and (possibly) blurred by an ill-posed, linear,
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bounded operator T : L2(Ω)→ L2(Ω), where Ω is a domain in R2. These together form the

degraded data

f δ = (Tz) · η, (2.7)

where δ is a parameter relating to the size of the noise, referred to hereafter as the noise

level. Throughout this work, we denote by f ∈ L2(Ω) the exact data satisfying Tz = f .

A natural way to approach multiplicative noise is to manipulate the problem into a

familiar form and apply existing techniques. At least in the pure denoising case, the logarithm

transforms the problem f δ = z · η to an additive noise system log(f δ) = log(z) + log(η)

for which a plethora of denoising methods exist. Indeed, this idea has been tried—the

reader can find in [AA08] a discussion of a log-additive model. However, as pointed out

in [AA08], blindly applying the log transform and employing algorithms for additive noise

removal do not necessarily provide reasonable reconstructions, because the reconstruction

means are often much smaller than those of the original images. This is due to the primary

assumption of additive-noise methods, namely, zero-mean noise. However, the noise term

in the transformed problem, log(η), is not necessarily zero-mean. To be more precise, by

Jensen’s inequality one has log(E[η]) ≥ E[log(η)]. If a restoration of the system log(f δ) =

log(z) + log(η) is found under the assumption that E[log(η)] = 0, then log(E[η]) ≥ 0.

Consequently, one has E[η] ≥ 1. Moreover, since log(·) is a strictly concave function, Jensen’s

inequality is strict as soon as there is any noise, and we conclude E[η] > 1, a contradiction

to η having mean 1.

One can estimate this change in expectation by expanding log(η) about E[η] and taking

expectation,

E[log(η)] ≈ log(E[η])− V[η]

2E[η]2
,

whenever the distribution of η allows such quantities to be defined. Such restorations u

will satisfy f δ ≈ u · η, implying E[u]E[η] ≈ E[f δ], and necessarily E[u] / E[f δ] = E[z],
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indicating a shift in the reconstruction mean E[u] from the image mean E[z]. Therefore,

designing novel algorithms which address directly the multiplicative noise is highly desirable.

2.2.1 Multiplicative Noise Models

Let us review below several variational models for restoring images corrupted by multiplica-

tive noise. Rudin and Osher [RO94a] introduced in 1994 the following model for image

denoising by imposing constraints on the mean and the variance of the noise,

min
u

{
TV (u) + λ

∫
Ω

(
f δ

u
− 1

)2
}
, (2.8)

where TV is the total variation and the minimization is performed in the space of bounded

variation functions BV (Ω). Note that problem (2.8) is well-defined when f δ ∈ L∞(Ω) and

infΩ f
δ > 0 (see [Cha23, CL95]), and the unique minimizer u verifies infΩ f

δ ≤ u ≤ supΩ f
δ

a.e.

In 2008, Aubert and Aujol [AA08] proposed minimizing the energy

E(u) = TV (u) + λ

∫
Ω

(
log(u) +

f δ

u

)
(2.9)

over the set {u ∈ BV (Ω) : u > 0} for denoising images degraded by a gamma-law speckle

noise, with f δ > 0 as well. We will call this the AA model. The authors demonstrated that

minimizers of (2.9) exist, however, the data fidelity term
∫

Ω

(
log(u) + fδ

u

)
is only strictly

convex for u ∈ (0, 2f δ) a.e., and not globally convex, so the minimization problem may

not have a unique solution. They also noted that (2.9) can be extended to deblurring by

involving an appropriate operator T ,

E(u) = TV (u) + λ

∫
Ω

(
log(Tu) +

f δ

Tu

)
.

Concurrently, Shi and Osher [SO08] introduced two multiplicative noise removal models.
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The first one, which looks for

arg min
u

{
TV (u) + λ

∫
Ω

(
a
f δ

u
+
b

2

(
f δ

u

)2

+ c log(u)

)}
, (2.10)

is a more general AA formulation which can be reduced to (2.9) by setting b = 0 and a = c.

Again, the fidelity term is not globally convex. To address this, Shi and Osher let w = log(u)

within the fidelity term of (2.10) and replaced TV (u) with TV (w), thus producing the second

model which is convex (in w),

arg min
w

{
TV (w) + λ

∫
Ω

(
af δe−w +

b

2
(f δ)2e−2w + cw

)}
. (2.11)

Having solved the now convex minimization problem for w, the true image estimate can

be recovered by u = ew. It is worth emphasizing that this partial transformation, which

replaces TV (u) = TV (ew) with TV (w), shifts the regularization to the logarithm of the

image intensity. Consequently, the majority of smoothing is performed on image intensities

near 0, while larger intensities are much less smoothed.

There have been several extensions of the works [AA08,SO08] which enforce convexity of

the objective functional or tackle the efficient computation of the minimizers. For instance,

the authors in [HNW09] studied (2.11) with a = c = 1 and b = 0, splitting the regularizing

and fidelity terms, and adding a quadratic fitting term. A primary reason for the formu-

lation in [HNW09] is the numerical efficiency in solving the minimization with an iterative

alternating scheme.

Rather than transform w = log(u) to gain convexity, Dong and Zeng [DZ13] introduced

an additional quadratic penalty term to the AA model

ET (u) := λTV (u) +

∫
Ω

(
log(Tu) +

f δ

Tu

)
+ α

∫
Ω

(√
Tu

f δ
− 1

)2

, (2.12)

thus ensuring convexity of the fidelity term for α ≥ 2
√

6
9

, as well as coercivity of the objective

functional for the more general problem of deblurring. Hereafter, we refer to (2.12) as the DZ
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model. We mention also the interesting approach for multiplicative noise removal in [ST10],

that uses a data fidelity which is typical for eliminating Poisson noise, and incorporates

total variation or nonlocal means as regularizers. Additionally, in recent years there have

been new approaches for removing multiplicative noise from images with or without blur. In

[UCK17] and [JWM22], the authors made use of a fractional-order total variation and a total

generalized variation penalty, respectively. The paper [WLL20] considered a convex scheme

for structured multiplicative noise, [LF16] proposed an improved algorithm for the DZ model

[DZ13], and [ZLG22] adapted Euler’s elastica to the multiplicative noise problem. The reader

is referred further to the introduction and the included references on the multiplicative noise

topic in [DMR22]. There are also methods addressing denoising of color images degraded by

speckle noise, which employ a total variation function adapted to red-green-blue (RGB) and

hue-saturation-value (HSV) images (see [UCK17] and [WYN21], respectively). Studies on

using convolutional neural networks for speckle noise removal can be found in [CDI23,NW22].

As mentioned above, our aim goes beyond the need of reconstructing images corrupted

by multiplicative noise. That is, we focus also on obtaining decompositions of such images

along several scales in a variational manner. For simplicity, we consider here the case of

additive noise removal (see again from [TNV04, TNV08]), starting from the ROF model

(2.5) reproduced below

min
u
{λ0‖Tu− f δ‖2 + TV (u)}.

It is not easy to determine an appropriate parameter λ0 to ensure that the cartoon (the main

features of the image) is well extracted and also the image texture is well preserved while

removing the noise. The advantage of the hierarchical process is that it enables separation

of noise and image texture in increasingly refined scales by updating parameters, since the

texture can be seen as cartoon at finer scales. As a result, the method provides an approxima-

tion of the original image f by a sum of image components, that is f ≈
∑
uj. As explained
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in [TNV04] (see also the more recent work [KRW23]), the approximation
∑
uj obtained at

the k-th hierarchical step involving the regularization parameter λk does not necessarily co-

incide with the one-step ROF minimization corresponding to the parameter λk. This shows

the versatile role of the hierarchical decompositions versus single-step variational models.

Motivated by stronger theoretical properties and better restoration effects, tight and refined

versions of the multiscale hierarchical decomposition for denoising and deblurring images

with additive noise were proposed in [LRV21] (see also [MNR19] for a more general tight

version). Moreover, [LRV21] proposed for the first time the discrepancy principle for early

stopping in the original, tight and refined MHDM.

2.2.2 Contributions and Organization

In this study, we introduce, test, and provide convergence properties for several hierarchical

decomposition procedures designed to recover structured and textured images with multi-

ple scales, when affected by multiplicative noise. Specifically, we propose four multiscale

hierarchical decomposition methods for multiplicative noise removal, called SO MHDM, AA

MHDM, AA-log MHDM and TNV-log MHDM. Thus, we first formulate a direct MHDM

extension of the Shi-Osher model (2.11), which we abbreviate as SO MHDM, allowing us

to adapt the summed-MHDM denoising techniques from [LRV21] to the new data fidelity

setting, which is no longer quadratic (see Remark 2.3.3). Secondly, we proceed similarly with

the AA model (AA MHDM, for short), and additionally introduce a penalty-modified adap-

tation of the AA model (2.9) (abbreviated as AA-log MHDM) which handles multiplicative

gamma noise and blurring. Finally, we introduce a new variational model, that is a modified

RO model, in which the TV penalty is replaced by TV(log). Then we derive its multiscale

adaptation, thus yielding the so-called TNV-log MHDM. In order to promote more details in

the reconstruction of the images perturbed by multiplicative noise, we introduce also tight
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and refined MHDM versions, and emphasize their effect on images with more texture.

We expect that the proposed multiplicative multiscale hierarchical decomposition meth-

ods can be extended to applications beyond image restoration, such as image fusion [CFX15,

BD18], image representation [TA09], image registration and inverse problems [XAN14,MNR19].

The current work is organized as follows. In Section 2.3, we lay out the general strategy

of hierarchical decomposition for multiplicative noise degraded images. We justify well-

definedness, convergence properties and stopping rules of such schemes in Sections 2.4 and

2.5. Tight and refined modifications of the recovery schemes are analyzed in Section 2.6.

We propose several numerical discretizations of the methods in Section 2.7, present detailed

numerical results in Section 2.8, and point out the robustness of the proposed procedures,

as well as the advantages of using one method or another, depending on the structure of the

given image.

2.3 MHDM for Multiplicative Noise

In the multiplicative denoising problem, recovering the true image z in BV (Ω) amounts to

solving the equation

f δ = (Tz) · η

in a stable way, where z is assumed to contain features at different scales, as happens

for example, in natural images. Our aim is to derive multiscale hierarchical decomposi-

tion methods for images affected by multiplicative noise, inspired by the idea developed

in [TNV04,TNV08].

For images degraded by multiplicative noise, the only multiscale hierarchical decomposi-

tion we know about is the one from [TNV04] and [TNV08], which uses an increasing weighting
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parameter λk in the iteration-adapted Rudin-Osher model (2.8). Namely, one starts with

u0 ∈ arg min
u

{
λ0

∫
Ω

(
f δ

u
− 1

)2

+ TV (u)

}
,

where λ0 is a positive parameter, and proceeds further with a similar minimization problem

by doubling λ0 and considering the new residual f δ/u0 which might contain more features

of the original image, and so on. The minimizers uk obtained iteratively as

uk ∈ arg min
u

{
λk

∫
Ω

(
f δ

uu0 · · ·uk−1

− 1

)2

+ TV (u)

}
for k ≥ 0 (with u−1 = 1) are well-defined [CL95] and can be characterized as shown in

[TNV08].

To set up a general multiscale hierarchical decomposition method for multiplicative noise,

we work with a general data fidelity term in order to provide analysis in a unifying setting.

Assume that J : L2(Ω) → [0,∞] is a proper function and H is a non-negative data fitting

term to be specified later. Let uk be defined as follows:

uk ∈ arg min
u
Ek(u), with Ek(u) = λkH(f δ, T (uxk−1)) + J(u), (2.13)

where xk−1 =
k−1∏
j=0

uj, x−1 = 1 and λk+1 = 2λk, if k ≥ 1. For example, choosing the data

fidelity

H(f δ, Tu) =

∥∥∥∥ f δTu − 1

∥∥∥∥2

(2.14)

yields the Rudin-Osher variational method (2.8) for deblurring images, while

H(f δ, Tu) =

∫
Ω

(
f δ

Tu
+ log(Tu)− log(f δ)− 1

)
(2.15)

is the Itakura-Saito divergence that leads to the Aubert-Aujol model, with a general regu-

larization term J(·). Note that this divergence is the Bregman distance

DF (f δ, u) = F (f δ)− F (u)− 〈∇F (u), f δ − u〉,
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with associated Burg entropy F (u) = − log(u). The resulting distance is non-negative due

to the convexity of the entropy, − log(u). We will mention later more properties of H that

will be helpful in the analysis regarding convergence of (Txk) to the exact data f . More

properties of the multiplicative MHDM schemes introduced in this work, e.g. error estimates,

will be shown when using penalty functionals J satisfying

J(uv) ≤ J(u) + J(v), J(u) = J

(
1

u

)
, J(1) = 0, (2.16)

for any u, v ∈ domJ = {u ∈ L2(Ω) : J(u) < ∞}. An example of such a function is

J(u) = ϕ(log(u)), where ϕ is a seminorm (e.g., the total variation or the ∗-norm introduced

in Sec. 2.6.2).

For the moment, we assume that minimizers uk in (2.13) exist, and instead focus on

the analysis of the multiscale decomposition method. Note that existence results will be

pointed out for the particular denoising models we deal with in Section 2.4, while existence

of solutions for the deblurring models (that is T 6= I) will be considered in more detail in

our future research.

Remark 2.3.1. Let us discuss the choice of the data-fidelity term in (2.13). The first iterate

u0 is just a minimizer of λ0H(f δ, Tu) + J(u). When searching for u1, we can consider two

possibilities. The first one consists of looking for u1 such that the misfit between T (u1u0)

and f δ becomes smaller than the one between Tu0 and f δ, and corresponds to the choice

λ1H(f δ, T (uu0)) + J(u) used in (2.13). Thus, the clean data f will be approximated by

T (u0u1 . . . uk). The second possibility addresses the “new” data f δ/Tu0 and amounts to

finding u1 as a minimizer of λ1H(f δ/Tu0, Tu) + J(u). In this case, it is desired that the

product Tu0Tu1 . . . Tuk converges in some sense to f . Our work focuses on the first version,

since it is hoped that the product u0u1 . . . uk might approximate the true image z in both the

denoising and deblurring case.
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Remark 2.3.2. The Itakura-Saito divergence occuring in the AA-model has the interesting

property of being scale invariant in the following sense: H(λu, λv) = H(u, v) for any λ > 0.

Therefore, in the denoising case, it holds that H(f δ, uu0) = H(f δ/u0, u), showing that the

two approaches from Remark 2.3.1 coincide. The same holds for H used in the Rudin-Osher

model.

Remark 2.3.3. For clarity, we will at times refer to hierarchical decompositions which break

an image down into a sum
∑

j uj as summed-MHDM (like the those studied in [TNV04,

LRV21]). We introduce this vocabulary to distinguish from the decomposition techniques

which use a multiplicative hierarchical representation
∏

j uj of an image.

2.4 Well-definedness of several models for multiplicative noise re-

moval

Recall we are focusing on multiscale hierarchical decompositions applied to variational de-

noising models that address multiplicative noise. Before listing those models, we verify

the following equivalence that will ensure well-definedness for some schemes of type (2.13)

involving particular penalties J = TV (log).

Proposition 2.4.1. The following minimization problems in BV (Ω)

u∗ ∈ arg min
u

{
E(u) := λH(f δ, u) + TV (log(u))

}
(2.17)

and

w∗ ∈ arg min
w

{
Ẽ(w) := λH(f δ, ew) + TV (w)

}
(2.18)

are equivalent (that is, they have the same minimum values). Moreover, the following holds:

If u∗ is a minimizer of (2.17), then log(u∗) minimizes (2.18), and if w∗ is a minimizer of

(2.18), then ew
∗

minimizes (2.17).
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Proof. Note that, whenever E and Ẽ are defined, one has E(u) = Ẽ(log(u)) and Ẽ(w) =

E(ew), and furthermore, the minimum values of (2.17) and (2.18) are finite. Indeed, one

can easily substitute the constant functions u = 1 or w = 0 to get a finite energy. To

show that minimizers of Ẽ lead to minimizers of E, let w∗ ∈ BV (Ω) minimize (2.18). Since

ew
∗ ∈ BV (Ω) holds by a chain rule property (see [Vol67]), we propose this as a candidate

minimizer of (2.17). Indeed, suppose by contradiction that there exists u ∈ BV (Ω) so that

E(u) < E(ew
∗
) = Ẽ(w∗).

Since E(ew
∗
) < ∞, we have E(u) < ∞ and so log(u) ∈ BV (Ω). Consequently, log(u) is

feasible for Ẽ and

Ẽ(log(u)) = E(u) < Ẽ(w∗),

a contradiction to the minimality of Ẽ(w∗). We conclude u∗ = ew
∗

is feasible and minimizes

(2.17).

For the reverse implication, consider u∗ ∈ BV (Ω) minimizing (2.17) and suppose there

is a w ∈ BV (Ω) with

Ẽ(w) < E(u∗).

But then, ew ∈ BV (Ω) and consequently E(ew) = Ẽ(w) < E(u∗), a contradiction. Further-

more, w∗ = log(u∗) is in BV (Ω) by the finiteness of E(u∗), so w∗ minimizes Ẽ.

We focus on the following variational models, among which the TNV-log is based on a

new energy functional. This is the first work that considers and analyzes these multiscale

hierarchical adaptations.

1. A particular Shi-Osher (SO) MHDM model: One can replace the total variation

penalty in (2.9) by J(u) = TV (log(u)) and substitute w = log(u), thus obtaining the convex

optimization problem

min
w

{
TV (w) + λ0

∫
Ω

(
f δe−w + w

)}
. (2.19)
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This is (2.11) for a = c = 1 and b = 0. The paper [JY10] showed existence and uniqueness

of the minimizer w0 when the data f δ ∈ L∞(Ω) satisfy infΩ f
δ > 0. Moreover, the minimizer

w0 verifies infΩ(log(f δ)) ≤ w0 ≤ supΩ(log(f δ)). We can now apply summed-MHDM, that is

solving

wk = arg min
w

{
λk

∫
Ω

(
f δe−(yk−1+w) + yk−1 + w − log(f δ)− 1

)
+ TV (w)

}
, (2.20)

where yk−1 =
∑k−1

j=0 wj for k ∈ N, with y−1 = w−1 = 0. Note that our data fidelity also

incorporates the term − log(f δ)− 1 in order to build the Itakura-Saito divergence, which is

non-negative.

As in the case of w0, existence and uniqueness can be shown for w1 (and for further

iterations), since the updated data f δ/ew0 are also away from zero, and the remaining iterates

continue to satisfy this relation inductively.

2. AA MHDM model: It was shown in [AA08] that minimizers u0 of the AA model (2.9)

exist in BV (Ω) for data f δ ∈ L∞(Ω) which satisfy infΩ f
δ > 0. Moreover, any minimizer

u0 obeys infΩ f
δ ≤ u0 ≤ supΩ f

δ. In order to obtain existence of u1 and of further MHDM

iterates, one takes into account that f δ/u0 belongs also to L∞(Ω) and verifies infΩ f
δ/u0 > 0.

Hence, by the same argument in [AA08], u1 minimizing the AA model with data f δ/u0 exists

in BV (Ω), and so on. The generated AA MHDM scheme given by

uk ∈ arg min
u

{
λk

∫
Ω

(
f δ

uxk−1

+ log(uxk−1)− log(f δ)− 1

)
+ TV (u)

}
(2.21)

will briefly be discussed theoretically and numerically in the upcoming sections.

3. The AA-log MHDM model: One can employ directly the penalty J(u) = TV (log(u))

in the AA model,

min
u
λ

∫
Ω

(
f δ

u
+ log(u)− log(f δ)− 1

)
+ TV (log(u)). (2.22)
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Clearly, the substitution w = log(u) yields the SO model. By taking into account the

latter and by applying Proposition 2.4.1, problem (2.22) has a unique minimizer. It follows

that the MHDM problem

uk ∈ arg min
u

{
λk

∫
Ω

(
f δ

uxk−1

+ log(uxk−1)− log(f δ)− 1

)
+ TV (log(u))

}
(2.23)

is also well-defined in this case.

Despite transforming into the convex SO model under the appropriate substitution, we

include the AA-log method because it extends to deblurring, and in the presence of blur the

log-transformation no longer produces a convex problem.

4. The TNV-log model: We propose a version of the Rudin-Osher minimization problem,

where the penalty J(u) = TV (log(u)) is used instead of just TV . It reads as

min
u

{
λ0

∫
Ω

(
f δ

u
− 1

)2

+ TV (log(u))

}
. (2.24)

Since the TNV method is a multiscale adaptation of the RO model, correspondingly, we call

RO-log model’s multiscale form the TNV-log model, given by

uk ∈ arg min
u

{
λk

∫
Ω

(
f δ

uxk−1

− 1

)2

+ TV (log(u))

}
. (2.25)

The existence of minimizers u0 can be shown via Proposition 2.4.1 and the following Propo-

sition 2.4.2.

Proposition 2.4.2. Let f δ ∈ L∞(Ω) such that infΩ f
δ > 0. Then, there exists at least one

solution w ∈ BV (Ω) of the problem

min
w

{
λ0

∫
Ω

(
f δe−w − 1

)2

+ TV (w)

}
, (2.26)

such that infΩ log f δ ≤ w ≤ supΩ log f δ a.e.

Proof. Let h(x) = (ae−x − 1)2, where a > 0 and x ∈ R. One can prove the result by

following the techniques from [AA08, Theorem 4.1], taking into account that the function h

is nonincreasing on (−∞, log(a)) and nondecreasing on (log(a),∞).
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As opposed to the situation of the AA model where the w = log(u) transformation

produces a convex problem (2.19), we do not focus on the form (2.26) since it does not

exhibit special properties, and in practice the recoveries are the same or slightly worse than

those from the TNV-log model (2.24).

2.5 Convergence properties of the multiplicative MHDM

We will consider a general data fidelity H and a penalty, J , which for the moment does

not necessarily satisfy (2.16). Moreover, supposing that the general multiscale hierarchical

decomposition schemes (2.13) are well-defined (minimizers exist, but might not be unique),

we focus on convergence properties of the corresponding iterates. We assume in what follows

that the given noisy data f δ verify

H(f δ, f) ≤ δ2, δ > 0, (2.27)

where f denotes the exact—that is, non-noisy but potentially blurred—data. Moreover,

existence of a clean image z satisfying Tz = f and J(z) <∞ is also assumed.

The lemma below shows a couple of basic properties for procedure (2.13) (including the

SO model, after the logarithm substitution), whenever the iterates are well-defined.

Lemma 2.5.1. Assume that J(1) = 0 and that the iterates xk =
∏k

j=0 uj given by (2.13)

are well-defined. Then the following inequality holds for any k ≥ 0,

λkH(f δ, Txk) + J(uk) ≤ λkH(f δ, Txk−1),

and the residual H(f δ, Txk) decreases for increasing k. If (2.27) is additionally satisfied and

z/xk−1 ∈ domJ for any k ≥ 0, then

λkH(f δ, Txk) + J(uk) ≤ λkδ
2 + J

(
z

xk−1

)
(2.28)

holds.
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Proof. According to (2.13), one has

λkH(f δ, T (xk)) + J(uk) ≤ λkH(f δ, T (uxk−1)) + J(u),

for any feasible u. Using u = 1 we immediately get

λkH(f δ, T (xk)) + J(uk) ≤ λkH(f δ, Txk−1).

Moreover, dropping J(uk), gives H(f δ, T (xk)) ≤ H(f δ, Tuk−1), with strict inequality when-

ever J(uk) > 0 (i.e. provided uk is not constant). Hence, the fidelity decreases for increasing

k. Finally, letting u = z/xk−1 in (2.13), one obtains

λkH(f δ, T (xk)) + J(uk) ≤ λkH(f δ, T z) + J

(
z

xk−1

)
≤ λkδ

2 + J

(
z

xk−1

)
.

Remark 2.5.2. Note that the condition z/xk−1 ∈ BV (Ω) holds when xk−1 is bounded away

from zero, since the product of the two bounded variation functions z and 1/xk−1 has bounded

variation, according to [AD90]. Indeed, 1/xk−1 belongs to BV (Ω) based on the chain rule

for ϕ ◦ xk−1 = 1/xk−1, since ϕ(s) = 1/s is Lipschitz when s is bounded away from zero

(see [Vol67]). Therefore, Lemma 2.5.1 works for the corresponding AA and RO models.

Moreover, it is also applicable to the log models approached in Section 2.4 due to (2.16) for

J = TV (log), as J(z/xk) ≤ J(z) + J(1/xk) = J(z) + J(xk) < ∞. Last but not least, recall

that well-definedness of xk is ensured in all these models when T = I and the data f δ ∈ L∞

satisfy infΩ f
δ > 0.

Additional convergence properties for the multiplicative MHDM can be shown if the

penalty J has the properties (2.16).

Proposition 2.5.3. If (2.16) and (2.27) are satisfied, and the iterates xk given by (2.13)

are well-defined, then the following estimate holds for any k ≥ 0,

H(f δ, Txk) ≤ δ2 +
2J(z)

(k + 1)λ0

. (2.29)
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Proof. Since J satisfies (2.16) and uk = xk/xk−1, one has for any k ≥ 0,

J(z/xk)− J(z/xk−1) ≤ J(uk).

This inequality combined with (2.28) yields

H(f δ, Txk) +
1

λk
J(z/xk) ≤ δ2 +

2

λk
J(z/xk−1) = δ2 +

1

λk−1

J(z/xk−1). (2.30)

By writing (2.30) for indices 0, 1, ..., k and summing up, one has for any k ≥ 0,

(k + 1)H(f δ, Txk) +
1

λk
J(z/xk) ≤

k∑
j=0

H(f δ, Txj) +
1

λk
J(z/xk) ≤ (k + 1)δ2 +

2

λ0

J(z),

where the left inequality follows from the monotonicity of the data fidelity term in k (cf.

Lemma 2.5.1), and the right one follows from x−1 = 1. This yields (2.29).

Clearly, inequality (2.29) holds for the log-based penalty approaches in Section 2.4, as

explained in Remark 2.5.2, but not necessarily for the AA and RO models.

Summed-MHDM for non-quadratic data fidelity The work [LRV21] provided error

estimates for MHDM in case of quadratic data-fidelity. Fortunately, the proof techniques

can be similarly employed in the case of non-quadratic data-fidelities H(f δ, ew) as long as

the existence of minimizers wk is guaranteed. Hence, the following result holds for the SO

MHDM defined by (2.20) (compare to [LRV21, Proposition 3.1]).

Proposition 2.5.4. Let f δ ∈ L∞(Ω) be such that infΩ f
δ > 0. Then the data-fidelity H is

monotonically decreasing for increasing k and

H(f δ, ewk) ≤ δ2 +
2TV (log(z))

λ0(k + 1)
, k ∈ N.

2.5.1 Discrepancy principle stopping rule

Computing too many multiscale hierarchical iterations can result in getting back more and

more noise in the reconstructed image. Therefore, stopping the procedure early enough
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is necessary. In view of this, we propose a stopping rule for (2.13) and show convergence

properties. Let us define the following stopping index,

k∗(δ) := max{k ∈ N : H(f δ, Txk) ≥ τδ2}, for some τ > 1. (2.31)

As shown below, this index exists and convergence of the data fidelity to zero is guaranteed.

Proposition 2.5.5. Assume that (2.16) and (2.27) are satisfied, and the iterates xk given

by (2.13) are well-defined. Then the stopping index (2.31) is finite. If (k∗(δ)) is unbounded

as δ → 0, then lim
δ→0

H(f δ, Txk∗(δ)) = 0 holds.

Proof. By writing (2.29) for k = k∗(δ) and using (2.31), it follows that

τδ2 ≤ δ2 +
2

λ0(k∗(δ) + 1)
J(z)

and thus, the stopping index is finite:

k∗(δ) ≤ 2J(z)

λ0(τ − 1)δ2
− 1.

If (k∗(δ)) is unbounded, then (2.29) written for k = k∗(δ) implies lim
δ→0

H(f δ, Txk∗(δ)) = 0.

2.5.2 Convergence of multiplicative MHDM for particular models

This subsection deals with convergence of the MHDM iterates for the particular models con-

sidered in the current study. Note that the residual H converges to zero when the procedure

is stopped earlier at k∗(δ) cf. (2.31), as seen in the previous subsection. We now analyze the

implications of this convergence in case of the two data fidelities employed in the proposed

MHDM, namely the quadratic term of the RO model and the Itakura-Saito distance. As

opposed to the MHDM concerning additive noise in images, where convergence is shown

with respect to the L2 norm, we can prove only pointwise convergence on subsequences a.e.

for the MHDM corresponding to multiplicative noise.
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Proposition 2.5.6. Assume that (2.16) and (2.27) are satisfied, and the iterates xk given

by (2.13) are well-defined, whenever the data fidelity H is defined by (2.14) or (2.15). If

(k∗(δ)) is unbounded as δ → 0, then (Txk∗(δ)) converges a.e. to f on a subsequence. In

particular for the denoising case, one has a.e. convergence of (xk∗(δ)) on a subsequence to

the true image.

Proof. According to Proposition 2.5.5, one has lim
δ→0

H(f δ, Txk∗(δ)) = 0. If the data fidelity is

given by (2.14), then
(

fδ

Txk∗(δ)

)
converges strongly to 1 in L2(Ω). This yields a.e. convergence

of ( fδ

Txk∗(δ)
) to 1 on a subsequence, thus a.e. convergence of (Txk∗(δ)) to f on a subsequence.

Now consider H given by (2.15). Then the convergence of the residual (cf. Proposition

2.5.5) implies that the positive sequence (d(f δ, Txk∗(δ))) converges to zero in the L1(Ω)

norm, where d(f δ, Txk∗(δ)) = fδ

Txk∗(δ)
+ log(Txk∗(δ))− log(f δ)− 1. Consequently, it converges

a.e. to zero on a subsequence. It follows that the sequence (Txk∗(δ)) is (a.e.) pointwise

bounded in [0,∞), otherwise a subsequence would diverge to +∞, which would contradict

d(f δ, Txk∗(δ)) → 0. Therefore, (Txk∗(δ)) converges on a subsequence to some nonnegative

function g a.e., implying a.e. convergence of (d(f δ, Txk∗(δ))) to d(f, g). Uniqueness of the

limit yields d(f, g) = 0 a.e., that is g = f a.e., due to the strict convexity of the Burg entropy

which defines the (pointwise) Itakura Saito distance d.

2.6 Extensions of the multiplicative MHDM

2.6.1 A tight multiplicative MHDM

In this section, we adapt to the multiplicative noise case the tight hierarchical decomposition

method [MNR19] proposed in the additive noise context. That tight version incorporated an

additional penalization, namely on the entire approximation (xk), in order to obtain better

convergence properties of (xk). Since this section follows the structure of the tight MHDM
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in the case of additive noise [LRV21], we introduce the tight method in the new setting by

omitting proof details.

Let (ak) be a sequence of nonnegative numbers such that for any k ≥ 1,

lim
k→∞

ak = 0 and ak ≤ ak−1. (2.32)

Set λ0 to be a positive number and let (λk) ⊂ (0,∞) verify the following relaxed inequality

2λk ≤ λk+1, k ≥ 0, (2.33)

rather than the equality 2λk = λk+1. Finally, determine uk ∈ BV (Ω) as a solution of

min
u
Fk(u), with Fk(u) = λkH(f δ, T (uxk−1)) + λkakJ(uxk−1) + J(u),

with, as before, xk−1 =
k−1∏
j=0

uj, x−1 = 1. The tight formulation, then, is augmented by a new

penalization term λkakJ(uxk−1).

Remark 2.6.1. The tight versions of the denoising models presented in Section 2.4 are also

well-defined (similar arguments).

Under the assumptions of Lemma 2.5.1, one can derive similarly the following inequalities,

λkH(f δ, Txk) + λkakJ(xk) + J(uk) ≤ λkH(f δ, Txk−1) + λkakJ(xk−1), (2.34)

λkH(f δ, Txk) + λkakJ(xk) + J(uk) ≤ λkakJ(z) + J(z/xk−1) + λkδ
2, k ≥ 0.

Note that (2.34) yields the decreasing monotonicity of H(f δ, Txk)+akJ(xk), which is a type

of residual in the tight method. If we further require

∞∑
k=0

ak <∞ (2.35)

and define the stopping index also by a discrepancy rule

k∗(δ) := max{k ∈ N : H(f δ, Txk) + akJ(xk) ≥ τδ2}, for some τ > 1, (2.36)
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then the results below can be established in a similar manner to the ones for the multiplicative

MHDM when J verifies (2.16).

Proposition 2.6.2. Let conditions (2.16), (2.27), (2.32) and (2.33) be satisfied. Then the

following estimate holds for any k ≥ 0,

H(f δ, Txk) + akJ(xk) ≤ δ2 +

(
k∑
j=0

aj

)
J(z)

k + 1
+

2J(z)

(k + 1)λ0

.

Moreover, if (2.35) is verified, then the stopping index defined by (2.36) is finite. Addition-

ally,

1. If (k∗(δ)) is unbounded, then lim
δ→0

H(f δ, Txk∗(δ)) = 0 and lim
δ→0

ak∗(δ)J(xk∗(δ)) = 0.

2. If the stopping index is chosen as k∗(δ) ∼ 1

δ2
, then

H(f δ, Txk∗(δ)) + ak∗(δ)J(xk∗(δ)) = O(δ2).

By adapting the techniques from [LRV21, Section 4] to the multiplicative noise case

with the help of the condition lim supk→∞
2k

λkak
= 0, one can show J(xk∗(δ))→ J(z), demon-

strating that the recoveries have the same level regularity as the clean image. Compare

also to [MNR19, Theorem 2.5] which addresses the tight summed-MHDM. Additionally, the

convergence in the sense of Subsection 2.5.2 holds.

2.6.2 A refined multiplicative MHDM

In order to promote specific properties of the uk components, we propose a multiplicative

counterpart of the refined method introduced in [LRV21]. Thus, we allow the penalization

on the hierarchical component to be a functional different from J , that is different from TV

or TV (log). Although it can vary in every iteration as stated in [LRV21], we consider it

fixed (for fixed J) hereafter and denote it by R.

30



In particular, we require R : L2(Ω)→ R ∪ {∞} to be a seminorm which is weakly lower

semicontinuous and verifies the following inequality for some c > 0:

R(u) ≤ cJ(u),∀u ∈ domR.

Construct a sequence (uk) ⊂ BV (Ω) with uk as a solution of

min
u
Fk(u), with Fk(u) = λkH(f δ, T (uxk−1)) + λkakJ(uxk−1) +R(u),

where λk and ak are defined as in the tight formulation. One can similarly derive the estimate

H(f δ, Txk) + akJ(xk) ≤ δ2 +

(
k∑
j=0

aj

)
J(z)

k + 1
+

2R(z)

(k + 1)λ0

,

as well as the same convergence results under the same assumptions, in addition to the

ones above for R. An improved behavior (as compared to the tight and the regular MHDM

versions) will be shown numerically by considering R = ‖·‖∗ or R = ‖ log(·)‖∗ when J = TV

or J = TV (log), respectively, where

‖u‖∗ = sup
φ: TV (φ)>0

〈u, φ〉
TV (φ)

,

is the dual norm.

2.7 Numerical schemes for multiplicative MHDM minimization

Here we introduce numerical discretizations for the three classes of MHDM problems we

consider: Shi-Osher adaptations, AA-like models, and TNV inspired methods.

2.7.1 Discretization Notation

We will make repeated use of common finite differences in the sections that follow. To aid

with notational brevity, we introduce the following symbolic representations. For functions
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u, v : Ω → R taking values on a grid with meshsize ∆x × ∆y, i.e. uij = u(xi, yj) for

(xi, yj) = (x0 + i∆x, y0 + j∆y) ∈ Ω, define,

D±x uij := ±(ui±1,j − uij)/∆x (2.37a)

D±y uij := ±(ui,j±1 − uij)/∆y (2.37b)

D0
xuij :=

ui+1,j − ui−1,j

2∆x
(2.37c)

D0
yuij :=

ui,j+1 − ui,j−1

2∆y
(2.37d)

cε(uij) :=
1√

(D+
x uij)

2 + (D+
y uij)

2 + ε2
(2.37e)

ciju := 2cε(uij) + cε(ui−1,j) + cε(ui,j−1) (2.37f)

dε(uij) :=
cε(uij)

|uij|
(2.37g)

diju := 2dε(uij) + dε(ui−1,j) + dε(ui,j−1) (2.37h)

χ[dε, i, j]
u
v := dε(uij)vi+1,j + dε(ui−1,j)vi−1,j + dε(uij)vi,j+1 + dε(ui,j−1)vi,j−1, (2.37i)

and we will at times drop the explicit ε-dependence in equations (2.37) when it is clear by

context. With these notations in place, we proceed with the numerical approaches to the

SO, AA and TNV MHDM adaptations, along with their tight and refined formulations.

2.7.2 Shi-Osher MHDM

Discretization of Euler-Lagrange equations

We develop a numerical scheme for the Shi-Osher (SO) model (2.19) adapted to multiscale

hierarchical decomposition (MHDM). Our ultimate goal is to recover a k-level multiscale

approximation, xk = eyk , to the clean image z from the noise-degraded signal f δ = (Tz) · η.

The approximation xk =
∏k

j=0 uj is multiscale, composed of individual scales uj = ewj where

each wj satisfies (2.20). Recall, the SO model is a convex recasting of the AA model (2.22)

in the case of no blur, so we will take T to be the identity for the SO MHDM sections.
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For k ≥ 1, we assume we are given a partial reconstruction yk−1 :=
∑k−1

j=0 wj, and seek a

sufficiently regular wk—as imposed by TV (·)—so that the sum wk + yk−1 fits f δ according

to the data fidelity term. The Euler-Lagrange equation associated with the minimization

problem (2.20) is found by taking the first variation. We include the computation here for

completeness, but exclude it from subsequent sections. Let Ek(·) be the functional to be

minimized in (2.20). Then, we seek w so that

dEk(w + sv)

ds

∣∣∣∣
s=0

= 0 (2.38)

for any v ∈ BV (Ω). Consequently, by the divergence theorem

dEk(w + sv)

ds

∣∣∣∣
s=0

= λk

∫
Ω

(
1− f δe−(w+yk−1)

)
v +

∫
Ω

∇w
|∇w|

∇v

= λk

∫
Ω

(
1− f δe−(w+yk−1)

)
v +

∫
∂Ω

v
∇w · ~n
|∇w|

−
∫

Ω

div

(
∇w
|∇w|

)
v

=

∫
Ω

(
λk
(
1− f δe−(w+yk−1)

)
− div

(
∇w
|∇w|

))
v = 0. (2.39)

The condition (2.39) holds for arbitrary v, provided ∂w/∂~n = 0 on ∂Ω, allowing us to

conclude the following PDE must hold for w:
div
(
∇w
|∇w|

)
− λk(1− f δe−(w+xk−1)) = 0 in Ω,

∂w
∂~n

= 0 in ∂Ω.

(2.40)

We can approach (2.40) by introducing artificial time w = w(x, t), and iterating w in time

till it reaches equilibrium exactly when (2.40) is satisfied. This gives the following gradient

descent scheme with Neumann boundary conditions
∂w
∂t

= div
(
∇w
|∇w|

)
− λk(1− f δe−(w+yk−1)) in Ω,

∂w
∂~n

= 0 in ∂Ω.

(2.41)

We discretize (2.41) with added ε-regularization to the ∇w/|∇w| terms by applying the

forward and backward spatial differencing operators, D+ and D−, to the right-hand-side of
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(2.41)

wn+1
ij − wnij

∆t
= −λk

(
1− f δije−(wnij+(xk−1)ij)

)
+

D−x

 D+
x w

n
ij√

ε2 + (D+
x w

n
ij)

2 + (D+
y w

n
ij)

2

+D−y

 D+
y w

n
ij√

ε2 + (D+
x w

n
ij)

2 + (D+
y w

n
ij)

2

 .

The added superscript wnij indicates time (or iterate number) for grid variable w, and we have

introduced a time step-size ∆t. We also take ∆x = ∆y = 1. Using the notation introduced

in Section 2.7.1, we expand to get

wn+1
ij − wnij

∆t
= −λk

(
1− f δije−(wnij+(xk−1)ij)

)
+

c(wnij)D
+
x w

n
ij − c(wni−1,j)D

+
x w

n
i−1,j + c(wnij)D

+
y w

n
ij − c(wni,j−1)D+

y w
n
i,j−1

= −λk
(

1− f δije−(wnij+(xk−1)ij)
)

+

c(wnij)w
n
i+1,j + c(wni−1,j)w

n
i−1,j + c(wnij)w

n
i,j+1 + c(wni,j−1)wni,j−1+

wnij
(
c(wnij) + c(wni−1,j) + c(wni,j) + c(wni,j−1)

)
= −λk

(
1− f δije−(wnij+(xk−1)ij)

)
+ χ[cε, i, j]

wn

wn − wnijc
ij
wn . (2.42)

To mitigate the potential for instability in the highly non-linear discretized PDE, an implicit

scheme is preferred. However, solving (2.42) with right-hand-side wn swapped for wn+1 is

non-trivial. Instead, we propose a semi-implicit scheme by isolating all terms linear in wnij,

and promoting them to wn+1
ij . Then, one can solve for wn+1

ij in a Gauss-Seidel like fashion.

The final iterative scheme

wn+1
ij =

1

1 + ∆t · cijwn

[
wnij − λk∆t

(
1− f δije−(wnij+(xk−1)ij)

)
+ ∆tχ[cε, i, j]

wn

wn

]
, (2.43)

solves (2.41) on interior points (i, j) within Ω. Boundary points are obtained to ensure

∂w/∂~n = 0 on ∂Ω. We can numerically determine wk by running wn to steady state, followed

by updating yk = wk+yk−1. Having recovered yk, we subsequently obtain the reconstruction
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xk via an exponential transform. To initialize process (2.43), see the discussion in Subsection

2.7.9.

Let SO MHDM(f, yk−1,∆t, λk, ε, maxIter) be the numerical solution to (2.41) after running

n = maxIter times. Then the image restoration algorithm proceeds as follows:

Algorithm 1 SO MHDM

INPUT: noisy image f δ = z · η, where η is some multiplicative noise and z is the original

image.

OUTPUT: xnumScales, an approximation to z.

1: Initialize: y−1 = 0, λ0 = 0.01, ε = 0.01 (or some small constant)

2: Choose maxIter

3: for k = 0, 1, 2, . . . , numScales do

4: wk ← SO MHDM(f δ, yk−1,∆t, λk, ε, maxIter)

5: yk ← wk + yk−1

6: λk+1 ← 2λk

7: end for

8: return : xnumScales = eynumScales

ADMM for Shi-Osher MHDM

In addition to the Euler-Lagrange approach, we consider the popular alternating direction

method of multipliers (ADMM) for the convex optimization problem obtained by the Shi-

Osher formulation. Recall, given yk−1 and λk, we solve (2.20) to form the multiscale re-

construction xk = eyk with yk =
∑k

j=0wj. We split the problem into simpler subproblems,

minimizing the data fidelity term λk
∫ (

f δe−(w+yk−1) + (w + yk−1)
)

and the regularizing term

TV (w) separately, subject to the condition these minimizers match. This gives the ADMM
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formulation

θj+1 = arg min
θ

λk

∫ (
f δe−(θ+yk−1) + (θ + yk−1)

)
+
ρ

2
‖θ − ψj + ϑj‖2

2, (2.44)

ψj+1 = arg min
ψ

TV (ψ) +
ρ

2
‖θj+1 − ψ + ϑj‖2

2, (2.45)

ϑj+1 = ϑj + θj+1 − ψj+1, (2.46)

which proceeds iteratively in j, forming solution wk = θ∞. Here, ρ is a constant parameter

of the scheme. The stopping condition for ADMM is determined by some tolerance ε > 0

and is satisfied whenever

max
{
‖θj+1 − θj‖2, ‖ϑj+1 − ϑj‖2, ‖ψj+1 − ψj‖2, ‖θj+1 − ψj+1‖2

}
< ε.

To perform the minimizations in (2.44), we use Newton’s iteration. Noticing (2.45)

is a ROF denoising problem, we use an exact total variation minimization routine [CD09]

for solving the ROF problem provided at http://www.cmap.polytechnique.fr/~antonin/

software/. To use the ADMM formulation for SO MHDM, use Algorithm 1 with the output

of (2.44) used in place of SO MHDM(f δ, yk−1,∆t, λk, ε, maxIter).

2.7.3 Shi-Osher Tight MHDM

Discretization of Euler-Lagrange equations

For the tight SO scheme, we consider the modified objective function

wk = arg min
w

{
TV (w) + λkakTV (w + yk−1) + λk

∫ (
f δe−(w+yk−1) + (w + yk−1)

)}
. (2.47)

Notice that the only alteration from the standard SO MHDM model is the additional TV (w+

yk−1) term, so the resulting Euler-Lagrange equations will be modified solely by this term.

Additionally, the boundary condition will require ~n · ∇(w + yk−1) = 0. However, since
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yk−1 =
∑k−1

j=0 wj where ~n · ∇wj = 0 on the boundary, we need only to impose ~n · ∇w = 0 on

∂Ω.

Consequently, the Euler-Lagrange equation for (2.47) after considering artificial time is
∂w
∂t

= div
(
∇w
|∇w|

)
+ λkakdiv

(
∇(w+yk−1)

|∇(w+yk−1)|

)
− λk(1− fe−w−yk−1) in Ω,

∂w
∂~n

= 0 in ∂Ω.

(2.48)

Our strategy in discretizing (2.48) is to introduce as many implicit terms as possible by

isolating wnij. Using blended forward and backward differences, the discretization would be

identical to (2.42), except for the additional term with λkak as a coefficient. We focus first

on this term, noting by linearity of divergence

div

(
∇(w + yk−1)

|∇(w + yk−1)|

)
= div

(
∇(w)

|∇(w + yk−1)|

)
+ div

(
∇(yk−1)

|∇(w + yk−1)|

)
. (2.49)

For notational compactness, we introduce the variable vn = wn + yk−1.

With the split divergence terms, we proceed with the discretization, recalling again the
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shorthand notation we introduced in (2.37) in Section 2.7.1

wn+1
ij − wnij

∆t
= −λk

(
1− f δije−(wnij+(xk−1)ij)

)
+ χ[cε, i, j]

wn

wn + wnijc
ij
wn + λkak

[

D−x

 D+
x w

n
ij√

ε2 + (D+
x v

n
ij)

2 + (D+
y v

n
ij)

2

+D−y

 D+
y w

n
ij√

ε2 + (D+
x v

n
ij)

2 + (D+
y v

n
ij)

2

+

D−x

 D+
x (yk−1)ij√

ε2 + (D+
x v

n
ij)

2 + (D+
y v

n
ij)

2

+D−y

 D+
y (yk−1)ij√

ε2 + (D+
x v

n
ij)

2 + (D+
y v

n
ij)

2

]

= −λk
(

1− f δije−(wnij+(xk−1)ij)
)

+ χ[cε, i, j]
wn

wn − wnijc
ij
wn + λkak

[
c(vnij)w

n
i+1,j + c(vni−1,j)w

n
i−1,j + c(vnij)w

n
i,j+1 + c(vni,j−1)wni,j−1−

wnij
(
c(vnij) + c(vni−1,j) + c(vni,j) + c(vni,j−1)

)
+

c(vnij)(yk−1)i+1,j + c(vni−1,j)(yk−1)i−1,j + c(vnij)(yk−1)i,j+1 + c(vni,j−1)(yk−1)i,j−1−

(yk−1)ij
(
c(vnij) + c(vni−1,j) + c(vni,j) + c(vni,j−1)

) ]
= −λk

(
1− f δije−(wnij+(xk−1)ij)

)
+ χ[cε, i, j]

wn

wn − wnijc
ij
wn + λkak

[
χ[cε, i, j]

vn

wn − wnijc
ij
vn + χ[cε, i, j]

vn

yk−1
− (yk−1)ijc

ij
vn

]
. (2.50)

Isolating the wnij terms and exchanging for wn+1
ij produces the following semi-implicit scheme

for SO Tight MHDM

wn+1
ij =

1

1 + ∆t(cijwn + λkakc
ij
vn)

{
wnij + ∆t

[
− λk

(
1− f δije−(wnij+(xk−1)ij)

)
+

χ[cε, i, j]
wn

wn + λkak

(
χ[cε, i, j]

vn

wn + χ[cε, i, j]
vn

yk−1
− (yk−1)ijc

ij
vn

)]}
.

(2.51)

Compared with the Shi-Osher MHDM, the Shi-Osher Tight MHDM has the same initializa-

tion (see Section 2.7.9) and parameters except λk+1 = 3λk, with a0 = 1, ak = a0

(k+1)3/2 . The

algorithm for SO Tight MHDM is summarized below
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Algorithm 2 SO Tight MHDM

INPUT: noisy image f δ = z · η, where η is some multiplicative noise and z is the original

image.

OUTPUT: xnumScales, an approximation to z.

1: Initialize: y−1 = 0, λ0 = 0.01, a0 = 1, ε = 0.01 (or some small constant)

2: Choose maxIter

3: for k = 0, 1, 2, . . . , numScales do

4: ak ← a0

(k+1)3/2

5: wk ← SO Tight MHDM(f δ, yk−1,∆t, λk, ak, ε, maxIter) . output of (2.51)

6: yk ← wk + yk−1

7: λk+1 ← 3λk

8: end for

9: return : xnumScales = eynumScales

ADMM for Shi-Osher tight MHDM

We can also leverage ADMM for the SO Tight MHDM process. The utility of ADMM

is it’s ability to handle minimization problems consisting of sums of functionals which, in

congregate, are difficult to handle. The SO Tight MHDM consists of three terms—a data

fidelity term, the tight regularization term and standard regularizer—and we address each

term separately. Given yk−1, λk, ak, the ADMM proceeds as follows:

θj+1 = arg min
θ

λk

∫ (
f δe−(θ+yk−1) + (θ + yk−1)

)
+
ρ

2
‖θ − ψj1 + ψj2

2
+ ϑj‖2

2, (2.52)

ψj+1
1 = arg min

ψ
λkakTV (ψ + yk−1) +

ρ

2
‖θj+1 − ψ + ψj2

2
+ ϑj‖2

2, (2.53)

ψj+1
2 = arg min

ψ
TV (ψ) +

ρ

2
‖θj+1 − ψj+1

1 + ψ

2
+ ϑj‖2

2, (2.54)

ϑj+1 = ϑj + θj+1 − ψj+1
1 + ψj+1

2

2
, (2.55)
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iteratively forming the solution wk = θ∞. Similar to ADMM for SO MHDM, the stopping

criterion is met whenever

‖θj+1 − θj‖2, ‖ϑj+1 − ϑj‖2, ‖ψj+1
1 − ψj1‖2, ‖ψj+1

2 − ψj2‖2, ‖θj+1 − 1

2
(ψj+1

1 + ψj+1
2 )‖2 < ε

is satisfied for some ε > 0.

We approach (2.52) and (2.54) with Newton’s method and the ROF solve as before. For

(2.53) we use g = ψ + yk−1 and rescale the problem. This gives

gj+1 = arg min
g

4akλk
ρ

TV (g) +
1

2
‖2θj+1 + 2ϑj + yk−1 − ψj2 − g‖2 ,

from which ψj+1
1 = gj+1 − yk−1 can be recovered. To use the ADMM formulation for SO

Tight MHDM, use Algorithm 2 with the final output of (2.52) in place of

SO Tight MHDM(f δ, yk−1,∆t, λk, ak, ε, maxIter).

2.7.3.1 Shi-Osher Refined MHDM

For the refined version, we consider

wk = arg min
w

{
‖w‖∗ + λkakTV (w + yk−1) + λk

∫ (
f δe−(w+yk−1) + (w + yk−1)

)}
, (2.56)

where ‖w‖∗ = supTVε(φ)6=0
〈w,φ〉
TV (φ)

. Thus, the main modification is the ∗-norm term. Our

approach towards minimizing (2.56) is alternatingly considering ‖ · ‖∗ and the remaining

terms separately. Assuming w is given, we can determine φ by studying the Euler-Lagrange

equation associated with maximizing

〈w, φ〉
TV (φ)

(2.57)

over φ, as done in [LRV21]. Likewise, given φ, the Euler-Lagrange equation for the refined

problem (2.56) is modified from (2.48) only by the ∗-norm term. Thus, we can find wk

through the Euler-Lagrange equation for (2.56). We will solve for φ and w by alternatingly
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time-stepping in each variable, using a similar semi-implicit discretization as with in the

regular and tight formulations.

To maximize (2.57), φ will induce a vanishing first variation, implying

d

ds

〈w, φ+ sθ〉
TVε(φ+ sθ)

∣∣∣∣
s=0

=

∫
wθ

TVε(φ)
−

∫
wφ

TVε(φ)2

∫
∇φ · ∇θ√
ε2 + |∇φ|2

=

∫
wθ

TVε(φ)
+

∫
wφ

TVε(φ)2

∫
θdiv

∇φ√
ε2 + |∇φ|2

= 0,

(2.58)

where we have ε-regularized the total variation term TVε(w) :=
∫ √

ε2 + |∇w|2. Equation

(2.58) holds for any θ ∈ BV (Ω), provided ~n · ∇φ = 0 on ∂Ω stemming from the integration

by parts in (2.58). Therefore, φ satisfies
w

TVε(φ)
+ 〈w,φ〉

TVε(φ)2 div

(
∇φ√

ε2+|∇φ|2

)
= 0, in Ω

~n · ∇φ = 0, on ∂Ω,

or equivalently, 
w + 〈w,φ〉

TVε(φ)
div

(
∇φ√

ε2+|∇φ|2

)
= 0, in Ω

~n · ∇φ = 0, on ∂Ω.

(2.59)

We can numerically determine φ by time-stepping
∂φ
∂t

= 〈w,φ〉
TVε(φ)

div

(
∇φ√

ε2+|∇φ|2

)
+ w, in Ω

~n · ∇φ = 0, on ∂Ω

(2.60)

towards steady state as previously done with w in SO and SO Tight MHDM.

Supposing we can solve (2.60) for φ, the Euler-Lagrange equation for the refined problem

(2.56) is modified from (2.48) only by the ∗-norm term, producing the time dependent ε-

regularized equation
∂w
∂t

= − φ
TVε(φ)

+ λkαkdiv
(
∇(w+xk−1)

|∇(w+xk−1)|

)
− λk(1− f δe−w−xk−1) in Ω

∂w
∂~n

= 0 in ∂Ω.

(2.61)
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Given the gradient descent problems (2.58),(2.61) associated with the Euler-Langrange

equations of their respective minimization problems, we can construct two semi-implicit

numerical schemes to iteratively solve for φ and wk. We start by addressing (2.61) assuming

we have the iterate φn+1 and are seeking wn+1. Subsequently, we will discuss determining

φn+1 given wn.

The semi-implicit numerical scheme for (2.61) contains all the terms in the SO Tight

MHDM update (2.51), with those associated with discretizing div(∇w/|∇w|) exchanged for

−φ/TVε(φ). It follows then that

wn+1
ij =

1

1 + ∆tλkakc
ij
vn

·
{
wnij −∆t

φn+1
ij

TVε(φn+1)
−∆tλk

(
1− f δije−(wnij+yk−1,ij)

)
+

∆tλkak

(
χ[cε, i, j]

vn

wn + χ[cε, i, j]
vn

yk−1
− (yk−1)ijc

ij
vn

)}
,

(2.62)

where

TVε(φ) =
∑
k,l

√
ε2 + (D+

x φkl)
2 + (D+

y φkl)
2, (2.63)

is the update scheme for determining wk = w∞ given φn+1. It remains to be shown how to

determine the iterates φn from (2.60). Note that (2.60) has more non-linearity than (2.61),

and we have two options in creating a semi-impicit method. Using the notation from Section

2.7.1, observe that(
〈w, φ〉
TVε(φ)

div

(
∇φ√

ε2 + |∇φ|2

))
ij

=

∑
k,l wklφkl

TVε(φ)
·
(
χ[cε, i, j]

φ
φ − φijc

ij
φ

)
.
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So, (2.60) becomes

φn+1
ij − φnij

∆t
= wnij +

∑
k,l w

n
klφ

n
kl

TVε(φn)
·
(
χ[cε, i, j]

φn

φn − φ
n
ijc

ij
φn

)
(2.64)

= wnij +
1

TVε(φn)

( ∑
k,l 6=i,j

wnklφ
n
kl + wnijφ

n
ij

)(
χ[cε, i, j]

φn

φn − φ
n
ijc

ij
φn

)
= wnij +

1

TVε(φn)

[
χ[cε, i, j]

φn

φn

∑
k,l 6=i,j

wnklφ
n
kl+

φnij

(
wnijχ[cε, i, j]

φn

φn − c
ij
φn

∑
k,l 6=i,j

wnklφ
n
kl

)
− (φnij)

2cijφnw
n
ij

]
. (2.65)

If we wish to create a semi-implicit scheme, the isolated φnij terms on the right-hand-side of

the above expression can have time-index n swapped for n+ 1.

However, we have a choice. One can make the exchange solely within the parenthetical

term on the right-hand-side of (2.64), creating scheme

φn+1
ij =

1

1 + ∆tcijφn
∑
k,l w

n
klφ

n
kl

TVε(φn)

{
φnij + ∆t ·

(
wnij +

∑
k,l w

n
klφ

n
kl

TVε(φn)
· χ[cε, i, j]

φn

φn

)}
. (2.66)

We make use of (2.66) for SO Refined MHDM.

However, one can also consider the form in (2.65) where the bracketed terms within the

right-hand-side are quadratic in φnij. Promoting φnij → φn+1
ij requires a quadratic solve at

each n:

0 =(φn+1
ij )2 ∆tcijφn

∑
k,l 6=i,j

wnklφ
n
kl︸ ︷︷ ︸

A

+

φn+1
ij

(
TVε(φ

n) + ∆t

(
cijφn

∑
k,l 6=i,j

wnklφ
n
kl − wnijχ[cε, i, j]

φn

φn

))
︸ ︷︷ ︸

B

+

[
−TVε(φn)φnij −∆t

(
TVε(φ

n)wnij + χ[cε, i, j]
φn

φn

∑
k,l 6=i,j

wnklφ
n
kl

)]
︸ ︷︷ ︸

C

.

(2.67)

⇒φn+1
ij =

−B ±
√
B2 − 4AC

2A
. (2.68)
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Remark 2.7.1. For computational speed, the term
∑

k,l 6=i,j w
n
klφ

n
kl need not be computed at

each (i, j) pair. Instead, consider
∑

k,l w
n
klφ

n
kl − wnφn is a new grid function, whose (i, j)

element has value
∑

k,l 6=i,j w
n
klφ

n
kl.

Denoting the output from (2.62) by SO Refined MHDM(f δ, yk−1, φ
n+1,∆t, λk, ak, ε) and

(2.66) (or (2.67)) by Phi Update(wn, φn,∆t, ε), we are able to write the Shi Osher Refined

MHDM algorithm as follows.

Algorithm 3 SO Refined MHDM

INPUT: noisy image f δ = z · η, where η is some multiplicative noise and z is the original

image.

OUTPUT: xnumScales, an approximation to z.

1: Initialize: y−1 = 0, λ0 = 0.01, a0 = 1, ε = 0.01 (or some small constant)

2: Choose maxIter

3: for k = 0, 1, 2, . . . , numScales do

4: Initialize: wk (see Sec. 2.7.9)

5: Initialize: φ = 0

6: ak ← a0

(k+1)3/2

7: for n=0,1,2,. . . , maxIter do

8: φ← Phi Update(wk, φ,∆t, ε) . output of 2.66 (or 2.67)

9: wk ← SO Tight MHDM(f δ, yk−1, φ,∆t, λk, ak, ε) . output of (2.62)

10: end for

11: yk ← wk + yk−1

12: λk+1 ← 3λk

13: end for

14: return : xnumScales = eynumScales

44



A discussion of initializations can be found in Subsection 2.7.9.

2.7.4 AA MHDM

We extended the original AA model (2.9) to an MHDM method, as given in (2.21). We use

a semi-implicit method to solve the Euler-Lagrange equation for (2.9),
∂u
∂t

= div
(
∇u
|∇u|

)
− λkT ∗

(
1

T (uxk−1)
− fδ

[T (uxk−1)]2

)
xk−1, on Ω,

∇u · ~n = 0 on ∂Ω,

(2.69)

as formulated in [AA08]. The discretization details are omitted here due to similarity with

the subsequent AA-log schemes.

2.7.5 AA-log MHDM with TV (log(u)) penalty term

The AA-log model directly addresses images corrupted by blur and multiplicative noise,

since now with blur, the substitution w = log u no longer produces a convex problem as was

true for the SO formulation. We seek a multiscale solution xk =
∏k

j=0 uj approximating z,

where each uk satisfies (2.23), and we have access to the corrupted data f δ = (Tz)η.

Assuming xk−1 is determined, we use the Euler-Lagrange equation associated with (2.23)

to obtain a time dependent PDE to determine uk,
∂u
∂t

= div
(
∇u
|u||∇u|

)
+ |∇u|

u|u| − λkT
∗
(

1
T (uxk−1)

− fδ

[T (uxk−1)]2

)
xk−1, on Ω

∇u · ~n = 0, on ∂Ω.

(2.70)

Remark 2.7.2. Because of the several u and |u| terms found in denominators within (2.70),

it is recommended to shift any input data away from zero before proceeding with a discretiza-

tion.

A numerical scheme for (2.70) proceeds in much the same manner as for the SO models,
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comprising of composed forward and backward finite difference operators for computing the

divergence-of-gradient terms. We observe that the discretization(
div

(
∇u
|u||∇u|

))
ij

=
(
χ[dε, i, j]

u
u − uijdiju

)
(2.71)

isolates the terms linear in uij, where the notation diju and dε(·) are introduced in (2.37) from

Section 2.7.1. For |∇u|/u|u|, one can use centered or forward differences. Keeping in mind

(2.71), if |∇u|/u|u| is thought of as part of the data fidelity term, the discretization of (2.70)

has direct analogue with (2.43). Isolating terms linear in unij and exchanging them for un+1
ij

to make a semi-implicit scheme gives the update for the AA-log MHDM method:

un+1
ij =

1

1 + ∆tdijun
·
{
unij −∆tλkT

∗
[

1

T (unxk−1)
− f δ

[T (unxk−1)]2

]
ij

· xk−1,ij

+ ∆t

√
D0
x(u

n
ij)

2 +D0
y(u

n
ij)

2

unij|unij|
+ ∆tχ[dε, i, j]

un

un

}
.

(2.72)

Here, ε-regularization is implicitly implied in the dijun term. For a given xk−1, (2.72) is iterated

in n until convergence, returning xk = u∞ · xk−1, where by u∞ we indicate the converged

iterate.

To initialize the MHDM process, we set x−1,ij = 1 and choose u0 according to Subsection

2.7.9. Denoting the solution of (2.72) after n = maxIter iterations by

AA log MHDM(f δ, xk−1,∆t, λk, ak, T, ε, maxIter), we present the basic workflow for using the

AA-log model in the following algorithm.
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Algorithm 4 AA-log MHDM

INPUT: noisy image f δ = (Tz) · η, where η is some multiplicative noise, T is a blurring

operator and z is the original image.

OUTPUT: xnumScales, an approximation to z.

1: Initialize: x−1 = 1, λ0 = 0.01, and ε = 0.01 (or some small constant)

2: Choose maxIter

3: for k = 0, 1, 2, . . . , numScales do

4: uk ← AA log MHDM(f δ, xk−1,∆t, λk, T, ε, maxIter) . output of (2.72)

5: xk ← uk · xk−1

6: λk+1 ← 2λk

7: end for

8: return : xnumScales

2.7.5.1 AA-log Tight MHDM

The tight version modifies the objective function by adding an additional regularizing term

uk ∈ arg min
u
TV (log(u)) + λkakTV (log(uxk−1)) + λk

∫
Ω

(
log(T (uxk−1)) +

f δ

T (uxk−1)

)
.

(2.73)

The Euler-Lagrange equation for (2.73) gives the time dependent PDE (2.74) for uk, which

we can run to equilibrium:

∂u

∂t
= −λkT ∗

(
1

T (uxk−1)
− f δ

[T (uxk−1)]2

)
xk−1 + div

(
∇u
|u||∇u|

)
+
|∇u|
u|u|

+ λkakxk−1

[
div

(
∇(uxk−1)

|uxk−1||∇(uxk−1)|

)
+
|∇(uxk−1)|
uxk−1|uxk−1|

]
on Ω,

∇u · ~n = 0, on ∂Ω

(2.74)

To discretize (2.74), we introduce the notation Zn = unxk−1 and follow the same semi-
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implicit strategy from before (recalling notation in (2.37)), giving

un+1
ij =

1

1 + ∆t(dun + λkakx2
k−1,ijd

i,j
ZN

)

{
unij −∆tλkT

∗
[

1

T (unxk−1)
− f δ

[T (unxk−1)]2

]
ij

· xk−1,ij

+ ∆t

χ[d, i, j]u
n

un +

√
D0
x(u

n
ij)

2 +D0
y(u

n
ij)

2

unij|unij|


+ ∆tλkakxk−1,ij

χ[dε, i, j]
Zn

Zn +

√
D0
x(Z

n
ij)

2 +D0
y(Z

n
ij)

2

Zn
ij|Zn

ij|

}.
(2.75)

The AA-log Tight MHDM has the same initialization and parameters as the AA-log

MHDM, except a0 = 1, ak = a0

(k+1)3/2 , and λk+1 = 3λk. Denoting the output of (2.75) after

convergence (capped by n = maxIter iterations) by

AA log Tight MHDM(f δ, , xk−1,∆t, λk, ak, T, ε, maxIter), we give the AA-log Tight MHDM

algorithm below.

Algorithm 5 AA-log Tight MHDM

INPUT: noisy image f δ = (Tz) · η, where η is some multiplicative noise, T is a blurring

operator and z is the original image.

OUTPUT: xnumScales, an approximation to z.

1: Initialize: x−1 = 1, λ0 = 0.01, and ε = 0.01 (or some small constant)

2: Choose maxIter

3: for k = 0, 1, 2, . . . , numScales do

4: ak ← a0

(k+1)3/2

5: uk ← AA log Tight MHDM(f δ, xk−1,∆t, λk, ak, T, ε, maxIter) . output of (2.75)

6: xk ← uk · xk−1

7: λk+1 ← 3λk

8: end for

9: return : xnumScales
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2.7.6 AA-log Refined MHDM

The refinement of the AA-log Tight MHDM scheme includes the weaker ∗-norm in place of

TV (log(·)) for the regularizing term J(·). The minimization problem reads as follows,

uk ∈ arg min
u
‖ log(u)‖∗+λkakTV (log(uxk−1))+λk

∫
Ω

(
log(T (uxk−1)) +

f δ

T (uxk−1)

)
. (2.76)

The Euler-Lagrange equation for (2.76),

∂u

∂t
= −λkT ∗

(
1

T (uxk−1)
− f δ

(T [uxk−1])2

)
xk−1−

φ

uTV (φ)
+ λkαkxk−1

[
div

(
∇(uxk−1)

|uxk−1||∇(uxk−1)|

)
+
|∇(uxk−1)|
uxk−1|uxk−1|

]
∇u · ~n = 0, on ∂Ω,

(2.77)

is modified from the tight formulation only by the ‖ log(·)‖∗ term. A discretization of (2.77)

is determined by the same process as for the AA-log tight method combined with alternating

time-stepping with a test-function φ, as done in the SO Refined MHDM (compare also to

the refined version of the summed-MHDM in [LRV21]). To determine φn+1 given φn and un,

solve (2.66) (or (2.67)) with wn exchanged for log(un). Then, compute un+1 given φn+1 via

un+1
ij =

1

1 + ∆tλkakx2
k−1,ijd

i,j
ZN

{
unij −∆tλkT

∗
[

1

T (unxk−1)
− f δ

[T (unxk−1)]2

]
ij

· xk−1,ij

+ ∆t

 −φn+1
ij

unijTVε(φ
n+1)

+ λkakxk−1,ij

χ[dε, i, j]
Zn

Zn +

√
D0
x(Z

n
ij)

2 +D0
y(Z

n
ij)

2

Zn
ij|Zn

ij|

}.
(2.78)

As with AA-log Tight MHDM, x−1 = 1 and u0 can be initialized as discussed in Section

2.7.9. The full AA-log Refined MHDM process is given in Algorithm 6.
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Algorithm 6 AA-log Refined MHDM

INPUT: noisy image f δ = (Tz) · η, where η is some multiplicative noise, T is a blurring

operator and z is the original image.

OUTPUT: xnumScales, an approximation to z.

1: Initialize: x−1 = 1, λ0 = 0.01, a0 = 1, ε = 0.01 (or some small constant)

2: Choose maxIter

3: for k = 0, 1, 2, . . . , numScales do

4: Initialize: uk (see Sec. 2.7.9)

5: Initialize: φ = 0

6: ak ← a0

(k+1)3/2

7: for n=0,1,2,. . . , maxIter do

8: φ← Phi Update(log(uk), φ,∆t, ε) . output of 2.66 (or 2.67)

9: uk ← AA log Refined MHDM(f δ, xk−1, φ,∆t, λk, ak, T, ε) . output of (2.78)

10: end for

11: xk ← uk · xk−1

12: λk+1 ← 3λk

13: end for

14: return : xnumScales

2.7.7 TNV-log Models

We now address the TNV-log model (2.25), which consists of the TNV fidelity term,
∫

( f
Tu
−

1)2, augmented with a TV (log(u)) penalty, and adapted to the multiscale form. This model

handles blurring in addition to noise, so we assume we have access to the perturbed signal

f δ = (Tz) · η, and as before we seek a multiscale recovery, xk, approximating z of the form

xk =
∏k

j=0 uj.
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The dynamical PDE from the Euler-Lagrange equations for (2.25) is
∂u
∂t

= div
(
∇u
|u||∇u|

)
+ |∇u|

u|u| − 2λkT
∗
[

fδ

[T (uxk−1)]2

(
1− fδ

T (uxk−1)

)]
xk−1 in Ω,

∇u · ~n = 0 in ∂Ω.

(2.79)

This, differing from the AA-log MHDM by only its fidelity term, takes on a similar

discretization and algorithm, with updates for un+1 given by

un+1
ij =

1

1 + ∆tdijun
·
{
unij − 2∆tλkT

∗
[

f δ

[T (unxk−1)]2

(
1− f δ

T (unxk−1)

)]
ij

· xk−1,ij+

∆t

√
D0
x(u

n
ij)

2 +D0
y(u

n
ij)

2

unij|unij|
+ ∆tχ[dε, i, j]

un

un

}
,

(2.80)

with algorithm shown below. Initialization of u0 is discussed in Section 2.7.9.

Algorithm 7 TNV-log MHDM

INPUT: noisy image f δ = (Tz) · η, where η is some multiplicative noise, T is a blurring

operator and z is the original image.

OUTPUT: xnumScales, an approximation to z.

1: Initialize: x−1 = 1, λ0 = 0.01, and ε = 0.01 (or some small constant)

2: Choose maxIter

3: for k = 0, 1, 2, . . . , numScales do

4: uk ← TNV log MHDM(f δ, xk−1,∆t, λk, T, ε, maxIter) . output of (2.80)

5: xk ← uk · xk−1

6: λk+1 ← 2λk

7: end for

8: return : xnumScales
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2.7.8 TNV-log Tight

Likewise, with the TNV-log tight formulation the Euler-Lagrange equation is the same as

that for the AA-log tight MHDM scheme (2.74), except with the appropriate fidelity term

swapped for TNV, as was done in (2.79). The discretization is akin to that of the AA-log

tight MHDM

un+1
ij =

1

1 + ∆t(dun + λkakx2
k−1,ijd

i,j
ZN

)

{
unij−

2∆tλkT
∗
[

f δ

[T (unxk−1)]2

(
1− f δ

T (unxk−1)

)]
ij

· xk−1,ij+

∆t

χ[d, i, j]u
n

un +

√
D0
x(u

n
ij)

2 +D0
y(u

n
ij)

2

unij|unij|

+

∆tλkakxk−1,ij

χ[dε, i, j]
Zn

Zn +

√
D0
x(Z

n
ij)

2 +D0
y(Z

n
ij)

2

Zn
ij|Zn

ij|

}.

(2.81)

For completeness, we include Algorithm 8 describing the TNV-log Tight MHDM method.
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Algorithm 8 TNV-log Tight MHDM

INPUT: noisy image f δ = (Tz) · η, where η is some multiplicative noise, T is a blurring

operator and z is the original image.

OUTPUT: xnumScales, an approximation to z.

1: Initialize: x−1 = 1, λ0 = 0.01, a0 = 1, and ε = 0.01 (or some small constant)

2: Choose maxIter

3: for k = 0, 1, 2, . . . , numScales do

4: ak ← a0

(k+1)3/2

5: uk ← TNV log Tight MHDM(f δ, xk−1,∆t, λk, ak, T, ε, maxIter) . output of (2.81)

6: xk ← uk · xk−1

7: λk+1 ← 3λk

8: end for

9: return : xnumScales

2.7.9 Initializations

We take a moment to discuss initializing our MHDM schemes. Each of the proposed iterative

processes minimize an energy as shown in (2.13), starting with some initialization u0 (or w0

in the case of SO) which, hopefully, is close to the minimizer. In this work, we propose two

types of choices with the following motivation.

Fidelity minimizing initializations

One approach is to choose u0 (or w0) to minimize the fidelity H(f δ, Tu0xk−1) without

regard to the penalty term, which leads to non-constant initializations. For the SO MHDM

schemes, if we aim to minimize
∫ (

f δe−(w0+yk−1) + (w0 + yk−1)
)

, then the optimal initializa-

tion is w0 = log(f δ) − yk−1. For the AA MHDM, AA-log MHDM and TNV-log schemes,

the optimal initialization u0 minimizing H(f δ, Tuxk−1) is u such that Tuxk−1 = f δ, which
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amounts to solving a deblurring problem. For simplicity, we will just use u0 = f δ/xk−1.

Penalty minimizing initializations

On the other hand, we can choose u0 to minimize the penalty J(·). For J(·) = TV (log(·))

or TV (·), these would be constant functions whose values we can optimally choose to min-

imize the remaining data fidelity H(f δ, Tuxk−1). For the tight and refined schemes, the

additional terms akλkTV (log(u0xk−1)) and ‖ log(u0)‖∗ do not necessarily vanish as was the

case before. In the tight schemes, however, this does not affect the choice of a constant u0

since TV (log(u0xk−1)) = TV (log(u0) + log(xk−1)) = TV (log(xk−1)). However, ‖ log(u0)‖∗ is

finite only if
∫

Ω
log(u0) = 0 (see Sec. 3.1.4, Lemma 1 in [VL16]), which would force u0 = 1

for a constant initialization, with no choice on optimizing the fidelity further.

We let w0 = log
(

1
|Ω|

∫
f δe−yk−1

)
for the SO MHDM regular and tight schemes, and

w0 = 0 for the refined one. In the AA MHDM and AA-log MHDM regular and tight

schemes, we take u0 = 1
|Ω|

∫
f δ/Txk−1, while for the refined scheme we need u0 = 1. Finally,

we choose u0 =
‖fδ/Txk−1‖2L2(Ω)∫

fδ/Txk−1
for the TNV-log schemes.

In practice, we use the penalty minimizing initializations for the regular and tight SO

MHDM, AA MHDM, AA-log MHDM and TNV-log schemes, while the fidelity minimizing

initializations are considered for the refined SO MHDM and AA-log schemes. In the case of

images with blur, we find that the penalty minimizing initialization u0 = 1 works marginally

better for the refined AA-log MHDM recovery.

Remark 2.7.3. One could also try to balance the fidelity and penalty minimizing approaches.

While less systematic, it would be tractable to initialize with a smoothed version of the fidelity

minimizing initialization discussed above. For instance with AA-log MHDM, one could take

u0 = K ∗ (f δ/xk−1) where K is some Gaussian blurring kernel and ∗ indicates convolution.

However, some experimenting or prior would be needed to properly choose the kernel widths.
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2.8 Numerical Results

In this section we examine the numerical results of multiscale image restoration in the case

of multiplicative noise, using the regular, tight and refined schemes for the SO MHDM, AA

MHDM, AA-log MHDM and TNV-log models. We also compare these against the TNV

multiscale method [TNV08] and the DZ model [DZ13].

(a) (b) (c) (d)

Figure 2.2: Original images: (a) “Cameraman”, (b) “‘Barbara”, (c) “Mandrill”, (d) “Geometry”.

We chose three natural grayscale images with edges and textures ranging from smooth

to detailed, and one synthetic test image as shown in Fig. 2.2. The original Barbara image

comes from Alan Gersho’s lab at the University of California, Santa Barbara; Cameraman

is available through the scikit-image library’s skimage.data test image dataset, and is

RMSE=27.00, SNR=13.98 RMSE=26.05, SNR=13.99 RMSE=27.12, SNR=13.97 RMSE=28.34, SNR=12.96

Figure 2.3: Images with multiplicative gamma noise.
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released under CC0 by the photographer Lav Varshney; Mandrill is available through the

University of Southern California Signal and Image Processing Institute’s image database

[SI]. The Geometry image is the author’s. The models proposed in this work are aimed at

removing multiplicative gamma noise and (possibly) blurring. Accordingly, we degrade the

test images with gamma noise

g(x; a) =
aa

Γ(a)
xa−1e−ax1x≥0 ,

with shape parameter a = 25 (mean 1 and standard deviation 1/
√
a = 0.2), as shown in

Fig. 2.3. Our choice of a serves to compare with the original Aubert and Aujol paper [AA08].

While the standard deviation for the Gamma noise used in [AA08] is not given, this noise

profile produces signal-to-noise ratios near the sample images used therein. Similar or lower

noise levels are also used in [UCK17]. Comprehensive comparisons are made at this noise

level, but we also include some high and severe noise cases in Figures 2.12 and 2.18 which

demonstrate the MHDM’s ability to handle more aggressive corruption. Restorations are

evaluated on the root-mean-squared-error (RMSE) and signal-to-noise ratio (SNR) between

recovered xk and original images z:

RMSE =
‖xk − z‖√

N
, SNR = 10× log10

(
‖z‖2

‖xk − z‖2

)
,

where ‖ · ‖ is the Euclidean norm and N is the total number of pixels in the image. We also

examine how many multiscales are required for reconstruction, as well as the effectiveness of

the stopping criteria.

The MHDM recoveries in the following sections are all performed with the same parameter

values (as much as the models allow). We choose λ0 = 0.01, then λk = λ0q
k with q = 2

for the regular and q = 3 for the tight/refined schemes, as they satisfy the convergence

prerequisites given in Section 2.5 and 2.6. For the tight and refined formulations, there is

the additional parameter ak = a0

(1+k)3/2 with a0 = 1. If blurring is considered, we use a 5× 5

56



Gaussian kernel T with variance 2. The parameter λk serves as the weight of the fidelity

term, and larger λk leads to more textural details in uk. In general, to avoid restoring noise

in the image during the first few ranks of the hierarchy, a relatively small λ0 should be

chosen. As λk gradually increases, the texture within the image is restored at finer and

finer scales. The multiscale hierarchical nature of the methods also increases the robustness

of the recoveries; that is to say, it dilutes the influence of parameter changes on the image

restoration. For example, if we choose a smaller λ0, an acceptable restoration can be obtained

with more hierarchy ranks (larger k). The time step size ∆t = 0.01, gradient regularization

ε = 0.01, and the maximum number of iterations maxIters=1000. Using SO MHDM (EL)

as an example, we give Fig. 2.4 to briefly mention the numerical convergence of gradient

descent across multiscale indices k for maxIters=1000, where Ek(w
n) is given by the energy

to be minimized in (2.20) evaluated at the n-th iteration wn. Lower k values may take more

than 1000 steps to fully converge (c.f. k = 6 in Fig. 2.4), however, in aggregate across all

k, convergence is achieved. Increasing maxIters or implementing a relative-energy-change

exit condition has little impact on RMSE or SNR values at kmin, as shown in Table 2.4. We

also observe similar behavior for the AA-log MHDM methods. Overall, the schemes exhibit

robust nature due to the hierarchical construction of multiscale methods.

Table 2.1: kmin, RMSE and SNR values of SO MHDM (cameraman image) with different stopping

criteria for gradient descent.

Stopping criteria kmin RMSE at kmin SNR at kmin

maxIters=100 9 12.0223 21.0058

maxIters=1000 9 10.8598 21.8892

maxIters=10000 9 10.9102 21.8489

|Ek(wn+1)− Ek(wn)|
Ek(wn+1)

< 10−8 9 10.9159 21.8444
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Figure 2.4: SO MHDM (cameraman image) energy versus iteration number during gradient

descent, with multiscale numbers k = 3, 6, 9, 12.

2.8.1 Shi-Osher Models

Here and in the subsequent sections, to differentiate between the Euler-Lagrange PDE dis-

cretization and the ADMM recoveries, we will append (EL) or (ADMM) to the appropriate

schemes, such as tight SO MHDM (ADMM) and refined SO MHDM (EL).

The purpose of the MHDM recovery is to retain textures of the original images at different

scales while eliminating noise. As an example of a typical recovery, we show the progression of

the multiscales for the “Cameraman” image in Fig. 2.5. The importance of correctly selecting

a stopping point is clear, since too many multiscales will recover the majority of the noise as

finer and finer levels of texture are added back into the image, while too few leave the image

without textural details. This can be seen visually in Fig. 2.5 and numerically in Fig. 2.7a.

The individual multiplicative scales are given in Fig. 2.6 and demonstrate how the images are

58



built up. Recall each xk in Fig. 2.5 is the product
∏k

j=0 uj, with each uj contributing features

at different scales. Based on the multiplicative construction, light regions within uj (higher

pixel values) are promoted, while darker ones (lower pixel values) are suppressed relative

to middle-toned regions in the image. As one can see in Fig. 2.6, the multiplicative process

segments the large scale “cartoon” features at early scales before separating the texture

and eventually noise within the image. Moreover, the proposed stopping index k∗(δ) = 9

aligns with a sensible contribution from u9 which adds back sufficient detail within the

cameraman’s clothing and tripod before increasing the fine details—and noise—in the grass

and background with uj, j > 9. For a user with definite sense of the scale of features in the

true data, the uj pieces could provide a visual method of choosing k∗, whereby one increases

k until uk is emphasizing details at the preferred size.

Throughout the following discussion, we will look at both the multiscale index kmin which

minimizes RMSE and the proposed stopping index k∗ = k∗(δ) defined in (2.31), (2.36).

Recall that the noise parameter δ satisfies H(f δ, T z) ≤ δ2. In practice, we take δ2 =

H(f δ, T z) for our numerical experiments.

In the case of SO MHDM, we transform the summed-MHDM reconstruction yk back

to the image approximation xk = eyk , and then we compute k∗ accordingly. The stopping

criterion is determined by choosing k∗ to be the penultimate multiscale to H(f δ, xk)/H(f δ, z)

dropping below the value 1, as shown in Fig. 2.7b for the SO MHDM regular, tight and

refined recoveries. In the “Cameraman” restoration, one has k∗ = kmin for regular and

tight SO MHDM, while k∗(δ) = kmin + 1 for the refined version. We emphasize that the

tight and refined schemes require fewer multiscales to recover the images, and that Fig. 2.7a

demonstrates the importance of the stopping criteria at preventing excess noise from being

recovered. The SO MHDM (EL) recoveries are shown in Fig. 2.8, where we observe slight

improvements transitioning from the regular to tight and finally to refined methods. Fig. 2.9
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Figure 2.5: Multiscales xk for k = 4, 5, . . . , 12 in the SO MHDM recovery of the cameraman

image. In this example, our proposed stopping index k∗(δ) = 9 = kmin is optimal (Refer to the

diamond-labeled curves in Fig. 2.7).

exhibits a more textured image at the kmin and k∗(δ) scales. Again, the number of multiscales

required in the SO MHDM (EL) reconstructions decreases going from regular to tight and

then to refined SO MHDM in a uniform manner, consistent with Fig. 2.7. We also see

increasingly improved restorations when moving from regular to refined schemes. Notably,

with this more textured image the stopping index k∗(δ)—which is generally within one step

of kmin—produces restorations which are visually very close to the optimal ones.

However, the difference between kmin and k∗(δ) can significantly affect the restoration
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Figure 2.6: Multiplicative scales uj = eyj from the SO MHDM recovery of the cameraman image.

The product
∏k
j=0 uj =: xk constructs the multiscales shown in Fig. 2.5. These are displayed on the

interval [0.4, 1.6] for increased contrast—true range [0.22, 1.63]—and shown with a common legend.

in some cases—see “Geometry” in second column of Fig. 2.10, which compares recoveries

obtained from the SO MHDM ADMM and EL approaches. For this low texture image, the

SO MHDM (ADMM) restorations are significantly better than the EL derived counterparts.

We also take a moment to mention that the SO MHDM recoveries in Fig. 2.10 preserve the

mean image intensity. For models that make use of the logarithm to transform multiplicative

noise into additive noise, there is a downward shift in the mean intensity of the recoveries, as

explained in [AA08]. Our multiscale method effectively eliminates this mean intensity shift.
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(a)

(b)

Figure 2.7: (a) RMSE and SNR versus multiscales index across methods when restoring the

“cameraman” image. The optimal multiscale index kmin for each method is shown as the blue square

and the stopping criteria k∗ are given by red asterisks. (b) The stopping criteria k∗ (shown as red

asterisks) are the maximal k before H(f δ, xk)/H(f δ, z) ≥ τ > 1 (for SO MHDM) or (H(f δ, xk) +

akλkJ(xk))/H(f δ, z) ≥ τ > 1 (for tight and refined SO MHDM) is no longer satisfied, as indicated

by crossing under the horizontal dotted line in (b).

62



Figure 2.8: SO MHDM (EL) image recoveries. From left to right: regular, tight, and refined

restorations at kmin, and finally, the refined restoration at k∗. Recall that k∗ = kmin for regular

and tight recoveries.

For the remaining higher-texture images, detailed recovery comparisons across all the SO

MHDM models will be discussed in Section 2.8.7. In summary, the best restorations (lowest

RMSE and highest SNR) among the SO MHDM models are tight SO MHDM (ADMM) for

‘Cameraman’ and ‘Geometry’, and refined SO MHDM (EL) for ‘Barbara’ and ‘Mandrill’.

This confirms that the refined version is suitable for recovering images with more texture.

2.8.2 AA-log Models: Denoising

In contrast to the SO models, the AA MHDM and AA-log MHDM models address the noise

directly, building a multiscale restoration through multiplicative decompositions. They are

also well equipped to handle blurring, and perform comparably to SO in the regular and tight

formulations. The AA MHDM method behaves similarly to the AA-log schemes (see Table

2.2), so the majority of discussion is dedicated to the latter. We note that with the same

timestep as the AA-log scheme, a threshholding step to ensure that the iterates continue to

satisfy infΩ f
δ ≤ xk ≤ supΩ f

δ helps with numerical stability.

In Fig. 2.11 we give the AA-log MHDM restorations, and note the reduced performance
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Figure 2.9: From left to right: the regular, tight and refined SO MHDM (EL) recoveries. Row

one is the kmin restoration while row two is the k∗ recovery (if k∗ 6= kmin).

of the refined method, specifically on the smooth “Geometry” image, is likely due to the

weaker ‖ log(u)‖∗ penalty. As a result, it may provide insufficient regularization to remove

adequate noise, especially in smoother images. For the regular and tight formulations, the

AA-log MHDM scheme produces better recoveries than its SO MHDM (EL) counterparts

for the “Geometry” image. We also include the tight k∗ recovery in Fig. 2.11, which visually

is a better restoration despite not obtaining the lowest RMSE.

Worth remarking is the ability of the AA-log MHDM methods to recover corners and

edges in the “Geometry”, even with very high noise levels. This is shown in Fig. 2.12, which

compares the original AA recovery to the AA-log MHDM tight restoration of a severely

noise-degraded image (gamma noise g(x; 1), standard deviation 1), as tested in Figures 2

and 3 from [AA08].

Remark 2.8.1. As noted in [TNV08], the presence of log(Tu) and f δ/Tu terms in the
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Figure 2.10: SO MHDM EL (left) and ADMM (right) restored images. Rows 1, 2 and 3 are the

regular, tight and refined model recoveries, respectively. Columns 1 and 3 are the kmin restorations

while columns 2 and 4 are the recoveries at the stopping criterion index k∗ (if k∗ 6= kmin).
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AA-log MHDM models require the images to take strictly positive pixel values. Accordingly,

images should be shifted away from zero, processed, and then shifted back appropriately when

near-black pixels are expected.

Figure 2.11: AA-log MHDM denoised images. Columns 1, 2, and 4 are the kmin regular, tight

and refined restorations, respectively. Columns 3 is the tight recovery at the stopping criterion k∗.

2.8.3 AA-log Models: Denoising-Deblurring

One of the primary advantages of the AA-log MHDM models is handling deblurring in ad-

dition to denoising. Figure 2.13 gives the blurry, noisy counterparts of the test images, and

Fig. 2.14 shows the AA-log MHDM recoveries. All images are blurred with a 5× 5 Gaussian

filter with standard deviation
√

2. The method effectively sharpens edges (see “Camera-

man’s” jacket and “Geometry”) while maintaining texture (the tablecloth in “Barbara” and

whiskers in “Mandrill”). The refined version with its weaker ∗-norm suffers from greater

numerical instability, exhibiting a slight drop from the tight version in SNR.
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Figure 2.12: Recoveries from severe noise (standard deviation 1). From left to right: noisy

image (SNR = −0.079), original AA model [AA08] (SNR = 13.42), and the AA-log MHDM tight

recovery (kmin = 4, SNR = 20.22).

RMSE= 30.58, SNR=12.90 RMSE=30.06, SNR=12.74 RMSE=29.50, SNR=13.24 RMSE=28.84, SNR=13.86

Figure 2.13: Images degraded with multiplicative gamma noise and Gaussian blur. Blurring from

a 5× 5 filter with standard deviation
√

2. Noise as before with previous images.

2.8.4 TNV-log Models: Denoising

The TNV-log model is an adaptation of the TNV model by using the TV (log(u)) penalty.

Recall that TNV is a multiscale procedure based on [RLO03], which aimed to recover a

degraded image f = u · η by minimizing TV (u) subject to the constraints
∫
f/u = 1 (mean)

and
∫

(f/u − 1)2 = σ2 (variance). Notice that no assumptions are required on the noise

distribution (besides its mean and variance), so this method is suitable for more general

multiplicative noise restorations. TNV [TNV08] dropped the mean constraint and converted

the result to a multiscale method. We follow this lead while adding the contribution of a mod-
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Figure 2.14: AA-log denoised-deblurred images. Rows one, two and three are the regular, tight

and refined AA-log MHDM models.

ified penalty. We omit a refined scheme because of the reduced performance from the weaker

regularization ‖ log(·)‖∗, but there is hope, though, that other types of discretizations might

provide better results in the refined case. Figure 2.15 shows the TNV-log recoveries. While

the method does not outperform the multiscale methods designed for gamma distributed

noise, TNV-log performs well against the DZ model on highly textured images.

The paper [AA08] pointed out that empirically the RO model did not preserve the average

image intensity, with the recoveries shifting to lighter—higher mean—values. We check the
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mean intensity of the TNV-log “Geometry” restorations and observe a similar, yet reduced

trend, with only minor upward shifts in the average intensity of both the regular (+3.3) and

tight (+5.8) methods compared with the original image (an 8-bit grayscale image).

Figure 2.15: TNV-log denoised images. Row one is the regular and row two is the tight recoveries.

2.8.5 TNV-log Models: Denoising-Deblurring

The TNV-log model can also tackle denoising-deblurring, as shown in Fig. 2.16. We see

that the performance is not as good as with the AA-log methods. For example, the edges

are not that well preserved and the “Cameraman” image has more noise than the AA-log in

Fig. 2.14. Yet, this is expected for a technique not tailored for gamma noise.

2.8.6 Sensitivity to Initialization

To aid the reader in using the MHDM procedure, we briefly discuss a heuristic for initializing

each method and provide some intuition for these choices. The AA-log MHDM methods are
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Figure 2.16: TNV-log denoised-deblurred images: regular (row 1) and tight (row 2) recoveries.

not convex, and consequently initialization can affect recoveries. We find that the penalty

minimizing initializations, which generally are smoother (see Subsection 2.7.9), work well

for the regular and tight AA-log MHDM schemes, while the fidelity minimizing initialization

f δ/xk−1 produces poor restorations and appears to be near a suboptimal local minimum. The

refined AA-log MHDM method, however, does well with the less smooth fidelity minimizing

initializations, likely because the ∗-norm is finite only for zero-mean functions (see Subsection

2.7.9).

The SO MHDM methods are convex, and as a result exhibit much less dependence on

initialization. All SO methods perform well with both the penalty and fidelity minimizing

initializations. We do see a slight improvement following the convention employed for the

AA-log MHDM and use this pattern for the results in this work.

Like the AA-log MHDM methods, the TNV-log schemes are not convex. We observe a

similar trend to the AA-log method’s dependence on initialization, preferring the smoother
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penalty minimizing initialization for the TNV-log regular and tight schemes.

2.8.7 Denoising Comparisons

Having seen the individual recoveries across the proposed methods, we now compare them

against one another, and also with the existing TNV [TNV08] and DZ [DZ13] models for

both denoising and deblurring tasks. For DZ, we choose α = 16 in (2.12) for all images and

select the best weight λ by means of a grid search (see Fig. 2.17).

We present the TNV and the DZ recoveries in Fig. 2.17. The DZ model recovers the

smoother, more cartoon image features well, but fails to capture the textural details in the

way a multiscale method like the TNV model does. However, the latter suffers from restoring

perhaps too much noise within smoother images. We examine our proposed MHDM schemes

against the TNV and DZ models. To easily compare across all models, we list the SNR values

of the denoising restorations at kmin and k∗ in Table 2.2. We note that the refined SO MHDM

recovery performs best on images with more detail and texture (“Barbara” and “Mandrill”),

while the ADMM schemes recover best those with larger smooth regions (“Cameraman” and

“Geometry”).

Figure 2.19 gives a detailed crop of each method’s recovery for the test images. The mul-

tiscale reconstruction’s ability to recover greater texture is clear in the “Barbara” recovery,

where one can see that the DZ recovery flattens and mutes the details. The SO MHDM

(ADMM) schemes are very effective at removing noise in smooth regions (“Geometry”). In

a more textured image such as the “Mandrill”, we remark the importance of the tight adjust-

ment preventing over-smoothing, as for example, is seen with the “Mandrill” image’s nose

for SO MHDM (ADMM).

For greater comparison, we also note that the MHDM schemes handle higher noise levels

quite well (g(x; 10), standard deviation 0.32), as shown for a few methods in Fig. 2.18, in
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RMSE=11.86, SNR=21.12 RMSE=13.46, SNR=19.73 RMSE=12.93, SNR=20.40 RMSE=7.183, SNR=25.94

RMSE=10.87, SNR=21.87 RMSE=14.37, SNR=19.13 RMSE=13.16, SNR=20.22 RMSE=3.87, SNR=31.32

Figure 2.17: Row one: TNV recoveries at kmin = 9 for all images except “Geometry”, for which

kmin = 8. Row two: DZ model denoised images. Parameters for the DZ model recoveries (refer

to (2.12)): (Cameraman) λ = 0.06, (Barbara) λ = 0.05, (Mandrill) λ = 0.05, and (Geometry)

λ = 0.13. For all images, α = 16.

comparison with the DZ recovery. Importantly, SNR and RMSE are improved, and texture

is retained throughout the image when compared with the DZ method.

2.8.8 Deblurring-Denoising Comparisons

Table 2.3 lists comparisons for denoising-deblurring. The AA-log MHDM models perform

better overall. The DZ model greatly over-smooths details compared to the multiscale

schemes, especially in the detailed crops of Figures 2.20–2.21, and naturally, it performs

well on “Geometry”. We emphasize the improvement of the TNV and the TNV-log methods

over the DZ model on textured images in either SNR or the visual metric, demonstrating
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Table 2.2: SNR values from various denoising recoveries at the minimizing indices kmin and the

stopping criteria k∗(δ). Bold entries are the maximum of their respective columns.

Cameraman Barbara Mandrill Geometry

SNR at kmin k∗ kmin k∗ kmin k∗ kmin k∗

SO MHDM (EL) 21.89 21.89 19.70 19.08 20.38 20.06 28.21 24.82

SO Tight (EL) 21.94 21.94 19.71 18.98 20.37 19.89 29.46 27.50

SO Refined (EL) 22.25 22.05 19.88 19.33 20.73 20.32 30.11 29.66

SO MHDM (ADMM) 22.16 22.16 19.31 19.12 19.93 19.93 34.67 31.53

SO Tight (ADMM) 22.31 21.97 19.74 19.36 20.46 20.19 34.60 34.60

AA MHDM 21.76 19.45 19.53 19.14 20.21 20.05 28.21 24.77

AA-log MHDM 21.74 21.74 19.65 19.04 20.35 20.02 28.21 24.83

AA-log Tight 21.48 21.48 19.67 18.93 20.37 19.79 30.22 26.11

AA-log Refined 21.68 21.19 19.64 19.21 20.55 20.41 27.12 13.81

TNV-log 21.03 20.13 19.53 17.97 20.37 19.02 25.70 23.17

TNV-log Tight 21.12 12.61 19.54 17.35 20.42 17.89 26.39 21.02

TNV 21.12 19.73 20.40 25.94

DZ 21.87 19.13 20.22 31.32
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Figure 2.18: Recoveries from high noise (standard deviation 0.32). From left to right: noisy image

(RMSE = 41.25, SNR = 10.00), DZ model (RMSE = 17.5233, SNR = 17.44, λ = 0.08), the

SO MHDM tight (kmin = 6, RMSE = 16.37, SNR = 18.03) and AA-log MHDM tight recoveries

(kmin = 6,RMSE = 16.38, SNR = 18.02).

the effectiveness of multiscale recoveries.

2.9 Conclusion

In this chapter, we introduced several multiscale hierarchical decomposition methods for

images degraded by multiplicative noise which are able to retain texture and image features

at different scales while reducing noise. We demonstrated that the fidelity terms decrease

monotonically with increasing hierarchical depth, and propose an effective stopping criterion

which limits restoring excess noise. Additionally, we considered extensions of the multiplica-

tive MHDM (the so-called tight and refined versions), which are shown theoretically to push

the regularity of recoveries to match that of the original image and empirically demonstrate

better convergence properties of the iterates. The AA MHDM and AA-log MHDM methods

are aimed specifically at gamma noise, and additionally handle deblurring tasks quite well,

outperforming the existing DZ and TNV models in our tests. The convex SO MHDM models

are quite robust with respect to initialization. They behave exceptionally well for images

with smooth regions and still prevent over-smoothing on regions with oscillating patterns
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Table 2.3: SNR values for restoring noisy-blurred images at the kmin. Bold entries are the

maximums of their respective columns.

SNR at kmin Cameraman Barbara Mandrill Geometry

AA MHDM 18.81 17.69 18.65 26.45

AA-log MHDM 18.81 17.69 18.64 26.66

AA-log Tight 19.07 17.74 18.66 28.76

AA-log Refined 18.81 17.54 18.47 27.12

TNV-log 18.22 17.30 18.13 24.17

TNV-log Tight 18.39 17.35 18.16 25.17

TNV 18.26 17.32 18.17 24.23

DZ 17.14 17.36 17.24 28.32

when implemented with ADMM, while the Euler-Lagrange method retains slightly more

details in very textured images. Finally, we consider the TNV-log method which handles

blurring and noise without assuming a specific distribution for the noise (e.g. gamma). Ac-

cordingly, it is suitable for images corrupted by more general multiplicative noises. While

TNV-log does not top the other MHDM methods when tested on gamma noise corrupted

samples, it still outperforms the DZ model when deblurring and denoising more textured im-

ages, while continuing to maintain fine-scaled features. Collectively, these MHDM schemes

provide a means to address multiplicative noise-degraded images by constructing decompo-

sitions across several scales. It is hoped that the schemes and the included analysis might

be helpful for the reader to identify applications beyond the denoising and deblurring tasks

investigated here, and to extend to additional schemes outside those studied within. In the

future, we aim to extend the proposed models to image segmentation and to vector-valued

data, for instance, to restore color images perturbed by multiplicative noise and blurring.
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Figure 2.19: Detailed MHDM denoising. From left to right, top to bottom: noisy images; SO

MHDM (EL) regular, tight, and refined versions; SO MHDM (ADMM) regular and tight versions;

AA-log MHDM regular, tight, and refined versions; TNV-log regular and tight versions; TNV, DZ

and original images. Black borders indicate the best recoveries (highest SNR) for each image.
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Figure 2.20: Detailed MHDM denoising-deblurring results for Cameraman and Barbara. From

left to right, top to bottom: noisy images; AA-log MHDM regular, tight, and refined versions;

TNV-log regular and tight versions; TNV, DZ, and original images. Black borders indicate the

best recoveries (highest SNR) for each image.
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Figure 2.21: MHDM denoising-deblurring recoveries for Mandril and Geometry images. From

left to right, top to bottom: noisy images; AA-log MHDM regular, tight, and refined versions;

TNV-log regular and tight versions; TNV, DZ, and original images. Black borders indicate the

best recoveries (highest SNR) for each image.
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CHAPTER 3

Optical Flow for Atmospheric Motion Estimation
1

3.1 Introduction

Optical flow has a long and successful history in computer vision applications as a motion

estimator. The method has found a place in object tracking including such applications

as optical computer-mice, stereo-vision, and scene motion estimation. In general, an optical

flow method attempts to extract a displacement field which describes the motion between two

scenes (often two consecutive frames from an image sequence or video). While the method

is traditionally used on natural imagery, it has been applied as a tool in studying fluids

by examining particle-laden flows, a practice known as particle image velocimetry (PIV)

[Adr05, LYZ21], as well as for cloud and weather tracking [CBK15, WW17]. Applications

like PIV and cloud tracking prove challenging because of the complicated nature of fluid

motion—in particular, there are no longer stable features or quasi-rigid motions typical of

natural imagery.

We are interested in applying optical flow towards water vapor data with the aim of

recovering atmospheric wind velocities. The ability to extract such estimates from satellite

data is of significant interest since microwave and infrared instrument equipped satellites

provide comprehensive coverage of weather phenomenon without the need for in-place in-

struments (e.g., ocean drifters, physical wind sensors), which are both costly and provide

1This chapter is adapted from [BBV23b] with permission from SPIE, and [BBV23a] c©2023 IEEE.
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only sparse estimates.

Our data comes from direct numerical simulations of atmospheric conditions from the

Weather Research and Forecasting III model [SKD08]. Importantly, because we use data

from simulations, it has accompanying ground truth wind velocities allowing us to evaluate

any flow estimate against the correct velocity field.

Water vapor from three weather scenarios is extracted from this nature-run data and

used in our experiments. First, we have a mesoscale convective system (MCS) over the

eastern Pacific which provides higher spatial resolution but with larger time intervals between

frames. Second, we consider tropical convection (TC) over the maritime continent. Last, we

consider an extratropical cyclone (ETC) event over the western Atlantic. The size, spatial

and temporal resolution of each dataset is given in Table 3.1. We note that, as is typical of

Table 3.1: Description of water vapor datasets.

Name Image Size Spatial Resolution Time Resolution

MCS 850× 1850 px2 3000 m/px 900 s

TC 999× 1299 px2 3500 m/px 72 s

ETC 480× 480 px2 12000 m/px 120 s

remote sensing data, the spatial resolution is quite coarse (on the order of 3km to 12km per

pixel). Furthermore, for the MCS dataset, the frames of data are separated by 15 minute

intervals. This means that for moderate wind speeds (15-20 m/s, or 33-45 mph), water

vapor transported by the wind could travel across many pixels. Large displacement flows

(in terms of pixels) is a known challenge for optical flow methods. Moreover, for the lower

spatial resolution datasets with shorter time-separation intervals, wind-driven displacement

frequently is on the sub-pixel scale which also poses a challenge for resolving low velocity
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regions.

3.2 Background

The primary assumption of optical flow methods is one of brightness constancy. That is,

the brightness of an object in a scene does not change over short time intervals, and an

optical flow algorithm attempts to track the rearrangement or mixing of these intensity-

unvarying objects (or pixels in the case of image-like data) with time. To frame this constancy

Figure 3.1: Brightness constancy assumption: if I takes value I(x, t) at time t, and the object

at x moves to x + d as t → t + ∆t, then the brightness/intensity at the displaced points match:

I(x+ d, t+ ∆t) = I(x, t).

assumption more precisely, let I(·, t) : Ω ⊂ R2 → R, with I(x, t) representing the image

intensity at some point x ∈ Ω for each fixed time t. Here, x = (x, y). If we assume the

object at x is displaced by d = d(x, t) as time advances to t+∆t, then brightness constancy

assumes I(x+ d, t + ∆t) = I(x, t). Taylor expanding I about (x, t) gives the so-called

optical flow constraint equation (OFCE)

It(x, t) + uT∇I(x, t) = 0, (3.1)
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where u = d/∆t is the velocity field describing the displacement. This is depicted in Figure

3.1. By letting ∆t→ 0, the left-hand side of (3.1) can also be seen as the total time-derivative

of I(x, t), where it is understood that (x, t) = (x(t), t) traces out the space-time path objects

take as they move within the scene. Since the transport equation (3.1) is obtained through

linearization, it is sometimes called the linear OFCE. The non-linear version is simply

I(x+ d, t+ ∆t)− I(x, t) = 0. (3.2)

In practice, when working with video or imagery data it is standard to take ∆t = 1 (in which

case u = d) and define frame one by I1(x) = I(x, t+ 1) and frame zero by I0(x) = I(x, t).

An optical flow method aims to find the flow field u = (u1, u2)T given the images I0 and I1.

As it stands, solving (3.1) for the unknown d is ill-posed, since there is only one equation

but multiple unknowns. This feature of optical flow constraint equation is known as the

aperture problem, and can be understood visually in Figure 3.2. When restricted to viewing

a scene through an“aperture”, there are multiple feasible directions a patch within the scene

could be moving.

Figure 3.2: The aperture problem. In each of diagrams A, B, or C, if the patterned background

is pulled through the viewing aperture in the indicated direction, the resulting motion appears

identical.
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Because (3.1) is ill-posed, additional constraints are required to improve the conditioning

of the problem and determine the flow. This can be remedied by assuming the flow is con-

stant on neighborhoods as was done by Lucas and Kanade [LK81], or imposing regularization

on the flow as was introduced by Horn and Schunck [HS81] (HS) in 1981. Methods which

impose constraints on local regions, e.g. Lucas and Kanade’s flow, block matching or corre-

lation techniques [LMM15,PWM19], are known as local methods which generally produce a

sparse flow field describing the motion within a scene. Conversely, schemes which place re-

quirements on the whole flow are known as global methods, and produce dense velocity fields.

Additionally, hybrid methods [HHM08,BWS05,HMS10,LSF20] which blend correlation and

variational techniques have been tested. Because we are interested in recovering dense flow

estimates for wind velocities, we focus on global variational optical flow methods, which have

outperformed cross correlation techniques for atmospheric tracking (see [CBK15]).

Subsequent optical flow techniques have primarily been based on the seminal work of

Horn and Schunck, which solves the minimization problem

min
u=(u1,u2)

λ

∫
Ω

(
It + uT∇I

)2
dx+

∫
Ω

(
|∇u1|2 + |∇u2|2

)
dx. (3.3)

These have been applied to PIV [Adr05,LYZ21], tailored for fluid flow through relaxed vor-

ticity and divergence penalties [CZS15], tested for weather forecasting [WW17] and utilized

in atmospheric tracking [BD06,CBK15,YSP22,YPW23,BBV23a,OZW21].

Each of these methods can broadly be categorized as the minimization problem

min
u
λ

∫
Ω

ψ(ρ(u; I))dx+ J(u) (3.4)

where ρ represents the data fitting term, ψ a non-negative penalizing function and J(·) is

a regularization term. For instance, the HS flow is characterized by ψ(x) = x2, ρ(u) =

It + uT∇I and J(u) =
∫

Ω
(|∇u1|2 + |∇u2|2). The positive constant λ weights the emphasis

of the data over the regularization.
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3.2.1 Large Displacement Optical Flow

For scenes with large displacements between frames, the linearized OFCE is often inaccurate,

so either non-linear schemes are devised (see [SPC09] for e.g.), or a method of “warping”

is utilized, whereby I(x + u0) is computed via interpolation (typically bicubic) for some

approximation u0 to the desired flow. The OFCE is then reformed by linearizing (3.2)

around this most recent approximation, x+ u0. This “warping” process is repeated until a

final flow is obtained.

Additionally, to further assist with large displacements, optical flow algorithms commonly

make use of a hierarchical pyramid multi-resolution scheme (see [ABH93]). First, images

are spatially smoothed through a low-pass filter before being spatially downsampled and

stored at each level, forming the so-called multiresolution hierarchy pyramid. The purpose

in reducing the resolution is to resolve the motion within the scene to one or two pixels. If

an object moves 16 pixels between frames at full resolution, then downsampling spatially

by a factor of 8 or 16 will result in the same object moving only 1-2 pixels within the new

coarse grain data.

Images are then used to form flow estimates, starting with the coarsest resolution first,

and working to more resolved scales. The flow estimates from the coarse scales serve to

initialize flow estimates for higher resolution images. This process is repeated iteratively

until the original resolution is reached (see [MS13] for a HS implementation).

3.2.2 Limitations of the Optical Flow Constraint Equation for Fluid Motion

Applying HS directly to fluid data yields less than satisfactory results, as shown in Figure 3.3.

We note that throughout this chapter, we will visualize a vector field using a color plot which

assigns a vector’s direction a color and the saturation determines the vector magnitude. This
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can be decoded by the circular color-chart in Figure 3.3. The underperformance of HS is

not surprising, as the method is designed more for quasi-rigid motions, with the regularizing

term ‖∇u‖2 penalizing turbulent flows harshly [CHA06, CZS15]. Specifically, when viewed

as a minimization penalty,
∫

Ω
|∇u1|2 + |∇u2|2dx is equivalent with a quadratic penalty on

the divergence and vorticity of u. To see this, we must look at the Euler-Lagrange equations

associated with minimizing the two penalties. Note that for any u

d

ds

(∫
Ω

|∇(u+ sφ)|2dx
) ∣∣∣∣∣

s=0

= 2

∫
Ω

∇u · ∇φdx

= −2

∫
Ω

φ∆udx

for all φ vanishing on ∂Ω. Thus, the necessary condition for minimizing ‖∇u‖2 is
−2∆u1 = 0,

−2∆u2 = 0,

(3.5)

on Ω.

Now consider div(u)2 + vort(u)2 = |∇u1|2 + |∇u2|2 + 2∂xu1∂yu2− 2∂yu1∂xu2. We rewrite

the mixed derivative terms as F (u1, u2) = 2∇u1 · (∇u2)⊥, where (∇u2)⊥ is the vector,

(∂yu2,−∂xu2)T , normal to ∇u2, and the vorticity vort(u) = ∂xu2 − ∂yu1 as usual.

The optimality condition on u for F (u1, u2) vanishes, as can be seen by taking the first

variation

d

ds

∫
Ω

F (u1 + sφ, u2 + sψ)dx
∣∣
s=0

= 2

∫
Ω

∇φ · (∇u2)⊥ +∇u1 · (∇ψ)⊥dx

= 2

∫
Ω

∇φ · (∇u2)⊥ − (∇u1)⊥ · ∇ψdx

= −2

∫
Ω

φ∇ · (∇u2)⊥ −∇ · (∇u1)⊥ψdx = 0,

since the normal vectors (∇u1)⊥ and (∇u1)⊥ are divergence free. The second equality makes

use of the perpendicular-operation ⊥ which is anti-symmetric, so ∇u1 · (∇ψ)⊥ = −(∇u1)⊥ ·
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∇ψ. Consequently, a quadratic divergence-vorticity penalty∫
Ω

(
div(u)2 + vort(u)2

)
dx =

∫
Ω

(
|∇u1|2 + |∇u2|2 + F (u1, u2)

)
dx

will have the same Euler-Langrange equation (3.5) as a quadratic gradient penalty. Given

Figure 3.3: HS optical flow derived wind velocity estimate. Ground truth (left) and HS (right)

flows. HS, with a root-mean-square-vector-distance of 3.400m/s, exhibits significant fragmentation.

Note: the figure depicts a vector field using color to indicate direction, and saturation to indicate

speed. Direction and magnitude can be inferred from the circular legend at the top-left.

the restrictions of the HS penalty, a natural starting place to try and improve flow estimates

is to modify ψ(ρ) and J to be more suited for the data. A more robust data term making use

of the L1 norm, which the authors in [SMF13,WPZ09,ZPB07] consider, in addition to total

variation regularization, better adapt to illumination changes and promote discontinuities

common in complicated flows. Such a scheme would have ψ(ρ) = |ρ|, ρ(u; I) = It + uT∇I

and regularization J(u) =
∫

Ω
(|∇u1|+ |∇u2|)dx in (3.4).

Efficient implementations of this so named TV-L1 optical flow method are discussed

in [SMF13, WPZ09, ZPB07], along with a non-linear scheme which requires no warping in

[SPC09]. A Python language implementation is available from the Scikit-image [WSN14]

library. The method has also been proposed for atmospheric motion vector estimation,
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and the authors in [YSP22, YPW23] show that TV-L1 performs favorably compared with

conventional atmospheric motion tracking methods (see Figure 3.4). TV-L1 improves flow

estimates in our data compared with HS and is able to extract the general behavior of the

flow, but struggles to recover flow in areas of low image variation and still over-smooths the

divergence and vorticity present in the flow.

Figure 3.4: TV-L1 optical flow derived wind velocity estimate. Ground truth (left) and TV-L1

(right) flows. TV-L1 captures the structure of the flow, and reduces average error to 2.483 m/s.

While additionally modifying the penalty ψ and regularization J may yield some improve-

ments, we consider more generally whether the OFCE alone is appropriate for recovering the

desired flow. Because we have the ground truth data uGT available, we are able to test the

performance of the ground truth and any computed flow u at minimizing (3.4) as well as

satisfying the data term ρ( · ; I). We make the critical observation that the TV-L1 computed

flows outperform the ground truth, both at minimizing (3.4) and satisfying the OFCE (both

linear and non-linear adaptations), yet do not match the desired flow satisfactorily. That is,∫
Ω

|It + uT∇I|dx+ J(u) <

∫
Ω

|It + uTGT∇I|dx+ J(uGT ),

for u a minimizer of the TV-L1 problem.

This indicates that for our data, the OFCE alone is insufficient for guiding flow discovery.

Driving u to satisfy the OFCE more exactly can move u further from uGT , and additions or

modifications to the constraint equation are needed if we hope to recover improved estimates.

87



3.2.3 Texture features for flow estimation

In an attempt to provide more context to the flow estimator in regions of uniform image-

intensity, we propose decomposing the image into texture and structure components, there-

after extracting a velocity field from a combination of these components. We note that using

the texture portion of images for optical flow has been proposed as a way to combat the

effects of brightness variation on flow estimation (i.e. illumination changes which break the

brightness constancy assumption) [WPZ09], however in the context of water-vapor imagery,

the data is not illumination based and so our motivation for such a decomposition is distinct.

A standard image decomposition can be formed by the iconic Rudin-Osher-Fatemi total

variation denoising model, where an image I is split into the sum I = IS + IText, with the

structure portion IS minimizing

min
f∈BV (Ω)

λ

∫
Ω

(I − f)2dx+ TV (f), (3.6)

where BV (Ω) is the space of functions of bounded variation over Ω. However, a decomposi-

tion with more oscillatory texture is desirable because this provides more features and varia-

tion to add context for flow extraction, especially in regions where the image is primarily very

smooth. One such texture-structure image decomposition was proposed by Meyer [Mey01],

in which IText = I − IS belongs to the weaker space G(Ω) = {div(g) : g ∈ L∞(Ω)2}. Os-

cillations such as texture have small norms in G(Ω), and thus are not penalized by such a

model. The decomposition is determined by solving

IS = arg min
f∈BV (Ω),g∈L∞(Ω)2

λ

∫
Ω

(I − (f + div(g))2dx+ TV (f) + µ‖g‖∞. (3.7)

Details on numerically determining (3.7) are found in [OSV03], where a p-norm relaxation

of (3.7) is utilized. We use this approach to find IText = I − IS for our data.
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3.2.4 Texture-flow

Armed with a structure-texture decomposition, how might one use these features to improve

flow extraction? We propose a texture-flow process which tracks the motion of the texture

portion of an image (or data), and uses this flow to improve the overall atmospheric motion

vector estimate.

The first task is incorporating texture or structure from such a decomposition into the

optical flow process. We test both the performance of IText and IS at producing flow esti-

mates when used as the data within the TV-L1 algorithm, individually. Heuristically, we

find that IText alone improves flow estimates while IS does not (over the original flow from

I itself). A possible explanation of this is that the full image, I, contains primarily the

information of IS, with only small contribution of texture from IText which exist at a much

smaller scales and magnitudes than both I and IS. Thus, the motion of large scale features

and structures within the water vapor data are primarily captured by I (or IS), and the

penalty within ρ(u; I) from miss-aligning the motion seen by IText is minimal. Whereas,

when considering ρ(u; IText) separately, the penalty is entirely due to the motion within

IText, and so the ensuing flow conforms to this more strongly.

We would like to capitalize on the texture-features within IText. Starting with IText

computed for both frames I0 and I1, we compute the TV-L1 texture-flow uText determined

by these textural components (i.e. solve (3.4) with ψ(x) = |x|, ρ(u; IText) = IText1 (x+ u)−

IText0 (x) and J(u) = TV (u1) + TV (u2)). This “texture-based” flow represents only the

motion of the IText features. To further improve our flow estimate, we make use of the

warping process when solving the non-linear OFCE problem to form I1(x + uText). This

warped, full image now incorporates the motion determined from IText, and we can compare

the remaining mismatch (according to ψ(ρ(·))) between I0 and I1(x + uText) to form a

correction to uText. We call this finding this correction flow refinement, and denote the
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derived flow by uR. Finally, we compile the total flow u = uText + uR. The hope is that

in concert, the texture within IText0 and IText1 affords enough information to determine uText

more accurately in regions of uniform image intensity, while uR corrects for the motions

of the larger structures present within I0 and I1. This texture-flow process is encoded in

Algorithm 9.

Algorithm 9 Texture-Flow

INPUT: Images I1 and I0 and texture components IText1 , IText0 .

OUTPUT: u, the flow between I1 and I0.

1: uText ← arg min
u

λ

∫
Ω

ψ(ρ(u; IText))dx+ J(u)

2: I1 ← I1(x+ uText) (via bicubic uplook)

3: uR ← arg min
u

λ

∫
Ω

ψ(ρ(u; I))dx+ J(u)

4: return : u = uText + uR

One could also imagine performing a texture-flow like process with different features

which we expect to satisfy a constancy-like assumption. Different fidelity flow constraint

functions ρ(u; I) could also be considered for each feature. However, including many features

and fidelity terms together quickly gives rise to many questions and complications, such as

which order to process each feature. In order to consider incorporating many features, a

more unifying approach is needed.

3.2.5 Multi-fidelity flow

Multi-fidelity flow is a step towards this unification. One can consider reconstructing the

full flow in a single process by concurrently including the original and textural portions of

the data I0 and I1 within the optical flow minimization problem. An approach to this is to

create a data fidelity term which incorporates multiple features—in this case, the raw data
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I0, I1 and it’s texture IText0 , IText1 —from the data simultaneously, as given in the following

minimization problem

arg min
u

λ1

∫
Ω

|ρ(u; I)|+ λ2

∫
Ω

|ρ(u; IText)|dx+ TV (u1) + TV (u2), (3.8)

where the λi are weights for each fidelity term. We appropriately refer to (3.8) as a multi-

fidelity flow problem, since the fidelity term contains a sum of multiple elements.

In [BBP04], the authors discuss that additional image features such as image gradient and

higher order features like Hessian and Laplacian, should satisfy the constancy assumption.

Shifts in gray-level intensity in an image will break brightness constancy, but gradients of

the image will remain constant under such global illumination changes. Additionally, scaling

the intensity levels within I will cause scaled change within the image gradient lengths,

but will leave the gradient directions unchanged and ∇I can be seen to satisfy it’s own

constancy assumption. Similarly, higher order features will be invariant under affine (or

higher) transformations of I, and a constancy assumption on these is natural.

Additionally, a gradient can be decomposed into magnitude and direction. Under ro-

tational transformations, the magnitude will remain fixed with direction alone changing.

It follows that one may also consider the gradient-magnitude as a feature which tracks a

constancy assumption.

To tackle considering many features simultaneously, we propose a reframing of the optical

flow problem into the multi-fidelity structure

arg min
u

N∑
j=1

λj

∫
Ω

ψ(ρj(u; I))dx+ J(u), (3.9)

where J(·) remains the regularization term and now there are j = 1, 2, . . . , N data fidelity

terms ψ(ρj(u; I)) with ψ(·) some penalty and ρj(·) a data-fitting term such as the OFCE.

The HS method would have N = 1, ρ1(u; I) = It+u
T∇I, ψ(x) = x2 and J(u) =

∫
Ω

(|∇u1|2+

|∇u2|2)dx, while TV-L1 has ψ(x) = |x| and J(u) =
∫

Ω
(|∇u1|+ |∇u2|)dx.
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3.3 Numerical Minimization

Our objective is solving the minimization problem (3.4) as it appears within Algorithm 9

and (3.9). For quadratic (or smooth) ψ and well-conditioned regularizing functionals J( · ),

straightforward techniques of gradient descent can be followed after forming the associated

Euler-Lagrange equations for each minimization problem. In general, though, these can

be difficult optimization problems, especially if ρ is non-linear in u and when ψ( · ) is

non-smooth. However, we are interested in the robust penalty ψ( · ) = | · | and given the

potential for large displacements for our data, we must consider non-linear OFCE approaches

and make use of the iterative warping and multi-resolution techniques mentioned in Section

3.2.1

3.3.1 Texture-Flow Numerics

To solve for the flow in Algorithm 9, we must minimize (3.4) for a specific choice of ψ, ρ and

J . In TV-L1 flow, the corresponding problem is

min
u
λ

∫
Ω

|ρ(u; I)|dx+ TV (u1) + TV (u2),

where ρ(u; I) = I1(x+ u)− I0(x) is highly nonlinear in u. To approach this minimization,

we linearize ρ about a current flow estimate u0,

ρ(u; I) ≈ ρ(u;u0, I) := I1(x+ u0)− I0(x) + (u− u0)T∇I(x+ u0),

where, with some abuse of notation we refer to the linearized version by ρ(u;u0, I). At times

when the context is clear, we will drop the explicit dependence of ρ on I. Now, linearization

on it’s own can be inaccurate for large displacement flows, so the current flow estimate u0

must be near the desired flow. Consequently, we will repeatedly update u0 and warp the

image I1 by this updated displacement estimate throughout the recovery process in order to
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iteratively step u0 nearer the desire flow. This process of warping is described in Algorithm

10 for the multi-fidelity flow process, but is also carried out in the texture-flow recoveries.

Given the current u0, we approach minimizing

min
u
λ

∫
Ω

|I1(x+ u0)− I0(x) + (u− u0)T∇I(x+ u0)|dx+ TV (u1) + TV (u2) (3.10)

by splitting the fidelity and regularizing terms, alternatingly solving the two proximal prob-

lems (3.11) and (3.12)

uk+1 ∈ arg min
u

λ

∫
Ω

|ρ(u;u0)|dx+
1

2θ
‖u− vk‖2 (3.11)

vk+1 ∈ arg min
v

1

2θ
‖uk+1 − v‖2 + J(v), (3.12)

with u0 (note the superscript to indicate iterate, whereas the subscript denotes current flow

estimate) initialized to some guess for the flow (typically u0). The tightness parameter θ

forces vk near uk, and letting θ → 0 the split minimization problems given in (3.11) and

(3.12) is equivalent with (3.10). The reason for splitting is that the individual minimiza-

tion problems are easier when considered separately. Indeed, (3.12) decouples along the

components of v, giving two ROF total variation denoising problems. These have a well

documented (see [Cha04]) fast dual-projection method,

pn+1
i =

pni + τ∇(divpni − uki /θ)
1 + τ |∇(divpni − uki )|

(3.13)

vk+1
i = uki − θdivpNi , (3.14)

which can be used to solve for each component, vk+1
i , of vk+1 after running n in (3.13) to

some convergence criterion Ñ . For (3.11), we follow a shrinkage-like thresholding procedure
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(3.15) detailed in [ZPB07,WPZ09,SMF13]

uk+1 = vk +


λθ∇I1(x+ u0) if ρ(vk;u0) < −λθ|∇I1(x+ u0)|2

−λθ∇I1(x+ u0) if ρ(vk;u0) > λθ|∇I1(x+ u0)|2

−ρ(vk;u0)∇I1(x+ u0)/|∇I1(x+ u0)|2 if |ρ(vk;u0)| ≤ λθ|∇I1(x+ u0)|2.

(3.15)

This process which solves (3.10) can be used in both the minimization steps in the texture-

flow procedure Algorithm 9. We use the Python TV-L1 implementation available from the

Scikit-image image processing library [WSN14] when solving (3.10).

3.3.2 Multi-Fidelity Numerics

We use a splitting-like approach for the multi-fidelity minimization problem (3.9) as well.

Splitting strategies, in addition to providing a tractable approach to (3.4), have the additional

benefit of simplifying the process of including additional terms in the fidelity (see [BBV23a]

for instance). This is a distinct advantage over the numerical approach in [BBP04], where

a several-term fidelity is considered for optical flow tasks. The minimization approach in

[BBP04] requires defining a new discretization based on the Euler-Lagrange equation for

each fidelity and regularization functional used therein. This is not only inconvenient, but

each specific model may require significant changes in discretization strategies in order to

maintain numerical stability, and semi-implicit or fully implicit approaches may be necessary.

However, with a splitting approach, one can quickly stack several fidelity terms and

easily test the influence of, for example, including a texture-based feature in the multi-

fidelity problem (3.8). We are able to solve problems in the form of (3.11) and (3.12), so our

goal is to use splitting to recast (3.9) into these forms.

We introduce new variables uj for j = 1, 2, . . . , N + 1—one for each of the N fidelity
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terms and J(·)—and consider the constrained optimization problem,

arg min
u1,u2,...,uN+1

N∑
j=1

λj

∫
Ω

ψ
(
ρj(u

j;u0, I)
)
dx+ J

(
uN+1

)
subject to u1 = u2 = · · · = uN+1.

(3.16)

This is equivalent with (3.9) and we can relax (3.16) by enforcing the quadratic penalty

QN+1(x1, x2, . . . , xN+1, θ) :=
1

2θ

N+1∑
i=1

∑
j>i

‖xi − xj‖2,

giving the unconstrained problem

arg min
u1,u2,...,uN+1

N∑
j=1

λj

∫
Ω

ψ
(
ρj(u

j;u0, I)
)
dx+ J

(
uN+1

)
+QN+1

(
u1,u2, . . . ,uN+1, θ

)
. (3.17)

The parameter θ > 0, and as θ ↓ 0, (3.17) becomes equivalent with (3.9) and (3.16).

Splitting (3.17) into simple subproblems is not immediately clear, since the quadratic

penalty term, QN+1, now contains N(N + 1)/2 distinct quadratic terms and for any fixed k,

QN+1(u1,u2, . . . ,uN+1, θ) contains N terms which depend on uk. However, Lemma 3.3.1

will allow splitting to proceed since it shows for any fixed k, QN+1 can be equivalently viewed

as a quadratic difference between uk and the average of the remaining uj, j 6= k.

Lemma 3.3.1. Let θ > 0 and N ≥ 1 be a fixed integer. For any k ∈ {1, 2, . . . , N + 1}, the

quadratic function

QN+1

(
u1,u2, . . . ,uN+1, θ

)
:=

1

2θ

N+1∑
i=1

N+1∑
j>i

‖ui − uj‖2 =
N

2θ

∥∥∥∥∥uk − 1

N

∑
j 6=k

uj

∥∥∥∥∥
2

+ c(uj 6=k),

(3.18)

where c(uj 6=k) is a function independent of uk.

Proof. The result is direct. Suppose θ > 0 and N ≥ 1. Let k ∈ {1, 2, . . . , N + 1}. Since Q is

symmetric about its first N + 1 arguments, we may assume k = 1 without loss of generality.
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Now,

N

∥∥∥∥∥uk − 1

N

∑
j 6=k

uj

∥∥∥∥∥
2

= N

∥∥∥∥∥u1 − 1

N

N+1∑
j=2

uj

∥∥∥∥∥
2

= N

‖u1‖2 − 2

〈
u1,

1

N

N+1∑
j=2

uj

〉
+

∥∥∥∥∥ 1

N

N+1∑
j=2

uj

∥∥∥∥∥
2


=
N+1∑
j=2

(
‖u1‖2 − 2〈u1,uj〉+ ‖uj‖2

)
+ c(uj 6=1)

=
N+1∑
j=2

∥∥u1 − uj
∥∥2

+ c(uj 6=1), (3.19)

where we redefine c(uj 6=1) from line to line to absorb terms dependent on uj, j 6= k = 1 as

necessary. Then, by definition

QN+1

(
u1,u2, . . . ,uN+1, θ

)
=

1

2θ

N+1∑
i=1

N+1∑
j>i

‖ui − uj‖2

=
1

2θ

N+1∑
j=2

∥∥u1 − uj
∥∥2

+
1

2θ

N+1∑
i=2

N+1∑
j>i

‖ui − uj‖2

=
1

2θ

N+1∑
j=2

∥∥u1 − uj
∥∥2

+ c(uj 6=1). (3.20)

Multiplying (3.19) by 1/2θ and substituting in (3.20), one immediately has the result.

We can now approach (3.17) by alternatingly minimizing over each of the N+1 variables

u1, u2, . . . ,uN+1. In the k-th subproblem, we will only include the terms of (3.17) which

directly depend on uk, and because of the lemma these subproblems are simplified into a
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fidelity term plus a single quadratic. Our split iterative scheme is given below.

u1,n+1 ∈ arg min
u

λ1

∫
Ω

ψ (ρ1(u;u0, I)) dx+
1

2θ

∥∥∥∥∥u− 1

N

N+1∑
j=2

uj,n

∥∥∥∥∥
2

u2,n+1 ∈ arg min
u

λ2

∫
Ω

ψ (ρ2(u;u0, I)) dx+
1

2θ

∥∥∥∥∥u− u1,n+1

N
− 1

N

N+1∑
j=3

uj,n

∥∥∥∥∥
2

...

uk,n+1 ∈ arg min
u

λk

∫
Ω

ψ (ρk(u;u0, I)) dx+
1

2θ

∥∥∥∥∥u− 1

N

∑
j<k

uj,n+1 − 1

N

N+1∑
j>k

uj,n

∥∥∥∥∥
2

...

uN,n+1 ∈ arg min
u

λN

∫
Ω

ψ (ρN(u;u0, I)) dx+
1

2θ

∥∥∥∥∥u− 1

N

∑
j<N

uj,n+1 − 1

N
uN+1,n

∥∥∥∥∥
2

uN+1,n+1 ∈ arg min
u

J(u) +
1

θ

∥∥∥∥∥u− 1

N

N∑
j=1

uj,n+1

∥∥∥∥∥
2

,

(3.21)

where we iterate this process in n, starting with some initialization for uj,0, j = 1, . . . , N + 1

(usually the current flow estimate u0). Again, the problem (3.17) has been reduced into

proximal problems and an ROF total variation denoising problem, which can be solved via

the explicit formula (3.15) and dual projection procedure (3.13) when ψ(·) and J(·) are

chosen to be the TV-L1 components.

Computing the derivative terms in these schemes is done with finite differences. For speed

we make use of the Python NumPy built-in gradient function, which uses central differences

to compute gradient terms in (3.15) while forward and backward differences are composed

when computing the gradient-of-divergence terms in (3.13).

In order to overcome inaccuracies from large displacements (in terms of pixels), we also

incorporate a hierarchical pyramid scheme (see [ABH93]), downsampling I1 and I0 until the

resolution is reduced sufficiently so that the displacements no longer span many gridpoints.
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Then, recoveries are determined at each resolution level, starting from the coarsest and

working towards the original resolution, with each recovery acting as an initialization for the

next pyramid level. The full algorithm with warping for the multi-fidelity flow (3.17) using

the form (3.21) is given in Algorithm 10.

3.4 Results

In this section we discuss the results of our texture-based and multi-fidelity flows and com-

pare them against existing optical flow methods. In particular, we will compare against the

classic HS optical flow method as well as the popular TV-L1 scheme, which recently has

shown success [YSP22, YPW23] over the conventional feature-tracking algorithm which is

widely used, including for the National Oceanic and Atmospheric Administration (NOAA)

Geostationary Operational Environmental Satellites (GOES) cloud motion retrieval. How-

ever, since the texture-flow and multi-fidelity flow approaches are based on general fidelity

and regularization functionals (ψ, ρ and J) , the same approaches can be applied to other

more sophisticated optical flow processes.

Recall we are interested in determining a vector field describing the atmospheric wind

velocity given a sequence of water-vapor images. A typical water vapor image is given

in Fig. 3.5. In all our experiments, we take in two images to guide flow retrieval which

are separated by 2∆t, where ∆t is the time between frames in the image sequence. The

wind velocity associated with the intermediate frame is taken as the ground truth, and the

estimated vector field is compared against the ground truth using root-mean-squared-vector-

distance (RMSVD). The RMSVD between two vector fields u, v defined on an M ×N pixel

grid is

RMSVD(u,v) =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(v1,ij − u1,ij)2 + (v2,ij − u2,ij)2.
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Algorithm 10 Multi-fidelity Optical Flow

INPUT: images I0 and I1, initial flow estimate u0, parameters Nwarp, Niter, Nlevels, θ, and

λj for j = 1, 2, . . . , N . Here, N is the number of fidelity terms ρj(·) used. Precompute the

features used within each ρj(·) at this stage (for instance IText0 , IText1 , and any gradients).

OUTPUT: flow estimate u

1: Form downsampled pyramid levels I0,l, I1,l, u0,l, l = 1, 2, . . . , Nlevels.

2: for l = Nlevels, . . . , 2, 1 do

3: for k = 0, 1, . . . , Nwarp − 1 do

4: Compute I1,l(x + uk,l), ∇I1,l(x + uk,l), and the equivalent for any additional

features used by each ρj(·) (for e.g. IText1,l (x+ uk,l) ) via bicubic uplook.

5: uj,0 ← uk,l, j = 1, 2, . . . , N + 1

6: for n = 0, 1, . . . , Niter − 1 do

7: for j=1,2,. . . ,N do

8:

uj,n+1 ∈ arg min
u

λj

∫
Ω

ψ (ρj(u;u0, I)) dx+
1

2θ

∥∥∥∥∥u− 1

N

∑
i<j

ui,n+1 − 1

N

N+1∑
i>j

ui,n

∥∥∥∥∥
2

9: end for

10:

uN+1,n+1 ∈ arg min
u

J(u) +
1

θ

∥∥∥∥∥u− 1

N

N∑
i=1

ui,n+1

∥∥∥∥∥
2

11: end for

12: uk+1,l ← uN+1,Niter

13: end for

14: u0,l+1 ← Upsample(uNwarp,l)

15: end for

16: Return uNwarp,Nlevels
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Figure 3.5: A typical water-vapor image, in this case from the MCS dataset. Pixel values corre-

spond to the water vapor mixing ratio in g/kg.

We also make use of a hierarchical pyramid scheme for each method, downsampling by a

factor of 2 for 10 levels (or until the minimum dimension of the image is 16 pixels).

As discussed in Section 3.2, using optical flow for wind velocity estimation can be chal-

lenging for a variety of reasons. We are considering several datasets, and the ground truth

displacements between frames can be large (in terms of pixels), violating the linearization

assumptions when forming the OFCE. On the other hand, in the case of very coarse spatial

resolution such as with the ETC dataset, the displacements can be quite small, so that the

ground truth motion vectors are at a subpixel level. These issues are handled by a combi-

nation of the hierarchical pyramid and warping routines which are used in concert with the

texture and multi-fidelity flow methods proposed here.

3.4.1 Texture-Flow Results

In addition the the standard challenges of velocity estimation within a scene, atmospheric

motion is complex and turbulent, and large regions of uniform water vapor within the data

domain provide little information for a flow estimator to extract a velocity estimate accu-

rately. This observation is the primary motivation for incorporating image texture as a
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feature for an optical flow procedure. In our texture-flow scheme, we decompose an image

into its structural and textural portions, as shown for a crop of the MCS dataset in Fig. 3.6,

and use the textured portion for motion estimation. In Fig. 3.7, we visualize the wind ve-

(a) (b) (c)

Figure 3.6: Structure-texture decomposition of a cropped portion of Fig. 3.5. The original image

I is given in (a), it’s structure portion IS in (b), and textural portion IText in (c). Recall I =

IS + IText.

locity field using a colormap, where color indicates the direction of the wind and saturation

indicates the speed. Our tests extracting wind velocity estimates using the textured portion,

IText, of an image alone demonstrate that texture is an excellent feature for atmospheric

motion tracking. That is, recovering uText without any additional refinement in Algorithm

9. This is made clear in Fig. 3.7d when compared with 3.7c. Fig. 3.7d is obtained from

only the information contained in IText, while 3.7c is formed from the whole image, yet 3.7d

outperforms the TV-L1 estimate 3.7c. Of note, we see sizable improvement within the boxed

regions of 3.7d, which represent portions of I with relatively uniform water-vapor levels (see

Fig. 3.5). This indicates that texture indeed provides good context within these challenging

regions, and our motivation for including texture in the flow retrieval process is valid. Adding

the refinement process as described in Algorithm 9 provides a small additional improvement,

as shown in 3.7e.
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Similar flow visualizations are given for the TC and ETC datasets in Figures 3.9 and

3.10. The texture-flow velocity fields produce 6–42% improved flow estimates compared

with HS and 1–20% improvements over the TV-L1 methods across the three datasets. Full

results are recorded in Table 3.2. We remark that lower performance in units m/s does

not necessarily imply lower performance relative to the resolution of the data collected. For

instance, since the ETC dataset has a very coarse spatial resolution (12,000m per pixel) and

moderate temporal resolution (∆t = 120s), an error of 1 m/s corresponds to 0.01 px/∆t, so

results need to be taken in context with the data specifications. Within the MCS dataset,

we see the greatest improvements (20% over TV-L1 and 42% over HS), as the conventional

optical flow estimates produce flow estimates with errors near 1 px/∆t.

3.4.2 Multi-Fidelity Results

For the multi-fidelity optical flow process described in Section 3.3.2, we consider incorpo-

rating IText, ∇I and |∇I| as features in addition to the full image data I. That is, in

(3.21) we take N = 2, 3, 4 fidelity terms and define ρ1(u; I) = I1(x+ u)− I0(x), ρ2(u; I) =

IText1 (x+u)−IText0 (x), ρ3(u; I) = ∇I1(x+u)−∇I0(x) and ρ4(u; I) = |∇I1|(x+u)−|∇I0|(x).

We keep ψ(x) = |x| and set J( · ) to be the total variation penalty. For brevity, we’ll denote

the multi-fidelity scheme assuming constancy on I and IT by MF(I, IT ), MF(I, IText,∇I)

when we additionally consider the gradient, and MF(I, IText,∇I, |∇I|) when including all

the features.

The MCS data, which has the lowest temporal resolution (15 minutes between frames),

has the largest displacements and consequently provides a better measurement of the ac-

curacy within a flow estimate since the displacement ratio in pixels/∆t is the largest.

That is, equally sized errors in velocity (m/s) create the largest noticed error within the

data (pixels/∆t) for the MCS dataset. So, we test the multi-fidelity process for all the
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Table 3.2: RMSVD in m/s and px/∆t between flow estimations and ground truth wind velocity.

Here, ∆t is the time between frames for each respective dataset. Bold entries indicate lowest error

in each row.

HS TVL1 Texture-flow MF(I, IT )

m/s px/∆t m/s px/∆t m/s px/∆t m/s px/∆t

MCS 3.400 1.020 2.483 0.745 1.985 0.596 1.985 0.596

TC 2.903 0.060 2.462 0.051 2.361 0.049 2.299 0.047

ETC 6.205 0.062 5.855 0.059 5.838 0.058 5.675 0.057

Table 3.3: Results of additional features on the MCS dataset. Bold entries indicate lowest error.

TVL1 Texture-flow MF(I, IT ) MF(I, IT ,∇I) MF(I, IT ,∇I, |∇I|)

m/s px/∆t m/s px/∆t m/s px/∆t m/s px/∆t m/s px/∆t

2.483 0.745 1.985 0.596 1.985 0.596 1.748 0.524 1.745 0.524

features on the MCS data, as shown in Figures 3.7f, 3.7g, 3.7h. A vector field plot of

MF(I, IText,∇I, |∇I|) is also shown in Figure 3.8 which gives a better sense of the motion

within the recovered flow.

We additionally test MF(I, IText) on the TC and ETC datasets shown in Figures 3.9e

and 3.10e. We see improved performance as features are added. In particular, for the MCS

dataset, we see a boost to 20–30% improvement over TV-L1 and 42–49% over HS. For the

ETC and TC datasets, we see 4-7% improvement over TV-L1 and 9–20% reduction in error

over HS from MF(I, IText). The results for MF(I, IText) across all datasets are recorded in

Table 3.2 and the impact of additional features on the MCS dataset are summarized in Table

3.3.
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3.5 Conclusion

In this work we demonstrate that optical flow can effectively perform wind velocity estimation

from remote sensing water-vapor data. Additionally, we show that texture is a pertinent

feature for motion estimation and we introduce two texture-based optical flow procedures.

The first method, “texture-flow”, arrived from observing that the optical flow constraint

equation (OFCE) on which the vast majority of variational optical flow methods are built,

cannot recover the desired complex flow of atmospheric motion alone. Modifying the regu-

larization term or considering a non-linear OFCE approach is insufficient, and modified or

additional data fidelity terms should be considered. We determine that image-texture is a

viable feature for optical flow, and we incorporate this feature by augmenting the fidelity

with a textural portion of the data.

A second “multi-fidelity” method extends the idea from texture-flow by developing a

convenient algorithm which has the advantage of easily handling additional fidelity terms,

and can be extended to include many more image-features in the flow retrieval process. In

future work, we would like to test additional image-features as well as apply this multi-fidelity

approach to other optical flow approaches including non-local methods.

Collectively, these methods perform well on convective and cylconic weather systems, and

this research would benefit the microwave and infrared instrument systems that commonly

record such data. Both methods outperform the Horn Schunck and TV-L1 schemes across

varying spatial and temporal resolutions. Moreover, the dense flow estimates only require

two frames of data, and as such can produce “real-time” weather updates without the need

to collect extended-duration data samples.
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(a) Ground truth flow (b) HS flow RMSVD = 3.400 m/s

(c) TVL1 flow: RMSVD = 2.483 m/s. (d) IText flow: RMSVD = 1.996 m/s.

(e) Texture-flow: RMSVD = 1.985 m/s. (f) MF(I, IText): RMSVD = 1.985 m/s.

(g) MF(I, IText,∇I): RMSVD = 1.748m/s (h) MF
(
I, IText,∇I, |∇I|

)
:RMSVD = 1.745m/s

(i) Color-key

Figure 3.7: MCS flow visualizations. Boxed regions indicate areas of uniform water-vapor levels

where HS and TV-L1 algorithms struggle to accurately estimate the flow. Figs. 3.7d-3.7f show

the improvement texture features add to velocity estimation. The color in 3.7i indicates velocity

direction and saturation indicates speed. Partially reproduced from [BBV23a] c©2023 IEEE.
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Figure 3.8: Ground truth (top) and MF(I, IT ,∇I, |∇I|) (bottom) vector-fields overlaid on wind-

speed. Image intensity is wind-speed in m/s. RMSVD = 1.745 m/s. Reproduced from [BBV23a]

c©2023 IEEE.
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(a) Ground truth flow (b) HS flow RMSVD = 2.903 m/s

(c) TVL1 flow: RMSVD = 2.462 m/s. (d) Texture-flow: RMSVD = 2.361 m/s.

(e) MF(I, IText): RMSVD = 2.299 m/s.

(f) Flow direction and speed color-key

Figure 3.9: Flow visualization for tropical convection (TC) data.
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(a) Ground truth flow (b) HS flow RMSVD = 6.205 m/s

(c) TVL1 flow: RMSVD = 5.855 m/s. (d) Texture-flow: RMSVD = 5.838 m/s.

(e) MF(I, IText): RMSVD = 5.675 m/s.

(f) Flow direction and speed color-key

Figure 3.10: Flow visualization of extratropical cylcone (ETC) data.
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CHAPTER 4

Data Driven Observable Discovery for Reduced-Order

Modeling of Turbulence Based on the Mori-Zwanzig

Formalism
1

4.1 Introduction

In the prior chapters, we were concerned with inverse problems which extract some desired

information after it has been disguised by some forward process (e.g. the formation of a noise-

corrupted image or the evolution of wind-driven vapor fields). The extracted information (a

restored image or the wind vector field) was the ultimate aim. In this chapter, we consider

another inverse problem which has a different goal. Instead of retaining the inverted quantity,

we use it to improve a forward (simulation) process.

In particular, the forward problem we consider is reduced-order modeling for turbulent

fluid simulation. Given velocity and pressure components of a fluid, the Navier-Stokes equa-

tions dictate the resulting fluid motion. However, the flow is notoriously difficult to evolve

forward in time due to the dimension of the system becoming prohibitively large when sim-

ulations are run at sufficiently high resolutions to form accurate flows. At lower resolutions,

things are no easier since the dynamics cannot be fully resolved and inaccuracies are rapidly

1Research presented in this chapter was supported by the Laboratory Directed Research and Development
program of Los Alamos National Laboratory under project number 20220104DR. It is released under LA-
UR-24-24745.
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introduced due to the missing subgrid information. In response, a plethora of subgrid models

have been introduced which attempt to determine the influence of scales below that of the

current resolution.

Recent work [LTL21, TLA21, LTP23] has demonstrated that a model reduction process

based on the Mori-Zwanzig formalism can be successfully employed to capture subgrid effects.

However, inherent to the method is a choice of reduced order variables, and that choice

can dramatically affect the quality of the resulting reduced order model’s success. We are

unaware of any method which provides an optimal way to choose these resolved variables

for Mori-Zwanzig based procedures. This inverse problem—determining an appropriate set

of reduced order variables—is the motivation for this work.

Before beginning, we remark that there is a similar problem within Koopman based

approaches for dynamical systems. A Koopman operator is a linear operator which can

advance a non-linear (finite dimensional) dynamical system, but on an infinite-dimensional

Hilbert space consisting of observation functions of the state. Several approaches based

on the Koopman theory have leveraged the universal approximation capabilities of neural

networks to help find a reduced (finite dimensional) observable set which can be linearly

advanced by an approximate Koopman operator [WKR15, YKH19, LKB18, OR19]. These

techniques, aptly dubbed Deep Koopman, make use of auto-encoders to determine potential

observables.

In a similar vein, a very recent paper [GSS23] imitates Deep Koopman but for a Mori-

Zwanzig based approach. However, we distinguish [GSS23] from our work in two ways. First,

the specific structure required by the Mori-Zwanzig formalism is not enforced in [GSS23]

when learning the memory kernels. Rather, a black-box Long Short Term Memory (LSTM)

cell is used to incorporate memory effects as a correction to a Koopman based Markov model.

This is an important distinction and is emphasized in [LTP23], which notes research such
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as [MW18] introduce the Mori-Zwanzig formalism as a theoretical basis for reduced order

modeling before turning to a recurrent neural network with LSTM blocks to incorporate

memory into their model. No structure is built in to ensure that the forward model, indeed,

follows the generalized fluctuation-dissipation relationship as specified within a Mori-Zwanzig

system. A similar oversight is performed in [HJL21]. While memory dependence is a key

property of the Mori-Zwanzig approach, not all memory based methods fit the Mori-Zwanzig

structure and some care must be taken.

Second, the full state is provided to the model in [GSS23]. While the reduced order

variables are functions of the full state within the Mori-Zwanzig formalism, in practice access

to the full state cannot always be expected, and so it is worthwhile to consider models which

rely only on reduced versions of the known state which might be anticipated to be accessible.

In what follows, we propose a data driven approach to discovering a good set of these

reduced order variables, where by good we mean ones which improve the Mori-Zwanzig based

reduced order model performance. We make use of a convolutional neural network to select

features from reduced order versions of the full state, and evolve these features forward

using Markov and memory kernels derived from regression-based projections as detailed in

the Mori-Zwanzig formalism. In Section 4.2, we introduce the Koopman and Mori-Zwanzig

approaches to modeling dynamical systems. Then, we discuss the data driven process for a

Mori-Zwanzig framework in Section 4.3 and the resulting inverse problem of choosing a set

of reduced order variables. Details and results are discussed in Section 4.4.

4.2 Modeling of Dynamical Systems

Dynamical systems are adept at representing the evolution of a physical system. The evolved

variables can be interpreted as physical quantities representing, for instance, position, mo-
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mentum, velocity or acceleration of a particle within a many-body system. The value of the

variables at any point in time describe the state of the system, and that name is given to the

collection of these variables. In this chapter, we consider an autonomous dynamical system

d

dt
φ(t) = R(φ), φ(0) = φ0, (4.1)

where the state is denoted φ : R→ R
D, R : RD → R

D encodes the flow of the system, and

the dynamics do not depend explicitly on time. The state components φi, i = 1, . . . , D are

thought of as physical-space variables and we denote a solution of (4.1) satisfying the initial

condition φ0 ∈ RD by φ(t;φ0).

The system may consist of many degrees of freedom (D � 1) or be governed by a complex

and non-linear flow function R (often both) and consequently, a simplified model for (4.1)

may be of interest, especially to those wishing to numerically evolve such a system.

To address a high dimension or complex system, a common approach is to consider a

reduced order model (ROM). Roughly speaking, a ROM replaces some known mathematical

model by a “smaller” model which still captures the essential dynamics of the original system.

More precisely, one can consider the evolution of φ̄ : R → R
M , where φ̄ depends on φ in

some way, but lives in a significantly reduced space (i.e. M � D). Consider the motivating

example 
φ̇1(t) = φ2(t), φ1(0) = 1

φ̇2(t) = φ2
2/φ1 + φ1, φ2(0) = 1.

(4.2)

In the language of (4.1), this system has two states (D = 2) and R : R2 → R
2 is a non-linear

function of these states. The system has solution φ1(t) = et+t
2/2 and φ2(t) = et+t

2/2(t + 1),

but in general it is extremely challenging to find an analytic solution to higher dimensional,

non-linear differential equations. A reduced order variable for (4.2) could be the scalar
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function φ̄ : R→ R, φ̄(φ1(t), φ2(t)) = φ2/φ1, since φ̄ satisfies

dφ̄

dt
=

∂φ̄

∂φ1

dφ1

dt
+

∂φ̄

∂φ2

dφ2

dt

= −φ2

φ2
1

φ̇1 +
φ̇2

φ1

= −φ̄2 + φ̄2 + 1 = 1,

with initial condition φ̄(φ1(0), φ2(0)) = φ2(0)/φ1(0) = 1. The ROM can be written,

dφ̄

dt
= R̄(φ̄) = 1, φ̄(0) = 1, (4.3)

and tracking φ̄ reduces the size of the problem to half (M = D/2) that of evolving φ1 and φ2.

In general, determining the reduced order variable φ̄ for which we can explicitly write the

reduced flow function R̄ which depends only on φ̄ (e.g. as in (4.3)) is not straightforward (or

even possible). The variable φ̄ is often referred to as the resolved, coarse-grain or reduced

variable and may not be as interpretable as a physical-space variable. For example, in (4.2)

φ1 might represent position while φ2 velocity of a particle. Then, φ̄ = φ2/φ1 is the ratio

of velocity to position, and we see that this ratio φ̄ evolves with a constant velocity ˙̄φ = 1.

Determining φi(t) themselves from φ̄ may not be possible, but the quantity may be of interest

nonetheless.

Keeping in mind the objective of this chapter, we emphasize the inverse problem that

could be posed to find the reduced order system (4.3). The forward problem is, given

φ̄ = φ̄(φ1, φ2) and reduced flow map R̄, evolve φ̄ forward in time from initial condition φ̄(0)

(e.g. Euler’s method). Call this forward process up to time t, F(φ̄(0), R̄, t). The inverse

problem, then, is given a forward process F for system (4.2), infer a reduced order function

φ̄(φ1, φ2) and flow map R̄ so that when the forward procedure is applied taking φ̄(0) to φ̄(t),

F(φ̄(0), R̄, t) ≈ φ̄(φ1(t), φ2(t)). That is, solve

arg min
φ̄,R̄

‖F(φ̄(0), R̄, ·)− φ̄(φ1(·), φ2(·))‖

where the minimization is taken over some class of order reductions (̄·) and some norm ‖ · ‖.
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4.2.1 The Koopman Approach

The Koopman approach to (4.1) is to consider a system which is updated by a linear operator

K which acts on observables. Observables, which we denote g, are L2-integrable functions

which sample or “observe” the full state φ. The operator K : L2(RD, µ) → L2(RD, µ)

gets its name from Bernard Koopman, who originally introduced the idea in 1931 to study

Hamiltonian systems [Koo31]. Since its inception, a myriad of approaches have adopted

Koopman theory for dynamical systems [Mez05,MM16], and this has spawned a plethora of

numerical approaches including dynamic mode decomposition (DMD) [Sch10, BBP16] and

extended DMD (eDMD) [WKR15] which make use of Koopman eigenfuctions to track the

dynamics of a system.

Supplied with an inner product, the space of all observable functions of the state-space

forms a Hilbert space, H, on which the Koopman operator acts. If we denote the flow map

Ft taking initial condition φ0 to a solution φ(t;φ0), t > 0 of (4.1), then the time-continuous

Koopman operator at t > 0 is

(Ktg)(φ0) := g ◦ Ft(φ0) = g(φ(t;φ0), (4.4)

for any function g ∈ L2(RD, µ) and initial condition φ0 ∈ RD. Equation (4.4) can be

interpreted two ways. On one hand, the left hand side is evolving the initial observation

function, g, so that one obtains a time-varying expression (Ktg)(t) which returns the time-

appropriate value of an observation of the state which started with initial condition φ0. On

the other hand, the right equality of (4.4) considers a fixed observation function which is

evaluated at the evolving state φ(t;φ0). That is, the second view considers evolving physical-

space variables, while the first considers an output (or observation) function evolving.

In [MM16] it’s observed the collection {Kt} forms a semigroup of linear operators, and
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the generator K can be computed by limiting

K := lim
t→0+

Kt − I
t

.

For our system (4.1), the action of K on an observable g can be computed

(Kg) (x) =
∂

∂t
(Ktg)(x)

∣∣
t=0

=
∂

∂t
g(Ft(x))

∣∣
t=0

=
D∑
i=1

∂g

∂xi

∂Ft(x)

∂t

∣∣
t=0

=
D∑
i=1

∂g

∂xi
Ri(x), (4.5)

where Ri are the components of the flow R in (4.1). Thus, K is a linear operator for the

evolution of g(φ(t;φ0)),

∂g

∂t
=

D∑
i=1

∂g

∂xi
Ri = Kg, (4.6)

where the left equality follows from differentiating g and recalling φ solves (4.1), and the

second is from (4.5).

The Koopman operator can be studied by the behavior of its eigenfunctions. Let an

eignenfuction ψ of Kt satisfy (Ktψ) = eλtψ, with eigenvalue λ. For any two eigen-pairs

(ψ1, λ1) and (ψ2, λ2), the following (mλ1 + nλ2, ψ
m
1 ψ

n
2 ) with m,n ∈ N is also an eigen-

pair, and hence the spectra of Kt is infinite. Likewise, the Koopman operator shares these

eigenfuctions: Kψ = λψ. Consequently, K has infinite-dimensional eigenspace on which its

action is invariant.

Thus, we see the dynamics of the observables in the Koopman framework are a reduction

in the complexity of (4.1), since (4.6) is linear. However, this comes at the expense of

dimension, since now g lives in an infinite-dimensional Hilbert space H.

Going back to our example, (4.2), if, without the insight to try g = φ2/φ1, we define a

collection of observables gk,l(φ1, φ2) = φk1 · φl2, then

dgk,l
dt

:= Kgk,l =
∂gk,l
∂φ1

R1(φ1, φ2) +
∂gk,l
∂φ2

R2(φ1, φ2) (4.7)

= kφk−1
1 φl2[φ2] + lφl−1

2 φk1[φ2
2/φ1 + φ1] (4.8)

= (k + l)gk−1,l+1 + lgk+1,l−1 (4.9)
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which forms a linear, but infinite dimensional system of gk,l(t) with k, l ∈ N. Trying to

determine a closed set (known as a closure model) of observables for a dynamical system is

unfortunately very difficult, and many approximation methods are used to close the dynam-

ics.

4.2.2 Mori-Zwanzig Formalism

The Mori-Zwanzig (MZ) formalism [Mor65, Zwa01] is a mathematically exact approach to

reduced order modeling. Unlike Koopman, MZ is able to close the dynamics with a finite

set of observables through projection operators which act on the current and past states of

the system. In this section we introduce the primary results of MZ, deriving the generalized

Langevin equation (GLE) and general fluctuation dissipation (GFD) relationship. We also

provide the discrete MZ formulation from the derivations in [DSK09, LL21, LTL21, TLA21]

and we make use of this form in computational experiments. In [LTL21], the authors also

connect the MZ formalism with Koopman, and provide some geometric intuition for the

GLE.

Recall in the system (4.1), φ is high-dimensional and R is non-linear. In contrast to

Koopman approaches, we want to develop a low-dimensional representation of (4.1). We will

study the evolution of a set of observables g = g(φ(t;φ0)) : RD → R
M , where φ(t;φ0) ∈ RD

solves (4.1) with initial condition φ(0) = φ0. We think of g as a M -dimensional representa-

tion of φ with M < D, reducing the size of the problem. As with Koopman, we will assume

g ∈ H, a Hilbert space with inner product

〈f, g〉 =

∫
RD

f(x)g(x)dDµ(x),

and the goal of Mori-Zwanzig is to derive the dynamics for a set of these M resolved compo-

nents g1, g2, . . . , gM . Since M < D, there are insufficient terms to uniquely specify the full
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system’s (4.1) state, and there are D −M un-resolved components.

MZ requires a projection operator P which maps functions of the full state, φ ∈ RD, to

functions of the resolved space RM . That is, for any f ∈ L2(RD, µ), Pf : RM → R and

we think of Pf ∈ span{g1, g2, . . . , gM}. The corresponding orthogonal complement to P is

Q := I −P , so that PQ = QP = 0, since P2 = P . MZ will use this projection to study the

dynamics of g.

Remark 4.2.1. An example of the resolved space could be g(φ) = (φ1, φ2, . . . , φM)T , and

Pgi = gi
(
(φ1, φ2, . . . , φM)T

)
= (φ1, φ2, . . . , φM)T .

Recall, the dynamics of g satisfy (4.6), where K is the Koopman operator

K =
D∑
i=1

Ri(x)∂xi (4.10)

with x a dummy variable. The solution to (4.6) is g(φ(t;φ0)) = eKtg(φ0), and eKt = Kt by

definition, since Kt promotes functions of φ0 to be evaluated after the flow-map Ft is applied

to input φ0, as in (4.4). Since K and Kt = eKt commute, we have

∂

∂t
g =

∂

∂t
eKtg(φ0) = KKtg(φ0) = eKtKg(φ0). (4.11)

We would like to split the evolution into projected components and orthogonal dynamics. To

do this, we consider the evolution of the operator A(t) = e−tKetQK. Differentiating A leaves

dA(t)

dt
= −Ke−tKetQK + e−tKQKetQK = −e−tKPKetQK,

where we recall P = I −Q. Integration from 0 to t gives

A(t) := e−tKetQK = I −
∫ t

0

e−sKPKesQKds.

Finally, collecting the integral with A(t) and multiplying by etK leads to the Dyson identity,

etK = et(P+Q)K = etQK +

∫ t

0

e(t−s)KPKesQKds. (4.12)
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Taking (4.12) with (4.11) one obtains

∂

∂t
eKtg(φ0) = eKtKg(φ0)

= eKtPKg(φ0) + eKtQKg(φ0)

= eKt [PKg] (φ0) +
[
eQKtQKg

]
(φ0) +

∫ t

0

e(t−s)K [PKesQKQKg] (φ0)ds (4.13)

= [PKg] (φ(t)) +
[
eQKtQKg

]
(φ0) +

∫ t

0

[
PKesQKQKg

]
(φ(t− s))ds. (4.14)

Considering the time-evolution of g(t;φ0) = g(φ(t;φ0), the above can be rewritten as the

generalized Langevin equation (GLE)

∂

∂t
g(t;φ0) = M(g(t;φ0))−

∫ t

0

K (g(t− s;φ0), s) ds+ F (φ0, t), (4.15)

with

M (g) := PKg (4.16a)

K (g, s) := −PKesQKQKg (4.16b)

F (φ0, t) := eQKtQKg(φ0). (4.16c)

We refer to M as the Markov term, since it acts on g at the current time, while K(·, s)

are memory kernels which encode the influence of observables s-units in history. The so

called orthogonal dynamics term, F , represents the contribution from the un-resolved space.

Critically PF = 0, and hence the name orthogonal, since PeQKtQK = PQKeQKt = 0.

Collectively, (4.16) comprise the primary compents of the MZ formalism, with (4.15)

providing the exact dynamics of the observable g. We note that we’ve included a negative

sign within the definition of (4.16b), known as the general fluctuation-dissipation (GFD)

equation, which is consistent with the convention in [Mor65, Zwa01]. The GFD relates the

kernels to the orthogonal term, since K(g(φ), s) = −PKF (φ, s).
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In practice, one will apply MZ to a system which requires a numerical discrete represen-

tation

φn+1 = R∆(φn), φ0 = φ0. (4.17)

In this case, the discrete dynamical system (4.17) has flow map F0
∆ = R∆, and Fn∆ has action

Fn∆(φ0) := φn. Here, ∆ is the uniform stepsize for (4.17), and solutions φn = φ(n∆;φ0).

Discrete gn provide observations of the states φn (i.e. gn = g(φn)), and the associated

discrete-time Koopman operator Kn∆ (with generator K∆) is built off the discrete-time flow

map giving the familiar

Kn∆g0 := g0 ◦ Fn∆(φn) = gn.

To obtain a discrete MZ formulation, we make use of the discrete Dyson identity [LL21,

LTL21,TLA21]

Kn+1
∆ = (QK∆)n+1 +

n∑
l=0

Kn−l∆ PK∆(QK∆)l. (4.18)

Applying (4.18) to the evolution of gn gives

gn+1 = Kn+1
∆ g0 = (QK∆)n+1g0 +

n∑
l=0

Kn−l∆ PK∆(QK∆)lg0

= Kn∆[PK∆g](φ0) +
n∑
l=1

Kn−1
∆

[
PKδ(QK∆)lg

]
(φ0) +

[
(QK∆)n+1g

]
(φ0)

= [PK∆g](φn) +
n∑
l=1

[
PKδ(QK∆)lg

]
(φn−l) +

[
(QK∆)n+1g

]
(φ0)

= Ω(0)(gn) +
n∑
l=1

Ω(l)(gn−l) +W n(φ0). (4.19)

The discrete analogue of the Markov, memory kernel and orthogonal dynamics terms in

(4.16) are given by the kernels Ω(0), Ω(l) l ≥ 1, and W in (4.19), and we define these terms
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in (4.20)

Ω(0) := PK∆ (4.20a)

Ω(l) := PK∆(QK∆)l, l = 1, 2, . . . (4.20b)

W n := (QK∆)n+1g. (4.20c)

The discrete GFD relationship

Ω(l)(g) = PK∆W l−1, ∀l ≥ 1 (4.21)

follows from the definitions (4.20b) and (4.20c), and this relationship will be critical for

developing a data-driven approach which utilizes the MZ framework. Importantly, (4.21)

imposes a connection between the memory kernels Ω(l) and orthogonal dynamics terms,

W l−1. Recall that W l−1 is a function of the full initial state φ0. So, evaluating left and

right hand sides of (4.21) at φ0 gives

Ω(l)(g(φ0)) = PK∆W l−1(φ0) = P
[
K∆(QK∆)l

]
(g(φ0))

= P
[
(QK∆)l

]
(g ◦ F∆)(φ0)

= P
[
(QK∆)l

]
(g(φ1))

= PW l−1(φ1), ∀l ≥ 1. (4.22)

Notice that the evaluated form (4.22) differs from (4.21), which defines a function Ω(l)(g(·))

depending on a projection P , discrete Koopman operator K∆ and observable function g.

Instead, (4.22) provides an evaluation of this function which does not require access to the

Koopman operator. Given sufficient data-points, one can leverage (4.22) to learn the memory

kernels’ action.
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4.3 Observable Discovery: A Data Driven Approach

In this section, we outline the setup for using the Mori-Zwanzig formalism to predict tur-

bulent fluid flow dynamics. A critical component of this process will be the choice of the

observable functions, g, which the discrete GLE will evolve forward in time. We propose

a novel approach towards learning these observables from data which improves trajectories

based on a MZ framework.

4.3.1 Mori-Zwanzig Projection

In [TLA21], the authors demonstrate a data-driven approach based on the algorithm de-

scribed in [LTL21] for learning the kernels Ω(l) in (4.19). The form of the kernels de-

pends on the choice of projection operator, P . Several projections can be considered.

Mori [Mor65] proposed a linear P defined on a given set of linearly independent resolved

observables g = {gi}Mi=1, which we emphasize are fixed for fixed P . For example, these

could be the component maps gi(φ) = φi. Completing the space are the D −M functions

g̃ = {g̃j}D−Mj=1 , so that span{g, g̃} = H. The projection takes functions f = f(g, g̃) to

Pf = [Pf ](g) ∈ span{g1, g2, . . . , gM}, defined by

[Pf ](g) :=
M∑
i,j=1

〈gi, f〉
〈gi, gj〉

gj. (4.23)

Here, we’ve used scalar f , but the projection extends to vector f in a component-wise

fashion. The linearity of Mori’s projection produces linear Markov and memory kernel terms

in the GLE (4.15) and (4.19), a property that has lead to Mori’s projection being widely used

[TLA21, MW20, MO07, LTL21]. Because of this linearity, one can explicitly determine the

memory kernels using time series of the fully resolved dynamics, and experiments in [LTL21]

demonstrate MZ with Mori’s projection produce higher-order corrections compared with data

driven Koopman approaches. However, the linearity of Mori’s projection limits the power of
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MZ, and cannot be combined with many non-linear closure methods nor accommodate more

expressive non-linear memory kernels based on neural network approaches used in modern

machine learning frameworks.

Zwanzig [Zwa73, Zwa01] also proposed a projection based on conditional expectation

[Pf ](h) = Eµ [f(g(φ), g̃(φ))|g(φ) = h] which in general can be non-linear and result in

non-linear Markov and memory kernel terms in the GLE. This projection is shown to be

optimal [CHK02], but in practice, using the Zwanzig projection on anything but simple

dyamical systems is intractable. Other projections have been proposed based on truncation

[PD17] and Wiener projections [LL21].

Recently, Lin et al. [LTP23] introduced a regression-based projection which attempts to

fill the gap between the simplistic, linear Mori projection and the unmanageable but optimal

Zwanzig approach. This projection regresses functions f onto the span of a basis consisting

of (potentially non-linear) combinations of the resolved observables g.

4.3.2 The Problem of Observable Choice

Tian et al. [TLA21] chose Mori’s linear projection to develop a data-driven approach for

turbulent fluid simulation based on an MZ framework. Besides the limitation of linearity,

the process is strongly influenced by the pre-chosen observable functions onto which the

dynamics are projected. For isotropic turbulence, [TLA21] consider four sets of observables:

• Observable set 1: v̄i (filtered velocity)

• Observable set 2: v̄, v̄iv̄j, ¯vivj − v̄iv̄j

• Observable set 3: v̄i,
∑

i v̄iv̄i, Sij, Wij, SijSij, WijWij, where Sij = 1
2

(
∂v̄i
∂xj

+
v̄j
∂xi

)
,

Wij = 1
2

(
∂v̄i
∂xj
− v̄j

∂xi

)
.
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• Observable set 4: v̄i,
∂ ¯vivj
∂xi

,
∂ ¯vivj
∂xj

, ∂p̄
∂xi

.

Each set is taken over i, j modulo linearly dependent terms, and the constant observable g0 =

1 is added to each observable set. Using these, the authors found little difference between

sets 1–3, where adding strain rate tensor, vorticity, kinetic energy, subgrid stress terms

etc. provided neglibible improvement over the filtered velocity components alone. However,

with observable set 4 which adds the actual filtered governing equation terms (including

pressure), there was over a 50% improvement over the other observable choices.

Choosing the appropriate observables is a shared problem with the learning framework

used in Koopman approximation, for which Deep Koopman approaches have been tried as

described in the introduction. Additionally, this problem extends equally to other projec-

tions, such as the regression-based approach.

The discussion henceforth will be on setting up a data-driven framework for determining

a good set of observables to pair with the MZ framework.

4.3.3 The Forward Problem: Learning Memory Kernels

We start by setting up the forward problem generating the dynamical system (4.1) via a MZ

framework. Suppose we have T trajectories of our full state {φ[i]}Ti=1 ⊂ RD, each starting

from initial condition φ[i](0) = φ
[i]
0 ∼ µ and sampled at time points tn = n∆. Suppose further

that we have defined some observable function g, giving resolved data g[i](n) = g(φ[i](tn)).

At each time tn, we combine g[i](n) ∈ RM for all i = 1, . . . , T realizations into an T ×M

vector gn of data at time tn, and likewise refer to φ(tn) = φn as the ensemble of all state

trajectories φ[i] at time tn.

We are interested in evolving forward these observables gn. However, we may only wish to

track a few quantities of interest within g corresponding to (reduced order) physical-space

123



variables. To emphasize this, we define G[i] to be a collection of coarse grain quantities

of interest (vorticity, velocity etc.) from the filtered state. As such, G[i] is a subset of

components of g[i]. We call G[i] ∈ RM̃ a generating observable because it will seed the

formation of a full observable set g, as described in Section 4.3.4. As with gn, we consider

the ensemble of realizations at time tn for the generating observable Gn.

Given the observable function, g(·), we specify a regression-based projection P (inspired

by [LTP23]) which will in turn specify Markov and memory kernels according to the GLE

and (4.20). First, we choose a family of functions, f(·; θ), parameterized by θ with which to

perform the regression. To define a regression problem for pairs {g(φ[i](0)),y[i]} of regressors

g(φ[i](0)) at tn, and targets, y[i], one solves

θ∗ = arg min
θ

C
(
f(g(φ0); θ),y

)
, (4.24)

where y = {y[i]} and C(·, ·) is some cost function. Typically, we take f(·; θ) to be some

family of simple functions (linear, polynomial of degree d etc.), but can also be a fixed

neural network architecture, and C to be mean-squared-error. For a function h(φ) giving

targets y[i] = h(φ[i](tk)), the projection

[Ph](·) = f(· ; θ∗),

where θ∗ solves (4.24) with y = h(φk).

Remark 4.3.1. The operator P as defined is indeed a projection (i.e. P2 = P), since

P2h = [Pf ](·; θ∗) = f(· ; θ∗). This follows because repeating the regression

arg min
θ

C
(
f(g(φ0); θ),f(g(φ0); θ∗)

)
returns the same θ∗.

With the projection specified, we can proceed with the MZ learning process. Our goal

is to evolve the quantities of interest, Gn, forward in time using the MZ formalism and
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observable set gk, k ≤ n, so that it matches the data Gn+1 at the next timestep. Starting

with n = 0, looking to (4.19) we have

G1(φ0) = Ω(0)(g0(φ0)) +W 0(φ0).

By definition, Ω(0)(g0) = PK∆g
0 = Pg1, so the Markov kernel Ω(0) encodes the contribution

of g0 towards G1 within the expressivity constraints of the regression family f(·; θ). With

the Markov term evaluated, the initial orthogonal dynamics term is the residual

W 0(φ0) = G1(φ0)− Pg1 = G1(φ0)− f(g1(φ0); θ(0)
∗ ) = G1(φ0)−Ω(0)(g0(φ0)).

For n = 1,

G2 = Ω(0)(g1) + Ω(1)(g0) +W1(φ0),

and Ω(1) and W 1 are, as of yet, undetermined. To determine the successive memory kernel,

we turn to the relationship (4.22),

Ω(1)(g0) = PW 0(φ1) = P
(
G1(φ1)−Ω(0)(g0(φ1))

)
= P

(
G2(φ0)−Ω(0)(g1(φ0))

)
.

Solving the regression problem for the first memory kernel gives f(· ; θ
(1)
∗ ), and the next

orthogonal dynamics termW 1(φ0) is defined as the ensuing residual. It is worth emphasizing

that the memory kernels re-project the residual when the currently learned forward model

(i.e. G1(·) = Ω(0)(g0(·))) is applied to the next time-step, φ1.

The process to determine memory kernels and orthogonal terms continues inductively,

with a general update procedure at step n of

Ω(n+1)(g0) = PW n(φ1) = P

[
Gn+2(φ0)−

n∑
l=0

Ω(l)(gn−l+1(φ0))

]
(4.25)

W n+1(φ0) = Gn+2(φ0)−
n+1∑
l=0

Ω(l)
(
gn−l+1(φ0)

)
, (4.26)
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given one has already computed Ω(l), l = 1, 2, . . . , n and W n(·). By construction, this

process enforces the GFD relationship Ω(n)(g0) = PK∆W n−1 and satisfies the orthogonality

condition PW n = 0.

We call this Mori-Zwanzig forward operation MZ( · ) = MZ(· ; Ω(0),Ω(1), . . . ,Ω(K)),

where the Markov and K memory kernels are learned from some data. MZ( · ) relies on a

specified projection and a choice of observables. In practice, we will truncate the number

of kernels used so it does not stretch the length of the training trajectory. The process

(4.25),(4.26) for learning the Markov and memory kernels is captured in Algorithm 11.

4.3.4 The Inverse Problem: Learning Observables

With a well defined forward process MZ( · ), we can now address the problem of observable

choice. Predicted trajectories using MZ( · ) accumulate error from the truncation of the

orthogonal term. The size of error is dependent on two factors:

• The set of observables chosen to study the dynamics on. This choice of observables

is akin to selecting a subgrid closure model. While some intuition and physics can

help guide observable selection, in general it is very difficult to specify a good set

in a prescribed way. Providing exact terms to close the governing equations of the

dynamical system, as was done for the fourth observable set in experiments by [TLA21],

can produce good results, but in practice one cannot expect to have access to the full

state needed to form these non-linear closure terms.

• The expressivity of the projection operator (and consequently the Markov and mem-

ory kernels) can influence the error, since a highly flexible projection such as a high

order regression or a neural network can capture more non-linear dynamics. This can

compensate for a poor observable set choice. Since our goal is observable discovery, we

126



choose simple projection based on linear regression in order to emphasize the benefit

a better observable set has on predictions.

As mentioned above, we start with a set of quantities of interest, G, which we call

the generating observables, and we wish to track these quantities as they evolve in time.

G lives in a reduced/resolved space, RM̃ . To create the full observable set, g, we use a

neural network function NN(· ; Θ) with learnable parameters Θ to produce the remainder

of the observable terms from G. That is, g[i] = (G[i], NN(G[i]; Θ)) ∈ RM for each training

trajectory i = 1, . . . , T .

In the MZ theory, observables may depend directly on the full state. However, in practice

we restrict the input to G to a filtered version of the full state, φ̄
[i]

. Under this construction,

the learned feature set gn = (Gn, NN(Gn)) is never aware of the full resolution data, φ(tn).

This prevents the network from learning a direct simulation of the full resolution data in

tandem with a down-sampling operation to the resolved dimension.

Armed with a set of time-series data {Gn}Nn=1 and a trainable set of observables gn =

(Gn, NN(Gn; Θ)), we propose an alternating scheme to learn both gn and the Markov and

memory kernels Ω(l), l = 0, 1, . . . , K. First, we generate gn with Θ randomly initialized.

Given these observables, we fix Θ and proceed with defining the memory kernels via the

projection (4.25). With MZ(· ; Ω(0),Ω(1), . . . ,Ω(K)) learned, we freeze the kernels and use

gradient descent to update the network weights Θ. Since Θ is learned through descent,

several steps should be taken before returning to update the kernels, and we find in practice

that slowly increasing this number as the learning rate decreases is beneficial. Proceeding

in this iterative fashion, alternating between training the network and regressing to obtain

the kernels, allows both appropriate observables along with the MZ Markov and memory

kernels to be determined simultaneously. This process is encapsulated in Algorithm 11 and

visualized in Figure 4.1.
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Figure 4.1: The MZ kernel learning process with observable discovery. Observables are specified

from a generating set, G, as shown in the blue block. Then, an alternating learning process

proceeds, where MZ kernels Ω(l), l = 0, 1, . . . ,K are learned keeping Θ fixed (green block) followed

by updating the observables via gradient descent on the parameters Θ, keeping Ω(l) fixed (orange

block).
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One may ask why construct g as specified, and not let the neural network determine g

entirely? There are several subtle reasons for constructing the observables in this fashion,

where G is explicitly included as part of g. Primarily, if the observables are entirely deter-

mined by NN(·), e.g. gn = NN(φ̄
n
), then the alternating minimization process could easily

learn the zero (or constant) function for NN(·). That is, when gn = NN(φ̄
n
) = 0 for each

n, then the kernels learned via Algorithm 11 would be essentially unconstrained, since

0 = NN(φ̄
n+1

) = MZ(0; Ω(0),Ω(1), . . . ,Ω(K)),

automatically satisfied for any kernels Ω(l) vanishing at zero. So, we avoid this degeneracy by

specifying a portion of g. Moreover, beyond avoiding trivial learning, this specification aids

training since the early kernel-learning steps (4.25) will be able to at minimum project onto

the components, G, and advance the system without subgrid corrections. Therefore, the

system is in a reasonable regime where MZ( · ) is able to produce ballpark predictions of the

next timestep at initialization. Then, when the kernels are frozen and the network NN(·; Θ)

is trained, it can fine-tune the observables g to address the subgrid error. Finally, specifying

G allows control over the the quantities one wishes to track. For example, a system may have

a constant or steadily decaying spatial average in time, and so gn = NN(φ̄
n
) might quickly

learn to return the average value of φ̄. However, if a user intends to study a direct reduced-

order representation of the state, they can specify so within G and the observable-learning

network must adapt to find features which will allow tracking this quantity.
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Algorithm 11 MZ with Observable Discovery

INPUT: Sequence of generating observables {Gn}Nn=1. Number of memory kernels: K, and

family of regression functions f(·; θ). Assumes the observable generating function NN(· ; Θ)

is a trainable neural network with parameters Θ and loss function L.

OUTPUT: Markov and memory kernels Ω(l) = f( · ; θ(l)), l = 0, 1, . . . , K and trained

NN( · ; Θ)

1: for i = 1 : Nalternate do

2: Set gn = (Gn, NN(Gn; Θ)), n = 1, . . . , N . with Θ frozen

3: Ω(0) = f(· ; θ(0)), where θ(0) = arg minθ
1

N−1

∑N−1
n=1 C(f(gn; θ),Gn+1)

4: for k = 0 : K − 1 do . with Θ frozen

5: Ω(k+1) = f( · ; θ(k+1)), where

θ(k+1) ← arg min
θ

1

N − k − 2

N−k−2∑
n=1

C

(
f(gn−k; θ),Gn+k+2 −

k∑
l=0

Ω(l)(gn−l+1)

)

6: end for

7: for j = 0 : Ntrain do . with θ(l), l = 0, . . . , K fixed

8: Θ← Θ− τ∇ΘL({Gn}, {gn}), where gn ← (Gn, NN(Gn; Θ)) and

L =
1

N −K

N−1∑
n=K+1

(
Gn+1 −

K∑
l=0

Ω(l)
(
gn−l

))2

9: end for

10: end for

11: return Ω(l), l = 0, 1, . . . , K and NN( · ; Θ).
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4.4 Results

For experiments, we test the observable learning process for MZ-based simulation using

direct numerical simulation (DNS) of a 2D vorticity field. The ground truth data is a

pseudo-spectral forced Navier-Stokes simulation of isotropic turbulence, which evolves the

vorticity, ω, according to

∂ω

∂t
+ (u · ∇)ω = ν∇2ω + curl(F ), (4.27)

where viscosity ν = 10−3 and F is a forcing function. The psuedo-spectral approach has

built in filtering and anti-aliasing to maintain stability. For details, see [KSA21]2. In two

dimensions, the relationship between velocity, u = (u, v)T , and vorticity is

ω := curl(u) =
∂v

∂x
− ∂u

∂y
.

We take periodic boundary conditions, and the simulation is performed on a 2652 grid of

a [0, 2π]2 domain. Snapshots of the flow are recorded after reaching stationarity for T = 7

differently initialized trajectories, forming the data φn = {(ω[i](tn), u[i](tn), v[i](tn))T}Ti=1 at

each timestep tn = n ·∆, with ∆ = 0.0015s.

Given this data, we apply spatial filtering at each timestep giving φ̄
n
. The generating

observable set Gn = G(φ̄
n
) is a 642 grid coarse-grain observation of the quantities of interest

from our dataset, in this case velocity and vorticity components. These hand-selected quan-

tities are likely to be insufficient for learning a successful MZ model, so we extend to a full

observable set gn = (Gn, NN(Gn; Θ)). For our experiments, we use a deep convolutional

neural network with fifteen 7 × 7 filters in each layer, 5 hidden layers, and an output layer

where we can specify the number of additional observables to add to the generating set, Gn.

2The codebase for generating the ground truth data comes from https://github.com/google/jax-cfd,
based on the paper [KSA21].
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We will evaluate our observable-discovery based predictions against a more comprehen-

sive, but predefined set of observables, gPO, where the subscript stands for predefined ob-

servables. These consist of the coarse-grain vorticity and velocity components along with

their spatial gradients. We’ll refer to predictions made using these observables as by MZ PO.

For the MZ PO predictions, the MZ kernels are defined by a quadratic regression-based pro-

jection, so nonlinear combinations of components of gPO are used when predictions gn+1
PO

are made from {gnPO, gn−1
PO , . . . , g

n−K
PO } via MZ( · ). For predictions made using the learned

observables (henceforth referred to by MZ LO), we will use the subscript Gn+1
LO , and when

simulating the vorticity and velocity components from the computational fluid dynamics

program at coarse-grain directly, we denote the components Gn+1
CFD.

We remark that turbulence is an ideal dataset to test reduced order modeling on. The

celebrated description of turbulence due to Richardson [Ric22]

Big whorls have little whorls, which feed on their velocity, and little whorls have

lesser whorls, and so on to viscosity.

highlights one of the chief reasons. Turbulent flows contain a broad range of scales (whorls),

which exist from huge eddies down to dissipation at viscosity, and resolving all these dynamics

would require a prohibitively large number of degrees of freedom (on the order of Avogadro’s

number). Consequently, for many applications it is necessary to run simulations at a lower

(resolved) resolution. However, applying a simple linear spatial filtering operation, ·̄ , to

(4.27) (without downsampling) gives the filtered vorticity transport equation

∂ω̄

∂t
+ (ū · ∇)ω̄ = ν∇2ω̄ + curl(F ) + τ, (4.28)

with τ = (ū · ∇)ω̄− (u · ∇)ω the subgrid term. In general, one cannot determine τ without

knowledge of the full-resolution data ω and u at each timestep—i.e. we cannot explicitly

write ∂tω̄ = R̄(ω̄)—and so (4.28) requires a model of τ in order to advance. Considering
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downsampling in addition to filtering increases the modeling complexity. Ignoring this sub-

grid term and directly running the CFD on a coarse-grain initial condition, unfortunately,

produces undesirable results, even when the CFD has built in filtering to induce stability.

This is due to the wide range of interacting scales present in turbulent flow. It is easy to see

that a substantial number of small scales are lost when filtering and downsampling the state

by comparing Figures 4.2a and 4.2b, and the resulting error that accumulates when running

the CFD at the coarse resolution as shown in Figure 4.2c.

(a) (b) (c)

Figure 4.2: Three vorticity samples generated from the same initial condition. Full resolution

DNS of ω is generated according to (4.27), and shown in 4.2a. This is filtered and downsampled in

4.2b. In 4.2c, the vorticity is evolved at the coarse grain level, and the lack of subgrid corrections

is evident.

Since the flow has a forcing term, and our goal is to learn a sugbrid correction to the

CFD (i.e. learn τ), in practice we train on the error in the CFD applied to coarse-grain data

because the CFD has F built in. That is, find Θ and Ω(0),Ω(1), . . . ,Ω(K) so that

MZ
(
gn, gn−1, . . . , gn−K ; Ω(0),Ω(1), . . . ,Ω(K)

)
≈ Gn+1 − CFD(Gn),

for all n, recalling gn = (Gn, NN(Gn; Θ)). With the kernels and Θ fixed, one step predictions

are then made via

Gn+1
LO = CFD(Gn) +MZ

(
gn, gn−1, . . . , gn−K ; Ω(0),Ω(1), . . . ,Ω(K)

)
. (4.29)
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Our goal is to determine observables g which produce a good model

MZ( · ; Ω(0),Ω(1), · · · ,Ω(K)), where good is evaluated in two ways:

1. How well evolving Gn at this lower dimension produces good agreement with coarse-

grain observations of the ground truth at the next timestep, Gn+1. That is, check

Gn+1
LO ≈ G

N+1, where Gn+1
LO is generated according to (4.29) with coarse-grain ground

truth data plugged in to CFD(·) and MZ(·).

2. How well the discovered model is able to generate long trajectories which remain stable

and match the flow statistics well. Long trajectories are formed by starting with

some initial data, G0
LO = G0,G2

LO = G1, . . . ,GK
LO = GK , and iteratively forming

GK+1
LO , GK+2

LO , . . . accumulating error along the way

gn+1
LO = (Gn+1

LO , NN(Gn+1
LO l; Θ)), (4.30)

Gn+1
LO = CFD(Gn

LO) +MZ
(
gnLO, g

n−1
LO , . . . , g

n−K
LO ; Ω(0),Ω(1), . . . ,Ω(K)

)
. (4.31)

The updates (4.30) and (4.31) should remain stable after over many n and match flow

statistics despite Gn
LO potentially de-correlating from the ground truth Gn.
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4.4.1 One-Step Predictions

Figure 4.3: One-step predictions. Top row: (left) subgrid error from CFD; (middle) MZ LO

predictions of subgrid term; (right) MZ PO prediction of subgrid term. Bottom row: corresponding

errors for the quantities above when predicting the subgrid term for both learned and predefined

observables.

The learned function MZ( · ) in tandem with NN( · ) produce predictions one timestep

in the future. The error incurred by the CFD in a single timestep is shown in the top-left

of Figure 4.3. This subgrid error is corrected by (4.29) with learned observables, and the

predicted subgrid term very accurately mimics its target. Using the predefined observables

gPO instead, the subgrid term is sorely underestimated. The predicted subgrid terms and

the corresponding errors are shown Figure 4.3.
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Figure 4.4: Left: Error versus number of memory kernels, Ω(l) used in the MZ learned observable

(MZ LO) and predefined observable (MZ PO) 1-step predictions. One-step error for the CFD

(which has no memory kernels) is also shown. Right: MZ LO plotted on its own axis showing the

decreasing error for increased memory depth.

The mean-squared errors over the test set for one-step vorticity predictions using CFD,

predefined observables and learned observables are shown in Figure 4.4. Using gPO, the

MZ PO method provides a modest 19.3% reduction in MSE over the single-step error accu-

mulated by the CFD on coarse-grain data. Learning gnLO, however, improves predictions by

87.9% over CFD and 85.2% over predictions made using gPO, confirming that the alternating

optimization process in Algorithm 11 is a functioning observable discovery mechanism, and

that these learned observables greatly boost the prediction capabilities of a truncated MZ

operator.

A typical set of observables is shown in Figure 4.5. The additional terms, NN(Gn; Θ),

exhibit significantly more fragmentation than the vorticity and velocity components making

up Gn (top row Fig. 4.5). We believe this added fine-scale structure is filling in information

at the subgrid scale.
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Figure 4.5: Visualization of gnLO. The generating set, Gn is shown in the top row. The remaining

images are from the learned additions NN(Gn; Θ).

4.4.2 Long Trajectories

While one-step predictions are a confirmation that the process is able to learn correctly, long-

term predictions of a dynamical system are the true measure of a model’s success. Following

(4.30) and (4.31), we generate a 5000 timestep (5000∆ = 7.5s) trajectory, and compare

the effects of using learned observables, gLO, with the predefined set, gPO, or direct CFD.

The eddy turnover time, tL of the system is approximately L/Ū , where L is the lengthscale

of the large eddies and Ū is the root-mean-square velocity of the filtered flow. We take

L = π/2 (based on forcing function F (x, y) = (sin(4y), 0))T ) and compute Ū ∼ 1.43s−1,

giving tL ∼ 1.1s. Hence, 5000∆ ∼ 6.8tL, and conservatively we can use 1000∆ ∼ tL. MSE

plots over the extended trajectory are given in Figure 4.6.
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Figure 4.6: Mean squared error for long term trajectories (left) of learned observables (MZ LO)

compared with CFD and predefined observable trajectories (MZ PO). MZ LO improves predictions

considerably, especially evident in the early timesteps plot (middle). The relative error plot (right)

shows that over the first 1000 timesteps (1.36tL), where the MZ LO trajectories have less than 20%

of the error a CFD trajectory run directly on coarse-grain data. Total trajetory length is 6.8tL.

We note that MZ LO appears visually correlated with the ground truth out to intermedi-

ate time-scales (around 2000∆ cf. Fig. 4.8), and over this range it significantly outperforms

both CFD and MZ PO. For the first 1000 timesteps, MZ LO maintains less than 20% the

error of CFD.

At later periods, all trajectories have decorrelated from the ground truth, and conse-

quently have high MSE. This is expected, however over these intervals, one hopes to match

turbulent flow statistics. We compute several statistics for the trajectories, and display them

in Figure 4.7. The histograms of the velocity and velocity-gradient components of the flow for

each trajectory match the ground truth well. However, enstrophy, turbulent kinetic energy

and the energy spectra of the flow reveal that MZ LO is maintaining much better proximity

to the ground truth. The CFD enstrophy shoots rapidly away from the ground truth, whereas

MZ LO and MZ PO are more stable. One can see the filtering and anti-aliasing built into

the CFD by examining the kinetic energy spectra in Figure 4.7, where there’s a harsh cutoff

at the Nyquist limit. However, through mid-wavenumbers MZ LO holds tightly to the GT,

and maintains lower high frequency terms out to the Nyquist limit. The higher frequencies
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in the CFD are evident in Figure 4.8, where we see highly oscillatory terms cropping up.

There we can also see MZ PO successfully mitigates these high-frequency aberrations.

Figure 4.7: Turbulent flow statistics for 5000 step MZ LO, MZ PO and CFD trajectories. First

row: enstrophy, turbulent kinetic energy and kinetic energy spectra for each trajectory compared

against the ground truth (GT). Second row: PDF’s are histograms of the velocity components

(u, v) and their gradients terms (ux, vy) and (uy, vx).

Snapshots of each 5000 step trajectory are shown in Figure 4.8. We see that both MZ PO

and MZ LO are able to maintain reasonable representations of a vorticity field, while the

CFD quickly develops highly oscillatory behavior. This is evidence of the stability the

Markov and memory kernels add. The addition of learned observables, however, increases

the accuracy of the trajectory in addition to this stability, and MZ LO is highly correlated

through the middle frame (2000∆).
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Figure 4.8: Evolution of long trajectories of the vorticity field. First row: ground truth; second

row: MZ with learned observables; third row: MZ with predefined observables; fourth row: coarse-

grain CFD. Frames are spaced at 1000∆ ∼ 1.36tL intervals.

4.5 Conclusion

In this chapter, we demonstrate a novel data-driven observable discovery method which

successfully defines a resolved space on which to apply the generalized Langevin dynamics

as determined by the Mori-Zwanzig formalism. We pair this observable discovery with data-

driven approaches [TLA21, LTP23] for performing reduced order modeling on dynamical

systems. In particular, we consider turbulent, isotropic, forced Navier-Stokes flow in two-

dimensions, and apply the Mori-Zwanzig reduced order model on a 16-fold reduced order

system.

140



Observables, g = (G, NN(G; Θ)), are determined by a convolutional neural network,

NN(·) and seeded with a generating observable set, G. By using the generating set, we

control the quantities of interest we want to evolve forward via the Mori-Zwanzig kernels, and

are able to directly track reduced-order representations of the system state (such as vorticity

and velocity). Without this generating set, the observable discovery process could learn

trivial (i.e. zero maps) or less desirable quantities to track, such as average velocity. Moreover,

the generalized fluctuation-dissipation relationship (GFD) is enforced by the construction

of the memory kernels, which are defined by a regression-based projection operator as in

[LTP23]. This is an important distinction from other memory based data-driven approaches

which are inspired by the Mori-Zwanzig formalism, but do not ensure the memory mechanism

obeys the GFD.

Overall, the addition of learned observables decreases one-step prediction error by 87.9%

compared with a computational fluid dynamics program run directly on the reduced-order

state. We also compare against a Mori-Zwanzig kernel learning approach which uses a

predefined observable set consisting of the velocity, vorticity and their gradients. Even with

a more expressive projection-operator, the hand-picked set is outperformed by the learned

observables, which on average produce over 85% error reduction in single-step predictions.

The learned observables paired with memory kernels also creates a stable subgrid correction

to the CFD, and long trajectories (above six eddy turnover times) remain stable long after

decorrelating with the ground truth.

In the future, we would like to extend these experiments to turbulence in three-dimensions

as well as to other dynamical systems, such as Kuramoto-Sivashinsky flow. Importantly, we

have not yet provided an interpretation of the discovered observables and the MZ operators

they are evolved by. Fortunately, the Markov and memory kernels can be kept very simple

(in our case linear), so there is direct way to understand the contribution of the observable
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components if the observables themselves can be deciphered. This is an important area to

explore, as interpreting the observables in terms of the physical state could lead to improved,

explicit subgrid models for turbulence modeling.
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CHAPTER 5

Conclusion

In this thesis we studied three separate inverse problems: denoising an image corrupted by

multiplicative noise, extracting wind velocity fields from remote sensing data, and determin-

ing an appropriate set of observables with which to perform turbulent flow simulations using

Mori-Zwanzig based operators.

The first is a classical mathematical imaging task for a difficult type of corruption com-

mon in synthetic aperture radar and medical imaging applications. We establish a general

multiscale hierarchical decomposition method (MHDM) for multiplicative noise, and apply it

to several multiplicative image denoising models, including a novel formulation. The MHDM

construction recovers images at multiple scales. This property allows both smooth and tex-

tured regions to be processed, and overall proves successful at retaining texture features

which existing methods oversmooth. The multiscale property has implications beyond de-

noising and could be applied to image decomposition tasks as well. The MHDM architecture

additionally simplifies weighting parameter choice during optimization. The weighting pa-

rameter, λ, which balances the emphasis of the data fidelity and regularization terms in the

objective functional, typically would require tedious estimations in non-multiscale methods

in order to obtain good results.

We demonstrate well-posedness for the MHDM process applied to several models. The-

oretical guarantees of decreasing fidelity terms with increasing hierarchical depth are estab-

lished, along with a viable stopping criterion which prevents excess noise from being recov-
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ered. In addition to the standard MHDM process, we develop tight and refined extensions

which further control the convergence of our multi-scale approximations of the clean image.

Numerical schemes are laid out in detail for several models, and overall, we see improved

performance in both natural, textured and smooth synthetic images. Most importantly, the

MHDM procedure’s general design allows it to be applied to many models, and so it is not

limited to the fundamental models tested within.

Secondly, we consider whether optical flow can be used to determine wind velocities from

sequential image data and develop two tools which improve atmospheric motion estimation.

The optical flow objective is an ill-posed inverse problem. For water vapor datasets, we

find that TV-L1 approaches struggle to accurately determine the velocity within regions

of uniform data. To correct this, we propose using a structure-texture decomposition to

extract features which may improve the flow estimates. We establish that texture is a

viable feature, and build a Texture-Flow scheme which finds an initial flow estimate from

the texture-features of the image data before refining the estimate using the original image.

This two-step process improves estimates, especially in trouble-regions compared with TV-

L1.

Building on the insight from Texture-Flow, we establish a Multi-Fidelity Flow process

which accomplishes two objectives. First, it allows the incorporation of a texture-based

feature into the fidelity term in concert with the original data, eliminating the two-step

process required in Texture-Flow. Second, Multi-Fidelity flow is flexible and can accept

many features into the fidelity term simultaneously. Leveraging this, we determine that image

texture, gradient and gradient-norm are all helpful features for the wind velocity extraction

problem. Overall, testing on several datasets representing convective and cyclonic weather

systems, we see 3-20% improvements when incorporating texture alone. Adding additional

features increases accuracy improvements by an additional 10% (from 20% to 30%) over TV-
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L1 for the mesoscale convective system. Both of our methods outperform the Horn Schunck

and TV-L1 schemes over data of various spatial and temporal resolutions with complex

motions. Additionally, our estimates are spatially dense and require only two frames of

data, which makes them well suited for real-time weather “now-casting” applications without

needing to collect long-term data samples.

Finally, we develop a data-driven approach for observable discovery which aids a Mori-

Zwanzig based reduced-order modeling approach. The Mori-Zwanzig formalism provides a

mathematical structure for evolving observables according to a general Langevin dynamics

equation (GLE). The GLE incorporates memory effects into the dynamics via memory-

kernels and a Markov term, and these kernels can be learned with appropriate data. However,

appropriately choosing an observable set to evolve is not well understood. We establish

a data-driven joint learning problem which simultaneously determines the observable set

along with the evolution kernels, and show improved performance on coarse-grain turbulence

simulations, even over long trajectories beyond six eddy-turnover timescales. Moreover, by

construction our memory kernels satisfy the generalized fluctuation-dissipation relationship

which is imposed by the Mori-Zwanzig theory and distinguishes our process from other

memory-based data-driven models.

In future work, we would like to extend the MHDM process to multi-channel images

and consider this approach on more general image decomposition or segmentation tasks.

The theory for recovering blurred images with an MHDM approach can also be extended.

There are several directions for additional exploration for the optical flow project. We would

like to test additional features to improve the flow and explore non-local modifications to

the optical flow constraint equations. We would very much like to interpret the discovered

observables used within the Mori-Zwanzig kernels of Chapter 4. Because we use simple

projection-based kernels, understanding how the observables are related to the initial states
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(or generating set) would give a physical subgrid closure model for turbulent fluid simulation.

This would have many impactful ramifications for the fluid modeling sciences. Additionally,

applying this observable discovery process to other dynamical systems (including turbulence

in three-dimensions) should be considered.

While each of these projects are distinct, we close with a remark on the overlap they

share and possible future directions, where ideas from each may inspire advancements for

one another. At their core, each of these are inverse problems. Since the multiscale process

within the image recovery problem naturally gives rise to structure-texture decompositions

of images, MHDM based decompositions could be used to form additional features for the

Texture-Flow process in Chapter 3. Moreover, the optical flow project is intrinsically related

to coarse-grain fluid simulation since the remote-sensing data represents snapshots from a

drastically under-resolved (on the order of kilometers/pixel) dynamical fluid system. Thus,

given an accurate coarse-grain velocity field for the fluid motion, we cannot expect it to

transport the water vapor accurately unless subgrid corrections are incorporated into the

forward model. An ideal fidelity term for the optical flow constraint equation, necessarily,

would incorporate these subgrid effects. Here, there is an opportunity for determining such

a fidelity term by applying the data-driven observable discovery approach to the optical flow

problem. The Mori-Zwanzig kernels, which define an evolution equation for the velocity field

(along with additional components of the observable set), can be understood as an optical

flow constraint equation. Inverting this equation for velocity reveals the desired wind velocity

field. This would hinge on understanding the observable generating function and the kernel

actions.
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