
UC Irvine
ICS Technical Reports

Title
Co-design of emulators for power electric processes using SpecC methodology

Permalink
https://escholarship.org/uc/item/2b58607m

Authors
Saoud, Slim Ben
Gajski, Daniel D.

Publication Date
2001-07-25

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2b58607m
https://escholarship.org
http://www.cdlib.org/

Co-design of Emulators for Power electric Processes
Using Spece Methodology

Slim Ben Saoud, Daniel D. Gajski

Technical Report ICS-01-46
July 25, 2001

Center for Embedded Computer Systems
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

Slim Ben Saoud
Fulbright Visitor @ CECS
INSAT-Tunis-TUNISIA

sbensaou@ics.uci.edu
http://www.cecs.uci.edu/-sbensaou

Daniel D. Gajski
CECS

UCI-California-USA
gajski@ics.uci.edu

http://www.cecs.uci.edu/--gajski

Co-design of Emulators for Power electric Processes
Using Spece Methodology

Slim Ben Saoud, Daniel D. Gajski

Technical Report ICS-01-46
July 25, 2001

Center for Embedded Computer Systems
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

Slim Ben Saoud
Fulbright Visitor @ CECS
INSAT-Tunis-TUNISIA

sbensaou@ics.uci.edu
http://www.cecs.uci.edu/-sbensaou

Abstract

Daniel D. Gajski
CECS

UCI-California-USA
gajski@ics.uci.edu

http://www.cecs.uci.edu/-gajski

Emulation of CMS systems is an interesting approach to complete the validation of new digital control unit and to perform the
diagnosis tasks. However to be efficient, the emulator have to run in real time in order to reproduce exactly the physical process
functioning.
Today, realization of this emulator is not possible using standard electronic components. Therefore, we oriented our work to the
development of new embedded systems specific to these applications of emulation.
This report describes the design of this emulator employing the system-level design methodology developed at eECS-Ue Irvine
(Spece methodology). Starting from the abstract executable specification written in Spece language, different design alternatives
concerning the system architecture (components and communications) are explored and the emulator is gradually refined and
mapped to a final communication model. This model can then be used with backend tools for implementation and manufacturing.
For illustration of this approach, we discuss at the end of this report the case of a DC system emulator and we describe in details
the different stages undergone.

Contents

1 Introduction

2 Emulator Principles

3 Spece Methodology [1,2]

4 Specification Model

5 Architecture Exploration

5.1 Monitored Emulator
5 .1.1 Allocation and Behaviors Partitioning
5 .1.2 Variable Partitioning and Scheduling
5.1.3 Channel Partitioning

5.2 Autonomous Emulator
5 .2.1 Allocation and Behaviors Partitioning
5.2.2 Variable Partitioning and Scheduling
5.2.3 Channel Partitioning

5.3 Remarks

6 Communication Synthesis

6.1 Monitored Emulator
6.1.1 Protocol Insertion
6.1.2 Protocol Inlining

6.2 Autonomous Emulator
6.2.1 Protocol Insertion
6.2.2 Protocol Inlining
6.2.3 Results

7 Example of a DC System

7.1 Specification Model

7.2 Architecture Model

7.3 Communication Model
Characteristic
DSP56KCC Format
IEEE Format

8 Conclusion

References

A Specification Model for the DC Emulator (Integer Form)

B Architecture Model for the DC Monitored .. Emulator (Integer Form)

C Communication Model for the Monitored - Emulator (Integer Form)

D Architecture Model for the DC Autonomous .. Emulator (Integer Form)

E Communication Model for the Autonomous - Emulator (Integer Form)

1

1

2

4

5

6
6
6
7

7
7
8
8

8

9

9
9
10

12
12
14
15

16

17

17

17
19
19
19

19

20

21

21

21

21

21

List of Figures

Figure 1: Structure of the emulation application
Figure 2: Structure of the diagnosis application
Figure 3: SpecC methodology
Figure 4: Specification model of the emulator
Figure 5: Detailed Specification model of the emulator
Figure 6: Architecture model after allocation and behavior partitioning (monitored emulator)
Figure 7: Architecture model after variable partitioning and scheduling (monitored emulator)
Figure 8: Architecture refined model after channel partitioning (monitored emulator)
Figure 9: architecture model after allocation and behavior partitioning (autonomous emulator)
Figure 10: architecture model after variable partitioning and scheduling (autonomous emulator)
Figure 11: Architecture refined model after channel partitioning (autonomous emulator)
Figure 12: Decomposed architecture of the emulator
Figure 13: IP component insertion into the architecture model
Figure 14: Intermediate communication model after protocol insertion (monitored emulator)
Figure 15: Protocols of the DSP56600 external bus
Figure 16: Communication model after protocol inlining (monitored emulator)
Figure 17: HW communication SFSMDs
Figure 18: HWISW inteifacing model (monitored emulator)
Figure 19: Communication model after protocol insertion (autonomous emulator)
Figure 20: Memory bus protocol (KM68257C)
Figure 21: Interfacing with memory block
Figure 22: Communication model after protocol inlinig (autonomous emulator)
Figure 23: HW communication SFSMDs (Autonomous emulator)
Figure 24: DSP/Memory inteifacing model
Figure 25: EIO sensor specifications
Figure 26: Emulator specification (case of a DC system)
Figure 27: Specification model results
Figure 28: Architecture refined model of the monitored emulator (case of DC system)
Figure 29: Architecture model of the autonomous emulator (case of DC system)
Figure 30: Communication refined model (a-monitored emulator, b- autonomous emulator)
Figure 31: Specifications of the C compiler floating-point format (DSP56600)

2
2
3
4
5
6
7
7
8
8
9
9
9
9
JO
11
11
12
12
13
13
14
14
15
16
17
17
18
18
18
19

Co-design of Emulators for Power electric Processes
Using Spece Methodology

Slim Ben Saoud, Daniel D. Gajski
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

ABSTRACT

Emulation of CMS 1 systems is an interesting approach to
complete the validation of new digital control unit and to
perform the diagnosis tasks. However to be efficient, the
emulator have to run in real time in order to reproduce
exactly the physical process functioning.
Today, realization of this emulator is not possible using
standard electronic components. Therefore, we oriented
our work to the development of new embedded systems
specific to these applications of emulation.
This report describes the design of this emulator
employing the system-level design methodology
developed at CECS-Ue Irvine (Spece methodology).
Starting from the abstract executable specification written
in Spece language, different design alternatives
concerning the system architecture (components and
communications) are explored and the emulator is
gradually refined and mapped to a final communication
model. This model can then be used with backend tools
for implementation and manufacturing.
For illustration of this approach, we discuss at the end of
this report the case of a DC system emulator and we
describe in details the different stages undergone.

1 Introduction

In this project we propose to design a real time emulator
for electrical system using Spece methodology [1,2]. This
emulator will be used with the control device either for
complete validation of this one at the development and
validation stage or for diagnosis at normal functioning
stage. In both cases, the emulator should behave like the
physical system in real time.

Realization of this emulator is essentially faced to the
execution time constraints. Indeed the emulator has to
replace high dynamic systems in real time. So we
distinguish three approaches in which real time emulator
can be implemented: Digital, Analog and Hybrid. These
approaches are discussed in previous publications [3,4,5].

The main difficulty in this realization is to satisfy both
specifications of real time functioning and of flexibility.

1 Static Converters I electric Motors I Sensors

1

Association of these characteristics imposed uses of
digital approaches, which guaranty user-friendliness.
On the other side, improvements in VLSI technology
have to led the wide spread use of specific processor,
which may also be used to realize complete system.

According to these considerations, our work is oriented to
the design of embedded systems specific to the emulation
application. Therefore, we study the synthesis process of
the emulation systems directly from their specification.
This approach requires the ability to synthesize specified
functions into software or hardware to meet the given
constraints. It has the most flexibility since software,
architecture and each component are custom made.
However, it requires a well-defined methodology with
clear steps, easy transformations and efficient tools to
help the designer in the synthesis process.

In this project, we apply the Spece methodology for the
design of this real-time emulator.

In this report, we describe this new approach and we
present the case of a DC system as an example. We
present at the beginning an introduction to the emulation
principles. From this description and according to the
SpecC methodology, we deduce the specification model
of the emulator. Then, we describe the different steps and
transformations used to convert this model to a
communication model according to the Spece
methodology. This model can be then transformed to an
implementation model ready for manufacturing.

2 Emulator Principles

The objective of the emulation approach in the electric
drive applications is to design an electronic system, which
can reproduce the physical system functioning in real time
and with high precision. This system, called emulator,
will be used for both of the new control device validation
and of diagnosis:

- Validation of control device: before using the control
device on the physical system and in order to avoid
any design surprise (usually destructive and
expensive), the control device is validated on the
emulation step where it is connected to the emulator.
This emulator should behave exactly like the physical

system, in sense to make the control device believe
that it is connected to the real CMS2 system. Thereby
it has to generate and receive information similarly to
the physical process: it receives control signals and
generates information about the system state in forms
identical to those obtained by sensors. After this step,
the control device is completely validated and can be
switched for use with the physical process as shown
on figure 1.

EMULATOR

Control
Device

PROCESS

CONTROL

Emulator

Proecess

C Control signals I ~ Emulator outputs I Pi Process outputs

Figure 1: Structure of the emulation application

- Diagnosis: The emulator is used in parallel with the
process and must receive the same control signals as
this process. Outputs of the emulator will be
continuously compared in real time and in order to
detect any dysfunction of this process. Stored results
of the emulator will be used to analyze problems and
to avoid or detect their origins.

Control
Device

Bi
Emulator i-----.

Process

Ci Control signals I Bi Emulator outputs I Pi Process outputs

Figure 2: Structure of the diagnosis application

In both cases, the emulator has to reproduce accurately
the process functioning. Therefore, it has to compute the
System State and to convert the obtained results in forms
identical to those obtained by sensors.

2 Converter/Motor/Sensors

2

For this and in order to obtain precise results, we should
use precise models of different components used on this
process and a high performance computing system with
the lowest computing step as possible (lµs or less).

On the other hand, this emulator must be flexible, easily
configurable by the user according to her/his application,
and it must allow the storage of results and if necessary
monitoring.

According to these previous considerations, the emulator
structure will be composed of three main modules:

- Computing module: it computes, according to the
digitized models, the system state variables. This
computing is performed in a loop manner with a
period hor (computing step) equal to lµs or less for
high precision applications. This module receives
digital control signals and generates corresponding
numeric results representing states of different
components on the process (converter, motor, load
and sensors).

- Emulation sensors module: it converts numeric
results on different other forms identical to those
obtained by the used sensors. Different types of
conversion will be done like numeric/numeric
(solver, ...), numeric/digital (encoder, ...)
numeric/analog (LEM, ...). The execution of each
conversion will be done in a periodic manner with a
period that depends on the temporal characteristics of
the sensor and the captured magnitude. However,
these periods constraints are usually less severe than
the computing module one.

- Monitoring module: it performs the acquisition of
new parameters and the storage of results. It can also
perform some monitoring tasks. For most
applications, the initialization task is performed only
at the beginning of the emulator functioning.
However, for high performances applications, it can
be executed several times within the emulation
running in order to introduce variation of system
parameters due, for example to the variation of the
environment like the temperature,. . . On the other
hand, the storage operation will be done in a periodic
manner with a period, Ts = x * hor, where x is an
integer configurable by the user.

3 Spece Methodology [1,2]

With the ever increasing complexity and time-to-market
pressures in the design of systems-on-chip (SOCs) or
embedded systems in general, both industry and EDA
vendors are trying to move the design to higher levels of
abstraction, in order to increase productivity. At higher
levels, there is no difference between hardware and
software. An SOC is the combination of hardware and

software, and at the system-level the disciplines merge.
Great productivity gains can be achieved by starting
design from an executable system specification instead of
an RTL description as the golden reference model,
throwing away all system models developed earlier in the
process. However, we are still just at the beginning of
understanding the design process at the system level. No
tools and no well-defined design flows are available from
industry or EDA vendors.

Managing the complexity at higher levels of abstraction is
not possible without having a very well defined system
level design flow. A well-defined design methodology is
the basis for all, synthesis, verification, design
automation, and so on. Only then can we find or create a
language that actually fits the desired flow, and not vice
versa.

Spece System-level design methodology and Spece
language are the result of decades of research done in the
area of SOC design at the Center for Embedded Computer
Systems (CECS) at the University of Irvine California
(UCI).

Spece language was developed exactly for the purpose of
supporting a system-level design flow, and it therefore
satisfies all the requirements of synthesizability,
verifiability, and so on. Spece is a superset of C and adds
a minimal, orthogonal set of concepts needed for system
design. It is currently in the process of being standardized.

The Spece methodology is a set of models and
transformations on the models (Figure 3). The models
written in programming language (Spece language) are
executables descriptions of the same system at different
levels of abstraction in the design process. The
transformations are a series of well-defined steps through
which the initial specification is gradually mapped onto a
detailed implementation description ready for
manufacturing.

The Spece design methodology is based on 4 well
defined models, namely a specification model, an
architecture model, a communication model, and finally,
an implementation model. In the following section, we
will give a brief description of each model and of the
refinement tasks leading from a functional specification
model all the way to a cycle-accurate implementation
model in Spece.

Specification model: The Spece system-level design
methodology starts with the capture of the intended
functionality in the form of an executable specification as
shown in figure 3. This initial specification model
describes the functionality as well as the performance,
power, cost and other constraints of the intended design.

3

It does not make any premature allusions to
implementation details.
During specification capture the designer may reuse
existing code segments, functions or procedures by
instantiating them out of an algorithm library.
Specification model is a purely functional model that
abstracts the system functionality. It is the starting point
of system design process and the input to architecture
exploration task.

Architecture exploration

Allocation

Partitioning

Scheduling

Protocol insertion

Interface synthesis

Protocol inlining

Communication
model

Implementation

Figure 3: Spece methodology

Architecture exploration: It refines the specification into
an architecture model. It includes the design steps of
allocation, partitioning of behaviors, channels, and
variables, and scheduling.
Allocation determines the number and types of the system
components, such as general-purpose or custom
processors, memories, and busses, which will be used to
implement the system behavior. Allocation includes the

reuse of intellectual property (IP), when IP components
are selected from the component library.
Behavior partitioning distributes the behaviors (or
processes) that comprise the system functionality amongst
the allocated processing elements. Variable partitioning
assigns variables to memories, and channel partitioning
assigns communication channels to busses.
Scheduling determines the order of execution of the
behaviors assigned to either the standard or custom
processors after partitioning. In other words, scheduling is
used for software and hardware components.

Architecture exploration is an iterative process
culminating with an architecture model that represents a
refinement of the specification model. Estimators evaluate
each architecture candidate's satisfaction of the design
constraints; until all constraints are satisfied, component
and connectivity reallocation is performed and a new
architecture with different components, connectivity,
partitions, schedules or protocols is generated and
evaluated.

Architecture model: It describes the system functionality
as well as the overall structure of the final implementation
for the design. The communication in the architecture
model is through the abstract global channels.

Communication Synthesis: It refines the abstract
communication between behaviors in the architecture
model into an implementation. The task of
communication synthesis includes the insertion of
communication protocols, synthesis of interfaces and
transducers, and inlining of protocols into synthesizable
components. In the resulting communication model,
communication is described in terms of actual wires and
timing relationships are described by bus protocols.

Communication model: It is the final output of the
system-level design process which describes the system
structure as a set of components connected through the
wires of the set of buses.

Backend: The result of the synthesis flow is handed off to
the backend tools, as shown in the lower part of figure 3.
The software part of the hand-off model consists of e
code for compilation and the hardware part consists of
behavioral C (VHDL) code for high-level synthesis. The
backend tools include compilers and high-level synthesis
tool. The compilers are used to compile the software e
code for the chosen processor. The high-level synthesis
tool synthesizes the functionality assigned to custom
hardware and the functionality of transducers which are
necessary for connecting different processors, memories,
and IPs.
After software compilation and hardware synthesis, the
final implementation model is generated.

4

Implementation model: It represents
accurate description of the whole
description, in turn, then serves as
manufacturing of the system.

a clock-cycle
system. This
the basis for

In each of the tasks the designer can make design
decisions manually by using an interactive graphical user
interface, for example, while transformations from one
model into another can be accomplished automatically by
following the refinement rules or model guidelines. After
each refinement step in the synthesis flow, a
corresponding Spece model of the system is generated,
which means that design decisions made in each design
task are reflected in the generated models. Thus, in the
validation flow that is orthogonal to the synthesis flow in
the Spece methodology, one can perform simulation,
analysis and estimation of the Spece models generated
after each task.
After each design step, the design model is statically
analyzed to estimate certain quality metrics such as
performance, cost, and power consumption. Analysis and
estimation results are reported to the user and back
annotated into the model for simulation and further
synthesis.
The design can be statically analyzed or simulated after
each step for validation of design correctness in terms of
functionality, performance, and other constraints. A
simulation model is compiled after each step which can
be run on the host computer to validate correctness for
simulation.
At any stage of the refinement process, a standard
software debugger can be used to locate and fix the errors
if verification fails. Such debuggers enable one to set
break points anywhere in the source code and to perform
detailed state inspection at any time.

4 Specification Model

According to the previous description, the emulator can
be described by a main behavior (Emul) including
different sub-behaviors: one for the computing module,
one for sensors and one for monitoring (Figure 4).

Figure 4: Specification model of the emulator

These behaviors are usually composed of other sub
behavior according to the modular structure of the

,
' I
I
I
I
I

physical system. So, we use a sub-behavior for each of the
converter, motor/load and sensor component and we add
separate sub-behaviors for initialization process and for
the monitoring module (including storage). These
behaviors can also be decomposed of child-behaviors as
we usually do with the motor/load behavior. Indeed, this
behavior is usually decomposed on mechanic-child
behavior and electric-child-behavior (Figure 5).
Computing steps used with different modules are not the
same since they don't have the same temporal
characteristics. So we propose, for more flexibility, to add
to each of the obtained child-behaviors a clock-generator
behavior that controls its execution. The occurrence of the
clock event is defined according to the module temporal
characteristics.
However, we usually use the same computing step for the
CM system (lµs) and different computing steps for each
different type of sensor ...
The obtained specification model is shown on figure 5. It
was validated for the case of DC and AC systems.

I ---------,

---------, '--------------- ..

Figure 5: Detailed Specification model of the emulator

5

Constraints: One of the most important constraints with
this application is the computing time of the CM System
State. Indeed, this computing must be done, according to
the given models, in a periodic manner with a computing
step of lµs or less. While this seems to be realizable using
High performance standard processors for the case of
simple system using simple models, it is not possible for
high performance application that needs sophisticated
models and smaller computing step. Temporal problems
of this computing, implemented into a processor, are
related to the computing load and to the use of
interruption for the periodic functioning management.

Other constraints such as the resolution of the used DAC
devices and the resolution and precision of the used
sensors (C.I.O, ...) will certainly influence the design
procedure.

5 Architecture Exploration

At the architecture allocation phase, different possibilities
can be used according to the application specifications
(flexibility, time, cost, precision,. ..). However, since we
need to store emulator results for monitoring and study,
we distinguish two main structures according to the
emulator integration on the physical system:

- Monitored emulator: with this structure, a master
processor (PC or the micro-controller implemented
on the control device) monitors the emulator. This
master will initiate the emulator functioning by
sending new parameters and will be used in parallel
with the emulator to store results and treatment of
these results for monitoring. Transmission of results
is done in a periodic manner Ts.
In this case, the emulator will interrupt the processor
functioning at each new storage period in order to
begin a transmission task. This solution imposed the
use of interruption, which can disturb the running
task performed by the master (case of the
microcontroller).

- Autonomous emulator: the emulator is associated to
an external memory on which will be stored
parameters and emulation results. The emulator
functioning is then independent from other
computing systems. At the starting step, it reads new
parameters from the external memory block and then,
at each new storage period, it will write new results
into successive registers of this memory. Another
processor used for initialization and monitoring will
manage this memory when the emulation is off-line
in order to initialize the process parameters and to
restore emulation results. This solution is very useful
when used with the micro-controller of the control
device since it will not disturb the control tasks.

However it introduces some delay in the monitoring
operation.

For each of these structures, different allocations can be
studied. These allocations represent different possibilities
of implementation of the emulation core Emu/Core
(computing and sensors emulation modules) between full
software and full-hardware solutions.
In our project, temporal constraints of our system are very
severe, especially in the case of complex models. So, we
chose to study the full-hardware solution.
In this case, we usually use one ASIC for computing of
CM system states and a custom hardware for each (or
some) sensors. This introduces communications between
these different hardware blocks and the ASIC component.
In order to simplify this presentation, we consider that all
modules are included in the same HW component
EmulCore.

In the following sections, we present the study of this
solution when applied to the two described emulation
structures (Monitored and Autonomous). Therefore, we
will present for each of these structures the different
modifications applied to the specification model in order
to obtain the architecture model.

5.1 Monitored Emulator

In this structure, the emulator is supervised by a software
application, which initiates the emulator functioning and
receives results from it. This solution is useful for
monitoring and the software can be implemented on the
control device microcontroller. However, in this case,
cautions should be taken about the management of
communication without disturbing the control tasks (since
these transfers will be done using interruption of the
microcontroller. ..) .

5.1.1 Allocation and Behaviors Partitioning

The first step in architecture exploration is to allocate a
set of processing elements (PEs) and to map the behaviors
of specification onto the allocated PEs. In this structure
and according to the previous considerations, the
emulation system will be composed of two PEs: the
hardware component Emu/Core that performs emulation
tasks and the software component used for initialization
and results storage.

The obtained refined model after behavior partitioning is
represented by figure 6. In this model, two behaviors are
added to EmulCore-PEJ (init & storage behaviors) in
order to synchronize and establish communication with
the software component. This communication becomes
system-global and it is moved to the top-level connecting
the PE behaviors.

6

Emul

PEI (EmulCore)

Figure 6: Architecture model after allocation and
behavior partitioning (monitored emulator)

5.1.2 Variable Partitioning and Scheduling

The number of exchanged variables between HW and SW
components is very limited (usually less than 10), so we
chose to use local copies for these variables in each PEs.
Therefore in the refined model obtained after variable
partitioning, global variables for results and parameters
are replaced with their respective abstract channels Cpi
(for parameter Pi) and CEi (for result magnitude Ei). Code
is inserted into behaviors to communicate variable values
over these channels. Note that data are exchanged in a
vector type: one for parameters and one for results.

Scheduling The next step in the architecture exploration
process is to schedule behavior executions on the
inherently sequential processing elements. Processing
elements have a single thread of control only. Therefore,
behaviors mapped to the same PE can only execute
sequentially and have to be serialized.

In this application, at the starting point, the emulator is
waiting for a start order from the master. Then, it receives
new parameters of the system sent by the master and
begins its functioning tasks. At each x computing steps
(storage period), the emulator will send results (im, Wm)
to the master. Two functioning mode can be used with the
master:

- It can be used only for monitoring of the emulation:
initiating and receiving results. In this case after
sending parameters, the master will wait for the
results. In this solution, implementation of
communication will be easy, however the master
can't do any thing else at the same time.
In this case, behaviors are executed in a fixed and
predetermined order. The static scheduling approach
will be applied easily by converting all concurrent
statements into sequential compositions.

- The master is also used for other tasks such as control
or treatment of these results for monitoring and
diagnosis. Therefore, a dynamic scheduling approach
is required.

In this case synchronization for information
exchanges will be done using interruption. The
emulator will send an interruption signal to the
master each storage period in order to begin transfer.
This solution is more adequate for embedded systems
since it can be integrated easily in the control device,
allowing then both application of validation and
diagnosis.

In order to preserve the shared semantics of the variables
and to keep the local copies inside PEs in
synchronization, updated data values are exchanged
between the two components at the existing
synchronization points. Therefore, these updated data
values are communicated over the existing message
passing channels together with synchronization of the
behaviors execution among the PEs.

According to these purposes, the intermediate architecture
model obtained after variable partitioning and scheduling
is represented by figure 7.

Monitor

~·····.
'::;:)' ITpgm ___ ~

• • •• •

Figure 7: Architecture model after variable partitioning
and scheduling (monitored emulator)

5.1.3 Channel Partitioning

The goal of the channel partitioning is to group and
encapsulate all the channels existing between the
communicating blocks into one bus. The bus is also a type
of channels in Spece and it implies that the future
implementation would be wired busses.

In our application, we have only two components
communicating with each other. Therefore, only one

7

system bus is allocated connecting PEI and PE2, and all
communication channels are mapped -onto that bus.
The obtained refined model is represented by figure 8.

Monitor

~

·:;:::l)'ITpgm
....__ _ __,:

Figure 8: Architecture refined model after channel
partitioning (monitored emulator)

5.2 Autonomous Emulator

A memory is added to the emulator system in order to
obtain an independent emulation system. In this memory
will be stored both the system parameters and the
emulation results. At the beginning, the emulator starts by
reading of parameters at corresponding addresses on the
memory, and then it will store, at each storage period, the
obtained results. Both the emulator and the monitor will
manage this memory .
This solution can be used either alone or with a software
component (as on the control device). The main
advantage is the portability and the autonomy of this
emulator since it will not interrupt the software
component. This last can at each time ask memory for
information. The start/stop of the emulator can be done by
the SW component.

To simplify the application, we assumed that the monitor
manages this memory only when the emulator is stopped.
So, there's no management of transfer conflicts to
perform. However, synchronization between Hardware
and Software components must be done at the beginning
and at the end of the emulation procedure.

5.2.1 Allocation and Behaviors Partitioning

As specified before, the architecture target will be
composed of three components: the EmulCore hardware

component, the software component (processor) and the
memory block. This memory, shared by the two active
components, is used for storage of parameters and
emulation results.
However, local copies are added, especially, to the
emulator component in order to perform its computing as
fast as possible without asking the memory at each
computing step for data. These local copies correspond to
the used parameters and to the results obtained in the last
computing step (or in the n last computing steps
according to the used method for digitizing).

The obtained refined model after behavior partitioning is
represented by figure 9. In this model, two behaviors are
added to EmulCore (init & storage behaviors) in order to
synchronize and establish communication with the
software and memory components.
This communication becomes system-global and it is
moved to the top-level connecting the PE behaviors.
Synchronization is done at the beginning and the end of
the emulation procedure by using two events Start and
End. The processor generates the Start event after
computing the new system parameters according to the
user configuration. It signals to the init behavior in the
EmulCore component that parameters are ready. Then,
the emulator starts its computing and storage procedures.
At the end of its functioning, it sends the End event to the
software component signaling that emulation is stopped
and that data are ready in the memory block.

Figure 9: architecture model after allocation and
behavior partitioning (autonomous emulator)

5.2.2 Variable Partitioning and Scheduling

In this case and according to the previous specifications,
synchronization between HW and SW components are
performed by using of two events Start and End.
The Start event can be associated to the parameters
variables Pi and encapsulated into a Message-Passing
channel that models the abstract communication
semantics of blocking, unbuffered message-passing
between any two client-behaviors.
On the other hand, the End event will be connected to a
processor interrupt input. The interruption program is

8

used to set a flag F _end when this interruption is
activated. When the software program needs the
emulation results for monitoring, it tests this flag. If it is
set, it performs the data read sequences from memory,
otherwise it waits for the interruption activation.

The obtained refined model after variable partitioning and
scheduling is shown on figure 10.

Figure 10: architecture model after variable partitioning
and scheduling (autonomous emulator)

Note that, the emulation can generate the digital signal
F _end instead of the event End. And then, no interruption
is required for the synchronization.

5.2.3 Channel Partitioning

The obtained architecture target is composed of two
active PEs (PEl and PE2) that share a memory block
(PE3). Therefore, only one bus is used into which all the
global channels and their implementation are
encapsulated (figure 11).

5.3 Remarks

These structures can be decomposed into others
components according to the complexity of the studied
system. This bursting will usually concern the distribution
of sensors on others hardware components as shown on
figure 12.

We can also distribute a complex child behavior like the
Motor/Load behavior on several components. However
this will introduce communication protocols and then
cautions must be taken in order to obtain the best
compromise "performance/cost". These distributions have
to be studied in more details with estimation tools
according to the defined application.

Figure 11: Architecture refined model after channel
partitioning (autonomous emulator)

Figure 12: Decomposed architecture of the emulator

6 Communication Synthesis

In the Spece architecture model, obtained from
architecture exploration, the communication between
components is still modeled on a high level through
abstract channels. The channels were obtained by simple
encapsulation of global variables and their corresponding
synchronization. Although the channels represent the
grouping according to the mapping onto busses, they do
not yet contain any information about the actual
implementation of the communication primitive's
semantics (send(), receive(), ...). The communication
synthesis, therefore, is to gradually refine the channels in
the system model down to an actual implementation with
data transfers over wires. This comprises the steps of
protocol insertion, transducer synthesis and protocol
inlining [6].
In our application, the software component is usually
chosen from standard processors (IP components).
Therefore, PE2 will be replaced at the communication
synthesis by this predesigned processor chosen from the

9

component library. This processor has predefined
functionality and fixed external interfaces and
communication protocols.
In the process of protocol insertion, the SW component
will then be replaced with a model of the IP component
that includes the IP component behavior and the protocol
wrapper (Figure 13). The wrapper provides the abstract
canonical interface for communication with the
environment.
Note that in case of protocol incompatibilities, transducers
components will have to be inserted between the IP
component and the bus to translate between the protocols.

Figure 13: IP component insertion into the architecture
model

For the illustration of our application we will use the
DSP56600 (Motorola) as the chosen IP component for
implementing the software behaviors [7].

6.1 Monitored Emulator

6.1.1 Protocol Insertion

Figure 14 shows the emulator model after insertion of a
bus protocol for the system bus, and after the processor
behavior has been replaced with a model of the real
processor with a wrapper.

PEI

Figure 14: Intermediate communication model after
protocol insertion (monitored emulator)

In this case, we propose to use the processor protocol as
the system protocol. Then the transducer will be removed
during inlining, since processor and bus protocol are
identical. However, transducer will be added, if needed,
between hardware protocol and the system bus protocol.
This transducer will be later synthesized with the
hardware component.
Usually, no protocol is defined for the hardware part, so
we ne~d to analyze the HW datapath to generate the I/O
protocol and then insert the transducer component.
Note that in order to simplify this illustration, we suppose
that the hardware component has the same protocol as the
system bus (DSP56600 protocol). Then, the transducer is
not required.

The protocol channel in the system bus and the wrapped
processor model describe and implement the processor
bus protocol according to its timing diagram, shown in
figure 15. The protocol layer provides primitives for
performing read/write transfers and for raising interrupts
over the processor bus.
On top of the protocol layer, the application layer created
during protocol insertion implements the semantics of the
abstract communication of the bus channel, using the
primitives provided by the encapsulated protocol channel.
On the software side, the communication primitives of the
application layer are customized 1/0 routines inside the
processor that become part of the generated RTOS. The
1/0 routines together with customized interrupt handlers
perform the necessary handshaking and data conversions
to implement the semantics of the communication
primitives using the processor's 1/0 instructions.
On the hardware side, the communication primitives are
part of the system bus application layer. They will later be
inlined into hardware and realized as additional FSMDs
that implement the low-level bus protocol and the high
level handshaking and data conversions.

AO-Al5

/MCS

/RD

/WR

DO-D23 ----1--------0"" __ ...,1>----

/AT ~

AO-

/MCS

/RD

/WR

DO-

/AT

_/ c
DSP56600 - SRAM Read

DSP56600 - SRAM Write

Figure 15: Protocols of the DSP56600 external bus

In the monitored emulator of the emulator example and
after protocol insertion, the DSP is the central component
and the master of the system bus. The software on the
DSP initiates all data transfers on the system bus between
software and hardware components. However, this

10

software is associated to a DSP interrupt, which is
triggered by the hardware by using asynchronous events.

The DSP is the communication master, the required
blocking, synchronous message passing semantics are
realized as follows: the ASIC signals its ready state by
raising an interrupt whenever it reaches a communication
point (at the beginning of each new Ts period). The
software on the DSP performing the task of control or of
monitoring will be interrupted in order to execute the
transfer program. So, it begins by transferring the data
one word at a time by repeatedly executing instructions
that initiate read or write cycles on the external bus.

The hardware has a dedicated address that corresponds to
a location in the DSP memory space. Once software and
hardware at both ends are synchronized, the DSP as the
master on the bus initiates and controls data transfers by
reading from or writing to the memory location with the
address of the custom hardware. The ASIC, on the other
hand, detects its own address and answers DSP requests
by supplying or storing the requested data from and to
their local registers or memories.

On top of the actual low-level transfers, synchronization
and handshaking between hardware and software is
handled by sending and receiving events on both sides.
On the processor side, the operating system sends events
to the custom hardware by writing to the external bus
address assigned to it. Than, signaling an event is
implemented by initiating a data transfer over the
processor bus and to the hardware component and
therefore both can be combined. The hardware component
listening on the bus receives the transfer request event and
supplies or stores the data. On the other hand, the Custom
hardware PEs sends event to the software by interrupting
the processor. Indeed, the hardware signals the
availability of new computation results to the processor
by raising an interrupt line.
Note that the interrupt assigned to the hardware
component should be with the highest priority in order to
perform emulation in real time.

6.1.2 Protocol Inlining

Finally, inlining of the wrapper functionality into
hardware components is performed (Figure 16): the
resulting SFSMDs for interrupt generation, address
decoding and bus protocol handling functionality are
combined with the SFSMD executing the behavior
originally assigned to the custom hardware coprocessor.
Both parts will then be synthesized together to generate
the final custom hardware. After inlining, the actual ports
and connections are exposed and visible, resulting in the
final system model as actually seen after implementation.

PEl BusSlave BusMaster IP2

Address[15:0]

Data[23:0]

/MCS

IRW
/RD

Figure 16: Communication model after protocol
inlining (monitored emulator)

In the case of the ASIC emulator system, communication
primitives are inlined into the init and storage behaviors
that have been created during partitioning for
synchronization and communication between the ASIC
and the processor. Both the applications and protocol
layers of the communications primitives that had been
created during protocol insertion are inlined into the
custom hardware behaviors.
The application layer performs synchronization with the
DSP and converts the complex data structures into bus
transfers. The protocol layer performs the actual bus
transfers according to the protocol shown in figure lS.

The /nit SFSMD synchronizes with the software on the
DSP, receives the process parameters over the processor
bus, and starts the emulator computing. At each new
storage period (Ts=Xs cycles), the storage SFSMD
synchronizes with the DSP (by generating an interruption)
in order to transfer the emulation results back to the
processor. For their bus transfers, the SFSMDs (figure 17)
implement the bus protocol according to the timing
diagram shown in figure lS.

The Init SFSMD waits for a falling edge of the chip select
signal MCS and samples the bus address in state S 1 until
a transfer with the address of the ASIC is recognized. In
state S2, the WR control signal is sampled until a falling
edge has been detected that signals the beginning of a bus
write cycle. In state 3, the Init SFSMD waits for the rising
edge of signal WR before latching the data bus contents
into I/O register, writing the data from the I/O reg into
local memory Mem, and incrementing the address register
Addr in superstate S4. Finally, it increments and checks
the loop counter in state SS, and branches back to wait for
the start of the next word transfer until all data items have
been received. Then it will activate the emulator
computing.

The storage SFSMD synchronizes with the DSP by
raising the processor's interrupt line IRQC in its first state
SJ. Then it waits for a falling edge of the chip select
signal MCS and samples the bus address in state S2 until
a transfer with the address of the ASIC is recognized. In
state S3, the RD control signal is sampled until a falling
edge has been detected that signals the beginning of a bus
read cycle. In superstate S4, the storage SFSMD reads the

11

data word from the custom hardware memory Mem into
the I/O reg, increments the local address register Addr,
and enables I/O reg on the data bus. It then waits for the
rising edge of RD in state SS. Finally, it increments and
checks the loop counter in state S6, and branches back to
wait for the start of the next word transfer until all data
items have been transmitted.

:: · · ·ro{~::~~;g=1
! 6 rw=O; //write !
! Addr=Addr+ I;!

......... 1 ... i

(a) /nit SFSMD

S2
MCS && (A=&x) : 1 ~

....... ······ ! Addr=y; !
S3 i 8 rw=l; //read i

fRJ)............... ! load_I/Oreg=*
. . i Addr=Addr+ I~
~ D=y~+~ i i

.. J ~:=~~~~.~:.~.;l

(b) Storage SFSMD

Figure 17: HW communication SFSMDs

In case of this application, we assume that the synthesized
hardware for the Init and Storage SFSMDs will be fast
enough to handle bursts of successive transfers initiated
by the master processor at the maximal processor bus
speed (2 processor cycles per bus transfer). Therefore, the
delay of the loops in the SFSMDs has to be less than 2
processor cycles. Otherwise, wait states have to be added
to the bursts of bus transfers on the processor side, or

more elaborate handshaking scheme (e.g. DMA or
interrupt-based acknowledgment of single transfers)
would become necessary.

Figure 18 shows the implementation of the interface
between hardware and software after final inlining.

Local
memory D[23:0]

x+n RD x
oo WR g

DSP56600 Vi .;.; MCS
- N i::

Processor ~Cl
0
u A[l5:0]

IRQC

Figure 18: HWISWinterfacing model (monitored
emulator)

The sequence for transferring data and control from the
DSP to the ASIC is:

1- Under the assumption that the coprocessor is ready
whenever the software on the DSP wants to initiate
the emulator parameters, the DSP starts writing
these parameters onto the DSP bus. The processor
successively writes the block of data for the
hardware onto the bus one word at a time by
initiating a sequence of bus write cycles with the
address assigned to the coprocessor.

2- The Init SFSMD of the HW component is triggered
by an address match, receives the data word over
the bus, latches it in its I/O reg and finally stores
the latched data in the local memory of the ASIC
as described previously.

3- When the last data has been received, control in the
ASIC model is transferred from the Init SFSMD to
the SFSMD corresponding to the emulator
computing behavior.

4- The emulator computing SFSMD reads the process
parameters from the local memory and starts the
emulator computing process.

The transfer of emulator results to the DSP is handled in a
similar manner:

1- The emulator computing SFSMD writes the
obtained results back into the memory. At the
beginning of each Ts period, control is transferred
to the Storage SFSMD in the hardware component.

2- The Storage SFSMD interrupts the processor an~
then waits for the start of the bus data transfer. '

3- The interrupt program on the DSP starts the
communication software. The processor reads the
data from the hardware component I/O reg over the
bus one word at a time by initiating a sequence of
successive bus read cycles. The data is read one

12

word at a time using the address assigned to the I/O
reg in the ASIC.

4- The storage SFSMD in the ASIC decodes the bus
address, reads the results from the local memory,
and puts the requested data on the bus.

5- After each read, the ASIC loads the I/O reg with
the next data word until the complete complex data
is sent to the DSP.

Note that for each message, the processor transfers the
data items sequentially over the bus one word at a time in
a predefined, fixed order. Hence, at each step in the
sequence of data transfers it is implicitly defined which
word of which data item is currently being transferred.
The custom hardware and the DSP keep track of the
sequence of data transfers, and according to their internal
sides determine how to process the transferred item.
The interrupt priority assigned to the ASIC must be with
high priority in order to not interrupt the transfer between
the emulator and the DSP. This allows a real time
functioning of the emulation system.

6.2 Autonomous Emulator

6.2.1 Protocol Insertion

Figure 19 shows the emulator model after the insertion of
the DSP bus protocol as the system bus protocol, and after
the processor behavior has been replaced with a model of
the real processor with a wrapper. Transducer will be
added, if needed, between hardware protocol and the
system bus protocol. On the other hand, memory must be
able to respond to the read and write requests from DSP
and ASIC. This again requires design of a bus interface
for memory to respond to bus read/write requests. The
behaviors and complexity of such interfaces depends on
the time-constrained behavior of these components at
their ports. So, we must discuss the timing behavior of
these components and then analyze these interfaces [8].

IP2

Figure 19: Communication model after protocol
insertion (autonomous emulator)

Note that in order to simplify this illustration, we assume
that the hardware component has the same protocol as the
system bus (DSP56600 protocol).
On the other hand, we experimented with Samsung
memory KM68257C [9], which is a CMOS static RAM

and has 8 common input and output lines. The different
pins and the memory specification for read and write
cycles are shown in figure 20.

KM68257C - Read

/CS

/WE

Data out~-----lt' , ___ _,,

KM68257C - Write

Figure 20: Memory bus protocol (KM68257C)

According to these specifications, this memory is fast
enough and will be used directly without any additional
interface according to the schema of figure 21. Therefore,
no interfaces are required with this architecture model.

DSP/ A A MEM
ASIC D D

/MCSl----'/CS

/RD /OE

/WR /WE

Figure 21: Interfacing with memory block

Parameters and results are stored in the memory at precise
corresponding locations with precise addresses that
correspond to free locations in the DSP and ASIC
memory spaces.

According to this structure architecture model, we
distinguish two masters sharing the same bus and the
same memory component:

- DSP: it writes at the beginning parameters values to
their corresponding locations in the memory block,
and reads results tables;

- ASIC: it reads at the beginning parameters from their
corresponding locations, and writes results at each
execution of the storage behavior (Ts period).

So, cautions must be taken in order to avoid
communication conflicts. Two solutions can be
considered:

13

- Without management of the bus: The DSP initiates
the emulator functioning after -initialization of the
memory with new parameters. Indeed, it sends to the
emulator the start event to start the emulator
functioning. At the reception of this signal, the
emulator, begins by reading parameters from the
corresponding memory locations and then starts the
computing process. According to the previous
specifications, the emulator writes results to the
memory at each Ts period. These results are written
in a table. Along this time, the DSP can perform
others tasks; however it is not allowed to do transfer
on its external bus while the emulator is running.
When the emulation process is finished, the hardware
informs the DSP by sending an external event that
can be used with interruption that sets a
corresponding flag or by setting a signal connected to
a processor digital input. So the DSP, when it is
ready for results acquisition will test this flag, and
then perform the acquisition of the result table for
analysis. The two main advantages of this solution
are that the required management of the bus is very
simple and the monitoring processor performs other
tasks while running emulator. However, the DSP has
some functioning restrictions (forbidden access to the
external bus during emulation) and cannot read
results before the end of the emulator computing.

With management of the bus: The beginning of
operation is done like the previous solution: the DSP
initialize the memory then initiate the emulation
functioning. Then, both the DSP and the ASIC can
access to the memory for read/write. Specific
primitives in the application layer will manage
conflicts and priority is given to the ASIC. The main
advantage of this solution is to allow the access of the
DSP to the memory to change parameters or read
results in order to perform the monitoring operations.
However, this solution requires a sophisticated
protocol to manage conflicts. This solution can be
used for high performance application indeed it can
introduce, for example, in real time parameters
variations due to the temperature variation and to
asynchronous events and it can perform monitoring
in real time since it has not to wait the end of the
emulation and the DSP can at each time read results
from the memory.

As described in previous sections, the application layer,
used in the components (ASIC and DSP), wraps around
the protocol layer and implements the abstract
communication semantics required by the behaviors in the
application over the primitives supported by the protocol.
In this structure of the emulator system, this layer has to
perform tasks like synchronization, arbitration, addressing

of data on the bus, slicing of abstract data types into bus
words.

In this project, we implement the case of the first solution
(without management of the bus), which represents a
simple bus management protocol.
In this case the required synchronous passing semantics
are realized as follows: The DSP determines new
parameters and it stores them in their locations inside the
memory block. Then, it signals by an asynchronous event
to the emulator that data are ready and it continue
execution of other tasks without using its external bus.
The emulator waiting for the start signal from the DSP,
receives this event and then execute the init behavior
before beginning emulator computing. At each Ts period,
the emulator increments the memory address and store
new results in a table. At the end of its computing, the
ASIC signals by an asynchronous event to the DSP that
results are ready in the memory. This event will interrupt
the DSP program and set a flag. The DSP, tests this flag
when results are required in order to perform new
acquisition.

6.2.2 Protocol Inlining

The communication model obtained after inlinig is
represented by figure 22. As detailed in the previous
section, the applications and protocol layers are inlined
into the init and storage behaviors that have been created
during partitioning for synchronization and
communication between the ASIC and the processor. The
application layer performs synchronization with the DSP
and converts the complex data structures into bus
transfers. The protocol layer performs the actual bus
transfers according to the protocol shown in figure 15.

PEI
BusMasterl

PE3

MEM

Figure 22: Communication model after protocol inlinig
(autonomous emulator)

The !nit SFSMD synchronizes with the software on the
DSP, it receives the start signal from it. Then, it reads the
process parameters over the processor bus from the
memory, and starts the emulator computing. At each new
storage period (Ts=xs hor), the storage SFSMD writes

14

emulation results into the memory table. When finished,
the ASIC send an event to the DSP signaling that data are
ready in the memory and that bus is "free". For the bus
transfers, the SFSMDs implement the bus protocol
according to the timing diagram shown in figure 23.

MCS && (A=&x)

.:;~:::~_ ···ro~;;:,~;~:1 1

··········... I 61Mar=Adc1r+1 !
RD=l; //re~·~;~;;·J .. .J

MCS=l; //Mem disable

(a) !nit SFSMD

S_complete=l

(b) Storage SFSMD

Figure 23: HW communication SFSMDs (Autonomous
emulator)

The /nit SFSMD waits for a falling edge of a signal start
generated by the DSP. Then it begins the parameters read
from the memory: it begin by enabling the address

register on the address bus and falling the signal MCS for
the memory selection (Sl). Then, it falls the signal RD in
state S2 for signaling the beginning of a bus read cycle. In
the superstate S3, it latches the data bus contents into the
I/O reg and writes the data from the I/O reg into local
memory Mem and increments the address reg Addr. In
state S4, it ends the read cycle by raising the RD and the
MCS signals (SS). Finally, it increments and checks the
loop counter in state S6, and branches back to start the
next word read cycle until all data items have been
received. Then it will activate the emulator computing. In
this transfer, parameters have same address in both the
memory block and ASIC local memory.

At each new storage period, the storage SFSMD performs
the writing process into the memory of the emulator
computing results. It begins by enabling the address reg
on the address bus and falling the signal MCS for the
memory selection (Sl). Then, it falls the signal WR in
state S2 for signaling the beginning of a bus write cycle.
In the superstate S3, the storage SFSMD reads the data
word from the custom hardware memory Mem into the
I/O reg, increments the local address register Addr, and
enables I/O reg on the data bus. In state S4, it ends the
write cycle by raising the WR signal and then it disables
the memory selection by raising the MCS signal (SS). In
state S6, it increments and checks the loop counter in state
S4, and branches to state S7 until all data items have been
received. In state S7, it increments the address
corresponding to the next register to write in the external
memory block. At the end of this transfer sequences, the
Storage SFSMD gives control to the emulator computing
SFSMD in order to continue the emulation process.

Note that in the SFSMDs description in figure 23 we
omitted the temporal synchronization representation in
order to simplify the schema. This synchronization is
done according to the protocol diagram of figure lS.

Figure 24 shows the implementation of the
interconnection between the three used components after
final inlining.

Local ... -,.
memory ~ ",,, D[23:0] "

D x+n _,., A RD ~ x,,,~
OE

WR --: oo g WE MEM DSP56600 Vi ~ MCS =
- C"l I':: ---, cs

/ASIC ~o 0
u A[IS:Ql ~ A ,..

IRQC

Figure 24: DSP/Memory interfacing model

The sequence for transferring data and control between
the DSP and the memory is:

lS

1- When the software on the DSP wants to initiate the
emulator parameters in the memory, the DSP starts
writing these parameters onto the DSP bus. The
processor successively writes the block of data
onto the bus one word at a time by initiating a
sequence of bus write cycles with the
corresponding addresses assigned to the parameters
registers in the memory block.

2- Then, it sends an event to the ASIC signaling that
new parameters are already stored in the memory
and begins another task without using the external
bus.

3- Once the software on the DSP is ready to receive
the results, it performs an operating system call that
checks the interrupt flag. If the flag is set, the
RTOS call returns immediately. Otherwise, the
RTOS waits until the interrupt has been received
before returning to the caller. In both cases, the
RTOS resets the flag before returning.

4- The DSP reads the data from the memory block
over the bus one word at a time by initiating a
sequence of successive bus read cycles. The data is
read one word at a time using the address assigned
to the corresponding register in the memory
component.

The sequence for transferring data and control between
the ASIC and the memory is:

1- The emulator computing SFSMD waits for the
starting signal generates by the DSP then control is
given to the Init SFSMD.

2- The Init SFSMD performs read of parameters from
the external memory then it gives control to the
emulation computing behavior.

3- At each Ts period, the Storage SFSMD is activated
in order to perform writing of new results.

4- At the end of the emulation procedure, the
emulator sends an event to the DSP signaling that
results are ready in the memory block.

Note that for each message, the processor transfers the
data items sequentially over the bus one word at a time in
a predefined, fixed order. Hence, at each step in the
sequence of data transfers it is implicitly defined which
word of which data item is currently being transferred .
The custom hardware and the DSP keep track of the
sequence of data transfers, and according to their internal
sides determine how to process the transferred item.

6.2.3 Results

A final simulation of these communication models
including interrupt handling, external data transfers, and
so on, was done. As described before, the communication
model is a bus functional model. The behaviors in the

component are simulated on a functional level in native C
language annotated with estimated delays. On the other
hand, communication between components is modeled
accurately over actual wires of the processor bus.

In the backend, these models will be synthesized into a
structural view of all components in the system
architecture. The functionality of each component will be
implemented on top of the component's RTL or
instruction-set micro-architecture. In the process, timing
will be refined down to the level of individual clock
cycles based on each component's clock period.

7 Example of a DC System

To validate this new approach of emulator design, based
on Spece methodology, we describe in this section the
case of a DC system emulator. This system is composed
of a DC motor fed by a four-quadrant chopper and
associated to a Hall sensor for the current capture and to
an Optical Incremental Encoder for the speed capture.

For the computing of this system state, we use simple
models for the chopper and the electrical motor. These
models are digitized using Runge-Kutta 2 and obtained
equations are as follows:

- Motor/load

{

im (k + 1) = a.im (k) + {3.Qm (k) + y.Vh (k)

(1)

Qm (k + 1) = A..im (k) + µ.Qm (k) + v.sign(Qm (k))

a, ~. y, A, µ and v are obtained from system
parameters and computing step hor.

- Chopper
V,, =(C0 -C1).Ve (2)

Ve is the input voltage, v,, the output voltage and C0 ,

C1 control signals.

The Hall sensor output is a voltage magnitude that
represents the current value. This output voltage depends
on the Hall sensor characteristics and the current value. In
our case this dependency is represented by a simple
model as described by equation!: Vout=im*5/15 volts. A
more sophisticated model (including influence of noises,
temperature, wear, ...) can be specified in this behavior in
order to reproduce more precisely the Hall sensor output.
The optical incremental encoder generates two quadrature
square wave signals (SO and Sl) with the same frequency
(proportional to the motor frequency) as represented by
the figure 25.

16

so_J4~1--~~~~--,~--I
Sl I

T
._ __ ___,,

~

T =(inti 4.nle
6

] 'l N,;o·W

Rotation sense
G) 0

so--fl-f SOJl_J
s i_ri_r s1__r-i_r

Figure 25: EIO sensor specifications

In our project we studied two solutions according to the
used data format. The first one used Floating-point format
(floating emulator) and the second one used integer
format (integer emulator).

For the integer emulator, models equations used for
computing are converted into integer form. This
translation is made according to two main considerations
in order to have the best computing precision:

- We take the same precision level of the system
parameters when coding them in integer form (le-6

);

- We used llim and llwm instead of 1111 and Q. 111 , which

represent variations of im and Wm where:

Ill 101_4 Ill

{

i =-
1

I

(J) =--Q
Ill 1024 Ill

This allows obtaining a good precision of computing.
According to these considerations, we obtain

following equations:

1

. b. (J)m (k)

128.!lim(k+l)= a.i,,Jk) + 8 +gJC0(k)-Ci(k))(
1024 1024

llW,,J k + 1) = l.im(k) + m.(J),,J k) + n.signe((J)111 (k))

3)

where:

and:

{

a= 128.1024.(a -1)
b = 1024. 1024.,B
g 11 = 1024.128.y.Ve

{

l = 1024.1024.A.
m = 1024.1024.(µ -1)
n = 1024.1024.v
ti Wm(k + 1) = 1024.1024.ti(JJ;,,(k + 1)

a, b, g 11, l, m and n will be the new parameters of this
system.
The main advantage of the integer form is to simplify the
computing unit.

7 .1 Specification Model

According to the previous description, the specification
model of the emulator can be represented as shown on
figure 26.

Sp Sensors parameters I Cp Computing parameters

Figure 26: Emulator specification (case of a DC system)

The execution of these different behaviors is well
scheduled by using different clock behaviors. Note that
for simplification reason, clock generator behaviors are
not represented in this figure (Figure 26).
The init behavior is executed only one time at the
beginning of this model execution. It performs the
computing of different parameters and the initialization of
intermediate variables. Parameters are obtained, as
specified in previous equations, according to the system
characteristics, to the digitizing method and to the
retained computing step.
All the other behaviors are executed in a periodic manner
with different periods. These periods are specified in the
clock generator behaviors by using the instruction
waitfor(Time_delay). When the Time_delay is reached,
the clock behavior generates an event that will activate
corresponding computing behavior.
Note that at this stage, there is not any notion of time.
Therefore, values (Time_delay) used with these clock
behaviors serve only to the scheduling of behaviors
execution. Execution procedure is supposed to be done
with 0 time_delay.
These behaviors execution is scheduled as following:

- The storage behavior is used, in our example, only
for the capture of emulator results (no monitoring
task is employed). Therefore it is executed at each
Ts=Xs.hor period (Xs=lO).

- The computing core of the system state (chopper &
motor/load) is executed at each Tc=hor period. It
performs the computing of the needed System State
magnitudes, which are in our case im (current) and
Qm (speed).

- The LEM behavior is used to emulate the LEM
running, which generates a voltage corresponding to
the current magnitude. This behavior will be
associated with a DAC component. So, it generates
the corresponding integer Nim according to the
obtained current value im and to the resolution of the

17

used DAC. According to the high dynamic of the
electrical mode, the execution period of this behavior
must be fast enough to cover the current variation
with high precision. However, it is limited by the
temporal characteristics of the DAC (time needed for
conversion). In our case we use a delay equal to 5
(Xi=5).
The OIE behavior is used to generate two digital
signals identical to those obtained by the OIE sensor
and according to the speed value Qm· Since, the
variation of the speed magnitude is very slow, we
usually use an important delay time for the execution
of this module. In our case we used xa=lOOO.

The obtained specification model is validated by
simulation. Figure 27 represents the obtained results for
the current magnitude im.

Specification Model Results - Case of Motion Control
20

0.1 0.2 0.3 0.4 0.5
time (s)

Figure 27: Specification model results

Note: The specification model represent different modules
in parallel like the physical system. However, the
execution is done in a sequential manner ! ! !

7 .2 Architecture Model

The Architecture exploration has been done following the
described steps and transformations of section 5.
Therefore, two refined architecture models are retained
and validated for each of the floating emulator and the
integer emulator.

7.3 Communication Model

The two studied structures, described in section 6, are
applied to the case of the DC system. So for each of the
floating emulator and integer emulator, we designed a
communication model for the monitored structure and
another for the autonomous structure.

DC_Emul

Figure 28: Architecture refined model of the monitored
emulator (case of DC system)

Figure 29: Architecture model of the autonomous
emulator (case of DC system)

For this design, we used the DSP56600 as a software
component and for the autonomous structure we add a

18

block of High Speed Static RAM (32Kx8 bit) type
KM68257C (Samsung). The communication exploration
is done according the transformations described in section
6.

In this example, we used the DSP external bus protocol as
the system bus protocol and we suppose that the hardware
and software protocols are compatible. The memory, as
specified in section 6, is fast enough and it doesn't require
any other interface. Therefore, we didn't include
transducers in the communication model (figure 30).

Address[15:0]

Data[23:0]

/MCS

/RW

/RD

(a)

PE3

MEM

(b)

BusMaster IP2

IP2
BusMaster2

Figure 30: Communication refined model (a-monitored
emulator, b- autonomous emulator)

However, actually we should determine the HW SFSMD
in order to study accurately the compatibility with the
system bus protocol. Otherwise, transducer must be
included and synthesized.

Communication and synchronization are specified as
mentioned in section 6. the Data transfer is performed in a
vector type by the application layer. This layer performs
several tasks like synchronization, addressing of data on
the bus, slicing of abstract data types into bus words ...
Especially, in our example and in the case of the floating
emulator, this application layer performs the conversion
of floating data to words in order to transfer them from a
component to another over the system bus. This
conversion is done according to the DSP56600 C
compiler specifications and to the floating format
implemented on the hardware. In this example we

suppose that the hardware use the same format as
described on the DSP56600 C compiler.

In DSP56600, the C data float and double are both
implemented as single precision in a format different to
the IEEE STD 754-1985 standard format for binary
floating-point arithmetic. Figure 31 represents some
specifications of this format. For more details, refer to
Motorola technical books.

Floating-Point Data Exponent addr

Mantissa addr+ 1

Characteristic DSP56KCC IEEE Format
Format

Mantissa 23 bits 24 bits
l!_!ecision
Hidden leading No Yes
One
Mantissa Format 24 bit Two's 23 bit Unsigned

Complement Magnitude
Fraction Fraction

Exponent Width 16 bits (14 bits 8 bits I 1 lbits
used)

Format Width 48 bits 32 bits I 64 bits

Figure 31: Specifications of the C compiler jloating-
point format (DSP56600)

The obtained communication models including interrupt
handling are validated by simulation. Therefore they are
ready for synthesis in the backend process. A long this
process, these models will be transformed into cycle
accurate implementation models according to the
following tasks:

- HW component will be synthesized into a netlist of
register-transfer level (RTL) components;

- SW will be converted into a C program, compiled
into the processor's instruction set and possibly
linked against an RTOS;

- The application and protocol layer functionality will
be synthesized into a cycle-accurate implementation
of the bus protocols on each component. This
requires generation of bus interface FSMDs on the
hardware side and generation of assembly code for
the bus drivers on the software side.

The implementation model will be synthesized in the
future.

8 Conclusion

In this report, we present a new design approach of power
electronic and electric drive emulators, based on the

19

Spece methodology. According to this methodology and
during the synthesis process, three models are
constructed: the specification model, the architecture
model and the communication model. For each of them
we discussed the mechanism of refinement and we
proceeded to a validation by simulation. The correct
output demonstrates the correctness of our models.

In this approach, we developed two structures of the
emulator (monitored and autonomous) that differ by their
functioning constraints. The monitored structure
represents an emulator useful only with another
computing system that performs initialization and storage
of results for monitoring. While the autonomous emulator
is developed with a shared memory and can be used
independently of any other system. For each of these
structures we discussed different steps and
transformations undergone in order to obtain the best
results.

An application to the case of DC system is done and
demonstrates the efficiency of this methodology. The
development of this emulator is performed very easily
using the defined approach and the previous study of the
emulator structures.

The used Spece methodology presents a simplified
design process based on well-defined, clear and structured
models at each exploration step. This enables quick
exploration and synthesis.
The modular structure of the Spece pro grams and the
clear separation of communication and computation
facilitate reuse of system components and enables easy
integration of IP. This will give the Spece methodology a
powerful possibilities of extension using libraries of
electronic components (memories, processors,
communication protocols, ...) and of process modules
(motor, converter, sensors, ...).

Using these libraries with specific tools for step
automation will facilitate the design process and reduce
further more the time-to-market. The user will be able in
the near future to design her/his emulator and implement
it (using for example FPGA circuits) in few hours without
the need of any high qualification.

Development of these tools and libraries represent our
main objectives for the future works.

Acknowledgments

The authors would like to thank the Fulbright Scholar
Program for supporting this project. Also we would like
to thank Andreas Gerstlauer and Rainer Doerner for help
by their interesting comments and ideas.

References

[l] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao,
"SpecC: Specification Language and Methodology",
Kluwer Academic Publishers, 2000

[2] A. Gerstlauer, R. Domer, Junyu Peng, D. Gajski,
"System Design: A Practical Guide with SpecC", Kluwer
Academic Publishers, 2001

[3] S. Ben Saoud, J.C. Hapiot, "Parallel architectures
applied to real time emulation", IECON2K IEEE
International Conference on Industrial Electronics,
Control and Instrumentation, October 22-28, 2000,
ppl719-1724

[4] S. Ben Saoud, J.N. Contensou, J.C. Hapiot, "ASIC
dedicated to real time emulation", SDEMPED'99 IEEE
International Symposium on Diagnostics for Electrical
Machines, Power Electronics and Drives, September l-
3, 1999

[5] S. Ben Saoud, B. Dagues, J.C. Hapiot, "Universal
emulator of static converter I electrical machines I sensors
sets. Test of new control unit", CESA'98 Computational
Engineering in Systems Applications, April 1-4,1998

[6] A. Gerstlauer, S. Zhao, D. Gajski, A. Horak, "Design
of a GSM Vocoder using Spece Methodology",
University of California, Irvine, Technical Report ICS
TR-99-11, February 1999

[7] Motorola, Inc., Semiconductor Products Sector, DSP
Division, DSP 56600 16-bit Digital Signal Processor
Family Manual, DSP56600FM/AD, 1996

[8] J. Peng, L. Cai, A. Selka, D. Gajski, "Design of a
JBIG Encoder using Spece Methodology", University of
California, Irvine, Technical Report ICS-TR-00-13, June
2000

[9] Samsung Semiconductor Inc., North America, SRAM
Products, "KM68257C'', 1998

20

A Specification Model for the DC Emulator (Integer Form)

B Architecture Model for the DC Monitored .. Emulator (Integer Form)

C Communication Model for the Monitored .. Emulator (Integer Form)

D Architecture Model for the DC Autonomous .. Emulator (Integer Form)

E Communication Model for the Autonomous ... Emulator (Integer Form)

21

Pspec_emi_mccl .prn 7 /24/01

/ll////////////////////////////////l//////l//llll///////////I/
I I SPEC_EMI_MCCl .sc I I
I I I I
I I SPECIFICATION MODEL I I
I I I I
I I EMULATOR DESIGN - INTEGER I I
I I I I
I I CASE OF A DC MOTOR WITH CURRENT AND SPEED SENSORS I I
I I I I
I I Slim Ben Saoud I I
// CECS-UCI July 2001 I I
I I I I
llll////!////!//////////////l!//////!//!/////////!//!//ll//lll

#include <stdio.h>
#include <Sim.sh>
#include <math.h>
#include <stdlib.h>

#include "typedef.sh"
#include "sync.Sc"
#include "clk.sc"
#include "ctl .sc"
#include "master.sc"
#include "emul.sc"

I /Testbench/ I I I I I

behavior Main
{

event
bool
bit[l: OJ
int
int
bit[l:OJ

CSync

SysClk;
stop;
SC;
gv, a, b, 1, m, n, i_int, w_inti
Nim;
S;

syncl, sync2 ;

Clock Clockl (SysClk, stop);
Master Masterl(gv, a, b, 1, m, n, stop, i_int, w_int, syncl, sync2);
Command_rap Command_rapl (stop, SysClk, sc);

4:20:05 PM

Emulator Emulatorl(gv, a, b, l, m, n, stop, SysClk, sc, i_int, w_int, Nim, s, syncl, sync2);

int main (void)
{

);

stop= false;

printf("Enter the simulation time (integer) us:");
scanf ("'lid", &sim_timel);

puts ("starting ... ");
printf ("Simulation time='lid us \n", sim_timel);

par {
Clockl .main () ;
Mas terl. main () ;
Command_rap 1 . main () ;
Emu la torl. main () ;
)

printf ("im='lif \n", i_int/1024.);
printf("vit='lif \n", w_int/1024.);
puts ("Exiting ... ");

return(O);
)

//EOF

////////////////////////////l/////////////ll////////l/l/ll/lll
I I MCC_COM_CNST. sh I I
I I I I
// SPECIFIACTION OF ELECTROMEC'rlANICAL SYSTEM USING SPECC I I
I I CASE OF A DC MACHINE WITH CURRENT AND SPEED SENSORS I/
I I WITH CONTROL DEVICE I I

Pspec_emi_mccl .prn 7 /24/01

I I I I
I I Slim Ben Saoud I I
I I CECS-UCI April 2001 I I
I I I I
/!ll/////l/llll/l//////////!///l/Jll///lll/lllll/l/////l!llll/

I I CONSTANTS AND MACROS
/Ill//////////!/////////

I I Time references

#define CYCLETIME 1
#define CYCLENB 50
#define MAXSIMTIME 5000
#define CYCLESAVE 10
#define ALPHA 200

/ / Electromechanical system parameters

#define CYCLESENl
#define CYCLESEN2
#define p
#define n_cio
#define pi

5
1000
1024
256
3 .1415927

#define imax 30

FILE *pTrace;

I /Simulation time

int sim_timel=5000;

I I cycle de rafraichissement du courant
I I cycle de rafraichissement de la vitesse
I I Digital/Analog Converter resolution
I I CIO resolution

//l//////l/////ll//l////ll////ll////////!////////////!/////I//
// SYNC.sc //
I I I I
// SPEC_EMI_MCC (July 2001) //
/!l/ll////////l!lll/l////////////ll/l//ll/////////////////I///

I /Interfaces and Channels for synchronization
//////lll////////l/l/l/////l/////l/llllll/lll/

interface ISyncin
{
void recv();
);

interface ISyncout
{
void send();
);

channel CSync () implements ISyncin, ISyncOut
{
bool valid=false;
event e;

void send()
{
valid= true;
notify (e);
)

void recv()
{
if (!valid) wait (e);
valid=false;
}

);

/lll//ll//l////lll///////////ll/l////////////////////////ll///
I I CLK.sc I I
II 11
// SPEC_EMI_MCC (July 2001) I I
l!ll/!/l/////l!!l////!/!!ll!!l/l///!//////!l/l!/ll/////!//////

4:20:05 PM

Pspec_emi_mccl .prn

I I SIMULATION CLOCK
l/l!l/!/lll!!l//!I//

behavior Clock(out event elk, out bool stop)
{
void main(void)

(
do

{
waitfor(CYCLETIME);
notify(clk);
)while ((int)now()<sim_timel);

stop= true;
notify (elk) ;
)

7 /24/01

);

/l/ll/l!lll/ll!//l/l/!//ll!ll!/l/!/ll!!ll!!l/l//ll!/l/!//l/l/I
I I CTL.sc I I
I I I I
II SPEC_EMI_MCC (July 2001) //
1////!///ll/!///l!!ll!/l!!/l!/l!/////l!!ll!l/lll!/////////////

behavior Command_rap(in bool stop, in event elk, out bit[l:O] cd)
{
int i=O;
int alph=l80;

void main (void)
{
do

};

{
wait elk;
i=i+l;
if (i<alph) cd[OJ=l;
else

{
if (i>284) i=O;
cd[O)=O;
}

cd[ll = !cd[OJ;
}while (!stop);

//////////////l/!////////////l/!/////////ll!!ll!/l/!//ll!!ll!!
II MASTER.sc II
I I I I
II SPEC_EMI_MCCl (July 2001) //
lll/ll!llll/l!!ll!!///l!/l!/l!!ll!/ll!/ll!!ll!!l/l///l/!/ll!!I

I /INITIALISATION
/l/l/ll!lll!!I//!

4:20:05 PM

behavior Init(out int gv,out int a, out int b, out int 1, out int m, out int n, ISyncOut syncl)
{

float Alpha, Betta, Gamma, Londa, Mu, Psi;

float

float
float
float

float
float
float
float
float

float
float
bool

Ve=60.0;

rm=l. O;
lm=0.00400;
km=0.184;

fm=O. 000180;
jm=O. 00160;
fc=O. 000180;
jc=0.0016;
Cs=O .16;

ft, j t;
hor=le-6;
init_f=true;

void main (void)
{

Pspec_emi_mccl .prn

if (init_f)
(
ft=fm+fc;
jt=jm+jc;

7 /24/01

Alpha=l.-hor*rm/lm* (1.-hor/2. *rm/lm);
Betta=-hor*km/lm* (1. -hor/2. *rm/lm};
Gamma=hor /lm* (1. -hor/2. *rm/lm);
Londa=hor*km/j t* (1. -hor/2. *ft/j t);
Mu=l. -hor*ft/j t* (1. -hor/2. * ft/j t);
Psi=-Cs*hor/jt* (1.-hor/2. *ft/jt);

};

a=(int) (1024*1024* (Alpha-1));
b=(int) (1024*1024*Betta);
gv= (int) (1024*128*Gamma*Ve);
l=(int) (1024*1024*Londa);
m=(int) (1024*1024* (Mu-1));
n=(int) (1024*128*Psi);

syncl. send ();

pTrace=fopen ("R_spec_emi_mccl. dat", "w");

ini t_f =false;
}

behavior Storage (in bool stop, in event elk, in int i_int, in int w_int, I Sync In sync2)
{
float im, vit;

void main (void)
{
do

{
sync2 . recv () ;
im=i_int/1024.;
vit=w_int/1024.;
fprintf(pTrace," %f %f \n", im, vit);
}while (!stop);

fclose (pTrace) ;
}

);

I /Master behavior
l//l/!////ll!!I/!/

behavior Master(out int gv,out int a,out int b,out int l,out int m,out int n,
in bool stop, in int i_int, in int w_int, ISyncOut syncl, ISyncin sync2)

event

Init
Storage

clk_s;

Initl(gv, a, b, 1, m, n, syncl);
Storagel (stop, clk_s, i_int, w_int, sync2);

void main (void)
{
Initl.main();
Storagel .main ();
}

};

///////////////l///ll!l/!///l!////ll///////////ll!!l///I//////
I I EMUL.sc I I
11 I I
I I SPEC_EMI_MCC (July 2001) I I
///l/!//l/!/////////l!!ll!///////////ll/!////l/!///I//////////

#include
#include
#include

"motor.sc"
"sensors.sc"
"stor_send.sc"

I I Electromechanical system global module

4:20:05 PM

Pspec_emi_mccl .prn 7 /24/01 4:20:05 PM

behavior Emulator (in int gv, in int a, in int b, in int 1, in int m, in int n,
in bool stop, in event elk, in bit[l:OJ cd,
inout int i_int, inout int w_int, out int Nim, out bit[l:O] S, ISyncin syncl, ISyncO ut sync2)

{
Motor Motorl (gv, a, b, 1, , cd, i_int, w_int);

Sen_curl (i_int, Nim) Sen_ cur
Sen_speed
Storage_send

Sen_speedl (w_int, S)
Storage_sendl (sync2)

void main (void)
{
i_int= w_int= O;
syncl. recv () ;

do
{
wait elk;
Motorl .main ();
Sen_ curl . main () ;
Sen_speedl. main () ;
Storage_sendl .main();
}while (!stop);

};

/////////1//l/!////////////////////l!/l!ll/!///////ll!!lll!///
11 MOTOR.sc //
I I I I
I I SPEC_EMI_MCC (July 2001) I I
ll!///////l/!/l!!//////////l/!//////////////////////I/!///////

I /ELECTROMECHANICAL SYSTEM
l/!//////l!l/l/!/I/!///////

behavior Converter(in int gv, in bit[l:OJ cd, out int Vout)
{
int a,b;
void main (void)

};

(
a=cd(OJ;
b=cd[l];
Vout=gv* (a-b);
}

behavior Electric (in int a, in int b, in int Vout, in int w_int, inout int i_int)
{
int di_int=O;

void main (void)
{

};

di_int= (((a* (i_int>>3)) >>10) + ((b* (w_int>>3)) >>10) +Vout);
i_int=i_int+di_int/ 12 8;
}

behavior Mecanic (in int 1, in int m, in int i_int, inout int w_int)
{
int dw_int=O;
int dw_intl=O;

void main (void)

};

{

dw_int= (1 * i_int+m*w_int) +dw_int;
dw intl=dw int>>20;
dw:int=dw_int- (dw_int1<<20);
w_int=w_int+dw_intl;
}

behavior Motor(in int gv,in int a,in int b,in int l,in int m, in bit[l:OJ cd,
inout int i_int, inout int w_int)

{
int Vout;

Converter Converterl (gv, cd, Vout);

Pspec_emi_mccl .prn 7 /24/01

Electric Electricl (a, b, Vout, w_int, i_int);
Mecanic Mecanicl(l, m, i_int, w_int);

void main (void)
{
Converterl .main () ;
Electricl .main ();
Mecanicl .main ();
}

};

////////////////////////////////////Ill///////////////////////
I! SENSORS.sc //
I I I I
I I SPEC_EMI_MCC (July 2001) I I
//////////////l!////////////////////l////////////////////////I

I I SENSORS MODULES
///////////////////

I I Current sensor Generator

behavior Sen_cur(in int i_int, out int Nim)
{
int sensl_i=O;
void main (void}

};

{
sensl_i=sensl_i+l;
if (sensl_i==CYCLESENl)

{
Nim= (int) (((p/1024) *i_int+p*imax) I (2*imax));
sensl_i=O;
}

behavior Sen_speed(in int w_int, out bit[l:OJ S)
{
int w_inti;
int sens2_i=O;
int i=O;

int T4 vit=24000;
bool s:vit=true;

void main (void)
{
sens2_i=sens2_i+l;

if (sens2_i==CYCLESEN2)
{
w_inti=w_int;
if (w_inti>O) s_vit=true;
else s_vi t=false;

4:20:05 PM

if (fabs (w_inti) <512) w_inti=512; I /Limite basse de vitesse a reproduire

T4_vit= (int) ((pi *le6*1024) I (n_cio*w_inti));

sens2_i=O;
}

if (i <= T4_vit)
(
S(O]=l;
if (s_vit) S[l]=O;
else S[l]=l;
}

if (T4_vit < i && i <= 2*T4_vit)
{
S[O]=l;
if (s_vit} S[l]=l;
else S[l]=O;
}

if {2*T4_vit < i &&
(
S(O]=O;

<= 3*T4_vit)

I /quart de periode en us

Pspec_erni_rnccl .prn

};

if {s_vit) S[l]=l;
else S[lJ=O;
}

if (3*T4_vit < i && i <= 4*T4_vit)
{
S[O] =O;
if (s_vit) S[l]=O;
else S[l]=l;
}

i=i+l;
if (i>4*T4_vit) i=O;

7/24/01

///!i/!i/!i/!i/!il!!li!/l!!lil/!/ll!!iill/!////l!!l/!///li!/i/
I I STOR_SEND. sc I I
I I I I
I I SPEC_EMI_MCC (July 2001) I I
/!////////l/i/!////////////////////l/////////i////////////////

I I Storage_send behavior

behavior Storage_send{ISyncOut sync2)
{
int stor_i=O;

void rnain(void)

};

{
stor_i=stor_i+l;
if (stor_i==CYCLESAVE)

{
sync2 . send () ;
stor_i=O;
}

4:20:05 PM

Parchl_erni_mcc. prn
7 /24/01

////////l/lll!!!//////!/l!!/!//////l/l!!/l!/!/////l!ll!lll!/!/
I I ARCHl_EMI_MCC. sc / /
11 I I
I I ARCHITECTURE MODEL I I
11 I!
I! EMULATOR DESIGN INTEGER I!
I /INTERRUPT OF MASTER performing only INIT/STORAGE Processes/ I
11 I!
/I CASE OF A DC MOTOR WITH CURRENT AND SPEED SENSORS / /
11 I!
11 Slim Ben Saoud I I
11 CECS-UCI July 2001 I I
11 II
ll!/////l/!l/!l/ll!l!!l/!!ll!ll!////!/ll!lll!!l!!//l/!/!I//!//

#include <stdio.h>
#include <sim.sh>
#include <math.h>
#include <stdlib.h>
#inc 1 ude <memory. h>

#include "typedef.sh"
#include "sync. sc"
#include "channels.sc 11

#include "bus .sc"

#include "clk.sc"

#include "ctl .sc"
#include "master.sc"
#include 11 emul.sc 11

I !Tes tbench/ I I I I I

behavior Main
(

event
bool
bit[l:O]
int

SysClk;
stop;
SC;
Nim;

bit [1: OJ S;

Buso buso;

Clock Clockl (SysClk, stop);
Master Masterl (stop, busO);
Comrnand_rap Cornrnand_rapl (stop, SysClk, sc);
Emulator Ernulatorl (stop, SysClk, sc, Nim, s, busO);

int main (void)

};

//EOF

(
stop=false;

printf ("Enter the simulation time (integer) us:");
scanf ("%d", &sim_timel);

puts ("starting ... ");
printf ("Simulation time=%d us \n", sim_timel);

par {
Clockl .main ();
Masterl .main ();
Cornrnand_rapl .main ();
Ernulatorl .main ();
}

puts ("Exiting ... ");

return(O);
}

I I 11 I I! I! I/ I I!/!//// I! I I I! I I/ II I I I I I I I I I /I I I I I I! I I I 111111/ 1111

4:20:25 PM Parchl_erni_mcc. prn 7124101

I I TYPEDEF .sh I I
I I I I
11 Arch_Erni_Mcc (July 2001) 11
llllllllllll!lll!llll/llllllll!lllllllll/lll!lllll!llllll!!//I

I I CONSTANTS AND MACROS
///lll/!////////////ll!I

I I Time references

#define CYCLETIME 1
#define CYCLENB 50
#define MAXSIMTIME 5000
#define CYCLESAVE 10
#define ALPHA 200

I I Electromechanical system parameters

#define CYCLESENl
#define CYCLESEN2
#define p
#define n cio
#define pi

5
1000
1024
256
3 .1415927

#define imax 30

FILE *pTrace;

I I Simulation time

int sim_timel;

I I cycle de rafraichissernent du courant
I I cycle de rafraichissernent de la vitesse
I I Digital/Analog Converter resolution
I I CIO resolution

ll!llll!!l!ll!l/1/!llll!lll/lllll!!lll/l!lll!!llllllll!/1!!111
I I SYNC.sc I I
I I I I
I I Arch_Erni_Mcc (July 2001) I I
////!ll!/l!ll/l/!//!l!!l!ll////l/llll!l!ll!l!!l!//!!l/llll!ll!

//Interfaces and Channels for synchronization
ll!llll!llll!lll!!lll!!lll/!ll!!/!////ll!ll/!/

interface ISyncin
{

void recv () ;
};

interface ISyncOut
{
void send () ;
};

channel CSync () implements ISyncin, ISyncOut
{
bool valid=false;
event e;

void send()
{
valid=true;
notify (e);
}

void recv()
{
if (!valid) wait(e);
valid=false;
}

};

////ll!l!/ll!lll!!llllll!ll/!//l!ll!l!lllll!!!l!llllllll/!l!ll
! I CHANNELS. sc I I
11 I I
! I Arch_Erni_Mcc (July 2001) I I
/l/!!/!//l/!!!ll!!l!ll!ll!lll!!l!ll!!lll!ll!!l/llll/lllll/!!ll

4:20:25 PM

Parchl_emi_mcc. prn

interface ISendWord
(

void send(int data);
};

interface IRecvWord
{

void recv(int* data);
};

channel CWord ()
implements ISendWord, IRecvWord

int buf;
bool valid = false;
event ev;

void send(int data)
{

buf = data;
valid = true;
notify (ev);

void recv (int* data)
{

if (!valid) wait (ev);
*data = buf;
valid = false;

)
};

/*

interface ISendWordP
(

void send(int* data, int len);
);

interface IRecvWordP
(

void recv(int* data, int len);
};

channel CWordP ()
implements ISendWordP, IRecvWordP

int* buf = O;
event ev;

void send(int* data, int len)
{

buf = (int*Jmalloc(sizeof(int) * len);
memcpy(buf, data, sizeof(int) * len);
notify (ev);

void recv(int* data, int len)
(

)
);

if (!buf) wait (ev);
memcpy(data, buf, sizeof(int) * len);
free(buf);
buf = O;

7 /24/01

I/ II///// I 111 II!//// I/////// I//// I I I 11 I/////// I///// 1111111 //I
II BUS.sc II
I I I I
I I Arch_Emi_Mcc (July 2001) I I
l/!!/////l/!//////llll/l/lll//////////////l/l/lll!//lll!lll/!/

4:20:25 PM

*I

Parchl_emi_mcc. prn

interface IPEObusO
{
void recv_param(int param[6]);
void send_result(int result[2]);
};

interface IPElbusO
{
void send_param(int param[6]);
void recv_result(int result[2]);
);

channel BusO (J implements IPEObusO, IPElbusO
{
CWordP Cparam;
CWordP Cresult;

7 /24/01

void send_param(int param[6]) {Cparam.send(param, 6);)
void recv_param(int param[6]) {Cparam.recv(param, 6); J
void send_result (int result [2] J (Cresult .send (result, 2 J; J
void recv_result (int result (2]) (Cresult. recv(result, 2);}
);

//////////l/l!lll/lll///lll//////////l////////l/lllll/I///////
I I CLK.sc I I
I I I I
11 Arch_Emi_Mcc (July 2001) //
lf!/!l/l/!!///////////l/l/!lll!//!///l!l//l/ll//////l!l////I!/

I I SIMULATION CLOCK
////I/!///////!/////

behavior Clock(out event elk, out bool stop)
{
void main (void)

{
do

{
wait for (CYCLETIME);
notify(clk);
}while ((int)now()<sim_timel);

stop=true;
notify(clk);
}

};

//////l!l//////ll////!//!l//ll!!//////l!l//l!ll//l////ll/!///I
I I CTL .sc I I
I I I I
I I Arch_Emi_Mcc (July 2001) I I
11 I//! I II 11 I/////////// I!// I////// I II/ I/////// II/ I 11 I/////////

behavior Command_rap(in bool stop, in event elk, out bit[l:OJ cd)
(
int i=O;
int alph=180;

void main (void)
(
do

};

{
wait elk;
i=i+l;
if (i<alph) cd[O] =1;
else

{
if (i>284) i=O;
cd[O)=O;
l

cd[1) = !cd [OJ;
}while (!stop);

lll/l!/l/!//////////l/!///////////////ll!///!/////l/I!////////
I I MASTER.sc //

4:20:25 PM

Parchl_erni_mcc. prn 7124101

I I I I
II Arch_Emi_Mcc (July 2001) II
ll!ll!lll!l/!//!ll!lllll!l!ll!lll!ll!/!/l/l!/!ll!//l/ll/1/1///

I /INITIALISATION
/!l!!///!//l/!/I/

behavior Init(IPElbusO busO)
{

float Alpha, Betta, Gamma, Londa, Mu, Psi;
int gv, a, b, 1, m, n;

float Ve=60.0;

float rm=l.O;
float lm=0.00400;
float km=O .184;

float fm=O. 000180;
float jm=O. 00160;
float fc=O. 000180;
float jc=0.0016;
float Cs=0.16;

float ft, jt;
float hor=le-6;
bool init_f=true;

int param[6);

void main (void)
{

};

if (ini t_f)
(
ft=fm+fc;
jt=jm+jc;
Alpha=l. -hor*rmllm* (1. -hor/2. *rm/lm);
Betta=-hor*kmllm* (1. -hor/2. *rm/lm);
Gamma=hor/lm* (1. -hor/2. *rm/lm);
Londa=hor*km/j t* (1. -hor/2. *ftlj t);
Mu=l. -hor*ft/j t* (1. -hor/2. *ftlj t);
Psi=-Cs*hor/j t* (1. -hor/2. *ftlj t);

gv=(int) (1024*128*Gamma*Ve);
a=(int) (1024*1024* (Alpha-1));
b=(int) (1024*1024*Betta);
l= (int) (1024*1024*Londa);
m= (int) (1024 *1024 * (Mu-1));
n=(int) (1024*128*Psi);

param[OJ =gv;
param[l) =a;
param[2J =b;
param[3) =1;
param [4 J =m;
param[5) =n;

busO.send_param(param);

pTrace=fopen("R_arch_emi_mcc.dat", "w");

init_f=false;
}

behavior Storage(in bool stop, IPElbusO busO)
{
int result [2 J;
float im, vit;

void main (void)
(
do

{

bus 0. recv _result (result) ;

4:20:25 PM Parchl_erni_mcc. prn

im=result [OJ /1024.;
vit=result [l] 11024.;

7/24101

fprintf(pTrace," %f %f \n", im, vit);
}while (!stop);

};

fclose (pTrace);
}

I /Master behavior
ll/l/!ll///l///I//

behavior Master(in bool stop, IPElbusO busO)
{
event

Init
Storage

clk_s;

Initl (busO);
Storagel (stop, busO);

void main (void)
{

);

Initl .main ();
Storagel .main () ;
}

///l!lll!ll!/ll/!l/lll/ll/l//l!//l!l/l//ll!lll///I/////!//////
I I EMUL.sc I I
I I I I
I I Arch_Emi_Mcc (July 2001) I I
l/!!/l//!ll/!//ll!!l/ll!!////////ll/////l/ll/ll!lll/!lllll/lll

#include
#include
#include

"rnotor.sc"
11 sensors.sc"
"stor_send.sc"

4:20:25 PM

behavior Em_init (IPEObusO busO, out int gv, out int a, out int b, out int l, out int m, out int n)
{
int param[6];

void main (void)
{

};

busO.recv_param(param);

gv=param [O ;
a=param[l]
b=param[2)
l=param[3)
m=param[4)
n=param[5]

I I Electromechanical system global module

behavior Emulator(in bool stop, in event elk, in bit[l:OJ cd, out int Nim, out bit[l:O] s, IPEObusO
busO)

{
int i_int, w_int;
int gv, a, b, 1, m, n;

Em_init
Motor
Sen_ cur
Sen_speed
Storage_send

void main (void)
[

Em_initl(busO, gv, a, b, l, m, n);
Motorl (gv, a, b, 1, m, cd, i_int, w_int);
Sen_curl (i_int, Nim);
Sen_speedl (w_int, S);
Storage_sendl (i_int, w_int, busO);

i int= w int= O;
i;:;_initl-:-main ();

do
{
wait elk;
Motorl .main () ;
Sen_ curl . main () ;
Sen_speedl .main () ;

Parchl_emi_mcc. prn

Storage_sendl .main () ;
}while (!stop);

printf("im=%f \n", i_int/1024.);
printf("vit=%f \n", w_int/1024.);
}

7 /24/01

};

lll!lll!!ll!ll/!l/lll/l!!ll!lll/!//l/!//ll!//!/lll!/l!!///I/!/
I! MOTOR.sc I I
I I I I
I I Arch_Emi_Mcc (July 2001) I I
//l////ll!ll!l!!!/ll!l/!/l/ll/!f/ff/f/!/l!fll!f!f//ll!fl/fff!/

I /ELECTROMECHANICAL SYSTEM
l/ff/(/flf!lf!!l/!ll!llll!/

behavior Converter (in int gv, in bit [1: 0 J cd, out int Vout J
(
int a,b;
void main (void)

};

(
a=cd[OJ;
b=cd[l);
Vout=gv* (a-b);
}

behavior Electric(in int a,in int b,in int Vout, in int w_int, inout int i_int)
(
int di_int=O;

void main (void)
(

};

di_int= (((a* (i_int>>3 J) >>10) + ((b* (w_int>>3))>>10 J +Vout);
i_int=i_int+di_int/12 8;
}

behavior Mecanic(in int l,in int m,in int i_int, inout int w_int)
(
int dw_int=O;
int dw_intl=O;

void main (void)
(

);

dw_int= (1 * i_int+m*w_int) +dw_int;
dw_intl=dw_int>>20;
dw_int=dw_int-(dw_intl<<20J;
w_int=w_int+dw_intl;
}

behavior Motor(in int gv,in int a,in int b,in int l,in int m, in bit[l:O] cd,
inout int i_int, inout int w_int)

(
int Vout;

Converter Converterl (gv, cd, Vout);
Electric Electricl (a, b, Vout, w_int, i_int);
Mecanic Mecanicl (1, m, i_int, w_int) ;

void main (void)
(
Converterl .main () ;
Electricl .main ();
Mecanicl .main (J ;
}

};

((((//(((/((/(/((((//((/((/((/(((//((((((((//((((//((/(/(/(/((
((SENSORS.Sc ((

II I I
ff Arch_Emi_Mcc (July 2001) f I
///((/((/(/(((//(////((/(//(////(((/(/((/(//(///(((/(/((/(/((/

I I SENSORS MODULES
/////(////((/(/////

4:20:25 PM Parchl_emi_mcc. prn

I I Current sensor Generator

behavior Sen_ cur (in int i_int, out int Nim)
(
int sensl_i=O;
void main (void)

(

sensl_i=sensl_i +l;
if (sensl_i==CYCLESENl)

(

7 /24/01

Nim= (int) (((p/1024) *i_int+p*imax) I (2*imax));
sensl_i=O;
}

);

behavior Sen_speed(in int w_int, out bit[l:OJ S)
(
int sens2_i=O;
int i=O;
int w_inti;
int T4_vit=24000;
bool s_vit=true;

void main(void)
(
sens2_i =sens2_i + 1;

if (sens2_i==CYCLESEN2)
(
w_inti=w_int;
if (w_inti>O) s_vit=true;
else s_vit=false;

4:20:25 PM

if (fabs(w_inti)<512) w_inti=512; //Limite basse de vitesse a reproduire

);

T4_vit=(int) ((pi*le6*1024) / (n_cio*w_inti) J; //quart de periode en us

sens2_i=O;
)

if (i <= T4_vit)
{
S[O)=l;
if (s_vit) S[l)=O;
else S(l)=l;
}

if (T4_vit < i && i <= 2*T4_vit)
{
S[O] =l;
if (s_vit) S[l)=l;
else S[l)=O;
}

if (2*T4_vit < i && i <= 3*T4_vit)
{
S[O] =O;
if (s_vit) S[l]=l;
else S[l]=O;
}

if (3*T4_vit < i && i <= 4*T4_vit)
(
S[O)=O;
if (s_vit) S[l]=O;
else S[l]=l;
)

i=i+l;
if (i>4*T4_vit) i=O;

//ffll!!lf/!f/l!/lfll!f/lfl//ff/l!!/f//l!l/lfl!!!l//l!l/I!!!//
I I STOR_SEND. sc I I
I I I I

Parchl_emi_mcc. prn 7 /24/01

// Arch_Emi_Mcc (July 2001) //
///l!l!!l/l!!/!///////////////////!1///ll!lll!!!!l/!/////ll!!!

I I Storage_send behavior

behavior Storage_send(in int i_int, in int w_int, IPEObusO busO)
{
int stor_i=O;
int result[2);

void main (void)

};

{
stor_i=stor_i+l;
if (stor_i==CYCLESAVE)

{
result [0] =i_int;
result [1] =w_int;
bus 0. send_resul t (result) ;
stor_i=O;
}

4:20:25 PM

Pcoml_emi_mccl. prn 7 /24/01

//////////l/!/////////l!l/l/!//////l!!l/l/!//////ll!!ll!//////
I I COMl_EMI_MCCl. sc I I
I I II
I I COMMUNICATION MODEL I I
I I I I
I I EMULATOR DESIGN _ INTEGER I I
//INTERRUPT OF MASTER performing only INIT/STORAGE Processes//
I I I I
I I CASE OF A DC MOTOR WITH CURRENT AND SPEED SENSORS I I
I I I I
I I Slim Ben Saoud I I
I I CECS-UCI July 2001 I I
I I I I
l/!/////I/!//////////////////////////////////////!////////////

#include <stdio.h>
#include <sim.sh>
#include <math.h>
#include <stdlib.h>
ltinclude <memory .h>

#include "typedef.sh"
#include "sync.sc"
#include "elk.Sc"
#include "ctl .sc"
#include "master.sc"
#include •emul.sc•

I /Testbench/ I I I I I

// address
I I data

behavior Main
{
bit[l5:0)
bit[23 :OJ
event
bool

A;
D;
MCS;
nRD;
nWR;

I I chip select

bool
I I control lines

event

event
bool
bit [l: OJ
int
bit[l:O]

intC;

Sysclk;
stop;
SC;
Nim;
S;

Clock Clockl {SysClk, stop);
Master Masterl {stop, A, D, MCS, nRD, nWR, intC);
Command_rap Command_rapl {stop, SysClk, sc);
Emulator Emulatorl{stop, SysClk, sc, Nim, S, A, D, MCS, nRD, nWR, intC);

int main (void)

};

//EOF

{
stop=false;

printf {"Enter the simulation time {integer) us:"};
scanf { "%d" , &s im_timel} ;

puts ("starting ... ");
printf{"Simulation time=%d us \n",sim_timel};

sim_timel=sim_timel * 1000;

par {
Clockl .main {} ;
Masterl .main {};
Command_rapl .main ();
Emulatorl .main{);
)

puts {"Exiting ... ");

return(O};
}

I /new cycletime is given in ns/ I

4:20:42 PM Pcoml_emi_mccl. prn 7 /24/01

//////////////////lll!!l/l////////l!l//////////////////////I//
I I TYPEDEF . sh I I
I I I I
I I COM_EMI_MCCl (July 2001) I I
l/ll!!!l/!ll!!ll!/!ll!lllll/l!!l/llll!!llll!!lll!/lll/1/l!!l/I

I I CONSTANTS AND MACROS
ll!llll/ll!!ll!!//ll!I//

I I Time references

#define CYCLETIME
#define CYCLENB
#define MAXSIMTIME
#define CYCLESAVE
#define ALPHA

1000
50
50000000
10
200

I I Electromechanical system parameters

#define CYCLESENl
#define CYCLESEN2
#define p
#define n_cio
#define pi

#define imax

FILE *pTrace;

#define ADDRESS

5
1000
1024
256
3 .1415927

30

OxAFOO

I I cycle de rafraichissement du courant
I I cycle de rafraichissement de la vitesse
I I Digital/Analog Converter resolution
I I CIO resolution

#define ws 2 I I wait states
#define DSP_CLOCK_PERIOD 100/6
#define HW_CLOCK_PERIOD 10

typedef int word24;

I /Simulation time

int sim_timel=5000;

I* 60 MHz = 16.67ns */
/* 100 MHz = lOns */

/////ll!!lll!ll!l!l/l/l//////////////////////lll/1/////I/!////
I I SYNC.Sc I I
I I I I
I I COM_EMI_MCCl (July 2001) I I
/////////ll!lll!!l/ll!l///////////l/!/ll!///////I/////////////

I /Interfaces and Channels for synchronization
ll!!!l/!/llllll!!ll/lll/lllll!!l//ll!/lllll!!I

interface ISyncin
{
void recv{);
};

interface ISyncout
{
void send () ;
};

channel CSync {} implements ISyncin, ISyncOut
{
bool valid=false;
event e;

void send{}
{
valid=true;
notify (el;
}

void recv{)
{
if {!valid} wait(e);
valid=false;

4:20:42 PM

Pcoml_emi_mccl. prn 7 /24/01

};

/////!/////l/!/!/////////l!!l!!l////l!!ll!!l/!/l!!!I/!//////!/
II INT_CLK.sc //
I I I I
I I COM_EMI_MCCl (July 2001) I I
/lll!!l/!!/ll!ll!//ll!ll!ll!!!//l/!///!//l!!ll!!!ll!/l!l!!I///

I I SIMULATION CLOCK
/!///!///!///////!I!

behavior Clock(out event elk, out bool stop)
(
void main (void)

(
do

{
waitfor(CYCLETIME);
notify(clk);
}while ((int)now()<sim_timel);

stop= true;
notify(clk);
}

};

!ll!/!//l!!l!l/!!//l!!ll!ll!!ll!/////!!//l!!/l!!l/!/!l/!//I/!/
I I INT_CTL.sc I I
I I I I
I I COM_EMI_MCCl (July 2001) I I
ll!ll/!//l!!!//!l/l!l!!l!l!l!!ll!ll!!lll!ll!lll!llll!llll!I/!/

behavior Command_rap (in bool stop, in event elk, out bit [l: OJ cd)
(
int i=O;
int alph=l80;

void main (void)
{
do

{
wait elk;
i;;:;i+l;
if (i<alph) cd[OJ=l;
else

{
if (i>284) i=O;
cd[O]=O;
}

cd[1) = ! cd [OJ;
!while (!stop);

};

lll!//////l!l/l!!//!//l!l!!ll!/l/////l!ll!!llll!//!///I///////
II MASTER.sc //
I I I I
11 COM_EMI_MCCl (July 2001) I I
1/!/l/l//l/!l/l!!lll/!lll!/ll//l!/////////!/////ll/l!!/l!I!///

#include "sw_protocol.sc"
#include "sw_bus.sc"

//INITIALISATION
I/II!////////////

behavior Ini t (IBusMas ter bus 0)
(

float Alpha, Betta, Gamma, Londa, Mu, Psi;
int gv, a, b, 1, m, n;

float Ve=60.0;

float
float
float

rm=l.O;
lm=0.00400;
km=0.184;

4:20:42 PM Pcoml_emi_rnccl. prn

float
float
float
float
float

float
float
bool

int

fm=O. 000180;
jm=O. 00160;
fc=0.000180;
jc=0.0016;
Cs=O .16;

ft, jt;
hor=le-6;
init_f=true;

param[6J;

void main (void)
(
if (init_f)

(
ft=fm+fc;
j t=jm+jc;

7/24/01

Alpha=l. -hor*rm/lm* (1. -hor/2. *rm/lm);
Betta=-hor*km/lrn* (1. -hor/2. *rm/lrn);
Gamma=hor /lm* (1. -hor /2. *rm/ lm) ;
Londa=hor*km/jt* (1.-hor/2. *ft/jt);
Mu=l. -hor*ft/j t* (1. -hor/2. * ft/j t);
Psi=-Cs*hor /j t * (1. -hor /2. * f t/j t) ;

};

gv=(int) (1024*128*Gamma*Ve);
a= (int) (1024 *1024* (Alpha-1));
b=(int) (1024*1024*Betta);
l=(int) (1024*1024*Londa);
m=(int) (1024*1024* (Mu-1));
n=(int) (1024*128*Psi);

pararn[OJ =gv;
pararn[1) =a;
param[2J =b;
param[3J =l;
pararn [4 J =rn;
pararn[5) =n;

busO.Master_sendBW(param, 6, ADDRESS);

pTrace=fopen("R_com_emi_rnccl.dat", "w");

init_f=false;
}

behavior Storage(in bool stop, IBusMaster busO)
{
int result[2);
float im, vit;

void main (void)
{

};

do
{
busO.Master_recvBW(result, 2, ADDRESS);
irn=result [OJ /1024.;
vit=result[lJ /1024.;
fprintf(pTrace," %f %f \n", im, vit);
}while (!stop);

fclose (pTrace) ;
}

behavior SwMain(in bool stop, IBusMaster busO}
{

word24 donnee=Ox34A7, donneel=OxFFE4;
int donnee2, donnee3;

Init Initl(busO);
Storage Storagel (stop, buso);

4:20:42 PM

Pcoml_emi_mccl. prn

void main (void)
(

};

Initl.main () ;
Storagel .main ();
}

7 /24/01

I /Internal generation of synchronisation signal
!lill!lll!!l!l/!!l!ll!!il!!!ll!l!il/!!!llil!ll//

behavior IntHandler(ISyncOut ev)
{
void main (void)

(
ev.send();
}

};

I /Master behavior
l!il!!l/l!l/I/!!//

behavior Master(in bool stop,
bit[l5:0] A,
bit[23:0] D,
event MCS,
bool nRD,
bool nWR,
in event intC)

{
CSync intCflag;

11 address
I I data
I I chip select
I I control lines

IntHandler IntChandler (intcflag);

MasterBus busO (A, D, MCS, nRD, nWR, intCflag);
SwMain SwMainl(stop, busO);

void main (void)
(

try
(
SwMainl .main () ;
)

interrupt (intC)
{
IntChandler .main () ;
)

};

lil!!!ll!l/!!l!!/ll/!/ll!l!ill!!!i!!i!!ll!l!ill!!!i!!!!!!l!/!I
I I SW_PROTOCOL.sc I I
I I I I
I I COM_EMI_MCCl (July 2001) I I
!!lil!i!!l/l!ll!!il!llll/!!!l/!ll!ll!!!ll!////!////!/////////I

I I PROTOCOL CHANNAEL
//li!/l!l!!i////!/!/

interface IProtocolMaster
{
word24 Master_read(bit[15:0) addr);
void Master_write(bit[15:0] addr, word24 data);
};

/* I/0 instructions of DSP56600 (MOVEM)

channel MasterProtocol (bit[l5:0]
bit[23:0]
event
bool
bool

implements IProtocolMaster
{

A,
D,
MCS,
nRD,
nWR)

word24 Master_read(bit[15:0] addr)

I I address
I I data
I/ chip select
I I control lines

4:20:42 PM

*I

Pcoml_emi_mccl. prn

(
word24 data;

waitfor(5 * DSP_CLOCK_PERIOD I 2);
A = addr;
notify(MCS);

7 /24/01

waitfor(DSP_CLOCK_PERIOD I 2); // 0.5T-4.0 ~ (4.3ns,-)
nRD = 0;
waitfor((2*WS + 1) * DSP_CLOCK_PERIOD I 2); // (WS+0.5)T-8.5 = (16.5ns,-)
data = D;
waitfor(DSP_CLOCK_PERIOD I 2);
nRD = l; // nRD pulse width: (WS+0.25)T-3.8 = (17ns,-)
waitfor(WS * DSP_CLOCK_PERIOD);

return data;
}

void Master_write(bit[l5:0] addr, word24 data)
(
waitfor(5 * DSP_CLOCK_PERIOD I 2);
A = addr;
notify(MCS);
waitfor(DSP_CLOCK_PERIOD / 4); // 0.25T-3.7 = (0.5ns,-)
nWR = O;
waitfor(3 * DSP_CLOCK_PERIOD I 4); I! 0. 75T-3. 7 = (8.8ns, -)
D = data;
waitfor((WS + 1) * DSP_CLOCK_PERIOD);
nWR = 1; // nWR pulse width: l.5T-5.7 = (19.3ns,-)
waitfor(WS * DSP_CLOCK_PERIOD I 2);

};

!!lll!l!lll!!llll!lll!!!ll!!!!ill!!l/ll!!ll/!!/l/!!!/ll//!ll//
I I SW_BUS.sc I I
I I II
I I COM_EMI_MCCl (July 2001) I I
li!li!/!ll!!!il!!!!il!!!ll!l!!l!!!!li!!l!ill!!lill!/l///!!/lll

//APPLICATION LAYER
!llill!!ll!l//i!!i!ll

interface IBusMaster
(
void
void
void
void
);

Master_sendW(word24 data, int addr);
Master_sendBW(word24* data, int len, int addr);
Master_recvW(word24* data, int addr);
Master_recvBW(word24* data, int len, int addr);

channel MasterBus(bit[15:0]
bit[23:0]
event
bool
bool
I Sync In

implements IBusMaster

{

A,
D,
MCS,
nRD,
nWR,
intC)

11 address
I I data
I I chip select
I/ control lines

MasterProtocol protocol (A, D, MCS, nRD, nWR);
void Master_sendW(word24 data, int addr)

{
intC.recv();
protocol.Master_write(addr, data);
)

void Master_sendBW(word24* data, int len, int addr)
(
int i;
for(i=O; i<len; i++)

{
Master_sendW(data [i], addr);
)

void Master_recvW(word24* data, int addr)
(
intC.recv();
*data=protocol .Master_read (addr);

4:20:42 PM

Pcoml_emi_mccl. prn 7 /24/01

void Master_recvBW(word24* data, int len, int addr)
{
int i;
for (i=O; i<len; i++)

{

);

Master_recvW(&data[i], addr);
)

/ll///l/!!l/!//////l//ll/////////////ll///////l////I//////////
I I EMUL.sc I I
I I I I
I I COM_EMI_MCCl (July 2 0 0 l) I I
l!//llll//l//////////llll///l////I////////////////////////////

#include
#include
#include
#include

"hw__protocol. sc"
"hw_bus.sc"
"motor.sc"
"sensors. sc"

4:20:43 PM

behavior Em_init (IBusSlave busO, out int gv, out int a, out int b, out int 1, out int m, out int n)
{
int param[6);

void main (void)
{

};

bus 0. Slave_recvBW (param, 6, ADDRESS) ;

gv=param [0 ;
a=param[l)
b=param[2]
l=param[3)
m=param[4)
n=param[SJ

I I Storage_send behavior

behavior Storage_send (in int i_int, in int w_int, IBusslave busO)
{
int stor_i=O;
int result[2);

void main (void)

};

{
stor_i=stor_i+l;
if (stor_i==CYCLESAVE)

{
result [OJ =i_int;
result [l) =w_int;
busO. Slave_sendBW (result, 2, ADDRESS) ;
stor_i=O;
}

I I Electromechanical system global module

behavior Emulator(in bool stop, in event elk, in bit[l:O) cd, out int Nim, out bit[l:O] S,
bit[15:0) A, // address
bit[23:0) D, II data
event MCS, / / chip select
bool nRD, / / control lines
bool nWR,
out event intC)

{
int i_int, w_int;
int gv, a, b, 1, m, n;

SlaveBus

Em_init
Motor
Sen_ cur

busO (A, D, MCS, nRD, nWR, intC);

Em_initl(busO, iJv, a, b, 1, m, n);
Motorl (gv, a, b, 1, m, cd, i_int, w_int);
Sen_curl (i_int, Nim);

Pcoml_emi_mccl .prn 7/24/01

Sen_speed
Storage_send

Sen_speedl (w_int, S);
Storage_sendl (i_int, w_int, busO);

void main (void)
(

};

i_int= w_int= 0;
Em_initl .main ();

do
{
wait elk;
Motorl .main () ;
Sen_curl .main () ;
Sen_speedl .main () ;
Storage_sendl .main ();
)while (!stop);

printf("im=%f \n", i_int/1024.);
printf ("vit=%f \n", w_int/1024.);
}

I I I I I I I I I I /./ I
I I hw__protocol. sc I I
I I I I
/I COM_EMI_MCCl (July 2001) //
!lll//ll///ll//llll/l///////!ll!//////////////////////////////

I I PROTOCOL CHANNAEL
////I/Ill//////////!

interface IProtocolSlave
{
word24 Slave_read(bit[l5:0) addr);
void Slave_write(bit[l5:0) addr, word24 data);
};

channel SlaveProtocol (bit [15: 0 J
bit[23:0)
event
bool
bool

implements IProtocolSlave
{

A,
D,
MCS,
nRD,
nWR)

word24 Slave_read(bit[15:0] addr)
{
word24 data;

tl: wait(MCS);
if (A != addr) goto tl;
waitfor(20);
if (nWR) goto tl;
data = D;

return data;
}

11 address
I I data
I I chip select
I I control lines

void Slave_write(bit[15:0] addr, word24 data)
{
tl: wait(MCS);
if (A != addr) goto tl;
waitfor(15);
if (nRD) goto tl;
D = data;
}

};

//lll!lll!lll/!/////////l/ll/ll/llll!lll//////ll!//I//////////
I I hw_bus. sc I I
I I I I
I I COM_EMI_MCCl (July 2001) I I
///ll!ll!llll!!ll//////llll///l!!!lll////////l/llllll!//////ll

interface IBusSlave
{
void
void
void
void

Slave_sendW(word24 data, int addr);
Slave_sendBW(word24* data, int len, int addr);
Slave_recvW(word24* data, int addr);
Slave_recvBW (word24 * data, int len, int addr);

4:20:43 PM

Pcoml_emi_mccl .prn

};
channel SlaveBus (bit[l5:0]

bit[23:0]
event
bool
bool
out event

implements IBusSlave
{

A,
D,
MCS,
nRD,
nWR,
intC)

7 /24/01

I! address
I I data
I I chip select
I I control lines

SlaveProtocol protocol (A, D, MCS, nRD, nWR);

void Slave_sendW(word24 data, int addr)
{

notify (intC) ;
protocol. Slave_write (addr, data);
}

void Slave_sendBW(word24* data, int len, int addr)
{

int i;
for(i=O; i<len; i++)

{

Slave_sendW(data[i], addr);
}

void Slave_recvW(word24* data, int addr)
{
notify(intC);
*data=protocol .Slave_read(addr);
}

void Slave_recvBW(word24* data, int len, int addr)
{

};

int i;
for{i=O; i<len; i++)

{
Slave_recvW (&data [i] , addr) ;
}

//////ll!ll////l!!ll/////////////////////////////l/l!l/!!ll/!!
II MOTOR.Sc I I
I I 11
11 COM_EMI_MCCl (July 2001) I I
l!!ll!l/!//l/!//!l!!ll!lll/!///l/!//////l!!ll!ll!l/l!ll/!!//!!

I /ELECTROMECHANICAL SYSTEM
l!ll!!ll!!l/!//!//l!!I/!//!

behavior Converter{in int gv, in bit[l:O] cd, out int Vout)
{
int a,b;
void main (void}

};

{
a=cd.[OJ;
b=cd[l);
Vout=gv* (a-b);
}

behavior Electric (in int a, in int b, in int Vout, in int w_int, inout int i_int)
{
int di_int=O;

void main (void}
{

};

di_int= (((a* (i_int>>3)} >>10) + ((b* (w_int>>3)) >>10) +Vout);
i_int=i_int+di_int/ 12 8;
}

behavior Mecanic(in int l,in int m,in int i_int, inout int w_int}
{

4:20:43 PM Pcoml_emi_mccl .prn

int dw_int=O;
int dw_intl=O;

void main (void)
{

};

dw int=(l*i int+m*w int)+dw int;
dw=intl=dw_int>>20; - -
dw_int=dw_int- (dw_intl<<20);
w_int=w_int+dw_intl;
}

7 /24/01

behavior Motor(in int gv,in int a,in int b,in int l,in int m, in bit[l:O] cd,
inout int i_int, inout int w_int)

{
int Vout;

Converter Converterl (gv, cd, Vout);
Electric Electricl (a, b, Vout, w_int, i_int);
Mecanic Mecanicl (l, m, i_int, w_int);

void main(void)
{

Converterl .main () ;
Electricl .main () ;
Mecanicl . main (} ;
}

};

lll!ll!lll!!!ll!!ll!l!!/!l!!!l!l!!!l!!!/l!!lll!l!!ll!!ll/lll!I
I I SENSORS.sc //
11 11
11 COM_EMI_MCCl (July 2001) 11
l!ll/l!!//l/lll/!!///ll!!l/!//l/l!!/!!ll!ll!/l!l!!!!l/!!l/!I!!

I I SENSORS MODULES
l/lll/l!!/ll!//I!//

I I Current sensor Generator

behavior Sen_cur(in int i_int, out int Nim}
{
int sensl_i=O;
void main (void)

};

{
sensl_i=sensl_i+l;
if (sensl_i==CYCLESENl)

{
Nim= (int) (((p/1024) *i_int+p*imax) I (2*imax));
sensl_i=O;
}

behavior Sen_speed(in int w_int, out bit[l:OJ S)
{
int sens2_i=O;
int i=O;
int w_inti;
int T4_vit=24000;
bool s_vit=true;

void main (void}
{
sens2_i=sens2_i+l;

if (sens2_i==CYCLESEN2)
{
w_inti=w_int;
if (w_inti>O} s_vit=true;
else s_vi t=false;

4:20:43 PM

if (fabs(w_inti)<512} w_inti=512; //Limite basse de vitesse a reproduire

T4_vit=(int) ((pi*le6*1024}/(n_cio*w_inti)); //quart de periode en us

sens2_i=O;
}

10

Pcoml_emi_mccl .prn

};

if (i <= T4_vit)
{
S[O] =1;
if (s_vit) S[l]=O;
else S[l]=l;
}

if (T4_vit < i && i <= 2*T4_vit}
{

S [OJ =1;
if {s_vit) S[l] =1;
else S[l)=O;
}

if (2*T4 vit < i && i <= 3*T4 vit)
{ - -
S[O] =O;
if (s_vit) S[l)=l;
else S[l)=O;
}

if (3*T4_vit < i && i <= 4*T4_vit)
{
S [OJ =O;
if (s_vit) S[l)=O;
else S[l)=l;
}

i=i+l;
if (i>4*T4_vit) i=O;

7 /24/01 4:20:43 PM

11

Parch2_emi_mcc. prn 7 /24/01

l/!/ll!ll!!l/!////!////l/!///l!lll!!l/l!lll!l///////ll!ll!!I/!
11 ARCH2 EMI MCC.sc ! I
II - - II
I I ARCHITECTURE MODEL MODEL I I
I I I I
I I EMULATOR DESIGN _ INTEGER I I
I I AUTONOMOUS STRUCTURE (INCLUDING MEMORY) I I
I I I I
I I CASE OF A DC MOTOR WITH CURRENT AND SPEED SENSORS I I
I I I I
I I Slim Ben Saoud I I
I I CECS-UCI July 2001 I I
I I I I
/ll!!////!///!////!/l/!ll!l/!!l!l!!ll!!ll!///ll!/l!!/l!!/I!!//

#include <stdio .h>
#include <sim.sh>
#include <math.h>
#include <stdlib.h>
#inc 1 ude <memory. h>

#include "typedef.sh"
#include "sync.sc"
#include "channels .sc"
I /#include "bus. sc"
#include "clk.sc"
#include "memory.sc"
#include "ctl .sc"
#include 11 master.sc"
#include "emul.sc"

I /Tes tbench/ I I I I I

behavior Main
(

event
bool
bit[l:O]
int
bit[l:O]
bool

SysClk;
stop;
SC;
Nim;
S;
done;

CSync HS_syncl, HS_sync2;
Mem_Access m_access;

Clock Clockl (SysClk, stop);
Master Masterl (HS_syncl, HS_sync2, m_access, done) ;
Command_rap Command_rapl (stop, SysClk, sc);
Emulator Emulatorl(HS_syncl, HS_sync2, m_access, stop, SysClk, sc, Nim, S);
memory memoryl (m_access, done) ;

int main (void)

};

{
stop=false;
done= false;

printf("Enter the simulation time (integer) us:");
scanf ("%d", &sim_timel);

puts ("starting ... ");
printf ("Simulation time=%d us \n", sim_timel) ;

par {
Clockl .main {);
Masterl.main();
Command_rapl .main ();
Emulatorl .main ();
memoryl.main () ;
}

puts ("Exiting ... ");

return(O);
)

4:20:57 PM Parch2_emi_mcc .prn 7/24/01

//EOF

////ll!!ll!!l/!//ll!l!l!l!!l/l/!!l/!/ll!!/!l/!//!//!ll!!!l!ll!
I I typedef .sh I I
I I ARCH2_EMI_MCC (July 2001) I I
!ll!/ll!/!//!//!//l/l/ll!!ll/ll!/ll!ll!ll!!!ll!!!l/!!l//l/!I/!

I I CONSTANTS AND MACROS
l!////l!!l///!//!///ll!!

I I Time references

#define CYCLETIME
#define CYCLENB
#define MAXSIMTIME
#define CYCLESAVE
#define ALPHA

1
50
5000
10
200

I I Electromechanical system parameters

#define CYCLESENl
#define CYCLESEN2
#define p
#define n_cio
#define pi

#define imax

FILE *pTrace;

I /Simulation time

int sim_timel=5000;

5
1000
1024
256
3 .1415927

30

I I cycle de rafraichissement du courant
I I cycle de rafraichissement de la vitesse
I I Digital/Analog Converter resolution
I I CIO resolution

/lll/ll!!l//!///////l!!lll!////!//!ll!/l!ll!lll/lll!l//ll!!I//
11 SYNC.sc I I
I I ARCH2_EMI_MCC (July 2001) I I
l!ll/!/l/l!l/////l///l!/!/!/!l!!///!//ll!/l////l!/ll!l/!//I/!!

I /Interfaces and Channels for synchronization
lll!//!ll/!///////l/ll!!ll!///ll!/////////////

interface ISyncin
(
void recv();
);

interface ISyncOut
{
void send();
);

channel CSync () implements ISyncin, ISyncOut
{
bool valid=false;
event e;

void send()
{
valid=true;
notify (e);
}

void recv()
{
if (!valid) wait (e);
valid=false;
}

};

l/!ll/lllll!lll!l/!/llllll/l/lllllllllllllll!ll/llll/l!lllllll
I I MEM_CHANNELS. sc I I
I I ARCH2_EMI_MCC (July 2001) I I
!ll!l!l!/l!!!!lll!llll!!lll!ll//l/!/l/l/////l/////I//!/////!//

4:20:57 PM

Parch2_emi_mcc. prn

interface PE_part
{

void write_send(int data, int addr);
void read_send(int*data, int addr);

};

interface MEM_part
{

};

void recv_addr_write(int* addr, int* rw);
void recv_data_write(int* data);
void send_data_read(int data);

channel Mem_Access ()
implements PE_part, MEM_part

bool mem_valid=false;

7 /24/ 01

I /Memory write
I /Memory read

event send_addr, recv_addr, send_data, recv_data;
int buf_mem;
int add_mem;
int rw_mem;

void wri te_send (int data, int addr)
{

mem_valid=true;
buf mem = data;
add:::mem=addr;
rw_mem=l;

notify(send_addr);
if (mem_valid) wait (recv_addr);

mem_valid=true;
notify(send_data);
if (mem_valid) wait (recv_data);

void read_send(int* data, int addr)
{

mem_valid=true;
add_mem=addr;
rw_mem=O;

notify(send_addr);
if (mem_valid) wait (recv_addr);

mem_valid=true;
notify(send_data);
if (mem_valid) wait (recv_data);

*data=buf_mem;

void recv_addr_write(int* addr, int* rw)
{

if (!mem_valid) wait (send_addr);

*addr=add mem;
*rvv=rw_meffi;

notify(recv_addr);
mem_valid=false;

void recv_data_wri te (int* data)
{

if (!mem_valid) wait (send_data);
notify(recv_data);
mem valid=false;
*data=buf_mem;

void send_data_read(int data)
{

if (!mem_valid) wait (send_data);
notify(recv_data);
mem_valid=false;
buf_mem=data;

4:20:57 PM Parch2_emi_mcc. prn 7 /24/01

}
};

/////ll!lll!!///l!!!ll!!l/!///////l/l/l!l!!//!l!!l!!//////I!!/
II CLK.sc II
I I ARCH2_EMI_MCC (July 2001) I I
ll!!!////!!!//l/!/!!//ll!!l/////l/!lllll!l/!/////ll!ll!ll!!I/!

I I SIMULATION CLOCK
l/!!/////!ll!//////I

behavior Clock(out event elk, out bool stop)
{

void main (void)
{

);

do
{
waitfor(CYCLETIME);
notify (elk) ;
}while ((int)now()<sim_timel);

stop= true;
notify(clk);
}

I I !I I I I I I 111I//////111 //////I!!/ I/!//!// I!! 111//////111////I11
I I MEMORY .sc I I
11 ARCH2_EMI_MCC (July 2001) I I
ll!!!////l!!////l!//l!!/////////////l!!/!////////!!!///I/!/!!/

behavior memory(MEM_part msync, in bool done)
{
int rw;
int addr;
int data;
int mem[30000);

void main (void)
{
do

};

{

msync.recv_addr_write(&addr, &rw);
if (rw==l)

{
msync.recv_data_write(&data);
mem [addr] =data;
}

if (rw==O)
{
data=mem[addr];
msync. send_da ta_read (data) ;
}

}while(!done);

/////l/l//l!lll!l/!//ll!!ll!l!l/ll!!l///l!!//l!ll/!/!//I!!!//!
II CTL.sc //
I I ARCH2_EMI_MCC (July 2001) I I
l!!l/!//l/l!!ll!!!/l/l!l/!//////////l/!///l!!////l!!!l/l!!!!I/

behavior Command_rap(in bool stop, in event elk, out bit[l:OJ cd)
{
int i=O;
int alph=l80;

void main (void)
{
do

{
wait elk;
i=i+l;
if (i<alph) cd[OJ=l;
else

{

4:20:57 PM

Parch2_emi_mcc. prn

};

if (i>284) i=O;
cd[OJ=O;
}

cd[l J = !cd[OJ;
}while (!stop};

7/24/01

ll!ll!!llll!!lll/l/!l!!lll!ll!ll!!!lll!ll!!l/!!/l!l!llll!l/I!!
I I MEM MASTER.sc I I
I I - ARCH2_EMI_MCC (July 2001) I I
l/!l/!/l!!!//l/!////!//////l!!////l!ll!l!!ll!!/!/l!!//l!!ll/!/

I /INITIALISATION
I/I/!////////!///

behavior Ini t (PE__part ma_sync}
{

float Alpha, Betta, Gamma, Londa, Mu, Psi;
int gv, a,. b, l, m, n;

float Ve=60.0;

float
float
float

float
float
float
float
float

float
float
bool

rm=l.O;
lm=O. 00400;
krn=O .184;

fm=O. 000180;
jm=O. 00160;
fc=O. 000180;
jc=0.0016;
Cs=0.16;

ft, jt;
hor=le-6;
init_f=true;

int pararn[6);

void main (void}
{

};

if {init_f}
{

ft=frn+fc;
j t=jm+jc;
Alpha=l. -hor*rm/ lrn* (L -hor /2. *rm/ lm} ;
Betta=-hor*krn/lm* (1. -hor/2. *rm/lm};
Garnrna=hor I lm* (1. -hor /2. *rm/ lm} ;
Londa=hor*krn/j t* (1. -hor 12. *f t/j t);
Mu=L -hor*ft/j t* { 1. -hor/2. *ft/j t);
Psi=-Cs*hor/jt*. (L -hor/2. *ft/j t};

gv=(int) (1024*128*Garnrna*Ve);
a= {int} (1024 *1024 * {Alpha-1}};
b=(int) {1024*1024*Betta);
l=(int) {1024*1024*Londa);
m=(int) {1024*1024*{Mu-1));
n=(int) (1024*128*Psi);

ma_sync.write_send(gv, O ;
ma_sync.write_send(a, 1)
ma_sync. wri te_send (b, 2}
rna_sync.write_send(l, 3)
rna_sync. wri te_send (m, 4}
ma_sync.write_send(n, 5)

pTrace=fopen ("R_arch2_emi_mcc. dat", "W");

ini t_f=false;
}

behavior Storage (PE__part ma_sync, out bool done)
(

int addr=6;

4:20:57 PM Parch2_erni_rncc. prn

float
int
int

im, vit;
i_int, w_int;
i;

void main (void}
(
done= false;

for(i=O; i<500; i++)
(
ma_sync.read_send{&i_int, addr};
addr=addr+l;

if (i==499) done= true;

ma_sync.read_send(&w_int, addr);
addr=addr+ 1;

im=i_int/1024.;
vit=w_int/1024.;

7 /24/01

fprintf(pTrace," %f %f \n", irn, vit);
}

};

fclose (pTrace) ;
}

I /Master behavior
///l/l!l/lllll!ll!

behavior Master(ISyncOut sync_l, ISyncin sync_2, PE__part rna_sync, out bool done)
{
event clk_s;

Init
Storage

Initl (ma_sync};
Storagel (rna_sync, done);

void main (void)
{

};

Initl .main ();
sync_Lsend{};

sync_2 . recv () ;
Storagel .main {);
}

//l/lll!lllllllllll/!l/llll!llll!ll!l/lllll!!ll!llllll!lll!ll!
I I MEM_EMUL.sc 11
I I ARCH2_EMI_MCC (July 2001) I I
//lllll/!ll!llllll!lllllllllll!llllllllllll!l!llllll!lll!!lll!

#include
#include

"motor.sc"
"sensors.Sc"

4:20:57 PM

behavior Ern_ini t (PE__part em_sync,
{

out int gv,out int a, out int b, out int 1, out int m, out int n)

void main {void)
{

};

em_sync. read_send { &gv, 0 ;
ern_sync. read_send (&a, 1}
em_sync. read_send (&b, 2)
em_sync. read_send (&l, 3)
em_sync. read_send(&rn, 4)
ern_sync. read_send (&n, 5)
}

11 Storage_send behavior

behavior Storage_send(in int i_int, in int w_int, PE__part em_sync}
{
int stor_i=O;
int addr=6;

void main {void}
{

Parch2_emi_mcc. prn

};

stor_i=stor_i+l;
if (stor_i==CYCLESAVE)

{
em_sync.write_send(i_int, addr);
addr=addr+ 1;
em_sync.write_send(w_int, addr);
addr=addr+ 1;
stor_i=O;
}

I I Electromechanical system global module

7 /24/01

behavior Emulator(ISyncin sync_l, ISyncOut sync_2, PE_part em_sync,

4:20:57 PM

in bool stop, in event elk, in bit[l:O) cd, out int Nim, out bit[l:O) S)
{
int i_int, w_int;
int gv, a, b, l, rn, n;

Em_init
Motor

Em_initl(em_sync, gv, a, b, 1, m, n);
Motorl{gv, a, b, 1, m, cd, i_int, w_int);
Sen_ curl (i_int, Nim); Sen_ cur

Sen_speed
Storage_send

Sen_speedl (w_int, S);
Storage_sendl {i_int, w_int, em_sync);

void main (void)
(

};

i_int= w_int= 0;

sync_l. recv () ;
Em_ini tl.main () ;

do
{
wait elk;
Motorl .main ();
Sen_curl .main {) ;
Sen_speedl .main ();
Storage_sendl .main ();
}while (!stop);

sync_2. send () ;

printf("im=%f \n", i_int/1024.);
printf ("vi t=%f \n", w_int/1024.);
)

/lll/ll/////////l///////////ll////////////////////////////////
// MOTOR.sc I I
I I ARCH2_EMI_MCC (July 2001) I I
/1///////lll/l/////ll////////////////////lllll/////ll///ll////

I /ELECTROMECHANICAL SYSTEM
!lll/lll!!l!!/!//////I/!///

behavior Converter(in int gv, in bit[l:O) cd, out int Vout)
{
int a,b;
void main {void)

);

{
a=cd[OJ;
b=cd[l);
Vout=gv* (a-b);
}

behavior Electric(in int a,in int b,in int Vout, in int w_int, inout int i_int)
{
int di_int=O;

void main (void)
{

};

di_int= (((a* (i_int>>3)) >>10) + ((b* (w_int»3)) »10) +Vout);
i_int=i_int+di_int/ 12 8;
}

Parch2_emi_mcc. prn 7 /24/01

behavior Mecanic{in int l,in int m,in int i_int, inout int w_int)
{
int dw_int=O;
int dw_intl=O;

void main (void)
(
dw_int= (l *i_int+m*w_int) +dw_int;
dw_intl=dw_int>>20;
dw_int=dw_int- (dw_intl<<20);
w_int=w_int+dw_intl;
)

);

behavior Motor(in int gv,in int a,in int b,in int l,in int m, in bit[l:O] cd,
inout int i_int, inout int w_int)

(
int Vout;

Converter Converterl (gv, cd, vout);
Electric Electricl (a, b, vout, w_int, i_int);
Mecanic Mecanicl (l, m, i_int, w_int);

void main (void)
{
Converterl .main {) ;
Electricl .main () ;
Mecanicl .main {);
)

);

/////////l/lll//////ll!////////////l///ll//////llll///1//ll///
II SENSORS.Sc II
// ARCH2_EMI_MCC {July 2001) //
/!l///l///ll/////!//!////////////!///!///!/////llll//ll///////

I I SENSORS MODULES
/////////////////!/

/ / Current sensor Generator

behavior Sen_cur{in int i_int, out int Nim)
{
int sensl i=O;
void main (void)

};

{
sensl_i=sensl_i + l;
if (sensl_i==CYCLESENl)

{
Nim= (int} (((p/1024) *i_int+p*irnax} I (2*irnax));
sensl i=O;
} -

behavior Sen_speed{in int w_int, out bit[l:O) S)
{
int sens2_i=O;
int i=O;
int w_inti;
int T4_vit=24000;
bool s_vit=true;

void main (void}
(
sens2_i=sens2_i+l;

if (sens2_i==CYCLESEN2}
(
w_inti=w_int;
if {w_inti>O) s_vit=true;
else s_vit=false;

4:20:57 PM

if {fabs(w_inti)<512) w_inti=512; //Limite basse de vitesse a reproduire

T4_vit= (int) ((pi *le6* 1024) I (n_cio*w_inti)); I /quart de periode en us

sens2_i=O;

Parch2_emi_mcc .prn

};

if (i <= T4_vit)
{
S(O] =l;
if (s_vit) S[l]=O;
else S[l]=l;
}

if (T4_vit < i && i <= 2*T4_vit)
{
S(OJ =l;
if (s_vit) S[l] =l;
else S[l]=O;
}

if (2*T4_vit < i && i <= 3*T4_vit)
{
S[O] =O;
if {s_vit) S[ll=l;
else S[l]=O;
}

if (3*T4_vit < i && i <= 4*T4_vit}
{

S[O] =0;
if (s_vit) S[l)=O;
else S[ll=l;
}

i=i+l;
if (i>4*T4_vit) i=O;

7 /24/01 4:20:57 PM

Pcom2_emi_mcc .prn 7 /24 /01

ll/l//////////l//////////////////////////l/l//////////////I/!/
I I COM2 EMI MCC.sc I I
II - - II
I I COMMUNICATION MODEL I I
I I I I
I I EMULATOR DESIGN _ INTEGER I I
I I AUTONOMOUS STRUCTURE (INCLUDING MEMORY) / /
I I I I
I I CASE OF A DC MOTOR WITH CURRENT AND SPEED SENSORS I I
I I I I
I I Slim Ben Saoud I I
I I CECS-UCI July 2001 I I
II I I
/l/!/l/!/////l/l/l/l/l/lll/ll!ll!////ll!l!!ll!/l////l/!/l/!/ll

#include <stdio.h>
#include <sim.sh>
#include <math.h>
#include <stdlib. h>
#inc 1 ude <memory. h>

#include •typedef.sh"
#include "elk.Sc"
#include •ctl.sc"
#include "memory.Sc"
#include 11 master.sc"
#include 0 emul.sc"

I /Testbench/ I I I I I

behavior Main
{
int A;
int D;
event MCS;
bool nRD=true;
bool nWR=true;

event

event
bool
bit[l:O)
int
bit[l:OJ
bool

intC, intCl;

SysClk;
stop;
SC;
Nim;
S;
done;

Clock Clockl (SysClk, stop);
Master Masterl(intc, intCl, A, D, MCS, nRD, nWR, done);
Comrnand_rap Comrnand_rapl (stop, SysClk, sc);
Emulator Ernulatorl{intc, intCl, A, D, MCS, nRD, nWR, stop, SysClk, sc, Nim, S);
memory memoryl (A, D, MCS, nRD, nWR, done);

int main (void)
{
stop=false;
done= false;

printf("Enter the simulation time {integer) us:");
scanf { "%d •, &sim_timel);

puts ("starting ... ");
printf("Simulation time=%d us \n",sim_timel);

sim_timel=sim_timel * 1000;

par (
Clockl .main () ;
Masterl .main ();
Comrnand_rapl .main {) ;
Emu la torl. main () ;
memoryl .main () ;
}

puts {"Exiting ... 11);

return(O);
}

//new cycletime is given in ns//

4:21:12 PM Pcom2_emi_mcc .prn 7 /24/01

};

//EOF

l////ll!ll////l//ll!!ll!/l!!ll!lll/I//////////////////////////
I I TYPEDEF .sh I I
I I COM2_EMI_MCC (July 2001) I I
///////////////l/////////////////////ll////////////l/!//////I/

I I Time references

#define CYCLETIME
#define CYCLENB
#define MAXSIMTIME
#define CYCLESAVE
#define ALPHA

1000
50
5000000
10
200

I I Electromechanical system parameters

#define CYCLESENl
#define CYCLESEN2
#define p
#define n_cio
#define pi

#define imax

FILE *pTrace;

I I Simulation time

int sim_timel=5000;

5
1000
1024
256
3 .1415927

30

I I cycle de rafraichissement du courant
I I cycle de rafraichissement de la vitesse
I I Digital/Analog Converter resolution
I I CIO resolution

l///////////////////ll!l//ll/!//!//////!//////l/!///////////I/
I I CLK.sc I I
I I COM2_EMI_MCC (July 2001) I I
l/l!ll!/l/ll!//ll!l////ll!!l////lll!!l///l/!//!l!////////l!!ll

I I SIMULATION CLOCK
ll!ll//l!/l/ll/l//I!

behavior Clock(out event elk, out bool stop)
{
void main (void)

{
do

{
waitfor{CYCLETIME);
notify(clk);
}while ((int)now()<sim_timel);

stop= true;
notify(clk);
}

};

l!l/ll/!lllll/l//l!l/l//ll!ll/lllll/lll!lll/llll/ll!lllll///I/
I I CTL.sc I I
I I COM2_EMI_MCC (July 2001) I I
llll//ll!l/lllll/l!lllll/l!lllll!ll//l/l!lll/lll!ll!//!lllllll

behavior Comrnand_rap{in bool stop, in event elk, out bit[l:O] cd)
{
int i=O;
int alph=lBO;

void main {void)
{
do

{
wait elk;
i=i+l;
if {i<alph) cd[OJ=l;
else

{
if {i>284) i=O;

4:21:12 PM

Pcom2_emi_mcc .prn

cd[O]=O;
)

cd [1) = ! cd [0) ;
}while (!stop);

7 /24/01

};

/!/////!/////////////!!//!//!!/////!/l/l/////////ll!!/lll!///!
11 MEMORY .sc 11
I! COM2_EMI_MCC (July 2001) //
l!ll/////ll!!l!/l/!///ll!!lllllll!/l!/l/lll!/ll!l/llllllll/I/!

interface IProtocolMEM
{

void Mem_answer(int MEMOIRE[2000]);
};

channel MEM_Protocol (int A, int D, event MCS, bool nRD, bool nWR)
implements IProtocolMEM
{

void Mem_answer(int MEMOIRE[2000))
{

};

int addr;
tl: wait(MCS);
addr=A;

while (nWR==l && nRD==l}
{
waitfor(l);
}

if (nRD==O)
{
waitfor(6);
D=MEMOIRE[addr);
while (nRD==O)

{
waitfor(l);
}

if (nWR==O)
{
waitfor(9);
while (nWR==O)

{
waitfor(l);
}

MEMOIRE[addr) =D;
}

behavior memory(int A, int D, event MCS, bool nRD, bool nWR, in bool done)
{

int MEMOIRE[2000);
MEM_Protocol mem_p (A, D, MCS, nRD, nWR);

void main (void)
{
do

};

{

mem_p.Mem_answer(MEMOIRE);
}while(!done);

!ll/l/l!!lll/lll/lll!lll/ll!lllll!!ll!lllllll//llllll!llllll!I
! I MASTER.Sc 11
11 COM2_EMI_MCC (July 2001) / /
llll/////lll/lll!l//!///ll///ll/l/ll!lll!ll/////!!lll!!lll/!//

I I PROTOCOL CHANNEL
!//// llll! l/!ll!!!I!

4:21:12 PM Pcom2_emi_mcc .prn

interface IProtMaster
{

void PE_read(int* data, int addr);
void PE_write(int data, int addr);
};

7 /24/01

I/0 instructions of DSP56600 (MOVEM)

channel Master_Prot(int A, int D, event MCS, bool nRD, bool nWR)
implements IProtMaster

{
/*----------MASTER-----------* I

};

void PE_read(int* data, int addr)
{

waitfor(5);
A = addr;
notify (MCS);
waitfor(5);
nRD = O;
waitfor(16);
*data = D;
waitfor(3);
nRD = 1;
waitfor(4.2);

void PE_write(int data, int addr)
{

waitfor(5);
A = addr;
notify(MCS);
waitfor(5);
nWR = O;
waitfor(lO);
D = data;
waitfor(8);
nWR = l;
waitfor(5);

//INITIALISATION
////llll!!lll!/I/

behavior Ini t (IProtMaster Master_p)
{

float Alpha, Betta, Gamma, Londa, Mu, Psi;
int gv, a, b, l, m, ni

float

float
float
float

float
float
float
float
float

float
float
bool

Ve=60.0;

rm=l.O;
lm=0.00400;
km=0.184;

fm=0.000180;
jm=O. 00160;
fc=O. 000180;
jc=O. 0016;
Cs=O. 16;

ft, j t;
hor=le-6;
init_f=true;

int param[6);

void main (void)
{
if (init_f)

{
ft=fm+fc;
j t=jrn+jc;
Alpha=l. -hor*rm/lrn* (1. -hor/2. *rm/lm);
Betta=-hor*km/lm* (1. -hor/2. *rm/lm);
Gamrna=hor/lrn* (1.-hor/2. *rm/lm);
Londa=hor*km/jt* (1.-hor/2. *ft/jt);
Mu=l.-hor*ft/j t* (1.-hor/2. *ft/j t);
Psi=-Cs*hor/jt* (1.-hor/2. *ft/jt);

4:21:12 PM

*I

Pcom2_emi_mcc .prn

gv=(int) (1024*128*Gamma*Ve);
a= (int) (1024*1024* (Alpha-1));
b= (int) (1024 *1024 *Betta);
l=(int) (1024*1024*Londa);
m= (int) (1024*1024 * (Mu-1));
n=(int) (1024*128*Psi);

Master_p.PE_write(gv, O ;
Master_p.PE_write(a, 1)
Master_p.PE_write(b, 2)
Master_p.PE_write(l, 3)
Mas ter_p. PE_wri te (m, 4)
Master_p.PE_write(n, 5)

7 /24/01

pTrace=fopen ("R_com2_emi_mcc. da t", "w") ;

);

init_f=false;
}

behavior Storage (IProtMaster Master_p, out bool done)
(
int addr=6;
float im, vit;
int i_int, w_int;
int i;

void main(void)
(
done=false;

};

for(i=O; i<500; i++)
(

Master_p.PE_read(&i_int, addr);
addr=addr+l;

if (i==499) done=true;

Master_p.PE_read(&w_int, addr);
addr=addr+ 1;

im=i_int/1024.;
vit=w_int/1024.;
fprintf (pTrace," %f %f \n", im, vit);
}

fclose (pTrace) ;
}

I /Master behavior
(((((/((((/((((((/

4:21:12 PM

behavior Master(event intC, event intCl, int A, int D, event MCS, bool nRD, bool nWR, out bool done)
(
event clk_s;

Master_Prot Master_p (A, D, MCS, nRD, nWR);

Init
Storage

Initl (Master_p);
Storagel (Master_p, done);

void main(void)
(

};

Ini tl .main () ;
notify(intC);

wait(intCl);
Storagel .main () ;
)

(/((/(/(((//(((((//((//((/(//(/(((//((/(((/((/((((/(((((((//((

Pcom2_emi_mcc .prn 7 /24/01

II EMUL.sc //
I I COM2_EMI_MCC (July 2001) I I
((//(((((/(/(((/((//(/(/(/(//((/((//!//(/(//(//(/((/(/((/((/((

#include
#include

"motor.sc"
"sensors.sc"

I I PROTOCOL CHANNEL
(/((/((/((/((((/((((

interface IProtEmul
(

void PE_read(int* data, int addr);
void PE_write(int data, int addr);
);

I/O instructions of DSP56600 (MOVEM)

channel Emul_Prot (int A, int D, event MCS, bool nRD, bool nWR)
implements IProtEmul

{
I *----------MASTER--------- --*I

void PE_read(int* data, int addr)
(

);

waitfor(5);
A = addr;
notify (MCS) ;
waitfor(5);
nRD = 0;
waitfor(16);
*data = D;
waitfor(3 J;
nRD = l;
waitfor(4.2);

void PE_write(int data, int addr)
{

waitfor(5);
A = addr;
notify (MCS) ;
waitfor(5);
nWR = O;
waitfor(lOJ;
D = data;
waitfor(S);
nWR = l;
waitfor(5);

4:21:12 PM

*I

behavior Em_init(IProtEmul Emul_p, out int gv,out int a, out int b, out int 1, out int m, out int n)
(
void main (void)

(

);

Emul_p. PE_read (&gv, 0 ;
Emul_p . PE_read (&a, 1)
Emul_p. PE_read (&b, 2)
Emul_p. PE_read (&l, 3)
Emul_p. PE_read (&m, 4)
Emul_p.PE_read(&n, 5)
)

I I Storage_send behavior

behavior Storage_send(in int i_int, in int w_int, IProtEmul Emul_p)
(
int stor_i=O;
int addr=6;

void main (void)
(
stor_i=stor_i+l;
if (stor_i==CYCLESAVEJ

{

Emul_p. PE_wri te (i_in t, addr) ;
addr=addr+ 1;

Pcom2_emi_mcc .prn

};

Emul_p.PE_write(w_int, addr);
addr=addr+ 1;
stor_i=O;
}

11 Electromechanical system global module

7 /24/01 4:21:12 PM

behavior Emulator (event intC, event intCl, int A, int D, event MCS, bool nRD, bool nWR,
in bool stop, in event elk, in bit[l:OJ cd, out int Nim, out bit[l:OJ S) {

int i_int, w_int;
int gv, a, b, 1, m, n;

Emul_Prot Emul_p (A, D, MCS, nRD, nWR);

Em_init
Motor

Em_initl (Emul_p, gv, a, b, 1, m, n);
Motorl(gv, a, b, l, m, cd, i_int, w_int);
Sen_curl (i_int, Nim); Sen_ cur

Sen_speed
Storage_send

Sen_speedl (w_int, S);
Storage_sendl (i_int, w_int, Emul_p);

void main (void)
{
i_int= w_int= O;

wait { intC) ;
Em_initl .main ();

do
{
wait elk;
Motorl .main {);
Sen_curl .main{);
Sen_speedl .main ();
Storage_sendl. main () ;
}while (!stop);

notify(intCl);

printf("im=%f \n•, i_int/1024.);
printf("vit=%f \n", w_int/1024.);
)

};

lll/!/////ll!l/////////l/l!l///////l//lll/l/!//////l////I/!///
I! MOTOR.Sc I I
II COM2_EMI_MCC {July2001) //
////////lll/!//l!////lll!///!//l/!/l//ll/ll!//////l/ll//ll////

//ELECTROMECHANICAL SYSTEM·
////////lllll/l/ll///lll/11

behavior Converter(in int gv, in bit[l:OJ cd, out int Vout)
{
int a,b;
void main(void)

};

{
a=cd(OJ;
b=cd(lJ;
Vout=gv* (a-b);
)

behavior Electric(in int a,in int b,in int Vout, in int w_int, inout int i_int)
{
int di_int=O;

void main (void)

};

{

di_int= { ((a* (i_int>>3)) >>10) + { (b* {w_int»3)) >>10) +Vout);
i_int=i_int+di_int/ 128;
}

behavior Mecanic(in int l,in int m,in int i_int, inout int w_int)
{

int dw_int=O;
int dw_intl=O;

Pcom2_emi_mcc. prn

void main (void)
{

};

dw_int= (1 * i_int+m•w_int) +dw_int;
dw_intl=dw_int>>20;
dw_int=dw_int- (dw_intl<<20);
w_int=w_int+dw_intl;
}

7 /24/01

behavior Motor(in int gv,in int a,in int b,in int l,in int m, in bit[l:OJ cd,
inout int i_int, inout int w_int)

{
int Vout;

Converter Converterl (gv, cd, Vout);
Electric Electricl (a, b, Vout, w_int, i_int);
Mecanic Mecanicl (1, m, i_int, w_int);

void main (void)
{
Converterl .main ();
Electricl .main ();
Mecanicl .main () ;
)

};

/////lll/ll!ll/////ll!lll/l/l/llllll/lll/////l/lll///l/////lll
11 SENSORS.sc //
11 COM2_EMI_MCC (July 2001) / /
////ll!llllll//////ll/llll!l//llll/!ll!/l////llllll/llll///lll

I I SENSORS MODULES
l////ll/llll/lll!ll

11 Current sensor Generator

behavior Sen_cur(in int i_int, out int Nim)
{
int sensl_i=O;
void main (void)

};

{
sensl_i=sensl_i+l;
if {sensl_i==CYCLESENl)

{

Nim= (int) (((p/1024) *i_int+p*imax) I {2*imax));
sensl_i=O;
}

behavior Sen_speed(in int w_int, out bit[l:O] S)
{
int sens2_i=O;
int i=O;
int w_inti;
int T4_vit=24000;
bool s_vit=true;

void main (void)
{
sens2_i=sens2_i+ l;

if (sens2_i==CYCLESEN2)
{
w_inti=w_int;
if (w_inti>O) s_vit=true;
else s_vit=false;

4:21:12 PM

if (fabs(w_inti)<512) w_inti=512; //Limite basse de vitesse a ~eproduire

T4_vit=(int) ((pi*le6*1024)/(n_cio*w_inti)); //quart de periode en us

sens2_i=O;
}

Pcom2_emi_mcc .prn

};

if (i <= T4_vit)
{
S[O) =l;
if (s_vit) S[l)=O;
else S[l)=l;
}

if (T4_vit < i && i <= 2*T4_vit)
{
S [O] =1;
if (s_vit) S[l)=l;
else S[ll=O;
}

if (2*T4_vit < i && i <= 3*T4_vit)
{
S[O] =O;
if (s_vit) S[l)=l;
else S[l]=O;
}

if (3*T4 vit < i && i <= 4*T4 vit)
{ - -
S(O] =0;
if (s_vit) S[l)=O;
else S[l)=l;
}

i=i+l;
if (i>4*T4_vit) i=O;

7 /24/01 4:21:12 PM

